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1 Introduction
Quadratical quasigroups were introduced by Volenec [1] on occasion of his investigations into properties
of geometrical objects on the complex plane. Later, these quasigroups were characterized in [2] by Abelian
groups and their automorphisms, using the Toyota theorem. Their �ne structurewas described in [3], where it
was proved that they forma variety of quasigroups. The general theory of quadratical quasigroups is still in its
relative infancy. One aim of this paper is to stimulate interest and further research in the theory of quadratical
quasigroups and related topics.

The focus of this paper is on translatable groupoids. In our previous paper [4] it has been proved that
the property of translatability can be hidden in the Cayley tables of certain �nite quadratical quasigroups,
including all those "induced" by Zn, the additive group of integers modulo n, where n = 4t + 1 for some
positive t. Here we diverge from the study of quadratical quasigroups and explore some of the properties of
translatable groupoids and translatable semigroups.

We begin in Section 2 by listing three di�erent conditions, each of which is necessary and su�cient
for a �nite groupoid to be translatable (Lemma 2.5). Then we list necessary and su�cient conditions on
a left cancellative translatable groupoid for it to be idempotent, elastic, medial, left or right distributive,
commutative or associative (Lemma 2.6). It is then proved that a groupoid has a k-translatable sequence, with
respect to a particular ordering of its elements, if and only if it has a k-translatable sequence with respect to n
di�erent orderings (Corollary 2.8). Essentially this result shows that, in a k-translatable groupoid, moving all
the elements of the ordering of the Cayley table up one place (or down one place) preserves k-translatability.
This result is applied later to prove that left cancellative k-translatable semigroups are left unitary (Theorem
5.6). It is also proved that a left cancellative k-translatable groupoid of order n is alterable if and only if k2 is
equivalent to n − 1 modulo n (Corollary 2.18).

Idempotent k-translatable groupoids are considered next. We prove that such groupoids are left can-
cellative. Any two idempotent groupoids of the same order, each k-translatable for the same value of k, are
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proved to be isomorphic (Theorem 2.12). An idempotent k-translatable groupoid of order n is proved to be
right distributive if and only if it is left distributive and, if the greatest common divisor of k and n is 1, it is a
quasigroup Proposition 2.13 and Theorem 2.14).

Section 3 explores left unitary translatable groupoids. Two such groupoids of the same order are isomor-
phic (Theorem 3.1) and any such groupoid is medial but not right distributive (Theorem 3.2). The value of
k in a left unitary k-translatable groupoid determines whether the groupoid has various properties such as
paramediality, elasticity left distributivity and right or left modularity (Theorem 3.5).

In Section 4we prove that a left cancellative k-translatable groupoid of order n has a k∗-translatable dual
groupoid if and only if kk∗ is equivalent to 1 modulo n (Theorem 4.1).

Section 5 dealswith k-translatable semigroups. In one of themain results of this paper, we �nd necessary
and su�cient conditions on a left cancellative k-translatable groupoid for it to be a semigroup (Theorem
5.1). Any such semigroup has a left neutral element (Corollary 5.2) and can be re-ordered so that it is a left
unitary k-translatable semigroup (Theorem 5.6). Two left cancellative k-translatable semigroups of the same
order are isomorphic (Corollary 5.7). A left cancellative k-translatable semigroup is a disjoint union of cyclic
groups of the same order (Theorem 5.15). A left cancellative (n − 1)-translatable semigroup of order n and
a paramedial left cancellative k-translatable semigroup of order n are isomorphic to the additive group of
integers modulo n. The section ends with various results that allow us to calculate k-translatable sequences
that yield semigroups which are not left cancellative (Theorem 5.22 to Corollary 5.26).

In Section 6 we �nd two di�erent conditions under which t disjoint copies of a left unitary k-translatable
semigroup Q of order n can be embedded in a left unitary translatable semigroup G of order tn, such that
G is a disjoint union of t copies of Q. In both cases k = tq. If (k + k2) ≡ 0(mod tn) then G is k-translatable
(Theorem 6.2). If n = k + k2 then G is (k + (t − 1)n)-translatable (Theorem 6.3).

2 Translatable groupoids
For simplicity we assume that all groupoids considered in this note are �nite and have the form Q =
{1, 2, . . . , n} with the natural ordering 1, 2, . . . , n, which is always possible by renumeration of elements.
Moreover, instead of i ≡ j(mod n) we will write [i]n = [j]n. Additionally, in calculations of modulo n, we
assume that 0 = n.

De�nition 2.1. A �nite groupoid Q is called k-translatable, where 1 ⩽ k < n, if its multiplication table is
obtained by the following rule: If the �rst row of the multiplication table is a1, a2, . . . , an, then the q-th row
is obtained from the (q − 1)-st row by taking the last k entries in the (q − 1)−st row and inserting them as the
�rst k entries of the q-th row and by taking the �rst n − k entries of the (q − 1)-st row and inserting them as the
last n−k entries of the q-th row, where q ∈ {2, 3, . . . , n}. Then the (ordered) sequence a1, a2, . . . , an is called a
k-translatable sequence of Q with respect to the ordering 1, 2, . . . , n. A groupoid is called translatable if it has
a k-translatable sequence for some k ∈ {1, 2, . . . , n − 1}.

It is important to note that a k-translatable sequence of a groupoid Q depends on the ordering of the elements
in the multiplication table of Q. A groupoid may be k-translatable for one ordering but not for another.

Example 2.2. Consider the following groupoids:

⋅ 1 2 3 4
1 1 2 3 4
2 2 3 4 1
3 3 4 1 2
4 4 1 2 3

⋅ 1 3 4 2
1 1 3 4 2
3 3 1 2 4
4 4 2 3 1
2 2 4 1 3

⋅ 1 2 3 4
1 1 4 3 2
2 3 2 1 4
3 1 4 3 2
4 3 2 1 4
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The �rst table determines a 3-translatable semigroup isomorphic to the additive group Z4. The second table
says that after a change of ordering this semigroup is not translatable. The last table determines an idempotent
2-translatable groupoid which is not a semigroup.

On the other hand, a groupoid with the operation x ⋅ y = a, where a is �xed, is a k-translatable semigroup for
each k, but the semigroup (Q, ⋅) with the operation

x ⋅ y = {1 if x + y is even,
2 if x + y is odd

is k-translatable for each odd k < n, if n is even, and k-translatable for each even k, if n is odd. All these
groupoids are easily proved to be semigroups.

Lemma 2.3. For a �xed ordering a left cancellative groupoid may be k-translatable for only one value of k.

Proof. By renumeration of elements we can assume that a groupoid Q of order n has a natural ordering
1, 2, . . . , n. If the �rst row of the multiplication table of such groupoid has the form a1, a2, . . . , an, then all
ai are di�erent. The �rst element of the second row is equal to an−k+1 if a groupoid is k-translatable, or an−t+1
if it is t-translatable. So, 1 ⋅ (n − k + 1) = an−k+1 = 2 ⋅ 1 = an−t+1 = 1 ⋅ (n − t + 1), which, by left cancellativity,
implies n − k + 1 = n − t + 1, and consequently k = t.

Obviously, for another ordering it may be k-translatable for some other value of k, but in some cases the
change of ordering preserves k-translatability.

We start with the following simple observation.

Lemma 2.4. A k-translatable groupoid containing at least one left cancellable element is left cancellative.

Proof. Indeed, let i be the left cancellable element of a k-translatable groupoid Q. Then, i-th row of the
multiplication table of this groupoid contains di�erent elements. By k-translability other rows also contain
di�erent elements. So, for all j, s, t ∈ Q from j ⋅ s = j ⋅ t it follows that s = t. Hence, Q is left cancellative.

The proofs of the following two Lemmas are straightforward and are omitted.

Lemma 2.5. Let a1, a2, . . . , an be the �rst row of the multiplication table of a groupoid Q of order n. Then Q is
k-translatable if and only if for all i, j ∈ Q the following (equivalent) conditions are satis�ed:
(i) i ⋅ j = a[(i−1)(n−k)+j]n = a[k−ki+j]n ,
(ii) i ⋅ j = [i + 1]n ⋅ [j + k]n,
(iii) i ⋅ [j − k]n = [i + 1]n ⋅ j.

Proof. From the de�nition of a k-translatable groupoid it is clear that a groupoid is k-translatable if and only
if i ⋅ j = [i + 1]n ⋅ [j + k]n, which implies i ⋅ [j − k]n = [i + 1]n ⋅ j.

