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1 Introduction
In the past decades a great deal of attention was given to establish the optimality conditions and duality
theory for set-valued optimization problem by employing various notions of derivatives or directional deriva-
tives for set-valued maps. For more details related to this topic, one can refer to the excellent books [1-4].
Let us underline there is a growing interest on optimality and duality by using directional derivatives for
set-valued maps. For example, Corley [5] de�ned cone-directed contingent derivatives for set-valued maps
in terms of tangent cones, and used it to establish Fritz-John necessary optimality conditions for a set-
valued optimization. Under the assumption of generalized cone-preinvexity, Qiu [6] presented the optimality
conditions for a set-valued optimization problem by utilizing cone-directed contingent derivatives; Penot [7]
introduced the lower Dini derivative for set-valued mappings, which is the generalization of lower Dini
directional derivative for the real valued functions. Making use of this type of drectional derivatives, Kuan
and Raciti [8] derived a necessary optimality condition for proper minimizers in set-valued optimization;
Crespi et al. [9] obtained the necessary and su�cient conditions for weak minimizers and proper minimizers
in Lipschitz set-valued optimization in terms of the upper Dini directional derivatives. Guerraggio et al. [10]
proposed the optimality conditions for locally Lipschitz vector optimization problem by using of the upper
Dini directional derivatives; Yang [11] introduced Dini directional derivatives for a set-valued mapping in
topological spaces and used it to derive the optimality conditions for cone-convex set-valued optimization
problems. It is worth noticing that the Dini directional derivatives given by Yang [11] are di�erent from above
mentioned directional derivatives, which are in terms of continuous selection functions for the set-valued
mappings, and the necessary and su�cient optimality conditions were derived for the generalized cone-
preinvex set-valuedoptimizationproblemsbyusing this kindof directional derivatives in [12]. In 2012,Alonso-
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Durán and Rodríguez-Marín [13] presented the concept of limit set based upon Dini directional derivatives
given by Yang [11], and optimality conditions are given for several approximate solutions in unconstraint
set-valued optimization by utilizing limit set.

On the other hand, convex analysis is a powerful tool for the investigation of optimal solutions of set-
valued optimizationproblems. Various notions of generalized convexity have been introduced toweaken con-
vexity. One of such generalizations in set-valued analysis is called cone-convexity [14], which plays a very im-
portant role in set-valuedoptimization. Basedupon this concept, some scholars developed further generaliza-
tions of cone-convexity to vector optimization involving set-valued maps. For example, cone-convexlikeness
[15], cone-subconvexlikeness [15], nearly cone-convexlikeness [16] and nearly cone-subconvexlikeness [17]
etc. Among these notions, the nearly cone-subconvexlikeness is the most general one. Sach [18] introduced
another more general weak convexity for set-valued maps, called ic-cone-convexlikeness. However, it has
been pointed out in [19] that when the ordering cone has nonempty interior, ic-cone-convexlikeness is equiv-
alent to nearly cone-subconvexlikeness. In this paper, we shall make use of nearly cone-subconvexlikeness
as the weaker condition on convexity assumption.

Based upon the above observation, this paper is focused on Dini directional derivatives of set-valued
maps and weak minimizer of a set-valued optimization problem under weaker condition on convexity. The
purpose of this paper is two aspects: �rst, to establish the optimality conditions for local weak minimizers
in two types: separating of sets and Kuhn-Tucker type; second, to provide an employment of optimality
conditions for weak minimizer to obtain some duality results for Mond-Weir type and Wofe type dual
problems.

We proceed as follows: Section 2 is devoted to preliminaries, in which some well-known de�nitions
and results used in the sequel are recalled. In Section 3, we prove some optimality conditions for local
weak minimizers in nearly cone-subconvexlike set-valued optimization problems. In Section 4, we present
applications of results obtained in Section 3 to two types duality.

