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1 Introduction and main results
In this article,we assume the reader is familiarwith standardnotations andbasic results ofNevanlinna theory
in the complex planeC, see [1, 2]. Nevanlinna theory is an important tool to studying the complex di�erential
equations, and there appears many results in this areas recent years. In this paper, the order of an entire
function f is de�ned as

ρ(f) = lim sup
r→+∞

log+ T(r, f)
log r

= lim sup
r→+∞

log+ log+M(r, f)
log r

,

where log+ x = max{log x, 0} and M(r, f) denotes the maximummodulus of f on the circle ∣z∣ = r.
Our main purpose is to consider the second order linear di�erential equation

f ′′ + A(z)f ′ + B(z)f = 0, (1)

where A(z) and B(z) are entire functions. It’s well known that all solutions of (1) are entire functions. If B(z)
is transcendental and f1, f2 are two linearly independent solutions of this equation, then at least one of f1, f2
is of in�nite order, see [3]. What conditions on A(z) and B(z) can guarantee that every solution f /≡ 0 of
equation (1) is of in�nite order? There has been many results on this subject. For example, we collect some
results and give the following theorems:

Theorem 1.1. Let A(z) and B(z) be nonconstant entire functions, satisfying any one of the following additional
hypotheses:
1. ρ(A) < ρ(B), see [4];
2. A(z) is a polynomial and B(z) is transcendental, see [4];
3. ρ(B) < ρ(A) ≤ 1

2 , see [5],
then every solution f(/≡ 0) of equation (1) has in�nite order.

Theorem 1.2. Let A(z) = e−z and B(z) be nonconstant entire functions, satisfying any one of the following
additional hypotheses:
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1. B(z) is a nonconstant polynomial, see [6];
2. B(z) is transcendental entire function with order ρ(B) ≠ 1, see [7];
3. B(z) = h(z)e−dz, where h(z)(/≡ 0) is an entire function with ρ(h) < 1, d(≠ 1) is a nonzero complex

constant, see [8],
then every solution f(/≡ 0) of equation (1) has in�nite order.

In the above theorem we can see that A(z) could not get the value zero which means zero is a de�cient value
of A(z). In general, if A(z) has a �nite de�cient value, we have the following collection theorem.

Theorem 1.3. Let A(z) be an �nite order entire function with a �nite de�cient value and B(z) be a transcen-
dental entire function, satisfying any one of the following additional hypotheses:
1. µ(B) < 1/2, see [9];
2. T(r, B) ∼ logM(r, B) as r →∞ outside a set of �nite logarithmic measure, see [10, Lemma 2.7],

then every solution f(/≡ 0) of equation (1) has in�nite order.

In this paper, we continue to study the above in order to �nd conditions which A(z), B(z) should satisfy to
ensure that nontrivial solution of (1) has in�nite order. Similar as in Theorem 1.2, we also assume zero is a
Picard exceptional value of A(z), and the �rst main result is as follows.

Theorem 1.4. Suppose A(z) = ep(z), where p(z) is a nonconstant polynomial and B(z) is a transcendental
entire function with nonzero �nite order. If

1
ρ(A) +

1
ρ(B) > 2,

then every solution f(/≡ 0) of equation

f ′′ + ep(z)f ′ + B(z)f = 0 (2)

is of in�nite order.

Remark 1.1. It’s clear that f(z) = ez satis�es f ′′ + e−z f ′ − (e−z + 1)f = 0, here ρ(A) = ρ(B) = 1. Therefore, the
inequality in the above theorem is sharp.

Remark 1.2. Simple calculation shows that the in�nite order function f(z) = exp{ez} satis�es f ′′ + e−z f ′ −
(e2z + ez + 1)f = 0. But ρ(A) and ρ(B) do not satisfy the inequality. Thus, the converse problem of Theorem 1.4
is not true.

Remark 1.3. As in Theorem 1.3, if A(z) has a �nite de�cient value, does the conclusion still hold?

Remark 1.4. We adopt the method of Rossi [11] to prove this theorem. This method was also used by Cao [12]
to a�rm Brück conjecture provided the hyper-order of f(z) is equal to 1/2.

