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1 Introduction

The Riemann hypothesis as one of the millennium problems has been given a lot of attention by many scholars
for along time. Selberg guessed that the Riemann hypothesis also holds for the L-function in the Selberg class.
Such an L-function based on the Riemann zeta function as a prototype is defined to be a Dirichlet series

L(s) - il aw o)

of a complex variable s = ¢ + it satisfying the following axioms [1]:

(i) Ramanujan hypothesis: a(n) « n® for every ¢ > 0.

(ii) Analytic continuation: There exists a nonnegative integer m such that (s — 1)™L(s) is an entire function
of finite order.

(iii) Functional equation: L satisfies a functional equation of type

AL(s) =wAL(1-59),

where .
AL(s) =L(s)Q I ' (\js + )
j=1
with positive real numbers Q, );, and complex numbers v;, w with Rey; > 0 and |w| = 1.
(iv) Euler product: log L(s) = 3p24 bf}ﬁ') , where b(n) = O unless n is a positive power of a prime and b(n) <« n’
for some 6 < 1.

It is mentioned that there are many Dirichlet series but only those satisfying the axioms (i)-(iii) are regarded
as the extended Selberg class [1, 2]. All the L-functions which are studied in this article are from the extended
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Selberg class. Therefore, the conclusions proved in this article are also true for L-functions in the Selberg
class. Theorems in this paper will be proved by means of Nevanlinna’s Value distribution theory. Suppose
that F and G are two nonconstant meromorphic functions in the complex plane C, ¢ denotes a value in the
extended complex plane C U {oo}. If F — ¢ and G - ¢ have the same zeros counting multiplicities, we say that
F and G share ¢ CM. If F - c and G - c have the same zeros ignoring multiplicities, then we say that F and
G share c IM. It is well known that two nonconstant meromorphic functions in C are identically equal when
they share five distinct values IM [3, 4]. The following uniqueness theorem of two L-functions was proved by
Steuding [1].

Theorem 1.1 (see [1]). If two L-functions with a(1) = 1 share a complex value ¢ + oo CM, then they are
identically equal.

Remark 1.2. In [5], the authors gave an example that L1 = 1 + % andL, =1+ %, which showed that Theorem
1.11is actually false when c = 1.

In 2011, Li [6] considered values which are shared IM and got

Theorem 1.3 (see [6]). Let L, and L, be two L-functions satisfying the same functional equation with a(1) = 1
and let ai, a, € C be two distinct values. If L1* (a;) = Ly (a;),j = 1,2, then Ly = L.

In 2001, Lahiri [7] put forward the concept of weighted sharing as follows.

Let k be a nonnegative integer or oo, ¢ € Cu {oo}. We denote by Ex(c, f) the set of all zeros of f — ¢, where
a zero of multiplicity m is counted m times if m < kand k + 1 times if m > k. If Ex(c, f) = Ex(c, g), we say that
f and g share the value ¢ with weight k (see [7]).

In 2015, Wu and Hu [8] removed the assumption that both L-functions satisfy the same functional
equation in Theorem 1.3. By including weights, they had shown the following result.

Theorem 1.4 (see [8]). Let L, and L, be two L-functions, and let a,, a; € C be two distinct values. Take two
positive integers ki, ko with kika > 1. If Ey,(a;j, L1) = Ex;(aj, L2),j = 1,2, then Ly = L,.

In 2003, the following question was posed by C.C. Yang [9].

Question 1.5 (see [9]). Let f be a meromorphic function in the complex plane and a, b, ¢ are three distinct
values, where ¢ + 0, oo. If f and the Riemann zeta function ¢ share a, b CM and c IM, will then f = ¢?

The L-function is based on the Riemann zeta function as the model. It is then valuable that we study the
relationship between an L-function and an arbitrary meromorphic function [10—14]. This paper concerns the
problem of how meromorphic functions and L-functions are uniquely determined by their c-values. Firstly,
we introduced the following theorem.

