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1 Introduction
TheRiemannhypothesis as oneof themillenniumproblemshasbeengivena lot of attentionbymany scholars
for a long time. Selberg guessed that theRiemannhypothesis also holds for the L-function in the Selberg class.
Such an L-function based on the Riemann zeta function as a prototype is de�ned to be a Dirichlet series

L(s) =
∞

∑
n=1

a(n)
ns

(1)

of a complex variable s = σ + it satisfying the following axioms [1]:
(i) Ramanujan hypothesis: a(n) ≪ nε for every ε > 0.
(ii) Analytic continuation: There exists a nonnegative integer m such that (s − 1)mL(s) is an entire function
of �nite order.
(iii) Functional equation: L satis�es a functional equation of type

ΛL(s) = ωΛL(1 − s),

where

ΛL(s) = L(s)Qs
K
∏
j=1
Γ(λjs + νj)

with positive real numbers Q, λj, and complex numbers νj, ω with Reνj ≥ 0 and ∣ω∣ = 1.
(iv) Euler product: log L(s) = ∑∞n=1

b(n)
ns , where b(n) = 0unless n is a positive power of a prime and b(n) ≪ nθ

for some θ < 1
2 .

It is mentioned that there are many Dirichlet series but only those satisfying the axioms (i)-(iii) are regarded
as the extended Selberg class [1, 2]. All the L-functions which are studied in this article are from the extended
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Selberg class. Therefore, the conclusions proved in this article are also true for L-functions in the Selberg
class. Theorems in this paper will be proved by means of Nevanlinna’s Value distribution theory. Suppose
that F and G are two nonconstant meromorphic functions in the complex plane C, c denotes a value in the
extended complex planeC∪ {∞}. If F − c and G − c have the same zeros counting multiplicities, we say that
F and G share c CM. If F − c and G − c have the same zeros ignoring multiplicities, then we say that F and
G share c IM. It is well known that two nonconstant meromorphic functions in C are identically equal when
they share �ve distinct values IM [3, 4]. The following uniqueness theorem of two L-functions was proved by
Steuding [1].

Theorem 1.1 (see [1]). If two L-functions with a(1) = 1 share a complex value c ≠ ∞ CM, then they are
identically equal.

Remark 1.2. In [5], the authors gave an example that L1 = 1+ 2
4s and L2 = 1+ 3

9s , which showed that Theorem
1.1 is actually false when c = 1.

In 2011, Li [6] considered values which are shared IM and got

Theorem 1.3 (see [6]). Let L1 and L2 be two L-functions satisfying the same functional equation with a(1) = 1
and let a1, a2 ∈ C be two distinct values. If L−1

1 (aj) = L−1
2 (aj), j = 1, 2, then L1 ≡ L2.

In 2001, Lahiri [7] put forward the concept of weighted sharing as follows.
Let k be a nonnegative integer or∞, c ∈ C∪{∞}. We denote by Ek(c, f) the set of all zeros of f − c, where

a zero of multiplicitym is countedm times ifm ≤ k and k+1 times ifm > k. If Ek(c, f) = Ek(c, g), we say that
f and g share the value c with weight k (see [7]).

In 2015, Wu and Hu [8] removed the assumption that both L-functions satisfy the same functional
equation in Theorem 1.3. By including weights, they had shown the following result.

Theorem 1.4 (see [8]). Let L1 and L2 be two L-functions, and let a1, a2 ∈ C be two distinct values. Take two
positive integers k1, k2 with k1k2 > 1. If Ekj(aj , L1) = Ekj(aj , L2), j = 1, 2, then L1 ≡ L2.

In 2003, the following question was posed by C.C. Yang [9].

Question 1.5 (see [9]). Let f be a meromorphic function in the complex plane and a, b, c are three distinct
values, where c ≠ 0,∞. If f and the Riemann zeta function ζ share a, b CM and c IM, will then f ≡ ζ?

The L-function is based on the Riemann zeta function as the model. It is then valuable that we study the
relationship between an L-function and an arbitrary meromorphic function [10–14]. This paper concerns the
problem of how meromorphic functions and L-functions are uniquely determined by their c-values. Firstly,
we introduced the following theorem.

Theorem 1.6 (see [10]). Let a and b be twodistinct �nite values and f be ameromorphic function in the complex
plane with �nitely many poles. If f and a nonconstant L-function L share a CM and b IM, then L ≡ f .

Then, using the idea of weighted sharing, we will prove the following theorem.