Assuming that i ⋅ [j − k]n = [i + 1]n ⋅ j, we prove by induction on i that i ⋅ j = a[k−ki+j]n . First note that
since the �rst row of the Cayley table is a1, a2, . . . , an, it follows by the de�nition of k-translatable that, in
every other row, ai is always followed by a[i+1]n and preceded by a[i−1]n . For i = 1, i ⋅ j = 1 ⋅ j = aj = a[k−k1+j]n .
Assume that i ⋅ j = a[k−ki+j]n . Then, [i + 1]n ⋅ j = i ⋅ [j − k]n = a[i−ki+j−k]n = a[k−k(i+1)+j]n . Hence, by induction,
i ⋅ j = a[k−ki+j]n . Assuming i ⋅ j = a[k−ki+j]n , clearly [i + 1]n ⋅ [j + k]n = a[k−k(i=1)+j+k]n = a[k−ki+j]n = i ⋅ j.

Recall that a groupoid Q is called
● alterable if i ⋅ j = w ⋅ z implies j ⋅ w = z ⋅ i,
● bookend if and only if (j ⋅ i) ⋅ (i ⋅ j) = i,
● paramedial if and only if (i ⋅ j) ⋅ (w ⋅ z) = (z ⋅ j) ⋅ (w ⋅ i),
● strongly elastic if and only if i ⋅ (j ⋅ i) = (i ⋅ j) ⋅ i = (j ⋅ i) ⋅ j,
● left modular if and only if (i ⋅ j) ⋅ z = (z ⋅ j) ⋅ i,
● right modular if and only if i ⋅ (j ⋅ z) = z ⋅ (j ⋅ i)

for all i, j,w, z ∈ Q.
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Lemma 2.6. For a k-translatable left cancellative groupoid Q of order n the following statements are valid:
(i) ai = aj if and only if i = j,
(ii) Q is idempotent if and only if i = a[k−ki+i]n for all i ∈ Q,
(iii) if Q is idempotent then i ⋅ j = t if and only if [j − ki]n = [t − kt]n for all i, j, t ∈ Q,
(iv) Q is elastic if and only if [i + ki]n = [(j ⋅ i) + k(i ⋅ j)]n for all i, j ∈ Q,
(v) Q is strongly elastic if and only if [i+ ki]n = [(j ⋅ i)+ k(i ⋅ j)]n and [i+ kj]n = [(i ⋅ j)+ k(i ⋅ j)]n for all i, j ∈ Q,
(vi) Q is bookend if and only if i = a[k−k(j⋅i)+(i⋅j)]n for all i, j ∈ Q,
(vii) Q is left distributive if and only if [(i ⋅ j) + k(s ⋅ i)]n = [(s ⋅ j) + ks]n for all i, j, s ∈ Q,
(viii) Q is right distributive if and only if [s + k(i ⋅ s)]n = [(j ⋅ s) + k(i ⋅ j)]n for all i, j, s ∈ Q,
(ix) Q is medial if and only if [(w ⋅ z) + k(i ⋅ w)]n = [(j ⋅ z) + k(i ⋅ j)]n for all i, j,w, z ∈ Q,
(x) Q is alterable if and only if [j + kw]n = [z + ki]n implies that [w + kz]n = [i + kj]n for all i, j,w, z ∈ Q,
(xi) Q is commutative if and only if k = n − 1,
(xii) Q is associative if and only if [i + kj]n = [(s ⋅ i) + k(j ⋅ s)]n for all i, j, s ∈ Q.

Proof. (i)−(xii) follow from Lemma 2.5, the fact that left cancellation implies that ax = ay if and only if x = y
and the de�nitions of idempotent, elastic, strongly elastic, bookend, etc. For example, in (x), Q is alterable
if and only if i ⋅ j = w ⋅ z implies j ⋅w = z ⋅ i. Using Lemma 2.5(i), this is valid if and only if a[k−ki+j]n = a[k−kw+z]n
implies a[k−kj+w]n = a[k−kz+i]n . Left cancellation then implies the required result.

Lemma 2.7. The sequence a1, a2, . . . , an is a k-translatable sequence of Q with respect to the ordering
1, 2, . . . , n if and only if ak , ak+1, . . . , an , a1, . . . , ak−1 is a k-translatable sequence with respect to the ordering
n, 1, 2, . . . , n − 1.

Proof. (⇒): The new ordering can be written as 1′, . . . , n′, where i′ = [i−1]n. Then, since Q is k-translatable
with respect to the ordering 1, 2, . . . , n, by Lemma 2.5(ii), [i′ + 1]n ⋅ [j′ + k]n = i ⋅ [j − 1 + k]n = [i −
1]n ⋅ [j − 1]n = i′ ⋅ j′. Hence, Q is k-translatable with respect to the ordering n, 1, 2, . . . , n − 1, with k-
translatable sequence n ⋅n, n ⋅1, n ⋅2, . . . , n ⋅ (n−1). That is, using Lemma 2.5(i), the k-translatable sequence
is ak , ak+1, . . . , an , a1, a2, . . . , ak−1.

(⇐): The order n, 1, 2, . . . , n−1 can bewritten as 1′, 2′, . . . , n′, where i′ = [i−1]n for all i ∈ {1, 2, . . . , n}.
The order 1, 2, . . . , n can be written as i = [i′ + 1]n. Then, by Lemma 2.5(ii), we have [i + 1]n ⋅ [j + k]n =
[i + 2]′n ⋅ [j + k + 1]′n = [i + 1]′n ⋅ [j + 1]′n = i ⋅ j and so 1 ⋅ 1, 1 ⋅ 2, . . . , 1 ⋅ n is a k-translatable sequence with
respect to the order 1, 2, . . . , n. But ak , ak+1, . . . , an , a1, . . . , ak−1 is the k-translatable sequencewith respect
to the order 1′, 2′, . . . , n′. Let’s call this sequence b1, b2, . . . , bn. Note, then, that bi = a[i−1+k]n . So we have
1 ⋅ j = [i + 1]′n ⋅ [j + 1]′n = 2′ ⋅ [j + 1]′n = 1′ ⋅ [j + 1 − k]′n = b[j+1−k]n = aj. This implies that the sequence
a1, a2, . . . , an is a k-translatable sequence with respect to the order 1, 2, . . . , n.

Corollary 2.8. A k-translatable groupoid of order n has at least n k-translatable sequences, each with respect
to a di�erent order.

A groupoid Q is called right solvable (left solvable) if for any {a, b} ⊆ Q there exists a unique x ∈ G such that
ax = b (xa = b). It is a quasigroup if it is left and right solvable.

Proposition 2.9. An alterable, right solvable and right distributive groupoid is an idempotent quasigroup.

Proof. A right solvable groupoid Q is left cancellative. Right distributivity and left cancellativity give idem-
potency.

Then the right solvability means that for all z,w ∈ Q there are uniquely determined elements q, q′ ∈ Q
such that z ⋅ q = w and w ⋅ q′ = z ⋅ w. Then, using alterability, w = w ⋅ w = q′ ⋅ z. The element q′ is uniquely
determined. Indeed, if w = q′ ⋅ z = q′′ ⋅ z, then, by alterability, z ⋅ q′′ = z ⋅ q′. This implies q′ = q′′. Hence Q is
also left solvable and, hence, it is a quasigroup.
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Lemma 2.10. For �xed k ≠ 1 and n there is an idempotent k-translatable groupoid of order n. It is left
cancellative.

Proof. First observe that an idempotent groupoid cannot be k-translatable for k = 1. Let k > 1. Then,
by Lemma 2.5, in an idempotent k-translatable groupoid Q, for all i ∈ Q we have i = a[k−ki+i]n . Since
Q is idempotent, the �rst row of the multiplication table of this groupoid contains the distinct elements
a1, a[2−k]n , a[3−2k]n , . . . , a[n+k(1−n)]n , with i appearing in the [k − ki + i]n-column. So, by Lemma 2.4, this
groupoid is left cancellative. By k-translatability, other rows are uniquely determined by the �rst.

An idempotent k-translatable groupoid may not be right cancellative. It is not di�cult to see that if the �rst
row of the multiplication table of the 4-translatable groupoid Q of order 8 has form 1, 6, 3, 8, 5, 2, 7, 4, then
this groupoid is idempotent and left cancellative but it is not right cancellative.