Theorem 1.6 (see [10]). Let a and b be two distinct finite values and f be a meromorphic function in the complex
plane with finitely many poles. If f and a nonconstant L-function L share a CM and b IM, then L = f.

Then, using the idea of weighted sharing, we will prove the following theorem.

Theorem 1.7. Let f be a meromorphic function in the complex plane with finitely many poles, let L be a
nonconstant L-function, and let a1, a, € C be two distinct values. Take two positive integers k1, ko with k1k, > 1.
IfEx,(aj, f) = Ex;(aj,L),j=1,2,then L = f.

Remark 1.8. Note that an L-function itself can be analytically continued as a meromorphic function in the
complex plane. Therefore, an L-function will be taken as a special meromorphic function. We can also see that
Theorem 1.4 is included in Theorem 1.7.
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In 1976, the following question was mentioned by Gross in [15].

Question 1.9 (see [15]). Must two nonconstant entire functions f1 and f> be identically equal if f, and f> share
a finite set S?

Recently, Yuan, Li and Yi [16] considered this question leading to the theorem below.

Theorem 1.10 (see [16]). Let S = {w1, w2, -, w;}, Where w1, w2, -, w; are all distinct roots of the algebraic
equation w" + aw™ + b = 0. Here 1 is a positive integer satisfying 1 < 1 < n, n and m are relatively prime
positive integers withn > 5 and n > m, and a, b, ¢ are nonzero finite constants, where ¢ # wj for 1 <j < . Let
f be a nonconstant meromorphic function such that f has finitely many poles in C, and let L be a nonconstant
L-function. If f and L share S CM and c IM, then f = L.

Concerning shared set, we prove the following theorem.

Theorem 1.11. Let f be an entire function with limy )., f(S) = k (k # c0) and let R(a) = O be a algebraic
equation with n > 2 distinct roots, and R(k), R(b), R(1) # 0. Suppose that f(so) = L(So) = b for some s € C.
If f and a nonconstant L-function L share S CM, where S = {a : R(a) = 0}, then R(L) = R(f).

Furthermore, we obtain a result which is similar to Theorem 1.10 by different means.

Theorem 1.12. Let f be an entire function with limgp () ,.00 f(S) = k (k # o0). Let S = {w1, w2, wi} ¢
C\{1, k, b}, where w1, w2, -+, w; are all distinct roots of the algebraic equation ™™ +aw" +8=0,1<i<n+m,
n, m are two positive integers with n > m+2, a, 8 are finite nonzero constants. If f and a nonconstant L-function
L share S CM and f(so) = L(so) = b for some so € C, then f = tL, where t is a constant such that t4 =1,
d = GCD(n, m).

2 Some lemmas

In this section, we present some important lemmas which will be needed in the sequel. Firstly, let f be a
meromorphic function in C. The order p (f) is defined as follows:
. log T (r,f)
=1 e
p(f) msup == o7
Lemma 2.1 ((%ee [4], Lemma 1.22). Let f be a nonconstant meromorphic function and let k > 1 be an integer.
Then m (r, fT) = S(r, f). Further if p(f) < +oo, then

(k)
m (r, ff) =0(logr).

Lemma 2.2 (see [4], Corollary of Theorem 1.5). Let f be a nonconstant meromorphic function. Then f is a

rational function if and only if lirnl ioglf Tlf]’gfr)

< 00,

Lemma 2.3 (see [4], Theorem 1.19). Let T1(r) and T»(r) be two nonnegative, nondecreasing real functions
definedinr >ro > 0.If T1(r) = O (T2(r)) (r —» oo, 1 ¢ E), where E is a set with finite linear measure, then

+ +
lim sup log” 1(r) < limsup log” Ta(r)
r—o00 logr =00 logr

and N .
liminf 7log I.(r) < liminf 710g Tz(r)’
r—oc0 logr r—oc0 logr
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which imply that the order and the lower order of T1(r) are not greater than the order and the lower order of
T, (r) respectively.

