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1 Introduction and main results

In this article, we assume the reader is familiar with standard notations and basic results of Nevanlinna theory
in the complex plane C, see [1, 2]. Nevanlinna theory is an important tool to studying the complex differential
equations, and there appears many results in this areas recent years. In this paper, the order of an entire
function f is defined as

+ +
_ limsup log™ log™ M(r, f)

. log" T(r, f)
=1 = B
p(f) =limsup . m su logr

r—+oo l g
where log* x = max{log x, 0} and M(r, f) denotes the maximum modulus of f on the circle |z| = r.
Our main purpose is to consider the second order linear differential equation

f"+A2)f + B(2)f =0, @)

where A(z) and B(z) are entire functions. It’s well known that all solutions of (1) are entire functions. If B(z)
is transcendental and f1, f> are two linearly independent solutions of this equation, then at least one of f1, f>
is of infinite order, see [3]. What conditions on A(z) and B(z) can guarantee that every solution f # O of
equation (1) is of infinite order? There has been many results on this subject. For example, we collect some
results and give the following theorems:

Theorem 1.1. Let A(z) and B(z) be nonconstant entire functions, satisfying any one of the following additional
hypotheses:

1. p(A) < p(B), see [4];

2. A(z) is a polynomial and B(z) is transcendental, see [4];

3. p(B) < p(A) < 1, see[5],
then every solution f (# 0) of equation (1) has infinite order.

Theorem 1.2. Let A(z) = e and B(z) be nonconstant entire functions, satisfying any one of the following
additional hypotheses:
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1. B(z) is a nonconstant polynomial, see [6];
2. B(z) is transcendental entire function with order p(B) = 1, see [7];
3. B(z) = h(z)e %, where h(z)(# 0) is an entire function with p(h) < 1, d(+ 1) is a nonzero complex
constant, see [8],
then every solution f(# 0) of equation (1) has infinite order.

In the above theorem we can see that A(z) could not get the value zero which means zero is a deficient value
of A(z).In general, if A(z) has a finite deficient value, we have the following collection theorem.

Theorem 1.3. Let A(z) be an finite order entire function with a finite deficient value and B(z) be a transcen-
dental entire function, satisfying any one of the following additional hypotheses:

1. u(B) < 1/2, see [9];

2. T(r,B) ~log M(r, B) as r - oo outside a set of finite logarithmic measure, see [10, Lemma 2.7],
then every solution f (# 0) of equation (1) has infinite order.

In this paper, we continue to study the above in order to find conditions which A(z), B(z) should satisfy to
ensure that nontrivial solution of (1) has infinite order. Similar as in Theorem 1.2, we also assume zero is a
Picard exceptional value of A(z), and the first main result is as follows.

Theorem 1.4. Suppose A(z) = eP?), where p(z) is a nonconstant polynomial and B(z) is a transcendental
entire function with nonzero finite order. If

LN S
p(A)  p(B) "

then every solution f(# 0) of equation
"+ Of +B(2)f =0 @

is of infinite order.

Remark 1.1. It’s clear that f(z) = €° satisfies f"' + e *f' — (e7? + 1)f = 0, here p(A) = p(B) = 1. Therefore, the
inequality in the above theorem is sharp.

Remark 1.2. Simple calculation shows that the infinite order function f(z) = exp{e®} satisfies f" + e *f' -
(e** + e+ 1)f = 0. But p(A) and p(B) do not satisfy the inequality. Thus, the converse problem of Theorem 1.4
is not true.

Remark 1.3. Asin Theorem 1.3, if A(z) has a finite deficient value, does the conclusion still hold?

Remark 1.4. We adopt the method of Rossi [11] to prove this theorem. This method was also used by Cao [12]
to affirm Briick conjecture provided the hyper-order of f(z) is equal to 1/2.

Remark 1.5. By the idea of reviewer, the conclusion of this theorem can also be obtained by a relevant result of
[4, Theorem 7], but the proof in this paper is totally different from it.