For every odd n and every k > 1 such that (k, n) = 1 there is at least one idempotent k-translatable
quasigroup. For even n there are no such quasigroups [4, Theorem 8.9].

Lemma 2.11. An idempotent k-translatable groupoid that is alterable, strongly elastic or bookend is cancella-
tive, i.e., it is a quasigroup.

Proof. By Lemma 2.10 such groupoid is left cancellative. Let i ⋅ j = s ⋅ j. Then obviously s = [i + t]n for some
t ∈ {1, 2, . . . , n}. Since a[k−ki+j]n = i ⋅ j = s ⋅ j = a[k−ks+j]n , [k − ki + j]n = [k − ks + j]n = [k − ki − kt + j]n and so
[kt]n = 0. But then, since Q is idempotent, t ⋅ t = t = a[k−kt+t]n = a[k+t]n = 1 ⋅ [k + t]n = n ⋅ t. If Q is alterable, by
de�nition, i ⋅ j = w ⋅ z implies j ⋅ w = z ⋅ i. Therefore, t ⋅ n = t ⋅ t = t. If Q is strongly elastic then, by de�nition,
(i ⋅ j)⋅ i = (j ⋅ i)⋅ j. Therefore t = n ⋅ t = t ⋅ t = t ⋅(n ⋅ t) = (n ⋅ t)⋅n = t ⋅n. In either case, left cancellation implies t = n.
IfQ is bookend then, by de�nition, (i ⋅ j)⋅(j ⋅ i) = j. So, t = t ⋅t = n ⋅t = (n ⋅t)⋅(t ⋅n) = t ⋅(t ⋅n) and left cancellation
implies t = n. Hence, if Q is alterable, strongly elastic or bookend, t = n and so s = [i + t]n = [i + n]n = i.
Therefore, Q is also right cancellative, and consequently, it is a quasigroup.

Theorem 2.12. Idempotent k-translatable groupoids of the same order are isomorphic.

Proof. Suppose that (Q, ⋅) and (S, ∗) are idempotent k-translatable groupoids of order n. Then Q =
{1, 2, . . . , n} has a k-translatable sequence a1, a2, . . . , an with respect to the ordering 1, 2, . . . , n, and
S = {c1, c2, . . . , cn} has a k-translatable sequence b1, b2, . . . , bn with respect to the ordering c1, c2, . . . , cn.
Then, by Lemma 2.5 (i), we have i ⋅ j = a[k−ki+j]n and ci ∗ cj = b[k−ki+j]n . Since both groupoids are idempotent,
i = a[k−ki+i]n and ci = b[k−ki+i]n for all elements of Q and S.

De�ne a mapping ϕ∶Q Ð→ S as follows: ϕ(i) = ci (for all i ∈ Q). Then ϕ is clearly a bijection. For i, j ∈ Q,
we have t = i ⋅ j = a[k−ki+j]n = a[k−kt+t]n , and since Q is left cancellative (Lemma 2.10), by Lemma 2.6, we obtain
[k − ki + j]n = [k − kt + t]n. Thus ϕ(i ⋅ j) = ci⋅j = ct = b[k−kt+t]n = b[k−ki+j]n = ci ∗ cj = ϕ(i) ∗ϕ(j) and so ϕ is an
isomorphism.

Proposition 2.13. An idempotent, k-translatable groupoid Q of order n is right distributive if and only if it is
left distributive.

Proof. Let i ⋅ j = t, i ⋅ s = u, j ⋅ s = w. The right distributivity means that t ⋅ s = u ⋅ w. Then, by Lemmas 2.10
and 2.6, [s + ku]n = [w + kt]n, [t + ki]n = [j + kt]n, [u + ki]n = [s + ku]n and [s + kw]n = [w + kj]n. So,
[s + ku]n = [w + kt]n = [u + ki]n, and consequently, [−ki +w]n = [−kt + u]n. Thus i ⋅w = t ⋅ u. Hence, Q is left
distributive.

The converse statement can be proved analogously.

Theorem 2.14. An idempotent k-translatable groupoid of order n with (k, n) = 1 is a quasigroup.

Proof. By Lemma 2.10 such groupoid is left cancellative. To prove that it is right cancellative consider
an arbitrary column of its multiplication table. Suppose that it is j-th column. This column has the form
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aj , a[j−k]n , a[j−2k]n , . . . , a[j−(n−1)k]n . All these elements are di�erent. In fact, if a[j−sk]n = a[j−tk]n for some
s, t ∈ Q, then (s − t)k ≡ 0(mod n), which is possible only for s = t because (k, n) = 1. So, in this groupoid
s ⋅ j = t ⋅ j implies s = t for all j, s, t ∈ Q. Hence Q is a quasigroup.

Lemma 2.15. If a k-translatable groupoid of order n has a right cancellable element, then (k, n) = 1.

Proof. Let t ∈ Q be a right cancellable element of a k-translatable groupoid Q. Then the mapping Rt(x) = x ⋅ t
is one-to-one. So, it is a bijection. Hence all elements of the t-column are di�erent. Thus a[k−ki+t]n = i ⋅ t =
j ⋅ t = a[k−kj+t]n is equivalent to k(i − j) ≡ 0(mod n). The last, for all i, j ∈ Q, gives i = j only in the case when
(k, n) = 1.

Proposition 2.16. An idempotent, k-translatable groupoid Q of order n is elastic if and only if [(i ⋅ j)+(j ⋅ i)]n =
[i + j]n holds for all i, j ∈ Q.

Proof. Since Q is idempotent, for all i, j ∈ Q we have i ⋅ j = (i ⋅ j) ⋅ (i ⋅ j), i.e.,

[−k(i ⋅ j) + (i ⋅ j)]n = [−ki + j]n , (1)

which together with elasticity and Lemma 2.6(iv), gives [j + k(i ⋅ j) − (i ⋅ j)]n = [ki]n = [(j ⋅ i) + k(i ⋅ j)) − i]n.
This implies [(i ⋅ j) + (j ⋅ i)]n = [i + j]n.

Conversely, if [(i ⋅ j) + (j ⋅ i)]n = [i + j]n, then also [k(i ⋅ j) + k(j ⋅ i)]n = [ki + kj]n, and consequently

[i + ki]n = [i + k(i ⋅ j) + k(j ⋅ i) − kj]n = [(k(j ⋅ i) − kj + i) + k(i ⋅ j)]n
(1)= [(j ⋅ i) + k(i ⋅ j)]n .

This gives the elasticity of Q.

Theorem 2.17. An alterable, left or right cancellative groupoid of order n may be k-translatable only for [k2]n =
n − 1.

Proof. Since in alterable groupoids left and right cancellativity are equivalent, we will consider only an
alterable groupoid with left cancellativity.

Let Q be an alterable groupoid which is left cancellative and k-translatable. Then, by Lemma 2.5(iii), for
all i, s ∈ {1, 2, . . . , n} we have

[i + 1]n ⋅ s = i ⋅ [n + s − k]n = i ⋅ [s − k]n (2)

for all i, s ∈ {1, 2, . . . , n}.
Thus,

(n − 1) ⋅ n = (n − 1) ⋅ [n + k − k]n (2)= n ⋅ [n + k]n = n ⋅ k,

which, by alterability, gives

n ⋅ n = k ⋅ (n − 1). (3)

But n ⋅ n = n ⋅ [n + k − k]n (2)= [n + 1]n ⋅ [n + k]n = [n + 1]n ⋅ k, so

[n + 1]n ⋅ k = k ⋅ (n − 1),

which, by alterability, implies k ⋅ k = [n − 1]n ⋅ [n + 1]n. Hence

k ⋅ k = (n − 1) ⋅ [n + 1]n (2)= n ⋅ [n + 1 + k]n = n ⋅ (k + 1) (2)= k ⋅ [k + 1 + k2]n .

Since Q is left cancellable, we obtain 0 = [1 + k2]n. Therefore k2 ≡ (−1)(mod n).

Corollary 2.18. A k-translatable and left cancellative groupoid of order n is alterable if and only if [k2]n = n−1.
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Proof. Let a left cancellative groupoid Q of order n be k-translatable. Assume that the �rst row of the
multiplication table of this groupoid has the form a1, a2, . . . , an. Then all these elements are di�erent.

