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are proved. Necessary and sufficient conditions are found for a left cancellative k-translatable groupoid to be
a semigroup. Any such semigroup is proved to be left unitary and a union disjoint copies of cyclic groups of
the same order. Methods of constructing k-translatable semigroups that are not left cancellative are given.

Keywords: Semigroup, Translatable semigroup, Left cancellative semigroup, I[dempotent

MSC: 20M15, 20N02

1 Introduction

Quadratical quasigroups were introduced by Volenec [1] on occasion of his investigations into properties
of geometrical objects on the complex plane. Later, these quasigroups were characterized in [2] by Abelian
groups and their automorphisms, using the Toyota theorem. Their fine structure was described in [3], where it
was proved that they form a variety of quasigroups. The general theory of quadratical quasigroups is still in its
relative infancy. One aim of this paper is to stimulate interest and further research in the theory of quadratical
quasigroups and related topics.

The focus of this paper is on translatable groupoids. In our previous paper [4] it has been proved that
the property of translatability can be hidden in the Cayley tables of certain finite quadratical quasigroups,
including all those "induced" by Z,, the additive group of integers modulo n, where n = 4t + 1 for some
positive t. Here we diverge from the study of quadratical quasigroups and explore some of the properties of
translatable groupoids and translatable semigroups.

We begin in Section 2 by listing three different conditions, each of which is necessary and sufficient
for a finite groupoid to be translatable (Lemma 2.5). Then we list necessary and sufficient conditions on
a left cancellative translatable groupoid for it to be idempotent, elastic, medial, left or right distributive,
commutative or associative (Lemma 2.6). It is then proved that a groupoid has a k-translatable sequence, with
respect to a particular ordering of its elements, if and only if it has a k-translatable sequence with respect to n
different orderings (Corollary 2.8). Essentially this result shows that, in a k-translatable groupoid, moving all
the elements of the ordering of the Cayley table up one place (or down one place) preserves k-translatability.
This result is applied later to prove that left cancellative k-translatable semigroups are left unitary (Theorem
5.6). It is also proved that a left cancellative k-translatable groupoid of order n is alterable if and only if k? is
equivalent to n — 1 modulo n (Corollary 2.18).

Idempotent k-translatable groupoids are considered next. We prove that such groupoids are left can-
cellative. Any two idempotent groupoids of the same order, each k-translatable for the same value of k, are
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proved to be isomorphic (Theorem 2.12). An idempotent k-translatable groupoid of order n is proved to be
right distributive if and only if it is left distributive and, if the greatest common divisor of k and nis 1, itis a
quasigroup Proposition 2.13 and Theorem 2.14).

Section 3 explores left unitary translatable groupoids. Two such groupoids of the same order are isomor-
phic (Theorem 3.1) and any such groupoid is medial but not right distributive (Theorem 3.2). The value of
k in a left unitary k-translatable groupoid determines whether the groupoid has various properties such as
paramediality, elasticity left distributivity and right or left modularity (Theorem 3.5).

In Section 4 we prove that a left cancellative k-translatable groupoid of order n has a k*-translatable dual
groupoid if and only if kk* is equivalent to 1 modulo n (Theorem 4.1).

Section 5 deals with k-translatable semigroups. In one of the main results of this paper, we find necessary
and sufficient conditions on a left cancellative k-translatable groupoid for it to be a semigroup (Theorem
5.1). Any such semigroup has a left neutral element (Corollary 5.2) and can be re-ordered so that it is a left
unitary k-translatable semigroup (Theorem 5.6). Two left cancellative k-translatable semigroups of the same
order are isomorphic (Corollary 5.7). A left cancellative k-translatable semigroup is a disjoint union of cyclic
groups of the same order (Theorem 5.15). A left cancellative (n — 1)-translatable semigroup of order n and
a paramedial left cancellative k-translatable semigroup of order n are isomorphic to the additive group of
integers modulo n. The section ends with various results that allow us to calculate k-translatable sequences
that yield semigroups which are not left cancellative (Theorem 5.22 to Corollary 5.26).

In Section 6 we find two different conditions under which ¢ disjoint copies of a left unitary k-translatable
semigroup Q of order n can be embedded in a left unitary translatable semigroup G of order tn, such that
G is a disjoint union of t copies of Q. In both cases k = tq. If (k + k*) = 0(mod tn) then G is k-translatable
(Theorem 6.2). If n = k + k* then G is (k + (t — 1)n)-translatable (Theorem 6.3).

2 Translatable groupoids

For simplicity we assume that all groupoids considered in this note are finite and have the form Q =
{1,2,...,n} with the natural ordering 1, 2, ..., n, which is always possible by renumeration of elements.
Moreover, instead of i = j(modn) we will write [i], = [j].. Additionally, in calculations of modulo n, we
assume that 0 = n.

Definition 2.1. A finite groupoid Q is called k-translatable, where 1 < k < n, if its multiplication table is
obtained by the following rule: If the first row of the multiplication table is a1, az, . .., an, then the g-th row
is obtained from the (q — 1)-st row by taking the last k entries in the (q — 1)-st row and inserting them as the
first k entries of the g-th row and by taking the first n — k entries of the (q — 1)-st row and inserting them as the

last n- k entries of the g-th row, where g € {2, 3, ..., n}. Then the (ordered) sequence a1, az, . . ., an is called a
k-translatable sequence of Q with respect to the ordering 1, 2, ..., n. A groupoid is called translatable if it has
a k-translatable sequence for some k€ {1,2,...,n—1}.

It is important to note that a k-translatable sequence of a groupoid Q depends on the ordering of the elements
in the multiplication table of Q. A groupoid may be k-translatable for one ordering but not for another.

Example 2.2. Consider the following groupoids:

|12 34 ]13 42 |12 3 4
111 2 3 4 1]1 3 4 2 111 4 3 2
212 3 4 1 3/3 12 4 203 21 4
313 41 2 414 2 3 1 3|1 4 3 2
404 1 2 3 212 41 3 413 21 4



1268 —— W.A. Dudek, R.A.R. Monzo DE GRUYTER

The first table determines a 3-translatable semigroup isomorphic to the additive group 7Z,. The second table
says that after a change of ordering this semigroup is not translatable. The last table determines an idempotent
2-translatable groupoid which is not a semigroup.

On the other hand, a groupoid with the operation x - y = a, where a is fixed, is a k-translatable semigroup for
each k, but the semigroup (Q, -) with the operation

oy = 1 if x + y is even,
y= 2 if x + yis odd

is k-translatable for each odd k < n, if n is even, and k-translatable for each even k, if n is odd. All these
groupoids are easily proved to be semigroups.

Lemma 2.3. For a fixed ordering a left cancellative groupoid may be k-translatable for only one value of k.

Proof. By renumeration of elements we can assume that a groupoid Q of order n has a natural ordering
1, 2,...,n. If the first row of the multiplication table of such groupoid has the form a;, a», ..., an, then all
a; are different. The first element of the second row is equal to a,_.1 if a groupoid is k-translatable, or a,—¢.1
ifitis t-translatable. So, 1- (n—k+ 1) =ay_j41 =21 =an-¢+1 = 1- (n -t + 1), which, by left cancellativity,
impliesn-k+1=n-t+1, and consequently k = t. O

Obviously, for another ordering it may be k-translatable for some other value of k, but in some cases the
change of ordering preserves k-translatability.
We start with the following simple observation.

Lemma 2.4. A k-translatable groupoid containing at least one left cancellable element is left cancellative.