Remark 1.5. By the idea of reviewer, the conclusion of this theorem can also be obtained by a relevant result of
[4, Theorem 7], but the proof in this paper is totally di�erent from it.

In the following, we consider the case that B(z) is a nonconstant polynomial and p(z) is transcendental
entire. Rewrite (1) as

ep(z) = f ′′

f ′
+ B(z) f

f ′
. (3)

Observe the order of both sides, we can deduce that the solution has in�nite order. For the remaining case
that p(z) and B(z) are both nonconstant polynomials, we have the following result.
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Theorem 1.5. Suppose A(z) = ep(z), where p(z) is a polynomial with degree n ≥ 2 and B(z) = Q(z) is also a
nonconstant polynomial with degree m. If m + 2 > 2n and n ∤ m + 2, then every solution f(/≡ 0) of equation

f ′′ + ep(z)f ′ + Q(z)f = 0 (4)

is of in�nite order.

Remark 1.6. The case when the degree of p(z) is one could be proved by a minor modi�cation of the proof of
Theorem 2 in [6], here the degree of Q(z) can be arbitrary positive integer.

2 Preliminary lemmas
Lemma 2.1 ([13]). Let f be a transcendental meromorphic function. Letα > 1 be a constant, and k, j be integers
satisfying k > j ≥ 0. Then the following two statements hold:
1. There exists a set E1 ⊂ (1,+∞) which has �nite logarithmic measure, and a constant K > 0, such that for

all z satisfying ∣z∣ = r /∈ E1 ∪ [0, 1], we have

∣ f
(k)(z)
f (j)(z)

∣ ≤ K [T(αr, f)
r

(log r)α log T(αr, f)]
k−j

. (5)

2. There exists a set E2 ⊂ [0, 2π) which has zero linear measure, such that if θ ∈ [0, 2π) ∖ E2, then there is a
constant R = R(θ) > 0 such that (5) holds for all z satisfying arg z = θ and ∣z∣ ≥ R.

The following Lemma is proved in [11] by using [14, Theorem III.68]. We need some notations to state it. Let
D be a region in C. For each r ∈ R+ set θ∗D(r) = θ∗(r) = +∞ if the entire circle ∣z∣ = r lies in D. Otherwise, let
θ∗D(r) = θ∗(r) be the measure of all θ in [0, 2π) such that reiθ ∈ D. As usual, we de�ne the order ρ(u) of a
function u subharmonic in the plane as

ρ(u) ∶= lim sup
R→+∞

logM(r, u)
log r

,

where M(r, u) is the maximummodulus of subharmonic function u on a circle of radius r.

Lemma 2.2 ([11]). Let u be a subharmonic function in C and let D be an open component of {z ∶ u(z) > 0}.
Then

ρ(u) ≥ lim sup
R→+∞

π

logR

R

∫
1

dt
tθ∗D(t)

. (6)

Furthermore, given ε > 0, de�ne F = {r ∶ θ∗D ≤ επ}. Then

lim sup
R→+∞

1
logR ∫

F∩[1,R]

dt
t
≤ ερ(u). (7)

Lemma 2.3 ([11, 15]). Let l1(t) > 0, l2(t) > 0(t ≥ t0) be two measurable functions on (0,+∞) with l1(t) +
l2(t) ≤ (2 + ε)π, where ε > 0. If G ⊆ (0,+∞) is any measurable set and

π∫
G

dt
tl1(t)

≤ α∫
G

dt
t
, α ≥ 1

2
, (8)

then

π∫
G

dt
tl2(t)

≥ α

(2 + ε)α − 1 ∫
G

dt
t
. (9)
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Lemma 2.4 ([6]). Let S be the strip
z = x + iy, x ≥ x0, ∣y∣ ≤ 4.

Suppose that in S
Q(z) = anzn + O(∣z∣n−2),

where n is positive integer and an > 0. Then there exists a path Γ tending to in�nity in S such that all solutions
of y′′ + Q(z)y = 0 tend to zero on Γ .