2 Preliminaries
Throughout the paper, we assume that X, Y and Z are three real normed linear spaces with topological dual
X∗, Y∗ and Z∗, repectively. For any x ∈ X and x∗ ∈ X∗, the canonical form between X and X∗ is denoted by
x∗Tx. Let x̄ ∈ X, U(x̄) is used for the set of all neighborhoods of x̄. Assuming A is a nonempty subset of Y, the
closure of A is denoted by clA and the cone generated by A is denoted by cone(A) = {λa ∶ a ∈ A, λ ∈ R+}.
D ⊂ Y and E ⊂ Z are closed pointed convex cones, which we also assume that they are solid, i.e., intD ≠ ∅
and intE ≠ ∅. We denote

D∗ = {y∗ ∶ y∗Td ≥ 0, ∀ d ∈ D},

and similarly for E∗. Let F ∶ X → 2Y be a set-valued mapping. The set

dom(F) ∶= {x ∈ X ∶ F(x) ≠ ∅},

is called the domain of F. The set

graph(F) ∶= {(x, y) ∈ X × Y ∶ y ∈ F(x)}

is called the graph of the map F. The pro�le map of F is written by F+(⋅) ∶= F(⋅)+D. We follow the convention
F(S) = ⋃x∈S F(x).

Let S ⊂ X and x̄ ∈ S. We will consider the contingent cone to S at x̄, de�ned by (see [1]):

T(S, x̄) = {x ∈ X ∶ ∃(tn) → 0+, (xn) → x with x̄ + tnxn ∈ S for all n ∈ N}.

Let S be nonempty set of X and F ∶ S → 2Y be a set-valuedmap. The limit set of the map F at a given point was
given by De�nition 2.1 in [11] and De�nition 1 in [13]. Now, we rewrite this de�nition in terms of set-valued
mapping.
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De�nition 2.1. Let (x̄, ȳ) ∈ graph(F) with x̄ ∈ S. The limit set of F at x̄ in the direction x ∈ T(S, x̄) with respect
to ȳ is the set-valued map

YF(x̄; ȳ) ∶ T(S, x̄) → 2Y

de�ned by

YF(x̄; ȳ)(x) = {y ∈ Y ∶ y = lim
(tn ,xn)→(0+ ,x)

f(x̄ + tnxn) − f(x̄)
tn

;

for some f ∈ CS(F), ȳ = f(x̄)},

where CS(F) denotes the set of continuous selections of F.

Let’s see an example of limit set for a set-valued mapping.

Example 2.2. Let X = Y = R, S = X, D = R+ and F ∶ S → 2Y be de�ned by

F(x) ∶= {y ∈ Y ∶ y ≥ x2}, for all x ∈ S.

Taking x̄ = 0, obviously, for every continuous selections f of F with ȳ = f(x̄) = 0, we can derive that

YF(0; 0)(x) = R+, for all x ∈ T(S, 0).

Let F ∶ S ⊂ X → 2Y , G ∶ S ⊂ X → 2Z be two set-valued maps, (x̄, ȳ) ∈ graph(F) and (x̄, z̄) ∈ graph(G). The
notation (F×G)(x) is used to denote (F(x), G(x)). The limit set of F×G at x̄ in the direction x ∈ T(S, x̄)with
respect to (ȳ, z̄) is denoted by the set-valued mapping

Y(F × G)(x̄; (ȳ, z̄)) ∶ T(S, x̄) → 2Y×Z

and given by
Y(F × G)(x̄; (ȳ, z̄))(x)

= {(y, z) ∈ Y × Z ∶ (y, z) = lim
(tn ,xn)→(0+ ,x)

(f × g)(x̄ + tnxn) − (f × g)(x̄)
tn

,

for some f ∈ CS(F) and g ∈ CS(G), (ȳ, z̄) = (f(x̄), g(x̄))}.