Proof. Indeed, let i be the left cancellable element of a k-translatable groupoid Q. Then, i-th row of the
multiplication table of this groupoid contains different elements. By k-translability other rows also contain
different elements. So, forall j, s, t € Q fromj-s =j- t it follows that s = t. Hence, Q is left cancellative. = [

The proofs of the following two Lemmas are straightforward and are omitted.

Lemma 2.5. Letai, aa, ..., an be the first row of the multiplication table of a groupoid Q of order n. Then Q is
k-translatable if and only if for all i, j € Q the following (equivalent) conditions are satisfied:
(1) i+ =api-1y(n=k)+jln = Ak=ki+jl>

(ii) i-j=[i+1]n-[j+K]n

(iit) i-[j-kln=[i+1]n-].

Proof. From the definition of a k-translatable groupoid it is clear that a groupoid is k-translatable if and only
ifi-j=[i+1]n-[j+ k]n, whichimpliesi-[j—k]n=[i+1]n"].

Assuming that i [j - k]n = [i + 1]n - j, we prove by induction on i that i - j = api_i.;,- First note that
since the first row of the Cayley table is a1, az, ..., an, it follows by the definition of k-translatable that, in
every other row, a; is always followed by a;, 1), and preceded by af;_q3,. Fori=1,i-j=1-j = a; = apg_x14j],-
Assume thati-j = ag_yisj),- Then, [i+ 1]n-j = i-[j = k]n = a[i—kisj-k], = A[k-k(i+1)+j],- Hence, by induction,
1] = A[k_kisj],- ASSUMING I -] = A(g_pisj,» clearly [i + 1]n - [ + kln = ape-(i=1)+jk], = Qpk—kisj], = 1 J- O

Recall that a groupoid Q is called

e alterable ifi-j=w-zimpliesj-w=2z-1i,

e hookend if and only if (j-i) - (i-j) =1,

e paramedial if and only if (i-j) - (w-2) = (z-j) - (w-1i),

o strongly elasticifand only ifi- (j-i) = (i-j)-i=(j-i)-j,

o left modular ifand onlyif (i-j)-z=(z-j) -1,

e right modular ifand only ifi- (j-z) =z (j- i)
foralli,j,w,z € Q.
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Lemma 2.6. For a k-translatable left cancellative groupoid Q of order n the following statements are valid:
(i) aij=gqjifandonlyifi=j,
(ii) Qisidempotent if and only if i = a_i.q), for alli € Q,
(iii) if Qisidempotent theni-j = tif and only if [j — ki]n = [t - kt]n foralli,j, t € Q,
(iv) Qiselasticifandonlyif[i+ kiln=[(j-i) + k(i-j)]nforalli,je Q,
(v) Qisstrongly elasticifand only if [i+kiln = [(j-1)+k(i-j)]nand [i+kjln = [(i-j) +k(i-j)]n foralli,j < Q,
(vi) Qis bookend if and only if i = api_(j.iy+(ij)), for alli, j € Q,
(vii) Qs left distributive if and only if [(i-j) + k(5 -1)]n = [(s-j) + ks]n for alli,j,s € Q,
(viii) Qisright distributive ifand only if [s + k(i-s)]n=[(j-s) + k(i-j)]n foralli,j,s € Q,
(ix) Qismedialifandonly if[(w-z) +k(i-w)]n=[(-2) + k(i-j)]nforalli,j,w,z € Q,
(x) Qis alterable if and only if [j + kw]n = [z + ki]n implies that [w + kz]n = [i + kj]n forall i, j,w, z € Q,
(xi) Qis commutative ifand onlyifk=n-1,
(xii) Qis associative if and only if [i + kj]n = [(s-1) + k(j - s)]n foralli,j, s € Q.

Proof. (i)- (xii) follow from Lemma 2.5, the fact that left cancellation implies that ax = ay ifand only if x = y
and the definitions of idempotent, elastic, strongly elastic, bookend, etc. For example, in (x), Q is alterable
ifand onlyifi-j = w-zimpliesj-w = z-i. Using Lemma 2.5(i), this is valid if and only if api_ij}, = a[x-kw+2],
implies api_kj+w], = Ark—kz+i],- Left cancellation then implies the required result. O

Lemma 2.7. The sequence ai, a,...,an is a k-translatable sequence of Q with respect to the ordering
1,2,...,nifandonly if ay, ais1, ..., an, ai, ..., ax_1 is a k-translatable sequence with respect to the ordering
n1,2,...,n-1.

Proof. (=): The new ordering can be writtenas 1, ..., n’, where i’ = [i - 1],. Then, since Q is k-translatable
with respect to the ordering 1, 2,...,n, by Lemma 2.5(ii), [i' + 1]n - [J' + k]n = i- [ -1 + k]n = [i -
1]n - [j - 1]n = i’ - j'. Hence, Q is k-translatable with respect to the ordering n,1,2,...,n - 1, with k-
translatable sequencen-n,n-1,n-2,...,n-(n-1). Thatis, using Lemma 2.5(i), the k-translatable sequence
isay, Ags1y.-->An, A1,02, ..., Ag_1.

(«=):Theordern, 1,2,...,n-1canbewrittenas1’,2’, ..., n’,wherei’ = [i-1],forallie {1,2,...,n}.
The order 1, 2,...,n can be written as i = [i’ + 1],. Then, by Lemma 2.5(ii), we have [i + 1] - [j + k]n =
[i+2]-[J+k+1]p=[i+1]p-[j+1l]n=i-jandso1l-1,1-2,...,1-nisa k-translatable sequence with
respect tothe order 1, 2, ..., n. But ay, ag1, ..., an, a, ..., ax_, is the k-translatable sequence with respect
to the order 1’,2’, ..., n’. Let’s call this sequence b1, by, ..., bn. Note, then, that b; = a[;_1.j,. So we have
1-j=[i+1]-[j+1ln=2"-[j+1]n = 1" [j + 1 = k]y = bj+1-x, = a;. This implies that the sequence
ai, a,...,anis a k-translatable sequence with respect to the order 1, 2,..., n. O

Corollary 2.8. A k-translatable groupoid of order n has at least n k-translatable sequences, each with respect
to a different order.

A groupoid Q is called right solvable (left solvable) if for any {a, b} < Q there exists a unique x € G such that
ax = b (xa = b). It is a quasigroup if it is left and right solvable.

Proposition 2.9. An alterable, right solvable and right distributive groupoid is an idempotent quasigroup.

Proof. A right solvable groupoid Q is left cancellative. Right distributivity and left cancellativity give idem-
potency.

Then the right solvability means that for all z, w € Q there are uniquely determined elements ¢, q’ € Q
such thatz-q = wand w - ¢’ = z- w. Then, using alterability, w = w - w = ¢q’ - z. The element ¢’ is uniquely
determined. Indeed, if w = ¢’ - z = ¢ - z, then, by alterability, z- ¢” = z- q'. This implies ¢’ = q"’. Hence Q is
also left solvable and, hence, it is a quasigroup. O
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Lemma 2.10. For fixed k + 1 and n there is an idempotent k-translatable groupoid of order n. It is left
cancellative.