Lemma 2.5 ([6]). Suppose that A(z) is analytic in a sector containing the ray Γ ∶ reiθ and that as r → ∞,
A(reiθ) = O(rn) for some n ≥ 0. Then all solutions of y′′ + A(z)y = 0 satisfy

log+ ∣y(reiθ)∣ = O(r(n+2)/2)

on Γ .

We recall the de�nition of an R-set; for reference, see [1]. Set B(zn , rn) = {z ∶ ∣z − zn ∣ < rn}. If ∑∞n=1 rn < ∞
and zn → ∞, then ∪∞n=1B(zn , rn) is called an R-set. Clearly, the set {∣z∣ ∶ z ∈ ∪∞n=1B(zn , rn)} is of �nite linear
measure. Moreover, by [1, Lemma 5.9], the set of angles θ for which the ray reiθ meets in�nitely many discs of
a given R-set has linear measure zero.

Lemma 2.6 ([1, Proposition 5.12]). Let f be ameromorphic function of �nite order. Then there exists N = N(f) >
0 such that

∣ f
′(z)
f(z) ∣ = O(rN) (10)

holds outside of an R-set.

In the next Lemma, let p(z) = (α + iβ)zn + ⋯ + a0 be a polynomial with α, β real, and denote δ(p, θ) ∶=
α cos nθ − β sin nθ.

Lemma 2.7 ([1, Lemma 5.14]). Let p(z) be a polynomial of degree n ≥ 1, and consider the exponent function
A(z) ∶= ep(z) on a ray reiθ. Then we have
1. If δ(p, θ) > 0, there exists an r(θ) such that log ∣A(reiθ)∣ is increasing on [r(θ),+∞) and

∣A(reiθ)∣ ≥ exp(1
2
δ(p, θ)rn) (11)

holds here;
2. If δ(p, θ) < 0, there exists an r(θ) such that log ∣A(reiθ)∣ is decreasing on [r(θ),+∞) and

∣A(reiθ)∣ ≤ exp(1
2
δ(p, θ)rn) (12)

holds here.

Lemma 2.8 ([16, Theorem 7.3]). Phragmén-Lindelöf Theorem Let f(z) be an analytic function of z = reiθ,
regular in a region D between rays making an angle π/α at the origin and on the straight lines themselves.
Suppose that ∣f(z)∣ ≤ M on the lines and as r → ∞, f(z) = O(er

β

), where β < α uniformly. Then ∣f(z)∣ ≤ M
throughout D.

Remark 2.1. If f(z) → a as z → ∞ along a straight line, f(z) → b as z → ∞ along another straight line, and
f(z) is analytic and bounded in the angle between, then a = b and f(z) → a uniformly in the angle. The straight
lines may be replaced by curves approaching∞.
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3 Proofs of theorems
Proof of Theorem 1.4. We assume that ρ(f) = ρ < +∞, and would obtain the assertion by reduction to
contradiction. By Lemma 2.1 and de�nition of the growth order, there exist constants K > 0, β > 1 and
C = C(ε) (depending on ε) such that

∣ f
(j)(z)
f(z) ∣ ≤ K (T(βr, f)

log r
(log r)β log T(βr, f))

j
≤ rC , j = 1, 2 (13)

holds for all r > r0 = R(θ) and θ /∈ J(r), where J(r) is a set with zero linear measure. Wemay saym(J(r)) ≤ επ
where ε(> 0) is given arbitrarily small. Fix ε > 0 and let N be an integer such that N > C = C(ε), and

logM(2, B) < N log 2. (14)

Since B(z) is transcendental there exists z0, ∣z0∣ > 2, such that log ∣B(z0)∣ > N log ∣z0∣. Let D1 be the
component of the set {z ∶ log ∣B(z)∣ − N log ∣z∣ > 0} containing z0. Clearly D1 is open and since (14) holds,
log ∣B(z)∣ − N log ∣z∣ is subharmonic in D1 and identically zero on ∂D1. Thus, if we de�ne

u(z) =
⎧⎪⎪⎨⎪⎪⎩

log ∣B(z)∣ − N log ∣z∣, z ∈ D1,
0, z ∈ C ∖ D1,

(15)

we have that u(z) is subharmonic in C with

ρ(u) ≤ ρ(B). (16)

Let D2 be an unbounded component of the set {z ∶ log ∣e−p(z)∣ > 0}, such that if we de�ne

v(z) =
⎧⎪⎪⎨⎪⎪⎩

log ∣e−p(z)∣, z ∈ D2,
0, z ∈ C ∖ D2,

then v(z) is subharmonic in C with

ρ(v) = ρ(A).