Lemma 2.4 (see [4], Theorem 1.14). Let f and g be two nonconstant meromorphic functions. If the order of f
and g is p (f) and p (g) respectively, then

p(f-g) <max{p(f),p(8)},
p(f+g)<max{p(f),p(8)}-

Lemma 2.5 (see [17], Lemma 2.7). Let R(w) = w" + aw™ + b, where n, m are positive integers satisfying n > m,
a, b are finite nonzero complex numbers. Then the algebraic equation R(w) = 0 has at least n — 1 distinct roots.

Lemma 2.6 (see [18], Lemma 8). Let s > 0 and t be relatively prime integers, and let ¢ be a finite complex
number such that c¢® = 1. Then there exists one and only one common zero of w* — 1 and ' - c.

3 Proofs of the theorems

3.1 Proof of Theorem 1.7

First of all, we denote by d the degree of L. Then d = 2 Z}‘:l Aj > 0, where k and ); are respectively the
positive integer and the positive real number in the functional equation of the axiom (iii) of the definition of
L-functions. According to a result due to Steuding [1], p.150, we have

T(r,L) = grlongr o(r). @

Therefore p(L) = 1 and S(r, L) = O(logr).
Noting that f has finitely many poles and L at most has one pole at s = 1 in the complex plane, it follows
that
N(r,f)=0(logr), N(r,L) =0(logr). 3)

Because f and L share ai, a, weighted ki, k> respectively, by (3), from the first and second fundamental
theorems we have

T(r.f) sﬁ(r,f_lal)+ﬁ(r,f az) (r.f) + S(r.f)
(, L )+O(logr)+S(rf)

L- az
: (r’ ) (
L-a;

) +0(logr) + S(r, f)
)-

=2T(r, L)+O(logr)+S(r f (4)
Then from (4) and Lemma 2.3 we obtain
o(f) < p(L). (5)
Similarly,
p(L) < p(f)- (6)
Combining (5) with (6) yields
p(f) = p(L). @)

Thus
S(r,f) = 0(logr). (8)



DE GRUYTER Uniqueness theorems for L-functions in the extended Selberg class = 1295

We introduce two auxiliary functions below.

! !
Fl: L - f )
L-a1 f-a
po-Lt I
L-a; f-a

Next, we assume that F; # 0 and F; # 0. By (8) and Lemma 2.1 we get
m(r,F1) = O(logr).

By the assumption L and f share (a1, k1), (a2, k2), from (3), (9) and (11) we have

KoN o1 (r, ) < N(r, Fi) <T(r,F1) + O(1) < N(r, Fy) + m(r, F1) + 0(1)

L-a;

< N(k+1 ( 101 ) +N(r,L) + N(r,f) + 0(logr)

L_
! )+O(lo r)
- ai g :

< N(klu (Y, I

Similarly, from (3), (10) and (11) we have

KiN o n (r,L 1a )SN(r,Fi)g T(r,F2) + 0(1) < N(r, F2) + m(r, F2) + O(1)
—u1

<N(k,+1 ( 102 ) +N(r,L) + N(r,f) + 0(logr)

L_

— 1
N(k2+1( 7a2)+0(logr).

'L
Combining (12) with (13) yields
_ 1 1— 1
N, +1 (r’ m) < EN(](Z-#l (”, H) +0(logr)
1 — 1
< RN(kﬁ—l (r, m) + O(logr).
Since k1k> > 1, from (14) we obtain

— 1
Nk, 41 (T’, —7111) = O(logr).

L
Substituting (15) into (12) implies

— 1
N(kz+1 (r; I_ az) = O(logr).
Set
€ B L- ai
f-a: |
Noting L and f share (a1, k1), (a2, k2), combining (15) with (16) yields

— 1 — 1
N , =N ) :Ol ’
(ky+1 (V L—al) (ky+1 (V f_al) (logr)

N(kzu( I az) N(i,+1 (T, ):O(logr).

Clearly,
N(r,G) < N(r, L)+N(kl+1 r,f 01) O(logr),

N( (1;)<N(r f) + N1 (r, ):O(logr).

