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Abstract: In this paper, chaos and bifurcation are explored for the controlled chaotic system, which is put
forward based on the hybrid strategy in an unusual chaotic system. Behavior of the controlled system with
variable parameter is researched in detain. Moreover, the normal form theory is used to analyze the direction
and stability of bifurcating periodic solution.
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1 Introduction
In 1963, the �rst three dimensional autonomous chaotic system (Lorenz system)wasproposed in the literature
[1]. After that, the construction and theoretical research of the chaotic system have become a hot issue in the
nonlinear science. What is more, many three-dimensional chaotic systems have been put forward one after
another, including Chen system [2] and Lü system [3], which have to be mentioned. In the sense of literature
[4], Chen system is the dual system of Lorenz system, whereas Lü system acts as a bridge between the both. In
1994, with the aid of a computer, Sprott has found 19 three-dimensional chaotic systems [5]. Rössler system
[6] and Chua system [7] have also received widespread attention from scholars. More about the contents of
chaotic systems can be seen in the literature [8–11]. For most 3D systems, there may be only one equilibrium
point, two symmetric equilibrium points, three equilibrium points or even more, their common features are
that all of the equilibria are unstable [12]. In 2008, Yang and Chen [13] introduced a chaotic system [14] with
a saddle point and two stable node-foci. Wei and Yang introduced a class of chaotic systems with only two
stable equilibria [15]. In particular, the above mentioned chaotic systems have a common characteristic: the
total stability of the two symmetric equilibria is always the same. Bifurcation analysis and control is one of
the most popular research theme in the domain of bifurcation control [16–21].

Liu et al. [22] gave a new 3D chaotic system as follows:

ẋ = a(y − x), ẏ = −c + xz, ż = b − y2.

There are only two nonlinear terms on the right side of the system, which is simple, but the local dynamic
behavior is complex and interesting. There is a pair of equilibrium points in the system, whose positions are
symmetric but the stability is opposite. The nature of this new chaotic system has attracted extensive interest
[23–26]. In this article, we design a hybrid strategy which consists of a parameter and a state feedback , and
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it is added to the last system, and we can get the controlled chaotic system as follows:

ẋ = a(y − x), ẏ = −c + xz +m(x − y), ż = b − y2.

Apparently, this strategy not only ensures that the equilibrium structure and the dimension of the original
system are unchanged. To analyze complex dynamical behaviors of the controlled system and evaluate
di�erences of chaos between the original system and controlled system, we study the chaos and bifurcation
of the controlled system through analyzing the variable parameter. First, phase trajectories, Lyapunove
exponents and bifurcation path are numerically investigated. Chaotic area, period area and several periodic
windowswithin the range of control parameter in controlled system are found. Then a su�cient condition for
the existence ofHopf bifurcation of controlled systemare given. Thenext theoremdescribes followingdetails:
the existence and expression of the bifurcation periodic solutions are explored, and the stability, direction
and the period size also are studied.

The remainder of the article is arrangedas follows: In section 2, hybrid control strategyofHopf bifurcation
is examined. In section 3, bifurcation diagrams and Lyapunov exponents of the controlled system with
varying parameter m are analyzed in detail. The Hopf bifurcation and its periodic solution of the controlled
system are explored in section 4. Finally, section 5 is summing up the full text.

2 Hybrid control strategy
For the convenience of description, the original system proposed in [22] as follows:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ẋ = a(y − x)
ẏ = −c + xz
ż = b − y2,

(2.1)

when parameters a (a > 0), b and c are all real constants, and x, y, z are three state variables in this case.
Apparently, when c = 0, system (2.1) is invariant while it is under the transformation T(x, y, z)→T(−x, −y, z).
In the sense of this transformation, the system not itself invariant under the T transformation, and there is
another orbit that corresponds to it. We calculate the next formulas:

a(y − x) = 0, −c + xz = 0, b − y2
= 0.

