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Abstract: A space (X , τ ) is called epi-mildly normal if there exists a coarser topology τ ′ on X such that
(X , τ ′ ) isHausdor� (T2)mildly normal.We investigate this property andpresent some examples to illustrate
the relationships between epi-mild normality and other weaker kinds of normality.
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In this paper, we introduce epi-mildly normal topological spaces. We investigate the property of epi-mild
normality and present some examples to illustrate the relationships between epi-mild normality and other
weaker kinds of normality. Throughout this paper, we denote an ordered pair by ⟨x, y⟩, the set of positive
integers byN, the set of rational numbers byQ, the set of irrational numbers byP, and the set of real numbers
by R. A T4 space is a T1 normal space, a Tychono� (T3 1

2
) space is a T1 completely regular space, and a T3

space is a T1 regular space. We do not assume T2 in the de�nition of compactness, countable compactness
and paracompactness. For a subset A of a space X, intA and A denote the interior and the closure of A,
respectively. An ordinal γ is the set of all ordinals α such that α < γ. The �rst in�nite ordinal is ω0 and the
�rst uncountable ordinal is ω1.

De�nition 1. A subset A of a space X is called closed domain [1], called also regularly closed, κ-closed, if
A = intA. A subset A of a space X is called open domain [1], called also regularly open, κ-open, if A = int(A).
A space X is called mildly normal [2], called also κ-normal [3], if for any two disjoint closed domains A and B
of X there exist two disjoint open sets U and V of X such that A ⊆ U and B ⊆ V.

De�nition 2. A space (X , τ ) is called epi-mildly normal if there exists a coarser topology τ ′ on X such that
(X , τ ′ ) is T2 (Hausdor�) mildly normal.

Note that if we require (X , τ ′ ) to be just mildly normal in De�nition 2 above, then any space will be epi-
mildly normal as the indiscrete topology will re�ne. Also, if we require (X , τ ′ ) to be T1 mildly normal in
De�nition 2 above, then any T1 space will be epi-mildly normal as the �nite complement topology, see [4],
will re�ne. It is clear from the de�nition that any T2 mildly normal space is epi-mildly normal, just take the
coarser topology equal the same topology. Observe that if τ ′ and τ are two topologies on X such that τ ′ is
coarser than τ and (X, τ ′ ) is Ti, i ∈ {0, 1, 2}, then so is (X, τ ). So, we conclude the following.

Theorem 3. Every epi-mildly normal space is T2.
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Recall that a topological space X is called completely Hausdor�, T2 1
2

[4] (called also Urysohn space [1]), if
for each distinct elements a, b ∈ X there exist two open sets U and V such that a ∈ U, b ∈ V, and U ∩ V = ∅.
A topological space (X , τ ) is called submetrizable if there exists a metric d on X such that the topology τ d
on X generated by d is coarser than τ [5]. A topological space (X , τ ) is called epinormal if there is a coarser
topology τ ′ on X such that (X , τ ′ ) is T4 [6]. For epinormality, we have something stronger.

Theorem 4. Every epinormal space is completely Hausdor�.

Proof. Let (X , τ ) be any epinormal space. Letτ ′ be a coarser topology on X such that (X , τ ′ ) is T4.Wemay
assume that X has more than one element and pick distinct a, b ∈ X. Using T2 of (X , τ ′ ), choose G,H ∈ τ ′

such that a ∈ G, b ∈ H, andG∩H = ∅. Using regularity of (X , τ ′ ), chooseU, V ∈τ ′ such that a ∈ U ⊆ Uτ
′

⊆ G
and b ∈ V ⊆ Vτ

′

⊆ H. We have that U, V ∈ τ and since Aτ ⊆ Aτ
′

for any A ⊆ X, we get Uτ ∩ Vτ = ∅.

Note that an epi-mildly normal space may not be completely Hausdor� and here is an example.

Example 5. Let X = {⟨x, y⟩ ∶ 0 ≤ y, x, y ∈ Q} and consider the irrational number
√
3. The Irrational Slop

topology IS [4] on X is generated by the neighborhoods of the form Nε(⟨x, y⟩)={⟨x, y⟩} ∪ Bε(x + y
√

3) ∪ Bε(x −
y
√

3)}, where Bε⟨ζ⟩ = {⟨r, 0⟩ ∶ r ∈ Q and ∣ r − ζ ∣< ε}, which is a subset of the x-axis. Each Nε(⟨x, y⟩) consists
of {⟨x, y⟩} plus two intervals on the rational x-axis centered at the two irrational points x ± y

√

3 ; the lines
joining these points to ⟨x, y⟩ have slop ±

√
3. Note that (X , IS ) is Hausdor� but not completely Hausdor�

[4]. Moreover, (X , IS ) is mildly normal as the only disjoint closed domains are the ground set X and the empty
set, hence it is epi-mildly normal.