La1

(10)

11

(12)

(13)

(14)

(15)

(16)

17)

(18)
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Set

Gy = M, (19)
f-a1

where Q is a rational function satisfying that G; is a zero-free entire function. From (17) and (18), it is easy to
see that such a Q does exist. By Lemma 2.2 and Lemma 2.4 we get

p(G1) <max{p(Q), p(L), p(f)} = 1.
By the Hadamard factorization theorem [19], p.384, we know

Gy = M =e”, (20)

f-a1

where ¢ is a polynomial of degree at most deg(y) < 1. We may write ¢ = aos + bo for some complex numbers
ao, bo. In view of (20) and Hayman [3], p.7, we have

T(r, G1) = T(r, e™5*™) = 0(r). 1)

By (19), the assumption that L and f share a,, we get that every a,-point of L has to be 1-point of % — 1. Now
(20), (21) and the first fundamental theorem yield

— 1 1 1
N(r,L_az)gN(r,Gl_l)gT(r,Gl_ )

Q Q
- T(r, % -1) +0(1)
<T(r,G1)+T(r,Q)+0(1) =0(r). (22)
Similarly, set
L- ar
G, =
2 fa
We also get
— 1
N(r, Lfal) =0(r). (23)

By (22), (23) and the second fundamental theorem it follows that

T(r,L) < N(r, I —1a1 ) +N(r, I —1a2) +N(r,L) + O(logr) = O(r). (24)
This contradicts (2). Thus, F; = 0 or F, = 0. By integration, we have from (9) that
L-ai=A(f -a1),

where A(# 0) is a constant. This implies that L and f share a; CM. Hence by Theorem 1.6 we deduce Theorem
1.7 holds. If F, = 0, using the same manner, we also have the conclusion.
This completes the proof of Theorem 1.7.

3.2 Proof of Theorem 1.11

First we consider the following function
_ QR(L)
R(f) "’

(25)

where
Q(s) =A(s-1)™ (26)

is a rational function satisfying that G has no zeros and no poles in C; A is a nonzero finite value; m is the
nonnegative integer in the axiom (ii) of the definition of L-functions.
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We claim that such a Q does exist. By the condition that f and L share S CM, set

_R(@)
R(f)’

We can see that there can be only a pole of f or L such that F = 0 or F = co. Since f has no pole and L has only
one possible pole at s = 1, it follows that F has no zero and only one possible pole at s = 1. Hence such a Q
does exist.

Next, assume that ai, az, ---, a, are all distinct roots of R(a). Using the first fundamental theorem we get

@7)

T(r,L-a)=T(r,L)+0(1), i=1,2,n.

Noting n > 2, by the second fundamental theorem we have

n 1 .
(n-1)T(r,f) < ;N(r, = ai) +N(r,f) +S(r,f)
_ Zlﬁ(r L_lai) s N(rf) + S(r. f)
n 1
< 1; T(r, m) +S(r,f)
=nT(r,L) +S(r,f), (28)
which gives "
T(r,f) < — T(r,L)+S(r,f).
This together with Lemma 2.3 yields
p(f) < p(L). (29)
Similarly,
p(L) < p(f). (30)
By (29), (30) and (2) we obtain
p(f) = p(L) = 1. (31

Also, from the first fundamental theorem we get

o 2g)-an

and then by Lemma 2.2 and Lemma 2.4 we deduce

p(G) <max{p(Q),p(L), p(f)} = 1.
From the Hadamard factorization theorem [19], p.384 we see
G=e"®, (32)
where h(s) is a polynomial of degree deg(h(s)) < 1. One can write
Rh(o +it) = a(t)o + 4(1), (33)

a polynomial in o with «(t), 3(t) being polynomials in ¢t. Now the claim is a(¢t) = 0. From (25), (27) and (32)

we get
_R(@) _

F-= =
R(f)
Since limg 400 L(S) = 1, liMy— 400 f(S) = k(k # o0), R(k) + 0 and R(1) # 0, it follows that