It is easily obtained that if b2
+c2

= 0, there are non-isolated equilibria Oz(0, 0, z); if either b < 0 or b = 0 and
c ≠ 0, there is not an equilibrium; if b > 0, there are two equilibria E+(

√
b,

√
b, c

√

b
) and E−(−

√
b,−

√
b,− c

√

b
) .

In this part, based on the model (2.1), we design a controller to get the controlled system as below
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ẋ = a(y − x)
ẏ = −c + xz +m(x − y)
ż = b − y2.

(2.2)

As needed, we only have to control the second equation, and the other two equations remain unchanged.
Obviously, the characteristic of the control law is to ensure that the structure of the equilibrium and the
dimension of the original system (2.1) are unchanged. Especially, if m = 0, the controlled system will restore
to the original system.

The linearized system (2.2) acts at E±, and we can get the Jacobian matrix

J± =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a a 0
m + z± −m x±

0 −2y± 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

its characteristic equation being

∆(λ) = λ
3
+ (m + a)λ2

+ (2x±y± − az±)λ + 2ax±y± = 0. (2.3)
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Regarding the controlled system, we conclude that if c > 2bm
√

b
a(a+m)

, E+ is unstable while E− is stable, and if

c < 2bm
√

b
a(a+m)

, E+ is stable while E− is unstable. The stability of the both is always opposite.
We just analyse the stability of equilibrium E+. By using the Routh-Hurwitz criterion, we can easily prove

the equilibrium E+ is stable while c < 2bm
√

b
a(a+m)

.
The formula (2.3) at equilibrium E+ is just as follows:

∆+(λ) = λ
3
+ (m + a)λ2

+ (2b − ac
√
b
)λ + 2ab = 0. (2.4)

Let A = m + a, B = 2b − ac
√

b
, C = 2ab. On the basis of the Routh-Hurwitz criterions, with the equation (2.4),

while A > 0, C > 0, AB − C > 0, i.e. a > 0, b > 0, and c < 2bm
√

b
a(a+m)

, all of the real parts of the three roots are
negative. We take into account the characteristic equation (2.3) at equilibrium E− in the same way.

3 Complex dynamic behavior
To research and investigate the dynamic behaviors of the controlled system (2.2), a host of numerical simula-
tions are carried out. The obtained results reveal that the controlled system (2.2) exhibits very signi�cant and
complex dynamical behaviors.

In this part, we �x a = 1.5, b = 1.7, c = 0.05, while varying m ∈ [−1.6, 0.27]. By analyzing Lyapunov
exponents spectrum and corresponding bifurcation diagram for (2.2) just as manifested in Fig.1 and Fig.2,
one can get the following conclusions.
(1) When the parameters m ∈ [−1.6,−1.52] and m ∈ [−1.5,−1.49], the controlled system of maximum
Lyapunov exponent is often equal to zero here. System (2.2) keeps periodic motion.
(2) When the parameters m = −1.51, there are two Lyapunov exponents equal to zero. Combining with the
phase portrait shown in Fig.3, it easily seen that the controlled system performs a quasi periodic motion.
(3) When the parameters m ∈ [−1.48,−1.44], m ∈ [−1.42,−1.37] and m ∈ [−1.35, 0.01], their maximum
Lyapunov exponents are positive exponents; the fact indicates that the controlled system is chaotic.
(4) When the parameters m = −1.43, m = −1.36 and m = 0.02, their corresponding maximum Lyapunov
exponents all are equal to zero. The controlled system performs a periodic motion. The phase portraits are
shown in Figs.4, 5 and 6.
(5) When the parameterm ∈ [0.03, 0.27], the controlled system keeps a cycle motion. The cycle gets lower as
the parameterm increases, and themaximumLyapunov exponents are always kept negative and get smaller,
which implies that the controlled system tends to converge to a sink.

From the above results, we can �nd that, within m ∈ [−1.6, 0.27], controlled system (2.2) has chaotic
attractor, period montion and periodic windows. The behaviors of the system (2.2) become complex with
varying m [22].

4 Hopf bifurcation analysis
In this part we discuss the Hopf bifurcation for the controlled system (2.2), applying normal form theory and
Mathemaitca software.