De�nition 2.3. Let F ∶ S → 2Y , S ⊂ X, and (x̄, ȳ) ∈ graph(F) with x̄ ∈ S. It is said that (x̄, ȳ) is a local weak
minimizer of F over S, if there exists U ∈ U(x̄) such that

(F(S ∩ U) − ȳ) ∩ −intD = ∅. (2.1)

If U = X, then theword "local" is omitted from the terminology in the above de�nition, and in this case, (x̄, ȳ)
is called a weak minimizer of F over S.

De�nition 2.4. Let S ⊂ X be a nonempty set and F ∶ S → 2Y be a set-valued mapping.
(i) F is D-convex on convex set S if for all t ∈ [0, 1], x1, x2 ∈ S,

tF(x1) + (1 − t)F(x2) ⊂ F(tx1 + (1 − t)x2) + D.

(ii) F is D-convexlike on S if and only if F(S) + D is a convex set.
(iii) F is D-subconvexlike on S if and only if F(S) + intD is a convex set.
(iii) F is nearly D-convexlike on S if and only if cl[F(S) + D] is a convex set.
(iv) F is nearly D-subconvexlike on S if cl[cone(F(S) + D)] is convex set.
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De�nition 2.4 (ii)-(iv) is extended from de�nitions in [14-17] for a set-valued map. In particular, it has been
pointed out in [16] that the following relationships hold:

D-convex⇒ D-convexlike⇒ D-subconvexlike⇔ nearly D-convexlike⇒ nearly D-subconvexlike.

In the above relationships the converses are not true in general as illustrated in the following two examples.

Example 2.5. Let X = Y = R2 and D = R2
+. De�ne F ∶ X → 2Y by F(x) = R2/(−R2

+). Clearly, F(X) + D =
R2/(−R2

+) is not a convex set. However, cl[cone(F(X) +D)] is convex. Hence, F is nearly D-subconvexlike on X
but not is D-convexlike.

Example 2.6. Let X = R2
+, Y = R2, D = R2

+, F ∶ X → 2Y be a set-valued mapping and de�ned by

F(x1, x2) =
⎧⎪⎪⎨⎪⎪⎩

{x1} × [1,+∞) x1 ∈ [0, 1)
{x1} × [0,+∞) x1 ∈ [1,+∞)

Clearly, F is nearly D-subconvexlike on X since cl[cone(F(X)+D)] is a convex set. However, F is neither a nearly
D-convexlike map nor a D-subconvexlike map, because cl[F(X) + D] and F(X) + intD are not convex.

De�nition 2.7 (see [18]). Let S ⊂ X be a nonempty set and F ∶ S → 2Y be a set-valued mapping. F is called
ic-D-convexlike on S if int(cone((F(S) + D)) is nonempty convex and

cone(F(S) + D) ⊂ cl[int(cone(F(S) + D))].

Remark 2.8. It has been proven in [19] that if the ordering cone D ⊂ Y has nonempty interior then ic-D-
convexlikeness is equivalent to nearly D-subconvexlikeness.

Lemma 2.9 (see [20]). Suppose that themap F ∶ S → 2Y is ic-D-convexlike on S. Then F is also ic-D1-convexlike
on S, where D1 is a convex cone satisfying D ⊂ D1.

The following lemma can be derived directly from Remark 2.8 and Lemma 2.9.

Lemma 2.10. Let intD ≠ ∅ and D ⊂ D1. Suppose that the map F ∶ S → 2Y is nearly D-subconvexlike on S. Then
F is also nearly D1-subconvexlike on S.

Since this paper deals with local solutions of set-valued optimization problems, we introduce the following
de�nition, which is local nearly cone-subconvexlike property of a set-valued map.

De�nition 2.11. Let S ⊂ X be a nonempty set and F ∶ S → 2Y is called to be nearly D-subconvexlike on S around
x̄ ∈ S if for each U ∈ U(x̄), there exists Ū ∈ U(x̄) such that Ū ⊂ U and F is a nearly D-subconvexlike on S ∩ Ū.

The following lemma is the alternative theorem for nearly D-subconvexlike set-valued map, which is neces-
sary for the results in next section.