", (34)

lim @—

o—>+o0o R(f) B C’ (35)
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where C # 0 is a finite value. If a(t) # 0, we obtain a(ty) # O for some value to. If a(to) > O, from (34) we

know that
R(L)

R(f)
Thus from (26), (33), (35) and (36) we can deduce that, |C| = co when ¢ — +oo with t = to, which is a
contradiction. Similarly, if a(¢p) < 0, we have that, |[C| = O when ¢ — +oco with t = to, which is also a
contradiction. Therefore a(t) = 0. Now by (33) and (36) we get

_ ‘Q—l‘ emh(cﬂ-it). (36)

R(L)| |4-1] .80
w1 &
Combining (35) with (37) yields
lim |Q| = e’ (38)
O—>+00 - ‘C|

for a fixed ¢t. Considering that the limit of |Q| as o — +o0 is a nonzero finite constant for some value ¢ and
n > 2, in view of (26) we see that m = 0, and then Q(s) = A. From (38) we have ¢’V = |A||C|. Thus it follows
by (37) that

R(L)
—=| =|C|. (39)
’ R |~
Since C # 0 is a finite complex number, from (39) we deduce that % is a constant. Then by (35) we know
that R(L)
—2=C. (40)
R(f)
From the assumption in the theorem we have f(so) = L(so) = b for some s € C. It now follows from (40) that
C = 1. Thus R(L)
—==1. (41)
R(f)

Thatis R(L) = R(f).
This completes the proof of Theorem 1.11.

3.3 Proof of Theorem 1.12

First, we have that the algebraic equation ™™ + aw™ + 3 = O has atleast n+ m -1 > 3m + 1 > 4 distinct roots

in view of Lemma 2.5. By Theorem 1.11, we get

L™ 4+ aLl™ = " + of ™. (42)
SetH = % Then by (42) we deduce
1 H" -1
EL = m. (43)

We discuss two cases:

Case 1. His a constant. If H™*™ # 1, by (43), we get that L is a constant, which contradicts the assumption
that L is a nonconstant L-function. Therefore, H"*™ = 1, and so it follows by (43) that H™ = H" = 1, that is
f"=L"and f™ = L™. We get f = L9.

Case 2. H is a nonconstant meromorphic function. Note that L has at most one pole. Now we discuss the
following two subcases again.

Subcase 2.1. L has no poles. Then, from (43) we get that every 1-point of H™*™ has to be 1-point of H".
Since H™™ = H"H™, we have any 1-point of H"™ to be a I-point of H™. Because n > m + 2, it follows that H
is a constant, contradicting the assumption.

Subcase 2.2. L has one and only one pole. Then by (43) we know every zero of H"*™ — 1 has to be zero of
H" - 1 with one exception. Put

H'-1=(H-1)(H-¢1)(H-¢n-1)s
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H"" -1=(H-1)(H-7)(H-Tnsm-1),

where (1, (2, -+, (n—1 are n — 1 distinct finite complex numbers satisfying ¢/' = 1, ¢; # 1,1 <i < n-1;

T1, T2, Tn+m—1 are n + m — 1 distinct finite complex numbers satisfying 7-]-””" =1,5#1,1<j<n+m-1.

Let m = 1. By Lemma 2.6 we see H" — 1 and H"*! — 1 have only one common zero, so H cannot be equal
to any n+ m -2 values of {71, 72, -, Tn4m—1}. From n > m + 2 it follows that H is a constant, contradicting the
assumption.

Let m > 2. If any 1-point of H" is a 1-point of H"*™, then any 1-point of H" is a 1-point of H™. Note that
n > m + 2. This contradicts the assumption that H is nonconstant. If there is at leastone ¢; # rj, 1 <i<n-1,
1<j<n+m-1,then H cannot be equal to any m + 1 values of {71, 72, -, Th+m-1 }. From m > 2, we know H
is a constant, contradicting the assumption.

This completes the proof of Theorem 1.12.
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