If k2 ≡ −1(mod n), then i ⋅ j = g ⋅ h, by Lemma 2.5(i), implies [k(g − i)]n = [h − j]n. Multiplying both
sides of this equation by k gives [k2(g − i)]n = [k(h − j)]n, i.e., [i − g]n = [k(h − j)]n. This implies j ⋅ g = h ⋅ i.
Therefore Q is alterable.

The converse statement is a consequence of Theorem 2.17.

3 Left unitary translatable groupoids
By a (left) unitary groupoid of order n wemean a groupoid (Q, ⋅), where the set Q = {1, 2, . . . , n} is naturally
ordered and 1 is its (left) neutral element.

The �rst row of amultiplication table of such groupoid has the form 1, 2, . . . , n. So, if it is k-translatable,
then, by Lemma 2.5, i ⋅ j = [k − ki + j]n for all i, j ∈ Q. Moreover, by Lemma 2.4, a k-translatable left unitary
groupoid is left cancellative. If n is prime, then it is also right cancellative.

Theorem 3.1. Left unitary k-translatable groupoids of the same order are isomorphic.

Proof. Suppose that (Q, ⋅) and (G, ∗) are left unitary, k-translatable groupoids having k-translatable se-
quences1, 2, . . . , n and1′, 2′, . . . , n′,with respect to theorderings1, 2, . . . , n and1′, 2′, . . . , n′, respectively.
Then i ⋅ j = [k − ki + j]n and i′ ∗ j′ = [k − ki + j]′n. De�ne ϕ∶Q Ð→ G as ϕ(i) = i′. Then ϕ is clearly a bijection
and ϕ(i ⋅ j) = ϕ([k − ki + j]n) = [k − ki + j]′n = i′ ∗ j′ = ϕ(i) ∗ ϕ(j), so ϕ is an isomorphism.

Theorem 3.2. A k-translatable left unitary groupoid is medial, but it is not right distributive.

Proof. In a k-translatable left unitary groupoid Q of order n we have (x ⋅ y) ⋅ (z ⋅ w) = (x ⋅ z) ⋅ (y ⋅ w) ⇔
[k − k(kx + y) + (k − kz + w)]n = [k − k(k − kx + z) + (k − ky + w)]n ⇔ [k(k − kx)]n = [k(k − kx)]n. The last
identity is always valid. So, this groupoid is medial.

If it is right distributive, then (x⋅y)⋅z = (x⋅z)⋅(y⋅z) for all x, y, z ∈ Q, or, equivalently, [k−k(k−kx+y)+z]n =
[k− k(k− kx+ z)+(k− ky+ z)]n. This implies [k(z−1)]n = 0 for all z ∈ Q. Thus k = 0, a contradiction. Hence,
Q cannot be right distributive.

Lemma 3.3. A unitary groupoid of order n may be k-translatable only for k = n − 1.

Proof. Indeed, i = i ⋅ 1 = [k − ki + 1]n for every i ∈ Q, which for i = 2 gives 2 = [1 − k]n. This is possible only
for k = n − 1.

Corollary 3.4. Groups of order n may be k-translatable only for k = n − 1. Such groups are cyclic.

Obviously, such groups are (n − 1)-translatable with respect to the ordering 1, 2, . . . , n or n, 1, 2, . . . , n − 1
(Lemma 2.7). Example 2.2 shows that in another order they may not be translatable.

Theorem 3.5. If a k-translatable groupoid Q of order n is left unitary then Q is
(a) bookend if and only if [k2]n = [2k]n = n − 1,
(b) elastic if and only if [k2 + k]n = 0,
(c) left distributive if and only if [k2]n = 0,
(d) left modular if and only if k = n − 1,
(e) right modular if and only if [k2]n = 1,
(f) paramedial if and only if [k2]n = 1.

Proof. (a): Indeed, i = (j ⋅ i)⋅(i ⋅ j) ⇔ i = [k−k[k−kj+ i]n+[k−ki+ j]n]n ⇔ [2k−k2+(k2+1)j−(2k+1)i]n =
0⇔ [k2 + 1]n = [2k + 1]n = 0.
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(b): i⋅(j⋅i) = (i⋅j)⋅i⇔ [k−ki+(k−kj+i)]n = [k−k(k−ki+j)+i]n ⇔ [(k2+k)i]n = [k2+k]n ⇔ [k2+k]n = 0.
In other cases the proof is similar.

Corollary 3.6. Let Q be a left unitary k-translatable groupoid. Then
(a) Q is right modular if and only if it is paramedial,
(b) if Q left modular, then it is right modular, elastic and paramedial,
(c) Q is not strongly elastic.

Theorem 3.7. A k-translatable groupoid Q of order n is embeddable in a k-translatable groupoid B of order
(t + 1)n (t ∈ {1, 2, 3, . . .}) such that
(a) if Q is left cancellative then B is left cancellative, and
(b) if Q is left unitary then B is left unitary.

Proof. Let Q = {1, 2, . . . , n} have the k-translatable sequence a1, . . . , an. De�ne B as follows: B = {bij ∶ 1 ≤
i ≤ n, 1 ≤ j ≤ t + 1}, where bi1 = i for all i = 1, 2, . . . , n and B has (t + 1)n distinct elements. Consider B with
the following ordering: 1′, 2′, . . . , ((t + 1)n)′, where bij = ((i − 1)(t + 1) + j)′.

Let the �rst row c1, c2, . . . , c(t+1)n of the multiplication table of B have the form

a1, b12, ..., b1(t+1), a2, b22, ..., b2(t+1), a3, b32, ..., b3(t+1), ..., an , bn2, ..., bn(t+1).

Then bij = c(i−1)(t+1)+j for all j ≠ 1 and ai = c(i−1)(t+1)+1.
The second row is obtained from the �rst by taking the last k entries and placing them as the �rst k

entries of the second row and taking the �rst ((t + 1)n − k) entries of the �rst row and placing them as the
last ((t + 1)n − k) entries of the second. In the same way we construct the (i + 1)-th row from the i-th (for
all i = 2, 3, . . . , (t + 1)n − 1). Clearly, such de�ned groupoid B is k-translatable. Also, if Q is left cancellative
then B is left cancellative and if Q is left unitary then B is left unitary.

So, we only need to prove that the product ⋅ in Q is preserved in the new product, call it ∗, in B. In proving
this, we do so using the facts that Q and B are k-translatable.

Since
i = bi1 = ((i − 1)(t + 1) + 1)′ = (it + i − t)′

for all i ∈ Q, for any i, j ∈ Q, by Lemma 2.5, we have

i ∗ j = (it + i − t)′ ∗ (jt + j − t)′ = cx ,

where x = [k−k(it+ i− t)+ jt+ j− t](t+1)n = [k(t+1)−ki(t+1)+ j(t+1)− t](t+1)n = ([k−ki+ j]n−1)(t+1)+1.
But, on the other hand, using the fact that ai = c(i−1)(t+1)+1,

i ⋅ j = a[k−ki+j]n = c([k−ki+j]n−1)(t+1)+1 = cx ,

Therefore, i ⋅ j = i ∗ j for all i, j ∈ Q.

4 Dual groupoids
The dual groupoid of a groupoid (Q, ⋅) is de�ned as a groupoid (Q, ∗)with the operation i∗ j = j ⋅ i. We asume
(Q, ⋅) and (Q, ∗) both have the natural ordering 1, 2, . . . , n.

Theorem 4.1. If a left cancellative groupoid Q of order n is k-translatable, then its dual groupoid (Q, ∗) is
k∗-translatable if and only if [kk∗]n = 1.

Proof. (⇒): Suppose that (Q, ⋅), where Q = {1, 2, . . . , n}, is k-translatable and the �rst row of its multipli-
cation table has the form a1, a2, . . . , an. If its dual groupoid (Q, ∗) is k∗-translatable, then 1 ∗ [1 − k∗]n =
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[1 − k∗]n ⋅ 1 = a[k−k(1−k∗)+1]n = a[kk∗+1]n . But on the other hand, 1 ∗ [1 − k∗]n = 2 ∗ 1 = 1 ⋅ 2 = a2. So,
a[kk∗+1]n = a2. Left cancellability implies [kk∗ + 1]n = 2, which gives [kk∗]n = 1.

(⇐): Suppose that [kk∗]n = 1. Then [i+1]n ∗[j+k∗]n = a[k−k(j+k∗)+(i+1)]n = a[k−kj−kk∗+i+1]n = a[k−kj+i]n =
i ∗ j. Hence, (Q, ∗) is k∗-translatable with respect to the ordering 1, 2, . . . , n.