Lemma 2.12 (see [17]). Let S ⊂ X be a nonempty set and F ∶ S → 2Y . Suppose that F is nearly D-subconvexlike
map on S. Then one and only one of the following conclusions holds:
(i) ∃ x ∈ S such that F(x) ∩ −intD ≠ ∅,
(ii) ∃ y∗ ∈ D∗/{0Y∗} such that y∗Ty ≥ 0, ∀ y ∈ F(x), ∀x ∈ S.
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3 Optimality conditions
Let S ⊂ X be a nonempty set, F ∶ S → 2Y and G ∶ S → 2Z be two set-valued maps. We consider the following
set-valued optimization problem:

(SOP)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minimize F(x)
subject to G(x) ∩ (−E) ≠ ∅,

x ∈ S.

LetΩ = {x ∈ S ∶ G(x)∩(−E) ≠ ∅}.Webeginwith giving anecessary optimality condition in type of separating
sets for a local minimizer of (SOP).

Lemma 3.1 (see [21]). If z̄ ∈ −E, z ∈ −int(cone(E + z̄)), 1
tn (zn − z̄) → z and tn → 0+, then zn ∈ −intE for large n.

Theorem 3.2. Let (x̄, ȳ) ∈ graph(F) and z̄ ∈ G(x̄)∩(−E). Suppose that (x̄, ȳ) is local weakminimizer of (SOP).
Then for all x ∈ T(S, x̄), it holds that

Y(F × G)+(x̄; (ȳ, z̄))(x) ∩ −(intD × int(cone(E + z̄))) = ∅. (3.1)

Proof. Because (x̄, ȳ) is a local weak minimizer of (SOP), we get there exists U ∈ U(x̄) such that (F(Ω ∩U) −
ȳ) ∩ −intD = ∅. This follows that

(F(Ω ∩ U) + D − ȳ) ∩ −intD = ∅. (3.2)

We proceed by contradiction. Suppose that (3.1) does not hold. Then there exist x ∈ T(S, x̄), y ∈ Y and z ∈ Z
such that

(y, z) ∈ Y(F × G)+(x̄; (ȳ, z̄))(x) ∩ −(intD × int(cone(E + z̄))).

Hence, it yields from De�nition 2.1 that there exist sequences tn → 0+, xn → x, (f , g) ∈ CF((F × G)+) such
that

(y, z) = lim
(tn ,xn)→(0+ ,x)

(f × g)(x̄ + tnxn) − (ȳ, z̄)
tn

, with (f × g)(x̄) = (ȳ, z̄), (3.3)

and
(y, z) ∈ −(intD × int(cone(E + z̄))). (3.4)

From (3.3) and (3.4), for large n we can get

f(x̄ + tnvn) − ȳ ∈ −intD. (3.5)

On the other hand, it follows from Lemma 3.1 that

g(x̄ + tnvn) ∈ −intE, for large n.

Hence, for large n, we have f(x̄ + tnvn) ∈ F+(x̄ + tnvn), g(x̄ + tnvn) ∈ G+(x̄ + tnvn) ∩ −E and x̄ + tnvn ∈ Ω ∩ U.
We derive from (3.5) that

f(x̄ + tnvn) − ȳ ∈ (F+(Ω ∩ U) − ȳ) ∩ −intD.

This contradicts to (3.2).