Theorem 4.1. Suppose that a > 0, b > 0, 2b > ac
√

b
. While c goes through the critical value c = c0 = 2bm

√

b
a(a+m)

,
system (2.2) plays a Hopf bifurcation at the equilibrium E+(

√
b,

√
b, c

√

b
).

Proof. Suppose that there is a pair of pure imaginary roots λ = ±iω(ω ∈ R+) in characteristic equation.
We obtained

∆(λ) = (iω)3
+ (m + a)(iω)2

+ (2b − ac
√
b
)iω + 2ab = 0.
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Fig. 1. The Lyapunov exponents spectrum of system (2.2) with a = 1.5, b = 1.7, c = 0.05 and m ∈ [−1.6, 0.27].

Fig. 2. Bifurcation diagram of system (2.2) with a = 1.5, b = 1.7, c = 0.05 and m ∈ [−1.6, 0.27].

Fig. 3. The phase diagram of system (2.2) with a = 1.5, b = 1.7, c = 0.05 and m = −1.51.

Hence one can see that
Re∆(λ) = 2ab − (a +m)ω

2
= 0,

Im∆(λ) = i(−ω3
+ (2b − ac

√
b
)ω) = 0.

Thus we have
ω

2
=

2ab
a +m

, ω2
= 2b − ac

√
b
.

Then
2ab
a +m

= 2b − ac
√
b
.
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Fig. 4. The phase diagram of system (2.2) with a = 1.5, b = 1.7, c = 0.05 and m = −1.43.

Fig. 5. The phase diagram of system (2.2) with a = 1.5, b = 1.7, c = 0.05 and m = −1.36.

Fig. 6. The phase diagram of system (2.2) with a = 1.5, b = 1.7, m = 0.02 and c = 0.05.

By computing the equation, we get

2b > ac
√
b
, c0 =

2bm
√
b

a(a +m)
.

When c = c0, one obtains
λ1 = iω, λ2 = −iω, λ3 = −a −m,

where ω =

√
2ab
a+m . Thus, when m > 0, c = c0, the �rst condition of the Hopf bifurcation is satis�ed.
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Fig. 7. (a) The phase diagram of system (2.2) with a = 5, b = 1.7, m = −1 and c = −0.22. (b) The phase diagram of system (2.2)
with a = 5, b = 1.7, m = −1 and c = −0.32.

From m > 0, it follows that

0 = 3λ2
λ
′
+ 2(a +m)λλ

′
+ (2b − ac

√
b
)λ

′
−

a
√
b
λ,

λ′ = aλ
[3λ2+2(a+m)λ+2b]

√

b−ac
,

which indicates that

Re(λ′(c0))∣λ=iω = −
a(a +m)

2√b
2b(a +m)3 + 4ab4 /= 0.

Thus, the proof of Theorem 4.1 is completed [27].

Remark 4.2. There is no Hopf bifurcation at the equilibrium E+(
√
b,

√
b, c

√

b
) while 2b < ac

√

b
.

Next, the expression, stability and size of bifurcating period solution in system (2.2) are studied, by using the
normal form theory [27] and many rigid symbolic computation.

Theorem 4.3. If a > 0, b > 0, for the controlled system (2.2), bifurcating periodic solutions exist for su�cient
small ∣c − c0∣ > 0 (c0 = 2bm

√

b
a(a+m)

). Furthermore, periodic solutions from Hopf bifurcation at E+(
√
b,

√
b, c

√

b
)

have the following properties:
(i) if M > 0, bifurcating periodic solutions of system (2.2) at E+(

√
b,

√
b, c

√

b
) are non-degenerate, supercritical

and unstable;
(ii) if M < 0, bifurcating periodic solutions of system (2.2) at E+(

√
b,

√
b, c

√

b
) are non-degenerate, subcritical

and stable;
(iii) the characteristic exponent and period of the bifurcating periodic solution are