Corollary 4.2. A left cancellative, k-translatable groupoid (Q, ⋅) of order n and its dual groupoid (Q, ∗) are
k-translatable, for the same value of k, if and only if [k2]n = 1.

Corollary 4.3. A left unitary, k-translatable groupoid (Q, ⋅) of order n and its dual groupoid (Q, ∗) are k-
translatable, for the same value of k, if and only if (Q, ⋅) is paramedial.

Corollary 4.4. A dual groupoid of a left cancellative, k-translatable groupoid (Q, ⋅) of order n is [n − tk]n-
translatable if and only if [tk2]n = n − 1.

Corollary 4.5. A left cancellative k-translatable groupoid of order n is alterable if and only if its dual groupoid
is (n − k)-translatable.

Proof. (⇒): Since, by Corollary 2.18, [k2]n = n−1we have [k(n− k)]n = [−k2]n = 1. By Theorem 4.1, the dual
of Q is (n − k)-translatable.

(⇐): Since Q is k-translatable then, by Theorem 4.1, [k(n− k)]n = [−k2]n = 1 . This implies [k2]n = n−1,
which, by Corollary 2.18, shows that Q is alterable.

5 Translatable semigroups
Observe �rst that in a k-translatable groupoid Q of order n with a k-translatable sequence a1, a2, . . . , an we
have

(x ⋅ y) ⋅ z = x ⋅ (y ⋅ z) ⇐⇒ a[k−ka[k−kx+y]n+z]n = a[k−kx+a[k−ky+z]n ]n . (4)

If Q is left cancellative, then the right side of (4) is equivalent to

[z − ka[k−kx+y]n]n = [a[k−ky+z]n − kx]n . (5)

Thus, a left cancellative, k-translatable groupoid Q of order n is a semigroup if and only if it satis�es (5).

Theorem 5.1. A left cancellative, k-translatable groupoid Q of order n with a k-translatable sequence
a1, a2, . . . , an is a semigroup if and only if [k2 + k]n = 0 and ai = [i − k − kak]n for all i = 1, 2, . . . , n.

Proof. (⇒): Setting x = y = n and z = [i−k]n in (5) we obtain ai = [i−k−kak]n. Consequently, ak = [−kak]n =
[a1 + k − 1]n, which implies [1 − k − a1]n = [kak]n = [ka1 + k2 − k]n. Hence [1 − k2]n = [a1(k + 1)]n. Since,
setting x = y = z = 1 in (5) we obtain [a1(k + 1)]n = [k + 1]n, the last equation gives [1 − k2]n = [k + 1]n.
Hence, [k2 + k]n = 0.

(⇐): From ai = [i − k − kak]n we conclude ak = [−kak]n. Thus, [−kak]n = [k2ak]n. Now using the above
and [k2 + k]n = 0 we obtain

[z − ka[k−kx+y]n]n = [z − k(y − kx − kak)]n = [z − ky + k2x + k2ak]n
= [z − ky − kx − kak]n = [a[k−ky+z]n − kx]n ,

which proves (5). Hence Q is a semigroup.

Corollary 5.2. A k-translatable semigroup is left cancellative if an only if it has a left neutral element.
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Proof. If Q is a left cancellative and k-translatable semigroup, then by previous theorem ai = [i − k − kak]n
and [−kak]n = ak. So, a[−2ak−1]n = [−k − 1 − ak]n and a[−2ak−1]n ⋅ aj = at, where

t = [k − ka[−2ak−1]n + aj]n = [k − k(−k − 1 − ak) + (j − k − kak)]n = j.

Thus, a[−2ak−1]n is a left neutral element.
The converse statement is obvious.

Corollary 5.3. A left unitary, k-translatable groupoid Q of order n is a semigroup if and only if [k + k2]n = 0.

Corollary 5.4. A left unitary, k-translatable groupoid Q of order n = k+k2 is a semigroupwith themultiplication
given by the formula

(i + sk) ⋅ (j + tk) = [j + (s + t − i + 1)k]n (6)

where i, j ∈ {1, 2, . . . , k} and s, t ∈ {0, 1, 2, . . . , k}.

Proof. Observe �rst that all elements of Q can be written in the form i + sk, where i ∈ {1, 2, . . . , k} and
s ∈ {0, 1, 2, . . . , k}. Since Q is left unitary and k-translatable, x ⋅ y = [k − kx + y]n for all x, y ∈ Q. Therefore
(i + sk) ⋅ (j + tk) = [k − k(i + sk) + (j + tk)]n = [j + (s + t − i + 1)k]n. It is straightforward to verify that this
multiplication is associative.

Such de�ned semigroup is left cancellative and non-commutative. This semigroup is not a group. The
equation (x+yk)⋅(j+ tk) = (i+sk) always has k solutions. All these solutions have the form x+(k+1)m+yk,
m = 1, 2, . . . , k.

Corollary 5.5. A groupoid Q of order n = k + k2 with the multiplication de�ned by (6) is a left unitary, k-
translatable semigroup.

Proof. Indeed, this multiplication is associative and 1 is its left neutral element. Also, [(i+1)+ sk]n ⋅ [j+(t+
1)k]n = [j + (t + s − i + 1)k]n = [i + sk]n ⋅ [j + tk]n, so Q is k-translatable.

Theorem 5.6. By re-ordering, any left cancellative k-translatable semigroup can be transformed into a left
unitary k-translatable semigroup.

Proof. Let Q be a left cancellative k-translatable semigroup and let a1, a2, . . . , an be its k-translatable
sequence with respect to the ordering 1, 2, . . . , n. Consider a new ordering b1, b2, . . . , bn of Q, where bs =
[−ak − k + s − 2]n, s = 1, 2, . . . , n.

Using Theorem 5.1, it is not di�cult to see that bi ⋅ bj = b[j−ki+k]n . Thus b1 is a left neutral element of Q
and, by Lemma 2.5 (i), Q is k-translatable with respect to the ordering b1, b2, . . . , bn.

Thus by re-ordering and re-numeration of elements we can assume that each left cancellative k-translatable
semigroup is left unitary with 1 as its left neutral element.

As a consequence of Theorem 5.6 and Theorem 3.1 we have:

Corollary 5.7. Left cancellative k-translatable semigroups of the same order are isomorphic.

Corollary 5.8. A left cancellative groupoid Q of order n with an (n − 1)-translatable sequence of the form
a[i+1]n = [ai + 1]n is a cyclic group.

Proof. An (n − 1)-translatable groupoid is commutative. So, if it is left cancellative, then it also is right
cancellative. Hence it is a quasigroup. Moreover, k = n − 1 and a[i+1]n = [ai + 1]n imply [k + k2]n = 0 and
ai = [i − k − kak]n for all i = 1, 2, . . . , n. By Theorem 5.1 then, Q is a semigroup. Hence Q is a commutative
group. By Corollary 3.4 it is cyclic.
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Corollary 5.9. A left cancellative (n−1)-translatable semigroup of order n is isomorphic to the additive group
Zn.

Proof. By Theorem 5.1, ai = [i + 1 + ak]n. Therefore, a[i+1]n = [(i + 1) + 1 + ak]n = [ai + 1]n. The result then
follows from Corollary 5.8.

Proposition 5.10. There are no idempotent k-translatable semigroups of order n.

Proof. An idempotent k-translatable semigroup of order n is left cancellative. Thus, by Lemma 2.6 and
Theorem 5.1, in such semigroup for all i ∈ Q should be i = a[k−ki+i]n = [i − ki − kak]n, i.e., [k(i + ak)]n = 0,
which is impossible.

Denote by E(Q) the set of all idempotents of a semigroup Q.

Lemma 5.11. If Q is a left cancellative, k-translatable semigroup of order n, then
(1) E(Q) = {i ∈ Q ∶ [k(i + ak)]n = 0},
(2) E(Q) is a subsemigroup of Q,
(3) E(Q) equals the set of all left neutral elements of Q,
(4) E(Q) is a right-zero semigroup.

Proof. (1): By Lemma 2.6 and Theorem 5.1, we have

i = i ⋅ i⇔ i = a[k−ki+i]n = [i − ki − kak]n ⇔ [k(i + ak)]n = 0.