In the following, we consider the case that B(z) is a nonconstant polynomial and p(z) is transcendental
entire. Rewrite (1) as

eP® = ];—,: + B(z)%. (3)

Observe the order of both sides, we can deduce that the solution has infinite order. For the remaining case
that p(z) and B(z) are both nonconstant polynomials, we have the following result.
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Theorem 1.5. Suppose A(z) = eP?), where p(z) is a polynomial with degree n > 2 and B(z) = Q(z) is also a
nonconstant polynomial with degree m. If m + 2 > 2n and n + m + 2, then every solution f (# 0) of equation

f+e?Df £ Qz)f =0 (4)
is of infinite order.

Remark 1.6. The case when the degree of p(z) is one could be proved by a minor modification of the proof of
Theorem 2 in [6], here the degree of Q(z) can be arbitrary positive integer.

2 Preliminary lemmas

Lemma 2.1 ([13]). Let f be a transcendental meromorphic function. Let o > 1 be a constant, and k, j be integers
satisfying k > j > 0. Then the following two statements hold:
1. There exists a set E1 c (1, +o0) which has finite logarithmic measure, and a constant K > 0, such that for
all z satisfying |z| = r ¢ E; U [0, 1], we have

fP(2)
f0) ()

2. There exists a set E, c [0, 27) which has zero linear measure, such that if 6 € [0, 27) \ E,, then thereis a
constant R = R(0) > 0 such that (5) holds for all z satisfying arg z = 0 and |z| > R.

r

i
<K [ T(or.f) (logr)*log T(ar,f)] ] . (5)

The following Lemma is proved in [11] by using [14, Theorem II1.68]. We need some notations to state it. Let
D be a region in C. For each r € R* set 0;,(r) = 0*(r) = +oo if the entire circle |z| = r lies in D. Otherwise, let
03 (r) = 6*(r) be the measure of all ¢ in [0, 27) such that re’’ ¢ D. As usual, we define the order p(u) of a
function u subharmonic in the plane as

. log M(r, u)
u) :=limsup ——————=
p(u) msup == o

>

where M(r, u) is the maximum modulus of subharmonic function u on a circle of radius r.

Lemma 2.2 ([11]). Let u be a subharmonic function in C and let D be an open component of {z : u(z) > 0}.
Then

R
T dt
u) > limsup —— . (6)
P20 ogR J w30
Furthermore, given ¢ > 0, define F = {r : 0, < en}. Then
1
limsup ﬂ [ % < Ep(u). (7)
Rtoo 108 FA[1,R]

Lemma 2.3 ([11, 15]). Let l;1(t) > O, L(t) > O(t > to) be two measurable functions on (0, +oo) with I, (t) +
I(t) < (2+¢)m, wheree > 0.If G < (0, +o0) is any measurable set and

dt dt 1
T <« ) o> = (8)
Joth(t) ") ot 2
then
dt dt
= 9)

™ > —.
J ()" (2+e)a-1) ¢
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Lemma 2.4 ([6]). Let S be the strip
z=Xx+1iy, X > Xo, |y| < 4.

Suppose that in S
Q(z) = anz" + 0()2]"),
where n is positive integer and a, > 0. Then there exists a path I tending to infinity in S such that all solutions

of y" + Q(z)y = O tend to zeroon T'.

Lemma 2.5 ([6]). Suppose that A(z) is analytic in a sector containing the ray I : re!’ and that as r — oo,
A(re'?) = 0(+™) for some n > 0. Then all solutions of y" + A(z)y = O satisfy

log* |y(re')| = 0(r™)/?)
onl.

We recall the definition of an R-set; for reference, see [1]. Set B(zn,1n) = {z : |z = zn| < Tn}. f X721 70 < 00
and z, — oo, then U2 B(zn, I'n) is called an R-set. Clearly, the set {|z| : z € U2, B(2n, rn)} is of finite linear
measure. Moreover, by [1, Lemma 5.9], the set of angles 6 for which the ray re'? meets infinitely many discs of
a given R-set has linear measure zero.