Theorem 1.7. Let f be a meromorphic function in the complex plane with �nitely many poles, let L be a
nonconstant L-function, and let a1, a2 ∈ C be two distinct values. Take two positive integers k1, k2 with k1k2 > 1.
If Ekj(aj , f) = Ekj(aj , L), j = 1, 2, then L ≡ f .

Remark 1.8. Note that an L-function itself can be analytically continued as a meromorphic function in the
complex plane. Therefore, an L-function will be taken as a special meromorphic function. We can also see that
Theorem 1.4 is included in Theorem 1.7.
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In 1976, the following question was mentioned by Gross in [15].

Question 1.9 (see [15]). Must two nonconstant entire functions f1 and f2 be identically equal if f1 and f2 share
a �nite set S?

Recently, Yuan, Li and Yi [16] considered this question leading to the theorem below.

Theorem 1.10 (see [16]). Let S = {ω1,ω2,⋯,ωl}, where ω1,ω2,⋯,ωl are all distinct roots of the algebraic
equation ωn

+ aωm
+ b = 0. Here l is a positive integer satisfying 1 ≤ l ≤ n, n and m are relatively prime

positive integers with n ≥ 5 and n > m, and a, b, c are nonzero �nite constants, where c ≠ ωj for 1 ≤ j ≤ l. Let
f be a nonconstant meromorphic function such that f has �nitely many poles in C, and let L be a nonconstant
L-function. If f and L share S CM and c IM, then f ≡ L.

Concerning shared set, we prove the following theorem.

Theorem 1.11. Let f be an entire function with limR(s)→+∞ f(s) = k (k ≠ ∞) and let R(a) = 0 be a algebraic
equation with n ≥ 2 distinct roots, and R(k), R(b), R(1) ≠ 0. Suppose that f(s0) = L(s0) = b for some s0 ∈ C.
If f and a nonconstant L-function L share S CM, where S = {a ∶ R(a) = 0}, then R(L) ≡ R(f).

Furthermore, we obtain a result which is similar to Theorem 1.10 by di�erent means.

Theorem 1.12. Let f be an entire function with limR(s)→+∞ f(s) = k (k ≠ ∞). Let S = {ω1,ω2,⋯,ωi} ⊂

C/{1, k, b}, whereω1,ω2,⋯,ωi are all distinct roots of the algebraic equationωn+m
+αωn

+β = 0, 1 ≤ i ≤ n+m,
n, m are two positive integers with n > m+2,α, β are �nite nonzero constants. If f and a nonconstant L-function
L share S CM and f(s0) = L(s0) = b for some s0 ∈ C, then f ≡ tL, where t is a constant such that td = 1,
d = GCD(n,m).

2 Some lemmas
In this section, we present some important lemmas which will be needed in the sequel. Firstly, let f be a
meromorphic function in C. The order ρ (f) is de�ned as follows:

ρ (f) = lim sup
r→∞

log T (r, f)
log r

.

Lemma 2.1 (see [4], Lemma 1.22). Let f be a nonconstant meromorphic function and let k ≥ 1 be an integer.
Then m (r, f

(k)

f ) = S(r, f). Further if ρ(f) < +∞, then

m (r, f
(k)

f
) = O(log r).

Lemma 2.2 (see [4], Corollary of Theorem 1.5). Let f be a nonconstant meromorphic function. Then f is a
rational function if and only if lim inf

r→∞
T(r,f)

log r < ∞.

Lemma 2.3 (see [4], Theorem 1.19). Let T1(r) and T2(r) be two nonnegative, nondecreasing real functions
de�ned in r > r0 > 0. If T1(r) = O (T2(r)) (r →∞, r /∈ E), where E is a set with �nite linear measure, then

lim sup
r→∞

log+ T1(r)
log r

≤ lim sup
r→∞

log+ T2(r)
log r

and
lim inf
r→∞

log+ T1(r)
log r

≤ lim inf
r→∞

log+ T2(r)
log r

,
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which imply that the order and the lower order of T1(r) are not greater than the order and the lower order of
T2(r) respectively.

Lemma 2.4 (see [4], Theorem 1.14). Let f and g be two nonconstant meromorphic functions. If the order of f
and g is ρ (f) and ρ (g) respectively, then

ρ (f ⋅ g) ≤ max{ρ (f) , ρ (g)} ,

ρ (f + g) ≤ max{ρ (f) , ρ (g)} .