Moreover, de�ne D3 ∶= {reiθ ∶ θ ∈ J(r)}. For the above given ε, if (D1 ∩ D2) ∖ D3 contains an unbounded
sequence {rneiθn}, then we get from the above discussions that

rNn < ∣B(rneiθn)∣ ≤ ∣ f
′′(rneiθn))
f(rneiθn)

∣ + ∣ep(rne
iθn

)∣ ∣ f
′(rneiθn))
f(rneiθn)

∣ ≤ 2rCn , (17)

and this clearly contradicts N > C for n large enough. Thus for arbitrary ε, wemay assume that (D1∩D2)∖D3

is bounded, this implies that for r ≥ r1 ≥ r0,

Kr ∶= {θ ∶ reiθ ∈ D1 ∩ D2} ⊆ J(r),

Obviously, we have

m(Kr) ≤ επ. (18)

(We remark here that the proof of Theorem 1.4 would now follow easily from (6) and Lemma 2.3 if D1 and D2

were disjoint. As we shall see, (6), (13) and (18) imply that these sets are "essentially" disjoint. De�ne

lj(t) =
⎧⎪⎪⎨⎪⎪⎩

2π, if `∗Dj
(t) = ∞,

θ∗Dj
(t), otherwise,

(19)
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for j = 1, 2. Since B(z) is transcendental, it follows D1 and D2 are unbounded open sets. Then we get l1(t) >
0, l2(t) > 0 for t su�ciently large, and

l1(t) + l2(t) ≤ 2π + επ. (20)

Set

α ∶= lim sup
R→∞

π

logR

R

∫
1

dt
tl1(t)

. (21)

By (21) and the fact l1(t) ≤ 2π, we have

α ≥ 1
2 logR

R

∫
1

dt
t
= 1

2
.

Thus

π

R

∫
1

dt
tl1(t)

≤ α logR = α
R

∫
1

dt
t
.

Therefor, from Lemma 2.3 we obtain

π

R

∫
1

dt
tl2(t)

≥ α

(2 + ε)α − 1

R

∫
1

dt
t
= α

(2 + ε)α − 1
logR,

and thus,

lim sup
R→+∞

π

logR

R

∫
1

dt
tl2(t)

≥ α

(2 + ε)α − 1
. (22)

De�ne the set

Bj ∶= {r ∶ θ∗Dj(r) = +∞} (23)

for j = 1, 2. If r ∈ B1 and r ≥ r1, then θ∗D2
(r) ≤ επ by (20). Thus B1 ⊆ {r ∶ θ∗D2

(r) ≤ επ}. By Lemma 2.2 we have

lim sup
R→∞

1
logR ∫

B1∩[1,R]

dt
t
≤ ερ(ep(z)) = ερ(e−p(z)). (24)

The last equality follows by the �rst Nevanlinna theorem. Let B̃j = R+ ∖ Bj , j = 1, 2. Then (6), (21) and (24)
give

ρ(u) ≥ lim sup
R→∞

π

logR

R

∫
1

dt
tθ∗D1

(t)

= lim sup
R→∞

π

logR ∫
B̃1∩[1,R]

dt
tθ∗D1

(t)

= lim sup
R→∞

1
logR

⎡⎢⎢⎢⎢⎢⎣
π

R

∫
1

dt
tl1(t)

− 1
2 ∫
B1∩[1,R]

dt
t

⎤⎥⎥⎥⎥⎥⎦

≥ α − ερ(e
p(z))