Lemma 2.6 ([1, Proposition 5.12]). Let f be a meromorphic function of finite order. Then there exists N = N(f) >
0 such that

f'(z)
f(2)

-o(™) (10)

holds outside of an R-set.

In the next Lemma, let p(z) = (a +i8)z" + - + ao be a polynomial with «, 3 real, and denote 6(p, 0) :=
acosnf — Bsinné.

Lemma 2.7 ([1, Lemma 5.14]). Let p(z) be a polynomial of degree n > 1, and consider the exponent function
A(2) := e?@ onaray re’. Then we have
1. If5(p, 0) > 0, there exists an r(6) such that log |A(re'®)| is increasing on [r(6), +o0) and

|A(re')| zexp(%é(p,e)r") (1)

holds here;
2. If5(p, 0) < O, there exists an r(0) such that log |A(re'?)| is decreasing on [r(0), +o0) and

IA(rel®)| Sexp(%cs(P,O)r") (12)
holds here.

Lemma 2.8 ([16, Theorem 7.3]). Phragmén-Lindeldf Theorem Let f(z) be an analytic function of z = re'?,
regular in a region D between rays making an angle w/« at the origin and on the straight lines themselves.
Suppose that |f (z)| < M on the lines and as r — oo, f(z) = O(e’ﬁ ), where 3 < o uniformly. Then |[f(z)| < M
throughout D.

Remark 2.1. Iff(z) - a as z — oo along a straight line, f(z) — b as z — oo along another straight line, and
f(2) is analytic and bounded in the angle between, then a = b and f(z) — a uniformly in the angle. The straight
lines may be replaced by curves approaching oo.
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3 Proofs of theorems

Proof of Theorem 1.4. We assume that p(f) = p < +oco, and would obtain the assertion by reduction to
contradiction. By Lemma 2.1 and definition of the growth order, there exist constants K > 0, 3 > 1 and
C = C(¢) (depending on ¢) such that

f(i)(z)
@ |

holds forall r > ro = R(6) and 0 ¢ J(r), where J(r) is a set with zero linear measure. We may say m(J(r)) <erw
where (> 0) is given arbitrarily small. Fix ¢ > 0 and let N be an integer such that N > C = C(¢), and

k(TenD

B ! P
Un ) log ) 0g T(on. ) <1 j=1.2 (13)

log M(2, B) < Nlog2. (14)

Since B(z) is transcendental there exists zo, |zo| > 2, such that log|B(zo)| > Nlog|zo|. Let D1 be the
component of the set {z : log|B(z)| - Nlog|z| > 0} containing zo. Clearly D, is open and since (14) holds,
log |B(z)| - Nlog|z| is subharmonic in D; and identically zero on 0D;. Thus, if we define

log|B(z)| - Nlogl|z|, zeDy,
u(z) - [1081BD)] - Nloglzl, ze Dy )
o, zeC~ Dl,
we have that u(z) is subharmonic in C with
p(u) < p(B). (16)

Let D, be an unbounded component of the set {z : log |e?*)| > 0}, such that if we define

1og|e_p(z)\, zeDy,
v(z) =
0, zeC~\ Dy,

then v(z) is subharmonic in C with

p(v) = p(A).
Moreover, define D3 := {re'® : ¢ € J(r)}. For the above given ¢, if (D1 n D;) \ D3 contains an unbounded
sequence {rne'’"}, then we get from the above discussions that

N < |B(rne")| < <21, (17)

f”(rnele ))‘ ep(rn elfn) f(rne "))
f(rnei® f(rnet®n)

and this clearly contradicts N > C for n large enough. Thus for arbitrary ¢, we may assume that (D1 nD;)\ D3
is bounded, this implies that for r > r; > ro,