Theorem 3.3 (Fritz-John type). Let (x̄, ȳ) ∈ graph(F), z̄ ∈ G(x̄)∩(−E) and (x̄, ȳ) be a local weak minimizer of
(SOP). Suppose that ((F− ȳ)×G) is nearly D×E-subconvexlike map on S around x̄. Then there exists (y∗, z∗) ∈
(D∗ × E∗)/{(0, 0)} such that for all (y, z) ∈ Y(F × G)+(x̄; (ȳ, z̄))(x), x ∈ T(S, x̄),

y∗Ty + z∗Tz ≥ 0, (3.6)

and
z∗T z̄ = 0. (3.7)
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Proof. Because (x̄, ȳ) is a locally weak minimizer of (SOP), we get that there exists U0 ∈ U(x̄) such that

((F × G)(S ∩ U0) − (ȳ, 0)) ∩ −int(D × E) = ∅. (3.8)

Since ((F − ȳ) × G) is nearly D × E-subconvexlike map on S around x̄, it follows from De�nition 2.11 that for
above U0 there exists Ū ∈ U(x̄) such that Ū ⊂ U0 and ((F − ȳ) × G) is nearly D × E-subconvexlike map on
S ∩ Ū. Denote

H(x) ∶= (F(x) − ȳ) × G(x), ∀ x ∈ S.

Thus, it implies that H is nearly D × E-subconvexlike map on S ∩ Ū, and we get from (3.8) that

H(S ∩ Ū) ∩ −int(D × E) = ∅.

Hence, It yields from Lemma 2.12 that there exists (y∗, z∗) ∈ (D∗ × E∗)/{(0, 0)} that such

y∗T(y − ȳ) + z∗Tz ≥ 0, ∀ (y, z) ∈ F × G(S ∩ Ū). (3.9)

Taking y = ȳ and z = z̄, we obtain z∗T z̄ ≥ 0. Noticing that z̄ ∈ −E, we have z∗T z̄ ≤ 0. Hence, we obtain (3.7).
Furthermore, it yields from (3.7) and (3.9) that

y∗T(y − ȳ) + z∗T(z − z̄) ≥ 0, ∀ (y, z) ∈ F × G(S ∩ Ū). (3.10)

Now, for x ∈ T(S, x̄) and (y, z) ∈ Y(F × G)+(x̄; (ȳ, z̄))(x), we shall prove that (3.6) holds. In fact, it follows
from the de�nition of limit set of (F × G)+ at x̄ in the direction x ∈ T(S, x̄) with respect to (ȳ, z̄) that there
exist tn → 0+, xn → x, (f , g) ∈ CF((F × G)+) and (yn , zn) → (y, z) such that for all n

yn ∈
f(x̄ + tnxn) + D − ȳ

tn
, zn ∈

g(x̄ + tnxn) + E − z̄
tn

. (3.11)

For large n, we can get x̄ + tnxn ∈ S ∩ Ū. It yields from (3.11) that there is (dn , en) ∈ D × E such that

yn =
f(x̄ + tnxn) + dn − ȳ

tn
, zn =

g(x̄ + tnxn) + en − z̄
tn

.

For large n, we derive from (3.10) and y∗Tdn + z∗Ten ≥ 0 that

y∗T( f(x̄ + tnxn) + dn − ȳ
tn

) + z∗T( g(x̄ + tnxn) + en − z̄
tn

) ≥ 0,

which shows that y∗Tyn + z∗Tzn ≥ 0. Taking n → +∞, we obtain that y∗Ty + z∗Tz ≥ 0. This completes the
proof.

Remark 3.4. In Theorem 3.3, if (x̄, ȳ) is a weak minimizer of (SOP), we use the nearly D × E-subconvexlike
property of ((F − ȳ) × G) on S, and in this case the terminology "around x̄" is omitted.

As we see in the proof of Theorem 3.3, the nearly cone-subconvexlike property of ((F − ȳ) × G) is essential.
Now we present an example, in which ((F − ȳ) × G) has nearly cone-subconvexlike property.

Example 3.5. Let X = Y = R2, Z = R, D = R2
+, E = R+ and S be de�ned by

S ∶= {(x, y) ∈ R2 ∶ x ≥ −2, y ≥ 0} ∪ {(x, y) ∈ R2 ∶ x ≥ 0, y ≥ −2}.