Proof. First observe that an idempotent groupoid cannot be k-translatable for k = 1. Let k > 1. Then,
by Lemma 2.5, in an idempotent k-translatable groupoid Q, for all i € Q we have i = ap_q),. Since
Q is idempotent, the first row of the multiplication table of this groupoid contains the distinct elements
ai, Ara-il,» A[3-2k],s - - + » A[n+k(1-n)],» With 7 appearing in the [k — ki + i],-column. So, by Lemma 2.4, this
groupoid is left cancellative. By k-translatability, other rows are uniquely determined by the first. O

An idempotent k-translatable groupoid may not be right cancellative. It is not difficult to see that if the first
row of the multiplication table of the 4-translatable groupoid Q of order 8 has form 1, 6, 3, 8, 5, 2, 7, 4, then
this groupoid is idempotent and left cancellative but it is not right cancellative.

For every odd n and every k > 1 such that (k,n) = 1 there is at least one idempotent k-translatable
quasigroup. For even n there are no such quasigroups [4, Theorem 8.9].

Lemma 2.11. An idempotent k-translatable groupoid that is alterable, strongly elastic or bookend is cancella-
tive, i.e., it is a quasigroup.

Proof. By Lemma 2.10 such groupoid is left cancellative. Let i - j = s - j. Then obviously s = [i + t], for some
te{l,2,...,n}.Since ary_ki4j], =1 =S j = A—ks+j],» [K—ki+jln = [k —ks +j]n = [k ki — kt +j]n and so
[kt]n = 0. But then, since Q is idempotent, t - t = t = A[_k¢+¢], = A[k+t], = 1+ [k +t]n = n-t. 1f Q is alterable, by
definition, i-j = w - zimplies j - w = z - i. Therefore, t - n = t - t = t. If Q is strongly elastic then, by definition,
(i-j)-i=(j-i)-j.Thereforet =n-t = t-t =t-(n-t) = (n-t)-n = t-n. In either case, left cancellation implies ¢ = n.
If Q is bookend then, by definition, (i-j)-(j-i) =j.So, t = t-t =n-t = (n-t)-(t-n) = t-(t-n) and left cancellation
implies t = n. Hence, if Q is alterable, strongly elastic or bookend, ¢t = nand sos = [i + t], = [i + n]a = i.
Therefore, Q is also right cancellative, and consequently, it is a quasigroup. O

Theorem 2.12. Idempotent k-translatable groupoids of the same order are isomorphic.

Proof. Suppose that (Q,-) and (S, *) are idempotent k-translatable groupoids of order n. Then Q =
{1,2,...,n} has a k-translatable sequence ai, a, ..., an, with respect to the ordering 1, 2,...,n, and
S ={c1,c2,...,cn} has a k-translatable sequence b1, b», ..., b, with respect to the ordering c1, ca, ..., Cn.
Then, by Lemma 2.5 (i), we have i -j = apx_yij}, and ¢; * ¢j = bpx_iisj],- Since both groupoids are idempotent,
[ = a[i—ki+i], and ¢; = bye_giri], for all elements of Q and S.

Define a mapping ¢: Q — S as follows: ¢(i) = ¢; (for all i € Q). Then ¢ is clearly a bijection. For i,j € Q,
wehave t = i-j = a[i_iisj], = A[r—ke+t],» and since Q is left cancellative (Lemma 2.10), by Lemma 2.6, we obtain
[k —ki+jln = [k—kt+t]n. Thus o(i-j) = Cij = Ct = Dx—kest], = Plk=ki+j], = Ci * Cj = ¢(1) * »(j) and s0 p is an
isomorphism. O

Proposition 2.13. An idempotent, k-translatable groupoid Q of order n is right distributive if and only if it is
left distributive.

Proof. Leti-j=t,i-s =u,j-s = w. The right distributivity means that ¢ - s = u - w. Then, by Lemmas 2.10
and 2.6, [s+ kuln = [W + kt]n, [t+ki]n = [j + kt]n, [u+ki]n = [s+ ku]n and [s+ kw]n = [W + kj]a. So,
[s+kuln = [w+ kt]n = [u + ki]n, and consequently, [—ki + w]n = [kt + u],. Thusi-w = t - u. Hence, Q is left
distributive.

The converse statement can be proved analogously. O

Theorem 2.14. Anidempotent k-translatable groupoid of order n with (k, n) = 1 is a quasigroup.

Proof. By Lemma 2.10 such groupoid is left cancellative. To prove that it is right cancellative consider
an arbitrary column of its multiplication table. Suppose that it is j-th column. This column has the form
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Aj, A[j_k]ys A[j-2k]s - - » A[j—(n-1)k],- All these elements are different. In fact, if afj_g, = afj_n, for some
s,t € Q, then (s — t)k = 0(mod n), which is possible only for s = t because (k, n) = 1. So, in this groupoid
s-j=t-jimpliess =t forallj, s, t € Q. Hence Q is a quasigroup. O

Lemma 2.15. If a k-translatable groupoid of order n has a right cancellable element, then (k,n) = 1.

Proof. Let t € Q be aright cancellable element of a k-translatable groupoid Q. Then the mapping R¢(x) = x - ¢
is one-to-one. So, it is a bijection. Hence all elements of the ¢-column are different. Thus apj_yjs, = 1t =
j -t = apij+q, is equivalent to k(i —j) = 0(mod n). The last, for all i, j € Q, gives i = j only in the case when
(k,n) =1. O

Proposition 2.16. Anidempotent, k-translatable groupoid Q of order n is elastic ifand only if [ (i-j) + (j-1) ]n =
[i + j]n holds for all i,j € Q.

Proof. Since Q is idempotent, foralli,j e Qwehavei-j=(i-j)-(i-j),i.e.,
[=k(i-j) + (i j)]n = [-ki+]j]n, @

which together with elasticity and Lemma 2.6(iv), gives [j + k(i-j) = (i-j)]n = [ki]n = [(j- 1) + k(i -})) = i]n-
This implies [(i-j) + (j-1)]n = [i + j]n-
Conversely, if [(i-j) + (j-i)]n = [i + j]n, then also [k(i-j) + k(j - i) ]n = [ki + kj]n, and consequently

i+ kiln = [i + k(i) + k(G- §) = Kl = [(k( - 1) = Kj + 1) + k(i - )]
DIG-1) + k(i) ]ne

This gives the elasticity of Q. O

Theorem 2.17. An alterable, left or right cancellative groupoid of order n may be k-translatable only for [k*|n =
n-1.

Proof. Since in alterable groupoids left and right cancellativity are equivalent, we will consider only an
alterable groupoid with left cancellativity.

Let Q be an alterable groupoid which is left cancellative and k-translatable. Then, by Lemma 2.5(iii), for
alli,se{1,2,...,n} we have

[i+1]n-s=i-[n+s—kln=1i-[s—k]n 2

foralli,s e {1,2,...,n}.
Thus,
(n—1)~n:(n—1)-[n+k—k]n@n~[n+k]n:n-k,

which, by alterability, gives
n-n=k-(n-1). 3)
Butn-n=n-[n+k-kln @ [n+1]n-[n+kln=[n+1]n-k so
[n+1]n-k=k-(n-1),
which, by alterability, implies k- k = [n — 1], - [n + 1]». Hence
k-k=(n-1)-[n+1]a @n-[n+1+k]n:n-(k+1)@k~[k+1+k2]n.
Since Q is left cancellable, we obtain 0 = [1 + k*]». Therefore k* = (-1)(mod n). O

Corollary 2.18. A k-translatable and left cancellative groupoid of order n is alterable if and only if [kz],1 =n-1.
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Proof. Let a left cancellative groupoid Q of order n be k-translatable. Assume that the first row of the
multiplication table of this groupoid has the form a1, a,, . .., a,. Then all these elements are different.