It is clear from the de�nitions that

submetrizabilityÔ⇒ epinormalityÔ⇒ epi-mild normality.

The above implications are not reversible. ω1 + 1 is epinormal but not submetrizable [6]. For the second
implication, the Irrational Slop Space is epi-mildly normalwhich is not epinormal because it is not completely
Hausdor�. The question is whether there exist Tychono� epi-mildly normal spaces which are not epinormal.
We will give a partial answer in the class of minimal spaces below. Now, (R , τ p ), where τ p is the particular
point topology, p ∈ R [4], is mildly normal because the only closed domains are ∅ and R, but it is not epi-
mildly normal because it is not T2. Here is an example of a Tychono� zero-dimensional scattered epi-mildly
normal space which is not mildly normal. See also Example 9.

Example 6. For each p ∈ P and n ∈ N, let pn = ⟨p, 1n ⟩ ∈ R
2. For each p ∈ P, �x a sequence (p⋆n)n∈N of rational

numbers such that p′n = ⟨p⋆n , 0⟩ Ð→ ⟨p, 0⟩, where the convergence is taken in R2 with its usual topology. For
each p ∈ P and n ∈ N, let An(⟨p, 0⟩) = {p′k ∶ k ≥ n} and Bn(⟨p, 0⟩) = {pk ∶ k ≥ n}. Now, for each p ∈ P and
n ∈ N, let Un(⟨p, 0⟩) = {⟨p, 0⟩} ∪ An(⟨p, 0⟩) ∪ Bn(⟨p, 0⟩).

Let X = {⟨x, 0⟩ ∈ R2 ∶ x ∈ R} ∪ {⟨p, 1n ⟩ = pn ∶ p ∈ P and n ∈ N}. For each q ∈ Q, let B(⟨q, 0⟩) = {{⟨q, 0⟩}}.
For each p ∈ P, let B(⟨p, 0⟩) = {Un(⟨p, 0⟩) ∶ n ∈ N}. For each p ∈ P and each n ∈ N, let B(pn) = {{pn}}.
Denote by τ the unique topology on X that has {B(⟨x, 0⟩),B(pn) ∶ x ∈ R, p ∈ P, n ∈ N} as its neighborhood
system. Let Z = {⟨x, 0⟩ ∶ x ∈ R}. That is, Z is the x-axis. Then ( Z, τ Z ) ≅ (R , RS ), whereRS is the Rational
Sequence Topology, see [4]. Since Z is closed in X and (R , RS ) is not normal, then X is not normal, but, since
any basic open set is closed-and-open and X is T1, then X is zero-dimensional, hence Tychono�. Now, Let E ⊂ P
and F ⊂ P be closed disjoint subsets that cannot be separated in (R , RS ). Let C = ∪{B1(⟨p, 0⟩) ∶ p ∈ E} and
D = ∪{B1(⟨p, 0⟩) ∶ p ∈ F}. Then C and D are both open in (X, τ ) and C and D are disjoint closed domains that
cannot be separated, hence X is not mildly normal. But X is submetrizable by the usual metric, hence epi-mildly
normal.
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Note that the above example shows that epi-mild normality does not imply normality. Consider R with the
left ray topologyL = {∅,R}∪{(−∞, x) ∶ x ∈ R} [4]. It is normal because any two non-empty closed sets must
intersect. But it is not epi-mildly normal because it is not T2.

Theorem 7. Epi-mild normality is a topological property

Proof. Let (X,τ ) be any epi-mildly normal space. Assume that (X,τ ) ≅(Y ,S). Let τ ′ be a coarser topology
on X such that (X,τ ′) is Hausdor� mildly normal space. Let f ∶ (X,τ ) Ð→ (Y ,S) be a homeomorphism and
de�ne S′ on Y by S′={f(U) ∶ U ∈ τ ′}. Then S′ is a topology on Y coarser than S and (Y ,S′) is Hausdor�
mildly normal.

Epi-mild normality is an additive property.

Theorem 8. The sum⊕α∈ΛXα, where Xα is a space for each α ∈ Λ, is epi-mildly normal if and only if all spaces
Xα are epi-mildly normal.