K, :={6: re’ eDi1nDy} cj(r),
Obviously, we have
m(Kr) <em. (18)

(We remark here that the proof of Theorem 1.4 would now follow easily from (6) and Lemma 2.3 if D; and D,
were disjoint. As we shall see, (6), (13) and (18) imply that these sets are "essentially" disjoint. Define

0p,(t), otherwise,
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forj =1, 2. Since B(z) is transcendental, it follows D1 and D, are unbounded open sets. Then we get 11 (t) >
0, I(t) > O for t sufficiently large, and

l1(t)+lz(t) <27 +em. (20)

Set

o = lim sup (21)

R—oo IOgR tll(t)

By (21) and the fact I; (t) < 27, we have

Thus

R Rd
1/ (0 <alogR:af Tt

1

Therefor, from Lemma 2.3 we obtain

dt . « Rg B « log R
th(t) = (2+e)a-1J ¢ S (2+e)a-1 g%
and thus,
lim su a (22)
Fate logR tlz(t) *2+)a-1
Define the set
Bji= {r:65,(r) = +oo} @)

forj=1,2.1fre By and r > rq, then 0}32 (r) <em by (20). Thus B; ¢ {r: p,(r) < er}. By Lemma 2.2 we have

limsup —— o R f < ep(PD) = ep(e P9, (24)
R Bin[1,R]

The last equality follows by the first Nevanlinna theorem. Let §, = R* \ Bj,j = 1,2. Then (6), (21) and (24)
give

p(u) > limsup

R o0 long to} (t)

= limsu
SUP jog R gR t9* (t)
Bm[lR

= limsu ! [ dt 1 f ﬂ
TP logR ”1 thi(t) 2 t

Bin[1,R]

p(z)
G ),
2

which together with (16) and A(z) = e?® shows

p(B) > a- @ (26)
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Applying the similar arguments as above to By, if r € B and r > r1, then 6, () < em. Thus By < {r: 0, (, <

em}. Then we obtain also from Lemma 2.2 that

1 dt
lim sup ;= f — <ep(u).
B,n[1,R]
Combining (6), (22) with (27) we obtain

A -p(2) > i

= limsup

oo lo R f tor (t
R g BrlLE] Dz()

lim sup ! [ dt L f dt
= - _ = “at
~o lOgR l 2

R 08 (D) B,n[1,R] t

. o _ep(u)
T (2+e)a-1 2

Since Toat ) 7 is a monotone decreasing function of «, inequalities (16), (26) and (28) give

A
p(B)+ 52 cp(B)

A B )1 2

Note that ¢ is positive arbitrary small and p(A4), p(B) are finite, we obtain

p(B)
pd) 2 2p(B) -1
That is,
1 1

2@ B <

which contradicts the assumption. Thus, every solution f(# 0) of equation (2) is of infinite order.

Proof of Theorem 1.5. We assume that (4) has a solution f(z) with finite order. Set

zZ
f:yexp{—;fep(z)dz},

0

equation (4) can be transformed into

v+ Q@) - 7e70 - 2P (@) )y -
By a translation we may assume that

Q(2) = amz™ + am 22" + -, m> 2.

We define the critical ray for Q(z) as those ray re'® for which
—argam + 2jm
fj= —= " 7,
m+2

where j =0, 1, 2---, m + 1, and note that the substitution z = xe'? transforms equation (31) into

2
4 (@ =Py =0,

@7)

(28)

(29)

(30)

€3

(32)

(33)

(34)
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where
Q1(x) = arx™+0(x™?), a1 >0
and _ 1 o1 . .
Pi(x) = e (—Zezl’("e D Eep(xe })p'(xe'e")).
For the polynomial p(z) with degree n, set p(z) = (a + i8)z" + pn-1(2) with «, 3 real, and denote 6(p, 0) :=
acos nd — B sin nd. The rays

arctan% +km
argz =0y = T,k:o,1,z,m,2n—1

satisfying §(p,0;) = O can split the complex domain into 2n equal angular domains. Without loss of
generality, denote these angle domains as