If ¥ = ~1(modn), theni-j = g - h, by Lemma 2.5(i), implies [k(g - i)]x = [h - j]». Multiplying both
sides of this equation by k gives [k*(g — i)]n = [k(h = j)]n, i.e., [i = g]n = [k(h = j)]n. This implies j - g = h - i.
Therefore Q is alterable.

The converse statement is a consequence of Theorem 2.17. O

3 Left unitary translatable groupoids

By a (left) unitary groupoid of order n we mean a groupoid (Q, -), where theset Q = {1, 2, ..., n} isnaturally
ordered and 1 is its (left) neutral element.

The first row of a multiplication table of such groupoid has the form 1, 2, ..., n. So, if it is k-translatable,
then, by Lemma 2.5, i-j = [k - ki + j]n for all i, j € Q. Moreover, by Lemma 2.4, a k-translatable left unitary
groupoid is left cancellative. If n is prime, then it is also right cancellative.

Theorem 3.1. Left unitary k-translatable groupoids of the same order are isomorphic.

Proof. Suppose that (Q,-) and (G, %) are left unitary, k-translatable groupoids having k-translatable se-

quences1,2,...,nand1’,2’,..., n’, withrespectto theorderings 1, 2,...,nand1’,2',..., n’, respectively.
Theni-j=[k-ki+jlnandi *j = [k - ki+ j]. Define ¢: Q — G as ¢(i) = i’. Then ¢ is clearly a bijection
and p(i-j) = p([k—ki+j]n) = [k=ki+j]n, =1 %] = (i) * p(j), S0 ¢ is an isomorphism. O

Theorem 3.2. A k-translatable left unitary groupoid is medial, but it is not right distributive.

Proof. In a k-translatable left unitary groupoid Q of order n we have (x - y) - (z-w) = (x-2) - (y - w) <
[k—k(kx+y)+ (k—kz+wW)]n=[k-k(k-kx+2z)+ (k—ky+w)]n < [k(k-kx)]n = [k(k - kx)]n. The last
identity is always valid. So, this groupoid is medial.

Ifitisright distributive, then (x-y)-z = (x-z)-(y-z) forallx, y, z € Q, or, equivalently, [ k—k(k-kx+y)+z]n =
[k-k(k-kx+z)+ (k-ky+z)]n. Thisimplies [k(z—1)], = O forall z € Q. Thus k = 0, a contradiction. Hence,
Q cannot be right distributive. O

Lemma 3.3. A unitary groupoid of order n may be k-translatable only for k =n — 1.

Proof. Indeed,i=i-1=[k-ki+ 1], foreveryi e Q, which fori = 2 gives 2 = [1 — k],. This is possible only
fork=n-1. O

Corollary 3.4. Groups of order n may be k-translatable only for k = n — 1. Such groups are cyclic.

Obviously, such groups are (n — 1)-translatable with respect to the ordering 1, 2,...,norn,1,2,...,n-1
(Lemma 2.7). Example 2.2 shows that in another order they may not be translatable.

Theorem 3.5. If a k-translatable groupoid Q of order n is left unitary then Q is
(a) bookend if and only if [k*]n = [2k]n =n -1,

(b) elastic if and only if [k* + k]n = O,

(c) left distributive if and only if [k*]n = O,

(d) left modularifandonlyifk =n -1,

(e) right modular if and only if [k* ], = 1,

(f) paramedial if and only if [K*]n = 1.

Proof. (a):Indeed,i= (j-i)-(i-j) < i=[k-k[k—kj+i]n+[k—=ki+j]n]n < [2k-k*+ (K> +1)j— (2k+1)i]n =
0 [k +1]n=[2k+1],=0.
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(b):i-(j-i) = (i)-i & [k=ki+(k=kj+i)]n = [k=k(k=ki+j)+i]n = [(kK*+k)i]n = [K*+k]n <= [k*+k]n = O.
In other cases the proof is similar. O

Corollary 3.6. Let Q be a left unitary k-translatable groupoid. Then
(a) Qisright modular if and only if it is paramedial,

(b) if Q left modular, then it is right modular, elastic and paramedial,
(¢) Qs not strongly elastic.

Theorem 3.7. A k-translatable groupoid Q of order n is embeddable in a k-translatable groupoid B of order
(t+1)n(te{1,2,3,...}) such that

(a) if Qis left cancellative then B is left cancellative, and

(b) if Qis left unitary then B is left unitary.

Proof. Let Q = {1, 2,..., n} have the k-translatable sequence a, ..., an. Define B as follows: B = {b;; : 1 <
i<n,1<j<t+1},whereb; =iforalli=1,2,...,nand B has (t+ 1)n distinct elements. Consider B with
the following ordering: 1, 2’,..., ((t + 1)n)’, where b;; = ((i - 1) (¢t + 1) +j)".

Let the first row c1, c2, ..., C(t+1)n of the multiplication table of B have the form

ai, bz, ..oy biges1ys @2, 0225 ooy Do(ei1ys @35, D32, s D3(eh1)s ooes Ans B2,y ooy Byer)-

Then bj; = ¢(j_1)(t+1)+j forallj # 1 and a; = ¢(j_1)(t+1)+1-

The second row is obtained from the first by taking the last k entries and placing them as the first k
entries of the second row and taking the first ((t + 1)n — k) entries of the first row and placing them as the
last ((t + 1)n - k) entries of the second. In the same way we construct the (i + 1)-th row from the i-th (for
alli=2,3,...,(t+1)n-1). Clearly, such defined groupoid B is k-translatable. Also, if Q is left cancellative
then B is left cancellative and if Q is left unitary then B is left unitary.

So, we only need to prove that the product - in Q is preserved in the new product, call it %, in B. In proving
this, we do so using the facts that Q and B are k-translatable.

Since

i=bp=({I-1)(t+1)+1) =(it+i-t)

forallie Q, forany i, j € Q, by Lemma 2.5, we have
isj=(it+i-t) = (jt+j-t) =cx,

where x = [k—k(it+i—t)+jt+j—t](tr1yn = [k(t+1) =ki(t+1) +j(t+1) = t](tr1)n = ([k=ki+jln-1)(t+1)+1.
But, on the other hand, using the fact that a; = ¢(;_1)(¢+1)+15

1] = k—kitj]y = C([k—ki+jla-1)(t+1)+1 = Cxs

Therefore,i-j=ix*jforalli,je Q. O

4 Dual groupoids

The dual groupoid of a groupoid (Q, -) is defined as a groupoid (Q, *) with the operation i xj = j-i. We asume
(Q,-) and (Q, *) both have the natural ordering 1, 2, ..., n.

Theorem 4.1. If a left cancellative groupoid Q of order n is k-translatable, then its dual groupoid (Q, *) is
k*-translatable if and only if [kk™], = 1.

Proof. (=): Suppose that (Q, -), where Q = {1, 2, ..., n}, is k-translatable and the first row of its multipli-
cation table has the form ai, a,, ..., a,. If its dual groupoid (Q, *) is k*-translatable, then 1 * [1 — k*], =
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[1-Kk']n-1 = ap-r@-k+)+1], = A[kk*+1], But on the other hand, 1 * [1 - k™], = 2% 1 =1-2 = a,. So,
ki +1], = d2. Left cancellability implies [kk™ + 1], = 2, which gives [kk™ ], = 1.

(<): Suppose that [kk*]n = 1. Then [i+ 1]n * [+ k™ Jn = Qpk_k(jske)+(i+1)] = Ak-kji-kk* +i+1]0 = Alk—kj+il, =
i * j. Hence, (Q, *) is k*-translatable with respect to the ordering 1, 2, ..., n.