β = β2ε
2
+ O(ε

4
), T =

2π
ω0

(1 + τ2ε
2
+ O(ε

4
)),

where ω0 =
√

2ab
a+m , ε2

=
c−c0
µ2
+ O[(c − c0)

2
] and

µ2 = −
ReC1(0)
α
′

(0)
=

M

−
a(a+m)2

√

b
4ab4+2b(a+m)3

,

τ2 = −
µ2ω

′
(0) + Im C1(0)

ω0
=

µ2ab2√a(a +m)

2ab2(a +m)3 + 4a2b5 −
N(a +m)

√
2ab(a +m)

,

β2 = 2ReC1(0) = 2M,

where M =
Q2Q5+Q1Q6+

1
2 Im(g21)

−2
√

2ab
a+m

, N =
Q1Q5−Q2Q6−2(Q2

1+Q
2
2)−

1
3 (Q

2
3+Q

2
4)+

1
2 Re(g21)

2
√

2ab
a+m

,

Re(g21) = (A13 + B23)w11 +
1
2Re(w20)(A13 − B23) −

1
2 Im(w20)(B13 + A23),
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Im(g21) = (B13 − A23)w11 +
1
2 Im(w20)(A13 − B23) −

1
2Re(w20)(B13 + A23),

Re(w20) =
(C11−C22)(a+m)−2C12

√
2ab
a+m

(a+m)2− 8ab
a+m

, Im(w20) =
(C11−C22)

√
2ab
a+m−(a+m)C12

(a+m)2− 8ab
a+m

, w11 =
C11+C22
−2(a+m)

.
Qi (i = 1, 2, 3,⋯, 6), and A13, A23, B13, B23, B13, , are de�ned in Appendix.
(iv) the mathematical expression of Hopf bifurcation periodic solution of system (2.2) is

⎛
⎜
⎜
⎝

x
y
z

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

√
b

√
b
c

√

b

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

cos 2π
T t

sin 2π
T t

0

⎞
⎟
⎟
⎠

ε +

⎛
⎜
⎜
⎜
⎝

γ1

γ2
(C11+C22)(1+Re(w20) cos 2π

T t−Im(w20) sin 2π
T t)

−2(a+m)

⎞
⎟
⎟
⎟
⎠

ε
2
+ O(ε

3
),

where γ1 =
sin 4π

T t(Q3+3Q5)−cos 4π
T t(Q4−3Q6)−6Q2

6
√

2ab
a+m

, γ2 =
Q3 cos 4π

T t−3Q5 cos 4π
T t+6Q1−Q4 sin 4π

T t−3Q6 sin 4π
T t

6
√

2ab
a+m

.

Qi (i = 1, 2, 3,⋯, 6) are de�ned in Appendix.

Proof. According to Theorem 4.1, while the parameter c changes and passes through the critical value c0,
Hopf bifurcation occurs at the equilibrium point E+, and its direction and stability are discussed below.

Because equilibrium E+(
√
b,

√
b, c

√

b
) is not in the origin, in order to shift it to the origin, let x =

√
b + x1,

y =
√
b + y1 and z = c

√

b
+ z1. Then, system (2.2) becomes

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ẋ1 = a(y1 − x1)

ẏ1 = x1z1 +
c

√

b
x1 +

√
bz1 +m(x1 − y1)

ż1 = −y2
1 − 2

√
by1.

Denoting c=c0= 2bm
√

b
a(a+m)

, and linearizing system (2.2) at E+(
√
b,

√
b, c

√

b
) now yields the Jacobian matrix

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a a 0
m + c

√

b
−m

√
b

0 −2
√
b 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and according to the matrix calculated above, we can get its characteristic equation:

∆(λ) = λ
3
+ (m + a)λ2

+ (2b − ac
√
b
)λ + 2ab = 0.