Lemma 2.5 (see [17], Lemma 2.7). Let R(ω) = ωn
+ aωm

+ b, where n, m are positive integers satisfying n > m,
a, b are �nite nonzero complex numbers. Then the algebraic equation R(ω) = 0 has at least n−1 distinct roots.

Lemma 2.6 (see [18], Lemma 8). Let s > 0 and t be relatively prime integers, and let c be a �nite complex
number such that cs = 1. Then there exists one and only one common zero of ωs

− 1 and ωt
− c.

3 Proofs of the theorems

3.1 Proof of Theorem 1.7

First of all, we denote by d the degree of L. Then d = 2∑k
j=1 λj > 0, where k and λj are respectively the

positive integer and the positive real number in the functional equation of the axiom (iii) of the de�nition of
L-functions. According to a result due to Steuding [1], p.150, we have

T(r, L) = d
π
r log r + O(r). (2)

Therefore ρ(L) = 1 and S(r, L) = O(log r).
Noting that f has �nitely many poles and L at most has one pole at s = 1 in the complex plane, it follows

that
N(r, f) = O(log r), N(r, L) = O(log r). (3)

Because f and L share a1, a2 weighted k1, k2 respectively, by (3), from the �rst and second fundamental
theorems we have

T(r, f) ≤ N (r, 1
f − a1

) + N (r, 1
f − a2

) + N (r, f) + S(r, f)

= N (r, 1
L − a1

) + N (r, 1
L − a2

) + O(log r) + S(r, f)

≤ T (r, 1
L − a1

) + T (r, 1
L − a2

) + O(log r) + S(r, f)

= 2T (r, L) + O(log r) + S(r, f). (4)

Then from (4) and Lemma 2.3 we obtain
ρ(f) ≤ ρ(L). (5)

Similarly,
ρ(L) ≤ ρ(f). (6)

Combining (5) with (6) yields
ρ(f) = ρ(L). (7)

Thus
S(r, f) = O(log r). (8)
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We introduce two auxiliary functions below.

F1 =
L′

L − a1
−

f ′

f − a1
, (9)

F2 =
L′

L − a2
−

f ′

f − a2
. (10)

Next, we assume that F1 /≡ 0 and F2 /≡ 0. By (8) and Lemma 2.1 we get

m(r, F1) = O(log r). (11)

By the assumption L and f share (a1, k1), (a2, k2), from (3), (9) and (11) we have

k2N(k2+1 (r,
1

L − a2
) ≤ N (r, 1

F1
) ≤ T(r, F1) + O(1) ≤ N(r, F1) +m(r, F1) + O(1)

≤ N(k1+1 (r,
1

L − a1
) + N(r, L) + N(r, f) + O(log r)

≤ N(k1+1 (r,
1

L − a1
) + O(log r). (12)

Similarly, from (3), (10) and (11) we have

k1N(k1+1 (r,
1

L − a1
) ≤ N (r, 1

F2
) ≤ T(r, F2) + O(1) ≤ N(r, F2) +m(r, F2) + O(1)

≤ N(k2+1 (r,
1

L − a2
) + N(r, L) + N(r, f) + O(log r)

≤ N(k2+1 (r,
1

L − a2
) + O(log r). (13)

Combining (12) with (13) yields

N(k1+1 (r,
1

L − a1
) ≤

1
k1

N(k2+1 (r,
1

L − a2
) + O(log r)

≤
1

k1k2
N(k1+1 (r,

1
L − a1

) + O(log r). (14)

Since k1k2 > 1, from (14) we obtain

N(k1+1 (r,
1

L − a1
) = O(log r). (15)

Substituting (15) into (12) implies
N(k2+1 (r,

1
L − a2

) = O(log r). (16)

Set
G =

L − a1

f − a1
.

Noting L and f share (a1, k1), (a2, k2), combining (15) with (16) yields

N(k1+1 (r,
1

L − a1
) = N(k1+1 (r,

1
f − a1

) = O(log r),

N(k2+1 (r,
1

L − a2
) = N(k2+1 (r,

1
f − a2

) = O(log r).

Clearly,
N(r, G) ≤ N(r, L) + N(k1+1 (r,

1
f − a1

) = O(log r), (17)

N (r, 1
G
) ≤ N(r, f) + N(k1+1 (r,

1
L − a1

) = O(log r). (18)
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Set
G1 =

Q(L − a1)

f − a1
, (19)

where Q is a rational function satisfying that G1 is a zero-free entire function. From (17) and (18), it is easy to
see that such a Q does exist. By Lemma 2.2 and Lemma 2.4 we get

ρ(G1) ≤ max{ρ(Q), ρ(L), ρ(f)} = 1.