The set-valued mappings F ∶ S → 2Y and G ∶ S → 2Z are de�ned by F(x, y) = S and G(x, y) = 0 for all
(x, y) ∈ S. Taking ȳ = (−2, 0), we derive that ((F − ȳ) × G) is a nearly D × E-subconvexlike map on S since
cl[cone(((F − ȳ) × G)(S) + D × E)] is convex set. However, (F × G) is not a nearly D × E-subconvexlike map on
S because cl[cone((F × G)(S) + D × E)] is not convex.
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It is well known that optimality condition of Kuhn-Tucker type can be derived from that of Fritz-John type by
adding a suitable constraint quali�cation. Next, we present a necessary optimality condition in Kuhn-Tucker
type, which is implied from Theorem 3.3 by giving the local generalized Slater constraint quali�cation for the
constraint set-valued map.

Theorem 3.6 (Kuhn-Tucker type). Let (x̄, ȳ) ∈ graph(F) and z̄ ∈ G(x̄) ∩ (−E). Suppose that (x̄, ȳ) is a local
weak minimizer of (SOP) and ((F− ȳ)×G) is nearly D×E-subconvexlike map on S around x̄. If for all U ∈ U(x̄),
there exists x̂ ∈ S ∩U such that G(x̂) ∩−intE ≠ ∅, then there exists y∗ ∈ D∗/{0} and z∗ ∈ E∗ such that (3.6) and
(3.7) hold for all (y, z) ∈ Y(F × G)+(x̄; (ȳ, z̄))(x), x ∈ T(S, x̄).

Proof. Since the conditions of Theorem 3.3 are ful�lled, we get that there exists (y∗, z∗) ∈ (D∗×E∗)/{(0, 0)}
such that (3.6) and (3.7) hold for all (y, z) ∈ Y(F × G)+(x̄; (ȳ, z̄))(x), x ∈ T(S, x̄). Hence, it is only necessary
to prove y∗ ≠ 0. From the proof of Theorem 3.3, there is Ū ∈ U(x̄) such that

y∗Ty − y∗T ȳ + z∗Tz ≥ 0, ∀ (y, z) ∈ F × G(S ∩ Ū).

If y∗ = 0, then z∗ ≠ 0 and
z∗Tz ≥ 0, ∀ z ∈ G(S ∩ Ū). (3.12)

By the assumption, with this Ū, there exists x̂ ∈ S ∩ Ū such that G(x̂) ∩ −intE ≠ ∅. This illustrates that there
exists ẑ ∈ G(x̂) ∩ −intE such that z∗T ẑ < 0. This is a contradiction to (3.12).

Under the assumption of nearly cone-subconvexlike property of Y(F×G)+(x̄, (ȳ, z̄)), we can obtain the next
result.

Theorem 3.7. Let (x̄, ȳ) ∈ graph(F) and z̄ ∈ G(x̄) ∩ (−E). Suppose that (x̄, ȳ) is a local weak minimizer of
(SOP) and Y(F × G)+(x̄; (ȳ, z̄)) is nearly D × E-subconvexlike map on T(S, x̄). Then there exists (y∗, z∗) ∈
(D∗ × E∗)/{(0, 0)} such that (3.6) and (3.7) hold for all (y, z) ∈ Y(F × G)+(x̄, (ȳ, z̄))(x), x ∈ T(S, x̄).

Proof. Since (x̄, ȳ) is a local weak minimizer of (SOP), we derive from Theorem 3.2 that

Y(F × G)+(x̄, (ȳ, z̄))(x) ∩ −(intD × int(cone(E + z̄))) = ∅. for all x ∈ T(S, x̄)

On the other hand, since Y(F × G)+(x̄; (ȳ, z̄)) is nearly D × E-subconvexlike map on T(S, x̄), it yields from
Lemma 2.10 and E ⊂ cone(E + z̄) that Y(F × G)+(x̄; (ȳ, z̄)) is nearly D × cone(E + z̄)-subconvexlike map on
T(S, x̄). Hence, there exists (y∗, z∗) ∈ (D∗ × (cone(E + z̄))∗)/{(0, 0)} such that

y∗Ty + z∗Tz ≥ 0, for all (y, z) ∈ Y(F × G)+(x̄, (ȳ, z̄))(x), x ∈ T(S, x̄).