By exact computations, we obtain λ1=ωi, λ2=−ωi and λ3 = −a − m, when ω=
√

2ab
a+m , and the corresponding

eigenvectors respectively are

v1 =

⎛
⎜
⎜
⎝

−a
√

2b(a +m) −
√
a(a2

+ am)i
−
√
a(a2

+ 2b + am)i
(a2
+ 2b + am)

√
2(a +m)

⎞
⎟
⎟
⎠

, v2 =

⎛
⎜
⎜
⎝

−2a
√
b(a +m) −

√
2a(a2

+ am)i
−
√
a(a2

+ 2b + am)i
12(a2

+ 2b + am)
√
a +m

⎞
⎟
⎟
⎠

and v3 =

⎛
⎜
⎜
⎝

−a(a +m)

m(a +m)

2m
√
b

⎞
⎟
⎟
⎠

.

For system (2.2), de�ne

P̃1 = (Rev1,−Imv1, v3)

=

⎛
⎜
⎜
⎝

−a
√

2b(a +m)
√
a(a2

+ am) −a(a +m)

0
√
a(a2

+ 2b + am) m(a +m)

(a2
+ 2b + am)

√
2(a +m) 0 2m

√
b

⎞
⎟
⎟
⎠

(3.1)

and make a transformation as follows:

(x1, y1, z1)
T
= P̃1(x2, y2, z2)

T .
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Thus,
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ẋ2 = −
√

2ab
a+m y2 + F1(x2, y2, z2)

ẏ2 =
√

2ab
a+m x2 + F2(x2, y2, z2)

ż2 = −(a +m)z2 + F3(x2, y2, z2)

where

F1(x2, y2, z2) = (A11x2
2 + A12x2y2 + A22y2

2 + A13x2z2 + A23y2z2 + A33z2
2),

F2(x2, y2, z2) = (B11x2
2 + B12x2y2 + B22y2

2 + B13x2z2 + B23y2z2 + B33z2
2),

F3(x2, y2, z2) = (C11x2
2 + C12x2y2 + C22y2

2 + C13x2z2 + C23y2z2 + C33z2
2).

Furthermore, the following marks are consistent with [28].

g11 =
1
4
[
∂2F1

∂x2
2
+
∂2F1

∂y2
2
+ i (∂

2F2

∂x2
2
+
∂2F2

∂y2
2
)] =

1
2
[(A11 + A22) + i(B11 + B22)],

g02 = i (2 ∂2F1

∂x2∂y2
+
∂2F2

∂x2
2
−
∂2F2

∂y2
2
) +

1
4
[
∂2F1

∂x2
2
− 2 ∂2F2

∂x2∂y2
−
∂2F1

∂y2
2
]

=
1
2
[i(A12 + B11 − B22) + (A11 − B12 − A22)],

g20 =
1
4
[i (∂

2F2

∂x2
2
−
∂2F2

∂y2
2
− 2 ∂2F1

∂x2∂y2
) +

∂2F1

∂x2
2
+ 2 ∂2F2

∂x2∂y2
−
∂2F1

∂y2
2
]

=
1
2
[i(B11 − B22 − A12) + (A11 + B12 − A22)],

G21 =
1
8
[
∂3F1

∂x3
2
+

∂3F1

∂x2∂y2
2
+

∂3F2

∂x2
2∂y2

+
∂3F2

∂y3
2
+ i ( ∂3F2

∂x2∂y2
2
−
∂3F2

∂y3
2
−

∂3F1

∂x2
2∂y2

+
∂3F2

∂x3
2
)] = 0.

Meanwhile, one has

h1
11 =

1
4
(
∂2F3

∂x2
2
+
∂2F3

∂y2
2
) =

1
2
(C11 + C22),

h1
20 =

1
4
(
∂2F3

∂x2
2
−
∂2F3

∂y2
2
− 2i ∂2F3

∂x2∂y2
) =

1
2
(C11 − C22 − C12i).

Solving the following formula:

Dw11 = −h1
11 and w20(D − 2iω0I) = −h1

20,

where D = −(a +m), one obtains

w11 =
C11 + C22

−2(a +m)
, w20 =

C11 − C22 − C12i

−2(a +m) − 4i
√

2ab
a+m

= Re(w20) + iIm(w20).