(2): If i, j ∈ E(Q), then (i ⋅ j) ⋅ (i ⋅ j) = [j− ki− kak]n ⋅ [j− ki− kak]n = [j− ki− kak − k(i+ak)− k(j+ak)]n =
[j − ki − kak]n = i ⋅ j. So, i ⋅ j ∈ E(Q).

(3): For every i ∈ E(Q) and j ∈ Q we have i ⋅ j = [j − ki − kak]n = j.
(4): This follows from (3).

Corollary 5.12. If 1 is a left neutral element of a left cancellative, k-translatable semigroup Q of order n, then
E(Q) = {j = [i + k(i − 1)]n ∶ i ∈ Q}.

Corollary 5.13. Right cancellative semigroups of order n may be k-translatable only for k = n − 1. Such
semigroups are isomorphic to the additive groups Zn.

Proof. Let Q be a right cancellative k-translatable semigroup of order n. Then the right cancellativity implies
that each column of the multiplication table of Q consists of n distinct elements. Since Q is k-translatable,
the �rst row of its multiplication table has n distinct elements, i.e., Q has a left cancellable element. Thus, by
Lemma 2.4, it is left cancellative. So, Q is an associative quasigroup. Hence Q is a group. Corollary 3.4 ends
the proof.

Corollary 5.14. A left cancellative, k-translatable semigroup of order n with k-translatable sequence
a1, a2, . . . , an in which ak = 1 or ak = n − 1 is isomorphic to the group Zn

Proof. If ak = 1 then by Theorem 5.1, ak = 1 = [−kak]n = [−k]n. Hence k = n − 1. If ak = −1 then by Theorem
5.1 again, ak = n − 1 = [−kak]n = k. So, in both these cases the results follows from Corollary 5.9.

Theorem 5.15. A left cancellative, k-translatable semigroup of order n is a union of t disjoint copies of cyclic
groups of order m, where m and t are the smallest positive integers such that [mk]n = 0 and [tm]n = 0.

Proof. For every i ∈ E(Q) consider the set Qi = Q ⋅ i = {x ⋅ i ∶ x ∈ Q}. Then, by associativity and Lemma 5.11,
(x ⋅ i)⋅(y ⋅ i) = x ⋅(y ⋅ i) = x ⋅[i−ky−kak]n = [i−ky−kx−2kak]n = y ⋅(x ⋅ i) = (y ⋅ i)⋅(x ⋅ i). So, Qi is a commutative
semigroup contained in Q and i = i ⋅ i is its neutral element. Since (x ⋅ i) ⋅ (y ⋅ i) = i for y = [−x − 2ak]n, this
semigroup is a commutative group.Moreover, for every i ∈ E(Q), themappingϕ(x ⋅ i) = x ⋅1 is an isomorphism
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between Qi and Q1. So, all groups Qi are isomorphic to Q1. Since Q is k-translatable, the group Q1 contains
elements of the form (t + 1) ⋅ 1 = [1 − kt]n, t = 0, 1, . . . ,m − 1, where m is the smallest positive integer such
that [mk]n = 0. It is not di�cult to see that this group is generated by the element 2 ⋅ 1 = [1 − k]n.

Groups Qi are pairwise disjoint. If not, then for z ∈ Qi ∩ Qj we have z = x ⋅ i = y ⋅ j for some x, y ∈ Q.
Whence, multiplying by i and j, and applying Lemma 5.11, we obtain z ⋅ i = x ⋅ i = y ⋅ i and z ⋅ j = x ⋅ j = y ⋅ j.
Thus x ⋅ i = y ⋅ j = x ⋅ j, which by left cancellativity gives i = j. Hence Qi = Qj.

Obviously ⋃Qi ⊆ Q, i ∈ E(Q). To prove the converse inclusion observe that, according to Theorem 5.6,
in Q we can introduce a new ordering such that some element of E(Q) can be identi�ed with 1. Then, by
Corollary 5.12, [q+ kq− k]n ∈ E(Q) for each q ∈ Q. Thus, q ⋅ i = q for i = [q+ kq− k]n. Hence Q ⊆ ⋃Qi. So, Q is
a union of t copies of Q1, where t is the number of idempotents of Q. Since (1+wm) ⋅ j = k− k(1+wm)+ j = j,
the set L = {1+wm ∶ w = 1, 2, . . .} consists of left identities. Since t is the smallest positive integer such that
[tm]n = 0, L = {1 + wm ∶ w = 0, 1, . . . , t − 1}. By Lemma 5.11, L = E(Q).

Note that Qi ⋅ Qj ⊆ Qj for i, j ∈ E(Q).

Corollary 5.16. A left cancellative, k-translatable semigroup of order n is a union of t disjoint pairwise
isomorphic left ideals of order m, where m and t are the smallest positive integers such that [mk]n = 0 and
[tm]n = 0.

Corollary 5.17. A left cancellative, k-translatable semigroup of order n = k2 + k is a union of k disjoint copies
of cyclic groups isomorphic to Zk+1.

Example 5.18. A left unitary 2-translatable semigroup of order 6 has two idempotents 1 and 4 and is a union
of two cyclic groups isomorphic to the additiveZ3. On the other hand, a left unitary 3-translatable semigroup
of order 6 has three idempotents 1, 3 and 5 and is a union of three cyclic groups of order two.

Theorem 5.19. In left cancellative k-translatable semigroup every left and every right ideal is semiprime.

Proof. It is a consequence of our Theorem 5.15 and Theorem 4.3 from [5].

Left cancellative k-translatable semigroups belong to many important classes of semigroups. Below we
present a short survey of such classes. For de�nitions see for example [5]

Theorem 5.20. A left cancellative k-translatable semigroup of order n is
(1) medial,
(2) anticommutative (i.e., nowhere commutative), if (1 + k, n) = 1,
(3) conditionally commutative,
(4) left commutative,
(5) left and right regular,
(6) regular,
(7) intra-regular,
(8) orthodox,
(9) a Cli�ord right semigroup,

(10) a Cli�ord left semigroup, if (k, n) = 1.

Proof. (1): This is a consequence of Theorem 3.2.
(2): Indeed, i ⋅ j = j ⋅ i means that [j − ki − kak]n = [i − kj − kak]n, i.e., [(j − i)(1 + k)]n = 0, which for

(1 + k, n) = 1 gives i = j.
(3): It is easy to see that i ⋅ j = j ⋅ i implies i ⋅ x ⋅ j = j ⋅ x ⋅ i for all x ∈ Q.
(4): Since Q has a left neutral element, (1) implies i ⋅ j ⋅ x = j ⋅ i ⋅ x for all i, j, x ∈ Q.
(5): x ⋅ (j ⋅ j) = j and (j ⋅ j) ⋅ y = j for each j ∈ Q and x = [−j − 2kak]n, y = [j + 2kj + 2kak]n.
(6): i = i ⋅ x ⋅ i for every i ∈ Q and x = [−i − 2ak]n.
(7): i = x ⋅ i ⋅ i ⋅ y for every i ∈ Q and x = [−2i − 3ak]n, y = i.
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(8): It is a consequence of Lemma 5.11 and (6).
(9): Q ⋅ i ⊆ i ⋅ Q for every i ∈ Q, because j ⋅ i = i ⋅ s for s = [i + k(i − j)]n.
(10): Analogously, i ⋅ Q ⊆ Q ⋅ i for every i ∈ Q, because i ⋅ j = s ⋅ i for s = [t(i − j) + i]n, where [tk]n = 1.

Such t exists only for (k, n) = 1.

Theorem 5.21. A paramedial left cancellative k-translatable semigroup is a cyclic group.

Proof. Comparing Theorems 3.5 and 5.1 we can see that such semigroup is (n − 1)-translatable and a[i+1]n =
[(i + 1) + 1 + ak]n = [ai + 1]n. Corollary 5.8 completes the proof.

Below we present several results on k-translatable semigroups which are not left cancellative.

Theorem 5.22. If the �rst row of the multiplication table of a naturally ordered k-translatable groupoid Q =
{1, 2, . . . , n} has the form a1, a2, . . . , an, then Q is a semigroup with the multiplication i ⋅ j = aj if and only if
as = a[s+k]n = aas for any s ∈ Q.

Proof. (⇒): Indeed, (i ⋅ j) ⋅ s = as and i ⋅ (j ⋅ s) = aas imply as = aas for all s ∈ Q. From k-translability we obtain
as = a[s+k]n .