By the Hadamard factorization theorem [19], p.384, we know

G1 =
Q(L − a1)

f − a1
= eϕ, (20)

where ϕ is a polynomial of degree at most deg(ϕ) ≤ 1. Wemay write ϕ = a0s+ b0 for some complex numbers
a0, b0. In view of (20) and Hayman [3], p.7, we have

T(r, G1) = T(r, ea0s+b0) = O(r). (21)

By (19), the assumption that L and f share a2, we get that every a2-point of L has to be 1-point of G1
Q − 1. Now

(20), (21) and the �rst fundamental theorem yield

N (r, 1
L − a2

) ≤ N
⎛

⎝
r, 1

G1
Q − 1

⎞

⎠
≤ T
⎛

⎝
r, 1

G1
Q − 1

⎞

⎠

= T (r, G1

Q
− 1) + O(1)

≤ T(r, G1) + T(r, Q) + O(1) = O(r). (22)

Similarly, set
G2 =

L − a2

f − a2
.

We also get
N (r, 1

L − a1
) = O(r). (23)

By (22), (23) and the second fundamental theorem it follows that

T(r, L) ≤ N (r, 1
L − a1

) + N (r, 1
L − a2

) + N(r, L) + O(log r) = O(r). (24)

This contradicts (2). Thus, F1 ≡ 0 or F2 ≡ 0. By integration, we have from (9) that

L − a1 ≡ A(f − a1),

where A(≠ 0) is a constant. This implies that L and f share a1 CM. Hence by Theorem 1.6 we deduce Theorem
1.7 holds. If F2 ≡ 0, using the same manner, we also have the conclusion.

This completes the proof of Theorem 1.7.

3.2 Proof of Theorem 1.11

First we consider the following function
G =

QR(L)
R(f)

, (25)

where
Q(s) = A(s − 1)nm (26)

is a rational function satisfying that G has no zeros and no poles in C; A is a nonzero �nite value; m is the
nonnegative integer in the axiom (ii) of the de�nition of L-functions.
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We claim that such a Q does exist. By the condition that f and L share S CM, set

F = R(L)
R(f)

. (27)

We can see that there can be only a pole of f or L such that F = 0 or F = ∞. Since f has no pole and L has only
one possible pole at s = 1, it follows that F has no zero and only one possible pole at s = 1. Hence such a Q
does exist.

Next, assume that a1, a2,⋯, an are all distinct roots of R(a). Using the �rst fundamental theoremwe get

T (r, L − ai) = T(r, L) + O(1), i = 1, 2,⋯, n.

Noting n ≥ 2, by the second fundamental theorem we have

(n − 1)T(r, f) ≤
n
∑
i=1

N (r, 1
f − ai

) + N(r, f) + S(r, f)

=
n
∑
i=1

N (r, 1
L − ai

) + N(r, f) + S(r, f)

≤
n
∑
i=1

T (r, 1
L − ai

) + S(r, f)

= nT (r, L) + S(r, f), (28)

which gives
T(r, f) ≤ n

n − 1
T (r, L) + S(r, f).

This together with Lemma 2.3 yields
ρ(f) ≤ ρ(L). (29)

Similarly,
ρ(L) ≤ ρ(f). (30)

By (29), (30) and (2) we obtain
ρ(f) = ρ(L) = 1. (31)

Also, from the �rst fundamental theorem we get

ρ(
1

f − ai
) = ρ(f) = 1,

and then by Lemma 2.2 and Lemma 2.4 we deduce

ρ(G) ≤ max{ρ(Q), ρ(L), ρ(f)} = 1.

From the Hadamard factorization theorem [19], p.384 we see

G = eh(s), (32)

where h(s) is a polynomial of degree deg(h(s)) ≤ 1. One can write

Rh(σ + it) = α(t)σ + β(t), (33)

a polynomial in σ with α(t), β(t) being polynomials in t. Now the claim is α(t) ≡ 0. From (25), (27) and (32)
we get

F = R(L)
R(f)

= eh(s)Q−1. (34)

Since limσ→+∞ L(s) = 1, limσ→+∞ f(s) = k(k ≠ ∞), R(k) ≠ 0 and R(1) ≠ 0, it follows that

lim
σ→+∞

R(L)
R(f)