2
, (25)

which together with (16) and A(z) = ep(z) shows

ρ(B) ≥ α − ερ(A)
2

. (26)
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Applying the similar arguments as above to B2, if r ∈ B2 and r ≥ r1, then θ∗D1(r) ≤ επ. Thus B2 ⊆ {r ∶ θ∗D1(r) ≤
επ}. Then we obtain also from Lemma 2.2 that

lim sup
R→∞

1
logR ∫

B2∩[1,R]

dt
t
≤ ερ(u). (27)

Combining (6), (22) with (27) we obtain

ρ(A) = ρ(e−p(z)) ≥ lim sup
R→∞

π

logR

R

∫
1

dt
tθ∗D2

(t)

= lim sup
R→∞

π

logR ∫
B̃2∩[1,R]

dt
tθ∗D2

(t)

= lim sup
R→∞

1
logR

⎡⎢⎢⎢⎢⎢⎣
π

R

∫
1

dt
tl2(t)

− 1
2 ∫
B2∩[1,R]

dt
t

⎤⎥⎥⎥⎥⎥⎦

≥ α

(2 + ε)α − 1
− ερ(u)

2
. (28)

Since α
(2+ε)α−1 is a monotone decreasing function of α, inequalities (16), (26) and (28) give

ρ(A) ≥
ρ(B) + ερ(A)

2

(2 + ε)(ρ(B) + ερ(A)
2 ) − 1

− ερ(B)
2

. (29)

Note that ε is positive arbitrary small and ρ(A), ρ(B) are �nite, we obtain

ρ(A) ≥ ρ(B)
2ρ(B) − 1

.

That is,
1

ρ(A) +
1

ρ(B) ≤ 2,

which contradicts the assumption. Thus, every solution f(/≡ 0) of equation (2) is of in�nite order.

Proof of Theorem 1.5. We assume that (4) has a solution f(z) with �nite order. Set

f = y exp
⎧⎪⎪⎨⎪⎪⎩
−1

2

z

∫
0

ep(z)dz
⎫⎪⎪⎬⎪⎪⎭
, (30)

equation (4) can be transformed into

y′′ + (Q(z) − 1
4
e2p(z) − 1

2
ep(z)p′(z)) y = 0. (31)

By a translation we may assume that

Q(z) = amzm + am−2zm−2 +⋯, m > 2. (32)

We de�ne the critical ray for Q(z) as those ray reiθj for which

θj =
−arg am + 2jπ

m + 2
, (33)

where j = 0, 1, 2⋯,m + 1, and note that the substitution z = xeiθj transforms equation (31) into

d2y
dx2 + (Q1(x) + P1(x))y = 0, (34)
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where
Q1(x) = α1xm + O(xm−2), α1 > 0

and
P1(x) = e2iθj (−1

4
e2p(xeiθj ) − 1

2
ep(xe

iθj )p′(xeiθj)) .

For the polynomial p(z) with degree n, set p(z) = (α + iβ)zn + pn−1(z) with α, β real, and denote δ(p, θ) ∶=
α cos nθ − β sin nθ. The rays

arg z = θk =
arctan α

β + kπ
n

, k = 0, 1, 2,⋯, 2n − 1

satisfying δ(p, θk) = 0 can split the complex domain into 2n equal angular domains. Without loss of
generality, denote these angle domains as

Ω
+ ∶ = {z = reiθ ∶ 0 < r < +∞, 2iπ

n
< θ < (2i + 1)π

n
} ,

Ω
− ∶ = {z = reiθ ∶ 0 < r < +∞, (2i + 1)π

n
< θ < 2(i + 1)π

n
} , (35)

i = 0, 1,⋯, n − 1, where δ(p, θ) > 0 onΩ+ and δ(p, θ) < 0 onΩ−. By Lemma 2.7, we obtain

∣P1(x)∣ ≤ ∣e2p(xeiθj )∣ + ∣ep(xe
iθj )∣∣p′(xeiθj)∣

≤ exp{δ(p, θ)xn} + exp{1
2
δ(p, θ)xn}O(xn−1) → 0 (36)

for xeiθj ∈ Ω− as x → ∞, then by Lemma 2.4 and (34), for any critical line arg z = θj lying in Ω− there exists a
path Γθj tending to in�nity, such that arg z → θj on Γθj while y(z) → 0 there. Moreover, by