Corollary 4.2. A left cancellative, k-translatable groupoid (Q, -) of order n and its dual groupoid (Q, *) are
k-translatable, for the same value of k, if and only if [k*]n = 1.

Corollary 4.3. A left unitary, k-translatable groupoid (Q, -) of order n and its dual groupoid (Q, *) are k-
translatable, for the same value of k, if and only if (Q, -) is paramedial.

Corollary 4.4. A dual groupoid of a left cancellative, k-translatable groupoid (Q, -) of order n is [n — tk]n-
translatable if and only if [tk*]n = n - 1.

Corollary 4.5. A left cancellative k-translatable groupoid of order n is alterable if and only if its dual groupoid
is (n - k)-translatable.

Proof. (=): Since, by Corollary 2.18, [k®], = n—1 we have [k(n—k)]n = [-k?]» = 1. By Theorem 4.1, the dual
of Qis (n - k)-translatable.

(«): Since Q is k-translatable then, by Theorem 4.1, [k(n—k)]n = [-k*]n = 1. This implies [k*], = n—1,
which, by Corollary 2.18, shows that Q is alterable. O

5 Translatable semigroups

Observe first that in a k-translatable groupoid Q of order n with a k-translatable sequence ai, a, ..., a, we
have

(x-y)z=x-(y-z) = Alk—Kagi—iwsyly+2]n = A[k=kxX+apiryszyy In® (4)
If Q is left cancellative, then the right side of (4) is equivalent to
[z = kafikxsy, In = [Ak-kysz2), = kX ]n. )

Thus, a left cancellative, k-translatable groupoid Q of order n is a semigroup if and only if it satisfies (5).

Theorem 5.1. A left cancellative, k-translatable groupoid Q of order n with a k-translatable sequence
ai, as,...,anis a semigroup if and only 1'f[k2 +kln=0anda; =[i-k-kay]nforalli=1,2,...,n.

Proof. (=):Settingx =y = nand z = [i-k], in (5) we obtain a; = [i— k—kay]». Consequently, a, = [—kay]n =
[a1 + k — 1], which implies [1 - k — a1 ]n = [kay]n = [kai + k* = k]n. Hence [1 - k*]n = [@1(k + 1)]n. Since,
setting x = y = z = 1 in (5) we obtain [a;(k + 1)]n = [k + 1]n, the last equation gives [1 — k*]n = [k + 1]n.
Hence, [k* + k]n = O.

(«): From a; = [i - k — kay]» we conclude ay = [~kaj]n. Thus, [~kay]n = [k*ai]n. Now using the above
and [k* + k], = O we obtain

[z - ka[iiwsyy, In = (2 = k(y = kx = kay)]n = [z - ky + KX + K ag]n
= [Z —ky - kx - kak]n = [a[k—kerz],, - kx]rl,

which proves (5). Hence Q is a semigroup. O

Corollary 5.2. A k-translatable semigroup is left cancellative if an only if it has a left neutral element.
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Proof. 1f Q is a left cancellative and k-translatable semigroup, then by previous theorem a; = [i — k — kay]n
and [-kay]n = ax. S0, A[_34,-1], = [~k - 1 - ax]n and a[_54,-13, - aj = ar, where

t=[k- ka[,Zak,l]n +ajln=k-k(-k-1-ay)+(G—-k-kay)]n=j.

Thus, aj_,4,-1], is a left neutral element.
The converse statement is obvious. O

Corollary 5.3. A left unitary, k-translatable groupoid Q of order n is a semigroup if and only if [k + k*], = O.

Corollary 5.4. A leftunitary, k-translatable groupoid Q of order n = k+k? is a semigroup with the multiplication
given by the formula
(i+sk)-(+tk)=[j+(s+t—i+1)k]n (6)

wherei,je{1,2,...,k}ands,t€{0,1,2,...,k}.

Proof. Observe first that all elements of Q can be written in the form i + sk, where i € {1,2,...,k} and
s€{0,1,2,...,k}. Since Q is left unitary and k-translatable, x -y = [k — kx + y]. for all x, y € Q. Therefore
(i+sk)-(j+tk)=[k-k(i+sk)+(+tk)]n=[j+ (s+t—i+1)k]n.Itis straightforward to verify that this
multiplication is associative. O

Such defined semigroup is left cancellative and non-commutative. This semigroup is not a group. The
equation (x+yk)-(j+tk) = (i+sk) always has k solutions. All these solutions have the form x+ (k+1)m+yk,
m=1,2,...,k.

Corollary 5.5. A groupoid Q of order n = k + k* with the multiplication defined by (6) is a left unitary, k-
translatable semigroup.

Proof. Indeed, this multiplication is associative and 1 is its left neutral element. Also, [(i+1) +sk]n-[j+ (t+
Dkln=[j+ (t+s—i+1)k]n =[i+Sk]n-[j+tk]n, so Qis k-translatable. O

Theorem 5.6. By re-ordering, any left cancellative k-translatable semigroup can be transformed into a left
unitary k-translatable semigroup.

Proof. Let Q be a left cancellative k-translatable semigroup and let ai, as,...,an be its k-translatable
sequence with respect to the ordering 1, 2, ..., n. Consider a new ordering b1, ba, ..., by of Q, where bs =
[~ax-k+s-2]p,5=1,2,...,n.

Using Theorem 5.1, it is not difficult to see that b; - b; = bj_gisx],- Thus b1 is a left neutral element of Q
and, by Lemma 2.5 (i), Q is k-translatable with respect to the ordering b1, bz, ..., bn. O

Thus by re-ordering and re-numeration of elements we can assume that each left cancellative k-translatable
semigroup is left unitary with 1 as its left neutral element.
As a consequence of Theorem 5.6 and Theorem 3.1 we have:

Corollary 5.7. Left cancellative k-translatable semigroups of the same order are isomorphic.

Corollary 5.8. A left cancellative groupoid Q of order n with an (n — 1)-translatable sequence of the form
aris], = [ai + 1] is a cyclic group.

Proof. An (n — 1)-translatable groupoid is commutative. So, if it is left cancellative, then it also is right
cancellative. Hence it is a quasigroup. Moreover, k = n - 1 and a3, = [a; + 1]n imply [k + k*]n = 0 and
a; = [i—k-kay]nforalli=1,2,...,n. By Theorem 5.1 then, Q is a semigroup. Hence Q is a commutative
group. By Corollary 3.4 it is cyclic. O
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Corollary 5.9. A left cancellative (n - 1)-translatable semigroup of order n is isomorphic to the additive group
Zin.

Proof. By Theorem 5.1, a; = [i + 1 + ak]n. Therefore, ai,1), = [(i + 1) + 1 + ax]n = [@; + 1]x. The result then
follows from Corollary 5.8. O

Proposition 5.10. There are no idempotent k-translatable semigroups of order n.

Proof. An idempotent k-translatable semigroup of order n is left cancellative. Thus, by Lemma 2.6 and
Theorem 5.1, in such semigroup for all i € Q should be i = a4, = [{ - ki — kag]n, i.e., [k(i + ai)]n = O,
which is impossible. O

Denote by E(Q) the set of all idempotents of a semigroup Q.

Lemma 5.11. If Q is a left cancellative, k-translatable semigroup of order n, then
(1) E(Q) = {ieQ: [k(i+ay)]a =0},

(2) E(Q) is a subsemigroup of Q,

(3) E(Q) equals the set of all left neutral elements of Q,

(4) E(Q) is a right-zero semigroup.