Proof. If the sum X = ⊕α∈ΛXα is epi-mildly normal, then there exist τ ′ topology on X, coarser than ⊕α∈Λτ α
such that (X,τ ′) is a Hausdor�mildly normal space. Since Xα is closed domain in X for eachα ∈ Λ, (Xα,τ

′

α),
where τ ′

α={U ∩ Xα : U ∈τ ′}, is a Hausdor� mildly normal space. Thus all spaces Xα are epi-mildly normal
as (Xα,τ

′

α) is coarser topology than (Xα,τ α). Conversely, if all the Xα’s are epi-mildly normal, then there
exists a topology τ ′α on Xα for each α ∈ Λ, coarser than τ α such that (Xα,τ

′

α) is a Hausdor� mildly normal
space. Since Hausdor�ness is additive [1], then (X,⊕α∈Λτ

′

α) is a Hausdor� space. On the other hand, mild
normality is an additive property because each factor is open-and-closed in X and the intersection of any
closed domain in X with each factor Xα will be a closed domain in Xα. Therefore, X are epi-mildly normal as
⊕α∈Λτ

′

α is coarser topology than ⊕α∈Λτ α.

Recall that a topologyτ on anon-empty set X is said to beminimalHausdor� if (X ,τ ) is Hausdor� and there
is no Hausdor� topology on X strictly coarser thanτ , see [7, 8]. In [7], it was proved that “if the product space
is minimal Hausdor�, then each factor is minimal Hausdor�". In [9], the converse of the previous statement
wasproved.Namely, “theproduct ofminimalHausdor� spaces isminimalHausdor�". Intuitively, the product
of two epi-mildly normal spaces may not be epi-mildly normal. If X and Y are both minimal Hausdor� mildly
normal spaceswhose product X×Y is notmildly normal, then X×Y cannot be epi-mildly normal.We have not
been able to �nd such two spaces yet. As far as we know from the literature, the only example of two linearly
ordered topological spaces whose product is not mildly normal was given in [10]. This space turns out to be
epi-mildly normal. Here is the example.

Example 9. Wewill de�ne a Hausdor� compact linearly ordered space Y such that ω1×Y is epi-mildly normal.
Let {yn ∶ n < ω0} be a countably in�nite set such that {yn ∶ n < ω0} ∩ (ω1 + 1) = ∅. Let Y = {yn ∶ n <
ω0} ∪ (ω1 + 1). Let τ be the topology on Y generated by the following neighborhood system: For an α ∈ ω1,
a basic open neighborhood of α is the same as in ω1 with its usual order topology. For n ∈ ω0, a basic open
neighborhood of yn is {yn}. A basic open neighborhood of ω1 is of the form (α,ω1] ∪ {yn ∶ n ≥ k} where α < ω1
and k ∈ ω0. In other words, {yn ∶ n < ω0} is a sequence of isolated points which converges to ω1. Note that
if we de�ne an order < on Y as follows: For each n ∈ ω0, ω1 < yn+1 < yn, and < on ω1 + 1 is the same as the
usual order on ω1 + 1, then ( Y , τ ) is a linearly ordered topological space. It was shown in [10] that ( Y , τ ) is
a Hausdor� compact space, hence it is mildly normal. Also, it is well known that ω1 is a Hausdor� normal space
and hence mildly normal. But ω1 × Y is not mildly normal [10]. We will show that ω1 × Y is epi-mildly normal.
De�ne a topology V on ω1 generated by the following neighborhood system: Each non-zero element β < ω1 will
have the same open neighborhood as in the usual ordered topology in ω1. Each open neighborhood of 0 is of the
form U = (β,ω1) ∪ {0} where β < ω1. Simply, the idea is to move the minimal element 0 to the top and make
it the maximal element. Then V is coarser than the usual ordered topology on ω1 and (ω1 , V ) is a Hausdor�
compact space because it is homeomorphic to ω1 +1. Thus (ω1 , V )× ( Y , τ ) is T2 compact, hence T4 and the
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product topology V× τ is coarser than τ 0×τ , where τ 0 is the usual order topology de�ned on ω1. Therefore,
ω1 × Y is epi-mildly normal.

Here is a case when the product of two epi-mildly normal spaces will be epi-mildly normal.

Theorem 10. If X is epi-mildly normal countably compact and M is Hausdor� paracompact �rst countable,
then X ×M is epi-mildly normal.

Proof. Let (X,τ ) be any epi-mildly normal countably compact space. Then there exists coarser topology
τ ′ on X such that (X,τ ′) is Hausdor� mildly normal space. Since (X,τ ) is countably compact, (X,τ ′) is
countably compact. Hence (X,τ ′) × M is Hausdor� mildly normal, by [10, Theorem 2.9]. Thus X × M is epi-
mildly normal.