= C, (35)
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where C ≠ 0 is a �nite value. If α(t) /≡ 0, we obtain α(t0) ≠ 0 for some value t0. If α(t0) > 0, from (34) we
know that

∣
R(L)
R(f)

∣ = ∣Q−1
∣ eRh(σ+it). (36)

Thus from (26), (33), (35) and (36) we can deduce that, ∣C∣ = ∞ when σ → +∞ with t = t0, which is a
contradiction. Similarly, if α(t0) < 0, we have that, ∣C∣ = 0 when σ → +∞ with t = t0, which is also a
contradiction. Therefore α(t) ≡ 0. Now by (33) and (36) we get

∣
R(L)
R(f)

∣ = ∣Q−1
∣ eβ(t). (37)

Combining (35) with (37) yields

lim
σ→+∞

∣Q∣ = eβ(t)

∣C∣
(38)

for a �xed t. Considering that the limit of ∣Q∣ as σ → +∞ is a nonzero �nite constant for some value t and
n ≥ 2, in view of (26) we see that m = 0, and then Q(s) ≡ A. From (38) we have eβ(t) = ∣A∣∣C∣. Thus it follows
by (37) that

∣
R(L)
R(f)

∣ = ∣C∣. (39)

Since C ≠ 0 is a �nite complex number, from (39) we deduce that R(L)
R(f) is a constant. Then by (35) we know

that
R(L)
R(f)

≡ C. (40)

From the assumption in the theoremwe have f(s0) = L(s0) = b for some s0 ∈ C. It now follows from (40) that
C = 1. Thus

R(L)
R(f)

≡ 1. (41)

That is R(L) ≡ R(f).
This completes the proof of Theorem 1.11.

3.3 Proof of Theorem 1.12

First, we have that the algebraic equation ωn+m
+αωn

+β = 0 has at least n+m−1 > 3m+1 ≥ 4 distinct roots
in view of Lemma 2.5. By Theorem 1.11, we get

Ln+m + αLn ≡ f n+m + αf n . (42)

Set H =
f
L . Then by (42) we deduce

1
α
Lm =

Hn
− 1

Hn+m − 1
. (43)

We discuss two cases:
Case 1. H is a constant. If Hn+m

≠ 1, by (43), we get that L is a constant, which contradicts the assumption
that L is a nonconstant L-function. Therefore, Hn+m

= 1, and so it follows by (43) that Hm
= Hn

= 1, that is
f n = Ln and fm = Lm. We get f d = Ld.

Case 2. H is a nonconstant meromorphic function. Note that L has at most one pole. Now we discuss the
following two subcases again.

Subcase 2.1. L has no poles. Then, from (43) we get that every 1-point of Hn+m has to be 1-point of Hn.
Since Hn+m

= HnHm, we have any 1-point of Hn+m to be a 1-point of Hm. Because n > m + 2, it follows that H
is a constant, contradicting the assumption.

Subcase 2.2. L has one and only one pole. Then by (43) we know every zero of Hn+m
− 1 has to be zero of

Hn
− 1 with one exception. Put

Hn
− 1 = (H − 1)(H − ζ1)⋯(H − ζn−1),
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Hn+m
− 1 = (H − 1)(H − τ1)⋯(H − τn+m−1),

where ζ1, ζ2,⋯, ζn−1 are n − 1 distinct �nite complex numbers satisfying ζni = 1, ζi ≠ 1, 1 ≤ i ≤ n − 1;
τ1, τ2,⋯, τn+m−1 are n +m − 1 distinct �nite complex numbers satisfying τ n+mj = 1, τj ≠ 1, 1 ≤ j ≤ n +m − 1.

Let m = 1. By Lemma 2.6 we see Hn
− 1 and Hn+1

− 1 have only one common zero, so H cannot be equal
to any n+m−2 values of {τ1, τ2,⋯, τn+m−1}. From n > m+2 it follows that H is a constant, contradicting the
assumption.

Let m ≥ 2. If any 1-point of Hn is a 1-point of Hn+m, then any 1-point of Hn is a 1-point of Hm. Note that
n > m + 2. This contradicts the assumption that H is nonconstant. If there is at least one ζi ≠ τj, 1 ≤ i ≤ n − 1,
1 ≤ j ≤ n +m − 1, then H cannot be equal to any m + 1 values of {τ1, τ2,⋯, τn+m−1}. From m ≥ 2, we know H
is a constant, contradicting the assumption.

This completes the proof of Theorem 1.12.
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