Proof. (1): By Lemma 2.6 and Theorem 5.1, we have
i=i-iei= a[k,k,-”]n = [l —ki- kak]n = [k(l + ak)]n =0.

(2):1fi,je E(Q), then (i-j)-(i-j) = [ —ki—kay]n-[j—ki—kayx]n = [j-ki-kax-k(i+ay) -k(j+ax)]n =
[j—ki-kax]ln=1-j.S0,i-jeE(Q).

(3):Foreveryiec E(Q)andje Qwehavei-j=[j-ki-kay]n=]j.

(4): This follows from (3). O

Corollary 5.12. If 1 is a left neutral element of a left cancellative, k-translatable semigroup Q of order n, then

E(Q)={j=[i+k(i-1)]a:icQ}.

Corollary 5.13. Right cancellative semigroups of order n may be k-translatable only for k = n — 1. Such
semigroups are isomorphic to the additive groups Zn.

Proof. Let Q be aright cancellative k-translatable semigroup of order n. Then the right cancellativity implies
that each column of the multiplication table of Q consists of n distinct elements. Since Q is k-translatable,
the first row of its multiplication table has n distinct elements, i.e., Q has a left cancellable element. Thus, by
Lemma 2.4, it is left cancellative. So, Q is an associative quasigroup. Hence Q is a group. Corollary 3.4 ends
the proof. O

Corollary 5.14. A left cancellative, k-translatable semigroup of order n with k-translatable sequence
ai, as,...,aninwhich ay = 1 or ay = n — 1 is isomorphic to the group Zn

Proof. 1f ay = 1 then by Theorem 5.1, ay = 1 = [—-kay]n = [—k]n. Hence k = n — 1. If a; = -1 then by Theorem
5.1again, ay = n — 1 = [-kay]n = k. So, in both these cases the results follows from Corollary 5.9. O

Theorem 5.15. A left cancellative, k-translatable semigroup of order n is a union of t disjoint copies of cyclic
groups of order m, where m and t are the smallest positive integers such that [mk], = 0 and [tm], = 0.

Proof. For every i € E(Q) consider theset Q; = Q-i = {x-i:x € Q}. Then, by associativity and Lemma 5.11,
(x-1)-(y-i) =x-(y-i) =x-[i-ky—kay]n = [i-ky—kx—-2kay]n = y-(x-i) = (y-1)-(x-1). So, Q; is a commutative
semigroup contained in Q and i = i - i is its neutral element. Since (x-i) - (y-i) = i fory = [-x — 2ay]n, this
semigroup is a commutative group. Moreover, for everyi € E(Q), the mapping ¢(x-i) = x-1 is an isomorphism
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between Q; and Q1. So, all groups Q; are isomorphic to Q;. Since Q is k-translatable, the group Q; contains
elements of the form (¢ +1)-1=[1-kt]s, t =0,1,...,m - 1, where m is the smallest positive integer such
that [mk], = 0. It is not difficult to see that this group is generated by the element 2 - 1 = [1 - k]x.

Groups Q; are pairwise disjoint. If not, then forz ¢ Q; n Qj wehavez = x-i = y - j for some x,y € Q.
Whence, multiplying by i and j, and applying Lemma 5.11, we obtainz-i = x-i=y-iandz-j=x-j=y-j.
Thus x-i=y-j=x-j, which by left cancellativity gives i = j. Hence Q; = Q;.

Obviously U Q; € Q, i € E(Q). To prove the converse inclusion observe that, according to Theorem 5.6,
in Q we can introduce a new ordering such that some element of E(Q) can be identified with 1. Then, by
Corollary 5.12, [q + kg - k]n € E(Q) for each g € Q. Thus, q-i = g fori = [q + kq — k]». Hence Q < U Q;. So, Q is
a union of ¢ copies of Q1, where ¢ is the number of idempotents of Q. Since (1+wm)-j = k- k(1+wm)+j = j,
thesetL = {1+wm:w=1,2,...} consists of left identities. Since ¢ is the smallest positive integer such that
[tm],=0,L={1+wm:w=0,1,...,t-1}. ByLemma5.11, L = E(Q). O

Note that Q; - Qj ¢ Q; for i,j € E(Q).

Corollary 5.16. A left cancellative, k-translatable semigroup of order n is a union of t disjoint pairwise
isomorphic left ideals of order m, where m and t are the smallest positive integers such that [mk], = 0 and
[tm]n = 0.

Corollary 5.17. A left cancellative, k-translatable semigroup of order n = k* + k is a union of k disjoint copies
of cyclic groups isomorphic to Z.1.

Example 5.18. A left unitary 2-translatable semigroup of order 6 has two idempotents 1 and 4 and is a union
of two cyclic groups isomorphic to the additive Zs. On the other hand, a left unitary 3-translatable semigroup
of order 6 has three idempotents 1, 3 and 5 and is a union of three cyclic groups of order two.

Theorem 5.19. In left cancellative k-translatable semigroup every left and every right ideal is semiprime.

Proof. ltis a consequence of our Theorem 5.15 and Theorem 4.3 from [5]. O

Left cancellative k-translatable semigroups belong to many important classes of semigroups. Below we
present a short survey of such classes. For definitions see for example [5]

Theorem 5.20. A left cancellative k-translatable semigroup of order n is
(1) medial,
(2) anticommutative (i.e., nowhere commutative), if (1 + k,n) = 1,
(3) conditionally commutative,
(4) left commutative,
(5) left and right regular,
(6) regular,
(7) intra-regular,
(8) orthodox,
(9) a Clifford right semigroup,
(10) a Clifford left semigroup, if (k, n) = 1.

Proof. (1): This is a consequence of Theorem 3.2.

(2): Indeed, i -j = j - i means that [j — ki — kay]n = [i — kj — kay]n, i.e., [(j = 1)(1 + k)]n = O, which for
(1+k,n)=1givesi=j.

(3):Itiseasy toseethati-j=j-iimpliesi-x-j=j-x-iforall x € Q.

(4): Since Q has a left neutral element, (1) impliesi-j-x=j-i-xforalli,j,x € Q.

(5):x-(j-j)=jand (j-j)-y=jforeachje Qand x = [—j - 2kay]n, y = [J + 2kj + 2kay]n.

(6):i=i-x-iforeveryie Qandx = [-i-2ay]n.

(7):i=x-i-i-yforeveryie Qandx = [-2i - 3ax]n, y = i.
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(8):Itis a consequence of Lemma 5.11 and (6).

(9):Q-ici-Qforeveryic Q,becausej-i=i-sfors={[i+k(i—j)]n.

(10): Analogously,i-Q c Q -iforeveryi € Q, becausei-j =s-ifors = [t(i —j) + i]n, where [tk], = 1.
Such t exists only for (k, n) = 1. O

Theorem 5.21. A paramedial left cancellative k-translatable semigroup is a cyclic group.

Proof. Comparing Theorems 3.5 and 5.1 we can see that such semigroup is (n - 1)-translatable and ar,1j, =
[(i+1)+1+ak]n = [ai + 1]n. Corollary 5.8 completes the proof.

Below we present several results on k-translatable semigroups which are not left cancellative.

Theorem 5.22. If the first row of the multiplication table of a naturally ordered k-translatable groupoid Q =
{1,2,...,n} has the form a1, az, ..., an, then Q is a semigroup with the multiplication i - j = a; if and only if
as = A5k, = da, forany s € Q.