RRRRRRRRRRRRR
exp

⎧⎪⎪⎨⎪⎪⎩
−1

2

z

∫
0

ep(z)dz
⎫⎪⎪⎬⎪⎪⎭

RRRRRRRRRRRRR
≤ exp

⎧⎪⎪⎨⎪⎪⎩

1
2

RRRRRRRRRRRRR

z

∫
0

ep(z)dz
RRRRRRRRRRRRR

⎫⎪⎪⎬⎪⎪⎭
≤ exp{1

2
r exp{1

2
δ(p, θ)rn}} → 1 (37)

for z ∈ Ω− as r →∞, together with (30) we have f(z) → 0 along Γθj tending to in�nity.
Setting V = f ′/f , equation (4) can be written as

V ′ + V2 + ep(z)V + Q(z) = 0. (38)

By Lemma 2.6, we have

∣V ′∣ + ∣V ∣2 = O(∣z∣N) (39)

outside an R-set U, where N is a positive constant. Moreover, if z = reiφ ∈ Ω+ is such that the ray arg z = φ
meets only �nitelymany discs of U we see that V = o(∣z∣−2) as z tends to in�nity on this ray and hence f tends
to a �nite, nonzero limit. Applying this reasoning to a set of φ outside a set of zero measure we deduce by the
Phragmén-Lindelöf principle that without loss of generality, for any small enough given positive ε,

f(reiθ) → 1 (40)

as r →∞ with

z = reiθ ∈ Ω+

ε ∶= {z = reiθ ∶ 0 < r < +∞, 2iπ
n

+ ε < θ < (2i + 1)π
n

− ε} . (41)

For any z = reiθ ∈ Ω−, we have that δ(p, θ) < 0, and by Lemma 2.7 we have

∣Q(z) − 1
4
e2p(z) − 1

2
ep(z)p′(z)∣ ≤ ∣Q(z)∣ + ∣e2p(z)∣ + ∣ep(z)∣∣p′(z)∣

≤ O(rm) + exp{δ(p, θ)rn} + exp{1
2
δ(p, θ)rn}O(rn−1)
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≤ O(rm) (42)

for su�ciently large r. Applying Lemma 2.5 to (31) and together with (42), y(z) satis�es

log+ ∣y(reiθ)∣ = O(r
m+2

2 ) (43)

as r →∞ for any z = reiθ ∈ Ω−. From (30) and (37), we have

log+ ∣f(reiθ)∣ = O(r
m+2

2 ) (44)

as r →∞ for any z = reiθ ∈ Ω−.
On the rays arg z = θk such that δ(p, θk) = 0, we have ∣ep(z)∣ = ∣epn−1(z)∣. Consider the two cases

δ(pn−1, θk) > 0 or δ(pn−1, θk) < 0, by the same method above, we get f(z) → 1 or log+ ∣f(z)∣ = O(r m+2
2 ),

respectively, on the ray arg z = θk. If δ(pn−1, θk) = 0 also, repeating these arguments again. Finally, we deduce
that either f(z) → 1 or log+ ∣f(z)∣ = O(r m+2

2 ) on the rays arg z = θk , k = 0, 1,⋯, 2n − 1. Thus, (30), (40), (44)
and the fact ε is arbitrary imply that, by the Phragmén-Lindelöf principle,

σ(f) ≤ m + 2
2

. (45)

We claim that (2i+1)π
n (i = 0, 1,⋯, n − 1) are critical rays for Q(z). For otherwise there exists a critical θj for

Q(z) in
(2i + 1)π

n
< θj <

(2i + 1)π
n

+ 2π
m + 2

(i = 0, 1,⋯, n − 1)

becausem+2 > 2n. This implies the existence of an unbounded domain of angular measure at most 2π
m+2 + ε,

bounded by a path on which f(z) → 0 and a ray on which f(z) → 1. By the remark following Lemma 2.7
implies that σ(f) > m+2

2 , contradicting (45). Then there exists a positive integer k satisfying 2π
n = k 2π

m+2 , that
is, m + 2 = kn, which contradicts n ∤ m + 2. Thus, we complete the proof.
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