Q+::{z:rei9:0<r<+oo,21%<9<m},

n
Q‘::{z:rei9:0<r<+oo, (Zizl)ﬂ<0<2(i;1)ﬂ}, (35)
i=0,1,--,n-1,where §(p,0) >0on 2" and §(p, #) < 0 on 2. By Lemma 2.7, we obtain
P00 <[]+ [P (xe™)|
< exp{é(p,9)x"} +exp {%6(19, G)X"} ox"" -o (36)

for xe% ¢ 2~ as x —» oo, then by Lemma 2.4 and (34), for any critical line arg z = 6; lying in 2~ there exists a
path 'y, tending to infinity, such that argz — ¢; on I'y, while y(z) — 0 there. Moreover, by

V4 z
exp{—;fep(z)dz} gexp{; /ep(z)dz
0

0
forz e 27 asr — oo, together with (30) we have f(z) — 0 along I, tending to infinity.
Setting V = f’/f, equation (4) can be written as

}Sexp{;rexp{;é(p,e)r"}}el 37)

V+ 12+ @DV 4Q(2) =0. (38)
By Lemma 2.6, we have
V| +|V* = 0(l2") 39)

outside an R-set U, where N is a positive constant. Moreover, if z = re'? € 2* is such that the ray argz = ¢
meets only finitely many discs of U we see that V = o(|z| ) as z tends to infinity on this ray and hence f tends
to a finite, nonzero limit. Applying this reasoning to a set of ¢ outside a set of zero measure we deduce by the
Phragmén-Lindeldf principle that without loss of generality, for any small enough given positive ¢,

f(reie) -1 (40)
as r — oo with
i i 21 2i+1
z:releeQ;::{z:re’9:0<r<+oo,%+a<9<%—s}. (41)
For any z = rel? e £2~, we have that 6(p, 9) < 0, and by Lemma 2.7 we have

1 1
Qz) - 2e7? - 2D (2)| < Q@) + 7] + 1"V |Ip' (2)]

2

<0(r™) +exp{d(p, H)r"} + exp {%5(1}, H)r"} o™
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<o(r™ (42)
for sufficiently large r. Applying Lemma 2.5 to (31) and together with (42), y(z) satisfies
log*[y(re”)| = 0(r"*") 3)

asr — oo for any z = re'? € 2~. From (30) and (37), we have

log" [f(re”)| = O(r"%") (44)
asr— oo forany z = re? ¢ ™.

On the rays argz = 6 such that §(p,6) = 0, we have [e?®| = |eP»1(D|. Consider the two cases
8(Pn-1,6x) > 0 or 6(pn-1,6x) < 0, by the same method above, we get f(z) — 1 or log™ |f(2)| = O(rmT”),
respectively, on the ray arg z = 0. If §(pn-1, 0x) = 0 also, repeating these arguments again. Finally, we deduce
that either f(z) — 1 orlog™ |f(2)| = O(rmT“) on the rays argz = 6y, k = 0,1, -, 2n — 1. Thus, (30), (40), (44)
and the fact ¢ is arbitrary imply that, by the Phragmén-Lindel6f principle,

m+2

o(f) < ——- (45)

We claim that % (i=0,1,--,n-1) are critical rays for Q(z). For otherwise there exists a critical ¢; for
Q(z) in

2i+1 2i+1 2
QirDr o QDT 2% g n-1)

n n m+2
because m + 2 > 2n. This implies the existence of an unbounded domain of angular measure at most % +&,
bounded by a path on which f(z) — 0 and a ray on which f(z) — 1. By the remark following Lemma 2.7
implies that o (f) > ”’T”, contradicting (45). Then there exists a positive integer k satisfying 27” = kﬂf—fz, that
is, m + 2 = kn, which contradicts n + m + 2. Thus, we complete the proof. O
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