Proof. (=):Indeed, (i-j)-s =asandi-(j-s) = aq, imply as = aq, for all s € Q. From k-translability we obtain

as = A[s+k],-
(+): First note that as = aps., implies afs_y, = a[s—k+k], = as- Thus, for any, i, j, s € Q we have

a[k—ka[k_k,-H-J” +5]y = Alk+s], = As = Aag = Aagyipqy, = a[k—ki+a[k-kj+s]n]n’
which, by (4), means that Q is a semigroup. The rest is a consequence of Lemma 2.5 (i). O

Note by the way that in such defined semigroup the multiplication takes no more than d = (k, n) values. So,
in the case (k, n) = 1 it is a semigroup with multiplication having one constant value.

Theorem 5.22 together with Lemma 2.7 give the possibility to construct k-translatable semigroups which
are not left cancellative.

Example 5.23. Let Q = {1, 2, ..., n} be naturally ordered set. Then

(1) the sequences (12,12,9,10,9,12,12,12,9,10,9,12),
(1,1,1,10,11,10,1,1,1,10,11,10) and (5,8,8,8,5,6,5,8,8,8,5,6) define three isomorphic 6-
translatable semigroups of order n = 12,

(2) thesequences(1,3,3,1,3,3),(2,2,6,2,2,6)and (1,5,1, 1,5, 1)yieldisomorphic 3-translatable semi-
groups of order 6.

(3) the sequences (1,5,4,4,5,1,5,4,4,5), (4,3,3,4,10,4,3,3,4,10) and
(1,2,8,2,1,1, 2,8, 2, 1) define isomorphic 5-translatable semigroups of order n = 10.

Corollary 5.24. A naturally ordered semigroup Q = {1,2,...,n} with a k-translatable sequence
ai, az,...,an in which

(1) as=ax=nor

(2) ai=1andaj=j+1forsomej=+1

has multiplication defined by the formula i -j = a;.

Proof. Let Q be a k-translatable semigroup. Then, by (4), for x = 1, y = j and z = s we have

A[k—kaj+s]y = Aapijesy, 2 %]
which for j = 1 gives a[i_ka,+s], = @a,- From this, for a1 = n, we obtain as,], = da,, whence we get as =
Aaqy, - Thus,

@)
as = aa[s,k]n = aa[k7k2+s]n = a[k—kaz+s]y, = a[k+8]n

for a; = n. So, for a, = a, = n the conditions of Theorem 5.22 are satisfied. Hence i-j = g; foralli, j € Q.
Nowifa; =1andaj=j+1forsomej+1,thenl-1=ag;=1andas=1-s=(1-1)-s=1-(1-5) =
1-as = aq,. This together with (7) implies apy_yj:s1, = Qag i), = A[k—kaj+s],> Which for s = [ka; - k + t]n gives
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A[k(a;—j)+s], = A¢- But aj —j = 1 for some j # 1, S0 d[x4¢, = ¢ This means that also in this case the condition
of Theorem 5.22 are satisfied. Thus, also in this case i j = g; forall i, j € Q. O

Corollary 5.25. A k-translatable groupoid Q = {1,2,...,n} with an idempotent element j ¢ Q such that
j=j-[J- 1]nis asemigroup if and only if for all s € Q

(i) j--1+s-kln=j-[j-1+sln=j-[-1+s+klnand

(@) j-U-1+sln=j-[G-1)+(G-[-1+5]n)]n.

Proof. First we introduce on Q a new ordering b4, ba, ..., by starting with an idempotent j and such that
bs = [j -1+ s]n forall s € Q. Then, by repeated application of Lemma 2.7, we can see that a1, az, ..., an,
where as = j - bs, is a k-translatable sequence with respect to this new ordering.

(=): Since Q is a k-translatable semigroup, for any s € Q we have

as=j-bs=(-[j—1]n)-bs=(b1-bn)-bs=b1-(bn-bs)
=j-(U-1n-l-1+s8ln)=j-G-U-1+s+k]n)
=G [j-1+s+kln=j-[j-1+s+k]n

=j-bsik = Asyk.

From this, setting s = [t k], we obtain ar = af;_yj,, and so as = a[s.k], = A[s—i],- This proves (i) and, together
with (4), implies as = aq,. The last is equivalent to (ii).

(«=): (i) and (ii) imply as = a[ssk], = a[s-k], = da, for all s € Q. Therefore for i,j,s ¢ Q we have
Ak—Kag sy, +5]n = AK—ki+ Qg igee, In and Q is a semigroup. O

For j = 1 from the above Corollary we obtain

Corollary 5.26. A naturally ordered, k-translatable groupoid Q = {1, 2, ..., n} with an idempotent element 1
suchthat1 =1-nis asemigroup if and only if foralls e Qwe have 1 -[s—k]n=1-s=1-[s+k]n=1-(1-5).

6 Embeddings of left unitary translatable semigroups

Suppose that Q1, Q2, ..., Q; are disjoint copies of the same left unitary k-translatable semigroup of order n.
Is there a product * on Q = U Q; such that (Q, *) is a left unitary translatable semigroup, with every (Q;, *;)
isomorphic to (Q;, *)?

We find two different conditions under which this is possible. In each case k = tq, for some positive integer
q.1f [k+k*]¢n = O then we can find a product * on Q such that (Q, *) is a left unitary k-translatable semigroup,
with every (Q;, #;) isomorphic to (Q;, #). If n = k + k? then we can construct a left unitary (k + (t — 1)n)-
translatable semigroup (Q, *), such that every (Q;, *;) is isomorphic to (Q;, *).

To prove these results, we need the following Lemma. The proof is straightforward and is omitted.

Lemma 6.1. Let t and x be positive integers. Then

(@) [tx]em = t[x]n,

(b) [t(x=1)]m =t[[x]n—1]n,

(c) ifn=k+k*andk=tq, then [(k+ (t - 1)n) + (k + (t = 1)n)*]m = O.

Theorem 6.2. Let k = tq and [k + kz]m = 0. Suppose that (Q;, *;),1 = 1, 2,...,t, are pairwise disjoint left
unitary k-translatable semigroup with ordering i1, i», . . . , in and the cardinality n. Then Q = U Q;, with ordering
definedbyi,=t(r-1)+i (i=1,2,...,nandr=1,2,...,n),is aleft unitary k-translatable semigroup, with
respect to the product  defined by

ir *js = jx, where x =[k—kr+q—qi+S]n 8)

in which each (Q;, ) isomorphic to (Q;, ;).
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Furthermore, if we define a product » on Q = U Q; by (8), then there is an ordering on Q such that (Q, *) is
a left unitary k-translatable semigroup in which each (Q;, ) isomorphic to (Q;, *;).

Proof. Note that [k + k*]t» = O implies [k + k*], = 0. Consider on Q = U Q; the ordering i, = t(r — 1) +1i
and define the first row of the multiplication table of x as a1, az, ..., am, wherea; =iforalli=1,2,...,tn.
We make the sequence ai, az, ..., am into a k-translatable sequence in a natural way, as follows. The last k
entries of the first row become the first k entries of the second row and the first (¢n - k) entries of the first row
become the last (tn — k) entries of the second row. Continue in this manner, making the last k entries of the
i-th row become the first k entries of the (i + 1)-th row and the first (¢n - k) entries of the i-th row become the
last (tn - k) entries of the (i + 1)-th row. By definition, the resultant groupoid (Q, *) is k-translatable, with
1; = 1 as a left identity element. Since [k + kz] n = 0, by Corollary 5.3, (Q, *) is a left unitary k-translatable
semigroup, with product r x s = Alk—kr+5]m = [k — kr + s]i. Therefore, for all i;, js € Q we obtain

ir *js = [t(r— 1) +i]tn * [t(S— 1) +j][n
=[t(g-kr+k-qi+s-1)+j]m
[t([g-—kr+k—-qi+s]n=1) +jlm = jw,

where w = [q — kr + k — qi + s]x. Since, by Lemma 6.1, we have w = j[(q — kr + k — gi + s) ]n, the above proves
(8) and shows that each Q; is a left ideal of (Q, *).