(⇐): First note that as = a[s+k]n implies a[s−k]n = a[s−k+k]n = as. Thus, for any, i, j, s ∈ Q we have

a[k−ka[k−ki+j]n+s]n = a[k+s]n = as = aas = aa[k−ki+s]n = a[k−ki+a[k−kj+s]n ]n ,

which, by (4), means that Q is a semigroup. The rest is a consequence of Lemma 2.5 (i).

Note by the way that in such de�ned semigroup the multiplication takes no more than d = (k, n) values. So,
in the case (k, n) = 1 it is a semigroup with multiplication having one constant value.

Theorem 5.22 together with Lemma 2.7 give the possibility to construct k-translatable semigroups which
are not left cancellative.

Example 5.23. Let Q = {1, 2, . . . , n} be naturally ordered set. Then
(1) the sequences (12, 12, 9, 10, 9, 12, 12, 12, 9, 10, 9, 12),

(1, 1, 1, 10, 11, 10, 1, 1, 1, 10, 11, 10) and (5, 8, 8, 8, 5, 6, 5, 8, 8, 8, 5, 6) de�ne three isomorphic 6-
translatable semigroups of order n = 12,

(2) the sequences (1, 3, 3, 1, 3, 3), (2, 2, 6, 2, 2, 6)and (1, 5, 1, 1, 5, 1) yield isomorphic3-translatable semi-
groups of order 6.

(3) the sequences (1, 5, 4, 4, 5, 1, 5, 4, 4, 5), (4, 3, 3, 4, 10, 4, 3, 3, 4, 10) and
(1, 2, 8, 2, 1, 1, 2, 8, 2, 1) de�ne isomorphic 5-translatable semigroups of order n = 10.

Corollary 5.24. A naturally ordered semigroup Q = {1, 2, . . . , n} with a k-translatable sequence
a1, a2, . . . , an in which
(1) a1 = a2 = n or
(2) a1 = 1 and aj = j + 1 for some j ≠ 1
has multiplication de�ned by the formula i ⋅ j = aj.

Proof. Let Q be a k-translatable semigroup. Then, by (4), for x = 1, y = j and z = s we have

a[k−kaj+s]n = aa[k−kj+s]n , (7)

which for j = 1 gives a[k−ka1+s]n = aas . From this, for a1 = n, we obtain a[s+k]n = aas , whence we get as =
aa[s−k]n . Thus,

as = aa[s−k]n = aa[k−k2+s]n
(7)= a[k−ka2+s]n = a[k+s]n

for a2 = n. So, for a1 = a2 = n the conditions of Theorem 5.22 are satis�ed. Hence i ⋅ j = aj for all i, j ∈ Q.
Now if a1 = 1 and aj = j + 1 for some j ≠ 1, then 1 ⋅ 1 = a1 = 1 and as = 1 ⋅ s = (1 ⋅ 1) ⋅ s = 1 ⋅ (1 ⋅ s) =

1 ⋅ as = aas . This together with (7) implies a[k−kj+s]n = aa[k−kj+s]n = a[k−kaj+s]n , which for s = [kaj − k + t]n gives
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a[k(aj−j)+s]n = at. But aj − j = 1 for some j ≠ 1, so a[k+t]n = at. This means that also in this case the condition
of Theorem 5.22 are satis�ed. Thus, also in this case i ⋅ j = aj for all i, j ∈ Q.

Corollary 5.25. A k-translatable groupoid Q = {1, 2, . . . , n} with an idempotent element j ∈ Q such that
j = j ⋅ [j − 1]n is a semigroup if and only if for all s ∈ Q
(i) j ⋅ [j − 1 + s − k]n = j ⋅ [j − 1 + s]n = j ⋅ [j − 1 + s + k]n and
(ii) j ⋅ [j − 1 + s]n = j ⋅ [(j − 1) + (j ⋅ [j − 1 + s]n)]n.

Proof. First we introduce on Q a new ordering b1, b2, . . . , bn starting with an idempotent j and such that
bs = [j − 1 + s]n for all s ∈ Q. Then, by repeated application of Lemma 2.7, we can see that a1, a2, . . . , an,
where as = j ⋅ bs, is a k-translatable sequence with respect to this new ordering.

(⇒): Since Q is a k-translatable semigroup, for any s ∈ Q we have

as = j ⋅ bs = (j ⋅ [j − 1]n) ⋅ bs = (b1 ⋅ bn) ⋅ bs = b1 ⋅ (bn ⋅ bs)
= j ⋅ ([j − 1]n ⋅ [j − 1 + s]n) = j ⋅ (j ⋅ [j − 1 + s + k]n)
= (j ⋅ j) ⋅ [j − 1 + s + k]n = j ⋅ [j − 1 + s + k]n
= j ⋅ bs+k = as+k .

From this, setting s = [t−k]n we obtain at = a[t−k]n , and so as = a[s+k]n = a[s−k]n . This proves (i) and, together
with (4), implies as = aas . The last is equivalent to (ii).

(⇐): (i) and (ii) imply as = a[s+k]n = a[s−k]n = aas for all s ∈ Q. Therefore for i, j, s ∈ Q we have
a[k−ka[k−ki+j]n+s]n = a[k−ki+a[k−kj+s]n ]n and Q is a semigroup.

For j = 1 from the above Corollary we obtain

Corollary 5.26. A naturally ordered, k-translatable groupoid Q = {1, 2, . . . , n} with an idempotent element 1
such that 1 = 1 ⋅ n is a semigroup if and only if for all s ∈ Q we have 1 ⋅ [s − k]n = 1 ⋅ s = 1 ⋅ [s + k]n = 1 ⋅ (1 ⋅ s).

6 Embeddings of left unitary translatable semigroups
Suppose that Q1, Q2, . . . , Qt are disjoint copies of the same left unitary k-translatable semigroup of order n.
Is there a product ∗ on Q = ⋃Qi such that (Q, ∗) is a left unitary translatable semigroup, with every (Qi , ∗i)
isomorphic to (Qi , ∗)?

We�nd twodi�erent conditionsunderwhich this is possible. In each case k = tq, for somepositive integer
q. If [k+k2]tn = 0 thenwe can �nd a product∗ onQ such that (Q, ∗) is a left unitary k-translatable semigroup,
with every (Qi , ∗i) isomorphic to (Qi , ∗). If n = k + k2 then we can construct a left unitary (k + (t − 1)n)-
translatable semigroup (Q, ∗), such that every (Qi , ∗i) is isomorphic to (Qi , ∗).

To prove these results, we need the following Lemma. The proof is straightforward and is omitted.

Lemma 6.1. Let t and x be positive integers. Then
(a) [tx]tn = t[x]n,
(b) [t(x − 1)]tn = t[[x]n − 1]n,
(c) if n = k + k2 and k = tq, then [(k + (t − 1)n) + (k + (t − 1)n)2]tn = 0.

Theorem 6.2. Let k = tq and [k + k2]tn = 0. Suppose that (Qi , ∗i), i = 1, 2, . . . , t, are pairwise disjoint left
unitary k-translatable semigroupwith ordering i1, i2, . . . , in and the cardinality n. Then Q = ⋃Qi, with ordering
de�ned by ir = t(r −1) + i (i = 1, 2, . . . , n and r = 1, 2, . . . , n), is a left unitary k-translatable semigroup, with
respect to the product ∗ de�ned by

ir ∗ js = jx , where x = [k − kr + q − qi + s]n (8)

in which each (Qi , ∗) isomorphic to (Qi , ∗i).
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Furthermore, if we de�ne a product ∗ on Q = ⋃Qi by (8), then there is an ordering on Q such that (Q, ∗) is
a left unitary k-translatable semigroup in which each (Qi , ∗) isomorphic to (Qi , ∗i).