Where,

Re(w20) =
(C11 − C22)(a +m) − 2C12

√
2ab
a+m

(a +m)2 − 8ab
a+m

, Im(w20) =
(C11 − C22)

√
2ab
a+m − (a +m)C12

(a +m)2 − 8ab
a+m

.

Furthermore,

G1
110 =

1
2
[(i ( ∂2F2

∂x2∂z2
−

∂2F1

∂y2∂z2
) +

∂2F2

∂y2∂z2
+

∂2F1

∂x2∂z2
)]

=
1
2
[i(B13 − A23) + B23 + A13],

G1
101 =

1
2
[(i ( ∂2F2

∂x2∂z2
+

∂2F2

∂y2∂z2
) +

∂2F1

∂x2∂z2
−

∂2F2

∂y2∂z2
)]
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=
1
2
[i(B13 + A23) + A13 − B23],

g21 = G21 + (2G1
110ω11 + G1

101ω20)

= Re(g21) + iIm(g21),

where

Re(g21) = (A13 + B23)w11 +
1
2
Re(w20)(A13 − B23) −

1
2
Im(w20)(B13 + A23),

Im(g21) = (B13 − A23)w11 +
1
2
Im(w20)(A13 − B23) −

1
2
Re(w20)(B13 + A23).

Considering the above operation results, one can calculate the following formulas and get:

C1(0) = 1
2
g21 +

i
2ω0

(−2 ∣g11∣
2
+ g11g20 −

1
3
∣g02∣

2
) = M + Ni,

µ2 = −
Re C1(0)
α′(0)

= −
M

Re(λ′(c0))
,

τ2 = −
µ2ω

′
(0) + Im C1(0)

ω0
= −

µ2Im(λ
′

(c0))) + N
ω0

, β2 = 2Re C1(0) = 2M,

where

ω0 =

√
2ab
a +m

, α
′
(0) = Re(λ′(c0)) = −

a(a +m)
2√b

2b(a +m)3 + 4ab4 , ω
′
(0) = −

a
√

2a(a +m)

2(a +m)3 + 4ab3 .

M =
Q2Q5+Q1Q6+

1
2 Im(g21)

−2
√

2ab
a+m

, N =
Q1Q5−Q2Q6−2(Q2

1+Q
2
2)−

1
3 (Q

2
3+Q

2
4)+

1
2 Re(g21)

2
√

2ab
a+m

.

From a > 0, b > 0, one gets that α′(0) < 0, ω′(0)<0 holds, so there are µ2 > 0 and β2 > 0 with
M > 0, which means that the Hopf bifurcation of system (2.2) at E+(

√
b,

√
b, c

√

b
) is supercritical and non-

degenerate, and the system,s bifurcating periodic solution occurs and is unstable; if M < 0, then µ2 < 0
and β2 < 0, which means that the Hopf bifurcation of system (2.2) at E+(

√
b,

√
b, c

√

b
) is subcritical and

non-degenerate, and the system’s bifurcating periodic solution occurs and is stable.
Moreover, the characteristic exponent and period are

β = β2ε
2
+ O(ε

4
), T =

2π
ω0

(1 + τ2ε
2
+ O(ε

4
)),

where ε2
=

c−c0
µ2
+ O[(c − c0)

2
]. The Hopf bifurcation periodic solution is

X(x1, y1, z1)
T
= P̃1(x2, y2, z2)

T
= P̃1Y ,

while P̃1 is a matrix and is described in (3.1),

x2 = Re u, y2 = Im u, z2 = Re(ω20u2
) + ∣u∣2 ω11 + O(∣u∣3),

and
u = e

2itπ
T ε +

ε2i
6ω0

[6g11 + g02e−
4itπ
T − 3g20e

4itπ
T ] + O(ε

3
).

By complicate computations, one gets

⎛
⎜
⎜
⎝

x
y
z

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

√
b

√
b
c

√

b

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

cos 2π
T t

sin 2π
T t

0

⎞
⎟
⎟
⎠

ε +

⎛
⎜
⎜
⎜
⎝

γ1

γ2
(C11+C22)(1+Re(w20) cos 2π

T t−Im(w20) sin 2π
T t)

−2(a+m)

⎞
⎟
⎟
⎟
⎠

ε
2
+ O(ε

3
),

where γ1, γ2 are de�ned at Theorem 4.3.