Now, we define on Q; new ordering by putting is = s foralls =1, 2,...,n. Thenr * s = i, * is = iy, Where
x=[k-kr+q-qi+sln=[k-kr+q-q(i+1)+S+q]n.S0,7 %5 =1i[11], * i[s4k], = [T+ 1]n * [S + k]n. By
Lemma 2.5 (ii), (Q;, *) is k-translatable.

Since 0 = [k + k*]tn = [t(q + tq*)]m by Lemma 6.1 (a), [q + tq*]s = O. Therefore, [tq*]n = [-q]n. If
r=1-q(1-i), thenwe get [k - kr]n = [k(1 - 1)]n = [tg*(1 = i)]n = [-q(1 - i)]n. Therefore, by (8), for
r=1-q(1-1i)wehavei, * is = is. Thus i, is a left neutral element of (Q;, *).

By Lemma 2.7, we can re-order (Q;, *) such that by Corollary 5.3, (Q;, *) is a left unitary k-translatable
groupoid of order n. Then, since [k + k%], = 0, by Corollary 5.3, is a left unitary k-translatable semigroup. By
Corollary 5.7 then, (Q;, *) is isomorphic to (Q;, *;). This proves the first part of the Theorem.

To prove the second part we introduce on Q = U Q; an ordering is = t(s — 1) + i and consider a product *
defined by (8). Then,

[ir+1]tn*[Js+k]m =[t(r=1)+i+ 1] *[t(s=1) +j+ k]
=[t(r-1)+({+1D)]m*[t(s+gq-1)+]j]m
=(T+1)r * jseq = Jx

wherex = [(k-kr+q-q(i+1)+s+q)]n=[(k—kr+q-qi+5s)]n.So, [ir + 1] * [js + k]tn = jx = ir * js.
Thus (Q, *) is k-translatable. Since, by (8), 11 = 1 is a left neutral element of (Q, *) and [k + kz]m = 0, by
Corollary 5.3 then, (Q, ) is a left unitary k-translatable semigroup.

Analogously we can see that each (Q;, ) with natural ordering s = is is a left unitary k-translatable
semigroup. By Corollary 5.7, semigroups (Q;, *) and (Qj, *;) are isomorphic. This proves the second part of
the Theorem. O

Theorem 6.3. Letk = tqandn = k+ K. Suppose that (Qi, *;),i=1,2,...,t, are pairwise disjoint left unitary
k-translatable semigroups with ordering i1, i2, ..., in and the cardinality n. Then Q = U Q; with the ordering
ir =t(r-1) +iis aleft unitary (k + (t — 1)n)-translatable semigroup with respect to the product * defined by

ir * js = jx, where x = [k—kr+kq(i—1)+5]n C)

in which each (Q;, ) isomorphic to (Qj, *;).
Furthermore, if on Q = U Q; a product » is defined by (9), then Q can be ordered in such a way that (Q, *)
becomes a left unitary (k + (t — 1)n)-translatable semigroup in which each (Q;, *) is isomorphic to (Qj, *;).
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Proof. Similarly as in the proof of Theorem 6.2, we can construct a multiplication table for (Q, ) in this way
that (Q, *) becomes a left unitary (k+ (¢-1)n)-translatable semigroup. Then, according to the (k+ (t—1)n)-
translatability, Lemma 6.1 and k + (t — 1)n = tk + (t - 1)k*, we have

irxjs=[t(r=1)+i]m*[t(s—1) +j]tn

[(k+(t-1)n) - (k+ (t-1)n)(t(r-1) +1) + (t(s—1) +j)]m
[

[

(th+(t-1)tq*) - (tk+(t-1)2q*) (t(r-1)+1)+(t(s=1) +j) ]tn
t{(k+(t—1)tq2)—(k+(t—l)tqz)(t(r—1)+i)+s—1}+j]m =Jx,

where

[(k+(t-1)tg*) - (k+ (t - 1)tg*)(t(r - 1) +1) + 5]
[tq® + tq*(t(r—=1) + i) +S]n = [rk> = k> + kq(i - 1) + 5]n
=[k-kr+kq(i-1)+s]n

X

because k + k? = n.

This proves (9) and shows that each Q; is a left ideal of (Q, *). Next, similarly as in the previous proof, we
can prove that each semigroup (Q;, *) has a left neutral element i,, where r = g(i — 1) + 1, and is isomorphic
to (Qj, *;). This completes the proof of the first part of Theorem.

To prove the second part we introduce on Q = U Q; an ordering is = t(s — 1) + i and consider the product
defined (9). Then,

[r+1]m*[js+k+(t-1)n]m=[t(r-1)+i+1]m*[t(s-1)+j+k+(t-1)n]m
=[t(r-1)+(i+1)]m*[t(s—kq—1) +j]mn
= (I +1)r *js—kq = Jxs

where x = [(k—-kr+ (s—kq) + kqi)]n=[(k-kr+s-kq(i—1))]n.

So, [ir + 1]t * [js + k+ (t = 1)n]em = jx = ir * js, which means that (Q, x) isa (k + (¢t — 1)n)-translatable
semigroup with a left neutral element 1; = 1. It is not difficult to see that each (Q;, *) with the ordering is = s
is a k-translatable semigroup isomorphic to (Q;, *). O

Example 6.4. Suppose that Q is a left unitary 8-translatable semigroup of order n = 12. Since 8 = 2 x 4 and
[8+8%]24 = 0, there is a left unitary 8-translatable semigroup G of order 24 that is a disjoint union of two copies
of Q. It is a disjoint union of 8 copies of Zs.

Example 6.5. Suppose that Q is a left unitary 8-translatable semigroup of order n = 72. Then there is a left
unitary 224-translatable semigroup of order 288 that is a disjoint union of 4 copies of Q. There is also a left
unitary 512-translatable semigroup G of order 576 that is a disjoint union of 8 copies of Q. Also it is a disjoint
union of 64 copies of Z.

Putting in the last theorem ¢ = 2 we obtain

Corollary 6.6. Let (Q,-) and (G, o) be left unitary k-translatable semigroups of order n = k + k2, with k = 2q,
Q={1,2,...,n},G={81,82,-.-,8ny and Qn G = @. Then B = Q U G can be transformed into a left unitary
(k + n)-translatable semigroup with product  such that
(1) (Q,-) =(Q,*),

(ii) (G, o) isisomorphic to (G, *),

(iti) 8i * 8 = 8[k(1+q)—ki+jln>

(iv) i*gj = 8[k—ki+j], foralli,j e Q and

(v) gi+j=[k(1+q)—-ki+jlnforalli,jeQ.
Conversely, if n = k + k* and B = Q U G with the ordering 1,81, 2, 82, ..., 1, gn has the product » defined by
(i), (iii), (iv) and (v) then (B, *) is a left unitary (k + n)-translatable semigroup satisfying (ii). Furthermore,
Q+xG=Gand G+ Q=Q.
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