Corollary 11. If X is epi-mildly normal countably compact and M ismetrizable, then X×M is epi-mildly normal.

Let us go back to the question: “Is there a Tychono� epi-mildly normal space which is not epinormal?¨ We
answer this in the class of minimal Tychono� spaces [7]. Let (X , τ ) be any minimal Tychono� epi-mildly
normal space. The theorem: “All minimal completely regular spaces are compact", [7, 3.3], gives that (X , τ )
is compact, hence T4, thus epinormal. So, we get the following theorem.

Theorem 12. In the class of minimal Tychono� spaces, any epi-mildly normal space is T4.

So, the above question remains open. Observe that in [10, 1.4], using the continuum hypothesis (CH), a
Mrówka space which is mildly normal, hence epi-mildly normal, was constructed. This Mrówka space turns
out to be epinormal. Indeed, we show that any Mrówka space is epinormal, hence epi-mildly normal. Recall
that two countably in�nite sets are said to be almost disjoint [11] if their intersection is �nite. Call a subfamily
of [ω0]ω0 = {A ⊂ ω0 ∶ A is in�nite} amad family [11] onω0 if it is amaximal (with respect to inclusion) pairwise
almost disjoint subfamily. LetA be a pairwise almost disjoint subfamily of [ω0]ω0 . TheMrówka spaceΨ(A) is
de�ned as follows: The underlying set is ω0 ∪A, each point of ω0 is isolated, and a basic open neighborhood
of W ∈ A has the form {W} ∪ (W ∖ F), with F ∈ [ω0]<ω0 = {B ⊆ ω0∶B is �nite}. It is well known that there
exists an almost disjoint family A ⊂ [ω0]ω0 such that ∣A∣ > ω0 and the Mrówka space Ψ(A) is a Tychono�,
separable, �rst countable, and locally compact space which is neither countably compact, paracompact, nor
normal. AndA is amad family if and only ifΨ(A) is pseudocompact [12]. Let us recall the following de�nition
from [13].

De�nition 13. A topological space X is called C2-paracompact if there exist a Hausdor� paracompact space
Y and a bijective function f ∶ X Ð→ Y such that the restriction f ↾A ∶ A Ð→ f(A) is a homeomorphism for each
compact subspace A ⊆ X.

In [13], the following easy proved theoremwas given. “If X is a C2-paracompact Fréchet space and f ∶ X Ð→ Y
is any witness of the C2-paracompactness of X, then f is continuous".

Theorem 14. Any C2-paracompact Fréchet space is epinormal.

Proof. Let (X , τ ) be any C2-paracompact Fréchet space. If (X , τ ) is normal, we are done. Assume that (X ,
τ ) is not normal. Let ( Y , τ ′ ) be a T2 paracompact space and f ∶ (X , τ ) Ð→ ( Y , τ ′ ) be a bijective function
such that the restriction f ↾A ∶ A Ð→ f(A) is a homeomorphism for each compact subspace A ⊆ X. Since X is
Fréchet, f is continuous. De�ne τ ⋆ = {f−1(U) ∶ U ∈ τ ′ }. It is clear that τ ⋆ is a topology on X coarser than
τ such that f ∶ (X , τ ⋆ ) Ð→ ( Y , τ ′ ) is continuous. If W ∈ τ ⋆, then W is of the form W = f−1(U) where
U ∈ τ ′. So, f(W) = f(f−1(U)) = U which gives that f is open, hence homeomorphism. Thus (X , τ ⋆ ) is T4.
Therefore, (X , τ ) is epinormal.
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Theorem 15. Any Mrówka space Ψ(A) is epinormal.

Proof. For an almost disjoint family A, the Mrówka space Ψ(A) is C2-paracompact, being locally compact,
see [13] and [1, 3.3.D]. Ψ(A) is also Fréchet being �rst countable. We conclude that such a Mrówka space is
epinormal.

Here is another application of Theorem 14. The space in the next example, due to Urysohn, see [7], is a famous
example of a minimal Hausdor� space which is not compact.

Example 16. Let X = { aij , bij , ci , a, b ∶ i ∈ N, j ∈ N} where all these elements are assumed to be distinct.
De�ne the following neighborhood system on X:

For each i, j ∈ N, aij is isolated and bij is isolated.

For each i ∈ N, B(ci) = {Vn(ci) = ∪j≥n{aij , bij , ci} ∶ n ∈ N}.
B(a) = {Vn(a) = ∪j∈N ∪i≥n {aij , a} ∶ n ∈ N}.
B(b) = {Vn(b) = ∪j∈N ∪i≥n {bij , b} ∶ n ∈ N}.