Proof. Note that [k + k2]tn = 0 implies [k + k2]n = 0. Consider on Q = ⋃Qi the ordering ir = t(r − 1) + i
and de�ne the �rst row of the multiplication table of ∗ as a1, a2, . . . , atn, where ai = i for all i = 1, 2, . . . , tn.
We make the sequence a1, a2, . . . , atn into a k-translatable sequence in a natural way, as follows. The last k
entries of the �rst row become the �rst k entries of the second row and the �rst (tn− k) entries of the �rst row
become the last (tn − k) entries of the second row. Continue in this manner, making the last k entries of the
i-th row become the �rst k entries of the (i+1)-th row and the �rst (tn− k) entries of the i-th row become the
last (tn − k) entries of the (i + 1)-th row. By de�nition, the resultant groupoid (Q, ∗) is k-translatable, with
11 = 1 as a left identity element. Since [k + k2]tn = 0, by Corollary 5.3, (Q, ∗) is a left unitary k-translatable
semigroup, with product r ∗ s = a[k−kr+s]tn = [k − kr + s]tn. Therefore, for all ir , js ∈ Q we obtain

ir ∗ js = [t(r − 1) + i]tn ∗ [t(s − 1) + j]tn
= [t(q − kr + k − qi + s − 1) + j]tn
= [t([q − kr + k − qi + s]n − 1) + j]tn = jw ,

where w = [q − kr + k − qi + s]n. Since, by Lemma 6.1, we have w = j[(q − kr + k − qi + s)]n, the above proves
(8) and shows that each Qj is a left ideal of (Q, ∗).

Now, we de�ne on Qi new ordering by putting is = s for all s = 1, 2, . . . , n. Then r ∗ s = ir ∗ is = ix, where
x = [k − kr + q − qi + s]n = [k − kr + q − q(i + 1) + s + q]n. So, r ∗ s = i[r+1]n ∗ i[s+k]n = [r + 1]n ∗ [s + k]n. By
Lemma 2.5 (ii), (Qi , ∗) is k-translatable.

Since 0 = [k + k2]tn = [t(q + tq2)]tn by Lemma 6.1 (a), [q + tq2]n = 0. Therefore, [tq2]n = [−q]n. If
r = 1 − q(1 − i), then we get [k − kr]n = [k(1 − r)]n = [tq2(1 − i)]n = [−q(1 − i)]n. Therefore, by (8), for
r = 1 − q(1 − i) we have ir ∗ is = is. Thus ir is a left neutral element of (Qi , ∗).

By Lemma 2.7, we can re-order (Qi , ∗) such that by Corollary 5.3, (Qi , ∗) is a left unitary k-translatable
groupoid of order n. Then, since [k + k2]n = 0, by Corollary 5.3, is a left unitary k-translatable semigroup. By
Corollary 5.7 then, (Qi , ∗) is isomorphic to (Qi , ∗i). This proves the �rst part of the Theorem.

To prove the second part we introduce on Q = ⋃Qi an ordering is = t(s − 1) + i and consider a product ∗
de�ned by (8). Then,

[ir + 1]tn ∗ [js + k]tn = [t(r − 1) + i + 1]tn ∗ [t(s − 1) + j + k]tn
= [t(r − 1) + (i + 1)]tn ∗ [t(s + q − 1) + j]tn
= (i + 1)r ∗ js+q = jx ,

where x = [(k − kr + q − q(i + 1) + s + q)]n = [(k − kr + q − qi + s)]n. So, [ir + 1]tn ∗ [js + k]tn = jx = ir ∗ js.
Thus (Q, ∗) is k-translatable. Since, by (8), 11 = 1 is a left neutral element of (Q, ∗) and [k + k2]tn = 0, by
Corollary 5.3 then, (Q, ∗) is a left unitary k-translatable semigroup.

Analogously we can see that each (Qi , ∗) with natural ordering s = is is a left unitary k-translatable
semigroup. By Corollary 5.7, semigroups (Qi , ∗) and (Qi , ∗i) are isomorphic. This proves the second part of
the Theorem.

Theorem 6.3. Let k = tq and n = k+ k2. Suppose that (Qi , ∗i), i = 1, 2, . . . , t, are pairwise disjoint left unitary
k-translatable semigroups with ordering i1, i2, . . . , in and the cardinality n. Then Q = ⋃Qi with the ordering
ir = t(r − 1) + i is a left unitary (k + (t − 1)n)-translatable semigroup with respect to the product ∗ de�ned by

ir ∗ js = jx , where x = [k − kr + kq(i − 1) + s]n (9)

in which each (Qi , ∗) isomorphic to (Qi , ∗i).
Furthermore, if on Q = ⋃Qi a product ∗ is de�ned by (9), then Q can be ordered in such a way that (Q, ∗)

becomes a left unitary (k + (t − 1)n)-translatable semigroup in which each (Qi , ∗) is isomorphic to (Qi , ∗i).
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Proof. Similarly as in the proof of Theorem 6.2, we can construct a multiplication table for (Q, ∗) in this way
that (Q, ∗) becomes a left unitary (k+(t−1)n)-translatable semigroup. Then, according to the (k+(t−1)n)-
translatability, Lemma 6.1 and k + (t − 1)n = tk + (t − 1)k2, we have

ir ∗ js = [t(r − 1) + i]tn ∗ [t(s − 1) + j]tn
= [(k + (t−1)n) − (k + (t−1)n)(t(r−1) + i) + (t(s−1) + j)]tn
= [(tk+(t−1)t2q2)−(tk+(t−1)t2q2)(t(r−1)+i)+(t(s−1)+j)]tn
= [t{(k+(t−1)tq2)−(k+(t−1)tq2)(t(r−1)+i)+s−1}+j]tn = jx ,

where
x = [(k + (t − 1)tq2) − (k + (t − 1)tq2)(t(r − 1) + i) + s]n
= [−tq2 + tq2(t(r − 1) + i) + s]n = [rk2 − k2 + kq(i − 1) + s]n
= [k − kr + kq(i − 1) + s]n

because k + k2 = n.
This proves (9) and shows that each Qj is a left ideal of (Q, ∗). Next, similarly as in the previous proof, we

can prove that each semigroup (Qi , ∗) has a left neutral element ir, where r = q(i −1) +1, and is isomorphic
to (Qi , ∗i). This completes the proof of the �rst part of Theorem.

To prove the second part we introduce on Q = ⋃Qi an ordering is = t(s − 1) + i and consider the product
de�ned (9). Then,

[ir+1]tn∗[js+k+(t−1)n]tn = [t(r−1)+i+1]tn∗[t(s−1)+j+k+(t−1)n]tn
= [t(r − 1) + (i + 1)]tn ∗ [t(s − kq − 1) + j]tn
= (i + 1)r ∗ js−kq = jx ,

where x = [(k − kr + (s − kq) + kqi)]n = [(k − kr + s − kq(i − 1))]n.
So, [ir + 1]tn ∗ [js + k + (t − 1)n]tn = jx = ir ∗ js, which means that (Q, ∗) is a (k + (t − 1)n)-translatable

semigroup with a left neutral element 11 = 1. It is not di�cult to see that each (Qi , ∗)with the ordering is = s
is a k-translatable semigroup isomorphic to (Qi , ∗).

Example 6.4. Suppose that Q is a left unitary 8-translatable semigroup of order n = 12. Since 8 = 2 × 4 and
[8+82]24 = 0, there is a left unitary 8-translatable semigroup G of order 24 that is a disjoint union of two copies
of Q. It is a disjoint union of 8 copies of Z3.

Example 6.5. Suppose that Q is a left unitary 8-translatable semigroup of order n = 72. Then there is a left
unitary 224-translatable semigroup of order 288 that is a disjoint union of 4 copies of Q. There is also a left
unitary 512-translatable semigroup G of order 576 that is a disjoint union of 8 copies of Q. Also it is a disjoint
union of 64 copies of Z9.

Putting in the last theorem t = 2 we obtain

Corollary 6.6. Let (Q, ⋅) and (G, ○) be left unitary k-translatable semigroups of order n = k + k2, with k = 2q,
Q = {1, 2, . . . , n}, G = {g1, g2, . . . , gn} and Q ∩ G = ∅. Then B = Q ∪ G can be transformed into a left unitary
(k + n)-translatable semigroup with product ∗ such that
(i) (Q, ⋅) = (Q, ∗),
(ii) (G, ○) is isomorphic to (G, ∗),
(iii) gi ∗ gj = g[k(1+q)−ki+j]n ,
(iv) i ∗ gj = g[k−ki+j]n for all i, j ∈ Q and
(v) gi ∗ j = [k(1 + q) − ki + j]n for all i, j ∈ Q.
Conversely, if n = k + k2 and B = Q ∪ G with the ordering 1, g1, 2, g2, . . . , n, gn has the product ∗ de�ned by
(i), (iii), (iv) and (v) then (B, ∗) is a left unitary (k + n)-translatable semigroup satisfying (ii). Furthermore,
Q ∗ G = G and G ∗ Q = Q.
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