Remark 4.4. The property of Hopf bifurcation at equilibrium E− can be considered in the same way.
Fix a = 5, b = 1.7, m = −1 and the critical value c = c0 =

2bm
√

b
a(a+m)

≈ −0.222. From the above theorems, near
the equilibrium point E+, there are bifurcation periodic solutions for the controlled system (2.2) while c > c0; E+

is stable while c < c0, just as demonstrated in Fig.7.
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5 Conclusions
In this paper the chaos and bifurcation are explored for the controlled chaotic system, which is put forward
based on the hybrid strategy in an unusual chaotic system. Behaviors of the controlled system are studied
through analyzing its corresponding bifurcation diagrams and Lyapunov exponents, showing that there exist
chaotic area, period area and several periodic windows within the range of variable parameter. The results
show that the controlled system maintains the local structure and dimension of the original system, and the
dynamics behavior of the controlled system ismuch richer than the original system. Furthermore, a su�cient
condition for the existence of Hopf bifurcation of the controlled chaotic system is obtained. Using the normal
form theory, the direction and stability of bifurcating periodic solution are veri�ed. Numerical simulations
demonstrate the theoretical analysis results.

Appendix
For convenience, some values of the symbols used in Theorem 4.3 are given in this section.

D̃ = −2bm + (a +m)(2b + (a +m)
2
), D1 = [2b + a(a +m)]

√
2(a +m)D̃ ∶

D2 = (a2
+ 2b + am)

√
a(a +m)D̃, D3 =

√
a +mD̃,

A11 =
4abm

√
a +m

√
2D̃

, A12 =
−2am

√
ab[2b(a +m) + a(a −m)

2
]

2b + a(a +m)D̃
,

A22 =
−a[2b + a(a +m)][2b + (a +m)

2
]

√
2(a +m)D̃

, A13 =
2am

√
b[a(a +m)

2
+ 2b(a +m)]

[2b + a(a +m)]D̃
,

A23 =
−2m

√
a(a +m)[(a +m)(4ab + a(a +m)

2
) + 2b(b +m2

)]
√

2[2b + a(a +m)]D̃
,

A33 =
−m2√a +m[(a +m)

3
− 2b(a −m)]

√
2[2b + a(a +m)]D̃

, B11 =
−2a2√b(a +m)[2b + (a +m)

2
]

√
aD̃

∶

B12 =

√
2a2

(s +m)(2b(a +m)
2
)

D̃
, B22 =

−am
√
b(a +m)(2b + a(a +m))

√
aD̃

,

B13 =
−
√

2a2
[(a +m)

2
+ 2b][a(a +m)

2
+ am2

+ 2b(a +m)]
√
a(a2 + 2b + am)D̃

,

B23 =
2m

√
ab(a +m)[a2

(a2
+ 2b + am) −m(a +m)(2b − am)]

√
a(a2 + 2b + am)D̃

,
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−m

√
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2
(2a2

+m2
) + 4a2b]

√
a(a2 + 2b + am)D̃

, C11 =
−2a

√
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2

D̃
,

C12 =
a(a +m)

2√2a(a +m)[(2b + a(a +m)]
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, C22 =

a
√
b[2b + a(a +m)]

2

D̃
,

C13 =
−a

√
2(a +m)[(a +m)

2
(a + 2b + am) + 2bm(a +m)]

D̃
, C23 =

4m(a +m)
√
ab[b + a(a +m)]

D̃
,

C33 =
m
√
b(a +m)

2
(m − 2a)

D̃
, Q1 =

1
2
(A11 + A22), Q2 =

1
2
(B11 + B22),

Q3 =
1
2
(A11 − B12 − A22), Q4 =

1
2
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Q5 =
1
2
(A11 + B12 − A22), Q6 =

1
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