Let us denote the unique topology on X generated by the above neighborhood system by τ . Then τ is minimal
Hausdor� and (X , τ ) is not compact [7].

Claim. (X , τ ) is not mildly normal.

Proof of Claim. Let G = { aij ∶ i is odd, j ∈ N} and H = { bij ∶ i is even, j ∈ N}. Then G and H are both open.
Thus E = G and F = H are closed domains. But E = G = G∪{ci ∶ i is odd }∪{a} and F = H = H ∪{ci ∶ i is even
} ∪ {b}. Thus E ∩ F = ∅. Any open set containing b will meet any open set containing the set {ci ∶ i is odd }.
Thus E and F cannot be separated by disjoint open sets. Therefore, (X , τ ) is not mildly normal and Claim
is proved. We conclude that (X , τ ) is not epi-mildly normal. Hence it cannot be epinormal. So, by Theorem
14, X cannot be paracompact.

Recall that a topological space X is called almost compact [14] if each open cover of X has a �nite subfamily
the closures of whose members covers X. A space X is called nearly compact [14] if each open cover of X has
a �nite subfamily the interiors of the closures of whose members covers X. A space X is said to be an almost
regular if for any closed domain subset A and any x /∈ A, there exist two disjoint open sets U and V such that
x ∈ U and A ⊆ V. A technique which is useful in the theory of coarser topologies is the semiregularization.
The topology on X generated by the family of all open domains is denoted by τ s. The space (X, τ s) is called
the semi regularization of X. A space (X , τ ) is semiregular if τ =τ s. A space X is H-closed [1] if X is closed
in every Hausdor� space in which X can be embedded. It is clear that if X is completely Hausdor� space
H-closed, then X is epi-mildly normal.

Theorem 17. Every Hausdor� nearly compact space is epinormal (hence epi-mildly normal).

Proof. Let τ s be the semiregularization of τ . Since (X,τ ) is a Hausdor� nearly compact space, τ s is a
compact Hausdor� space [15]. Hence (X,τ s) is a T4 space. Therefore X is epinormal space.

Since the semiregularization of a nearly compact space is compact, we conclude the following Corollary.

Corollary 18. For each α ∈ Λ, let (Xα ,τ α ) be a Hausdor� nearly compact space. Then ∏α∈Λ(Xα ,τ α ) is
epi-mildly normal.

Theorem 19. If (X , τ ) is almost regular almost compact and τ s is T1, then (X , τ ) is epi-mildly normal.

Proof. Since (X , τ ) is almost regular, (X,τ s) is regular [15]. Hence (X , τ s) is T3. Moreover, the coarser
topology of almost compact is almost compact. So, τ s is almost compact. But every almost regular almost
compact is mildly normal [2]. Thus τ s is Hausdor�mildly normal. Therefore (X, τ ) is epi-mildly normal.
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We need the following Lemma from [15] to prove the next theorem.

Lemma 20. Let ( Y ,U ) be a regular space. If f ∶ (X ,τ ) Ð→ ( Y , U ) is continuous, then f ∶ (X , τ s) Ð→
( Y , U ) is continuous.

Theorem 21. If (X , τ ) is T2 mildly normal, then (X ,τ s ) is mildly normal (hence epi-mildly normal).

Proof. Let A and B be two disjoint closed domains in semiregularization of X. Hence A and B are
closed domains in (X, τ ) [1, 1.7.8(b)]. Since (X, τ ) is mildly normal, there exists a continuous function
f ∶ (X , τ ) Ð→ ( I , UI) such that f(a) = 0, for each a ∈ A, and f(b) = 1, for each b ∈ B. Since I is regular,
f ∶ (X , τ s ) Ð→ ( I ,UI ) is continuous by Lemma 20. Thus τ s is mildly normal [2].

The following problems are still open:

1. Is epi-mild normality hereditary?
Observe that the space X in Example 16 can be embedded in another Hausdor� space by the following
theorem:“A Hausdor� space can be embedded as a closed subspace of a minimal Hausdor� space", [16],
see also [17]. But there is no reason to guarantee that the larger space ismildly normal or at least epi-mildly
normal. Also, there is a theorem:“A Hausdor� space can be densely embedded in a minimal Hausdor�
space if and only if the space is semiregular". [18]. For the same reason, as previous, we cannot apply it
even if we modify X to make it semiregular without lossing its minimality.

2. Is a β-normal [19] epi-mildly normal space normal?
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