Since (cone(E+ z̄))∗ ⊂ E∗, we get that z∗ ∈ E∗ and (3.6) holds. For (3.7), since z̄ ∈ −E, it is clearly that z∗T z̄ ≤ 0.
In addition, we derive from z∗ ∈ (cone(E+ z̄))∗ that z∗T(e+ z̄) ≥ 0 for all e ∈ E. Taking e = 0,we have z∗T z̄ ≥ 0.
Thus, z∗T z̄ = 0.

At the end of this section, we present a su�cient optimality condition for a local weak minimizer of (SOP).
This result and Theorem 3.6 will be applied to duality in next section.

Theorem 3.8. Let (x̄, ȳ) ∈ graph(F), z̄ ∈ G(x̄) ∩ (−E) and for all x ∈ S

((F × G)(x) − (ȳ, z̄)) ⊂ Y(F × G)+(x̄; (ȳ, z̄))(x − x̄). (3.13)

If there exists y∗ ∈ D∗/{0} and z∗ ∈ E∗ such that (3.6) and (3.7) hold, then (x̄, ȳ) is a local weak minimizer of
(SOP).

Proof. Suppose that (x̄, ȳ) is not a local weak minimizer of (SOP), then for all U ∈ U(x̄) there is x ∈ Ω ∩ U
such that

(F(x) − ȳ) ∩ −intD ≠ ∅.
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Hence, there are y ∈ F(x) and z ∈ G(x) ∩ −E such that

y − ȳ ∈ −intD. (3.14)

It yields from the condition (3.13) that

(y − ȳ, z − z̄) ∈ ((F × G)(x) − (ȳ, z̄)) ⊂ Y(F × G)+(x̄; (ȳ, z̄))(x − x̄).

So, we get from (3.6) that
y∗T(y − ȳ) + z∗T(z − z̄) ≥ 0.

Noticing that z∗Tz ≤ 0 and (3.7) holds, one has

y∗T(y − ȳ) ≥ −z∗Tz + z∗T z̄ = −z∗Tz ≥ 0.

This contradicts to (3.14).

4 Duality Theorems

4.1 Mond-Weir Type Duality

In this subsection, for the primal problem (SOP) we will construct a Mond-Weir type dual problem. Let
(x′, y′) ∈ graph(F) and z′ ∈ G(x′) ∩ −E. Considering the following Mond-Weir dual problem (MWD):

(MWD)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max y′

s. t. y∗Ty + z∗Tz ≥ 0, ∀ (y, z) ∈ Y(F × G)+(x′; (y′, z′))(x),∀ x ∈ T(S, x̄),
z∗Tz′ ≥ 0,
(y∗, z∗) ∈ (D∗/{0Y∗}) × E∗.

Denote by K1 the set of all feasible points of (MWD), i.e. the set of points (x′, y′, z′, y∗, z∗) satisfying all the
constraints of (MWD). Let W1 ∶= {y′ ∈ F(x′) ∶ (x′, y′, z′, y∗, z∗) ∈ K1}.

De�nition 4.1. A feasible point (x′, y′, z′, y∗, z∗) of the problem (MWD) is said to be a weak maximizer of
(MWD) if

(W1 − y′) ∩ int(D) = ∅.

Theorem 4.2 (Weak Duality). Let (x′, y′) ∈ graph(F), z′ ∈ G(x′) ∩ −E, and

((F × G)(x) − (y′, z′)) ⊂ Y(F × G)+(x′; (y′, z′))(x − x′), for all x ∈ T(S, x′). (4.1)

Suppose that (x̄, ȳ) is a feasible solution of (SOP) and (x′, y′, z′, y∗, z∗) is a feasible solution of (MWD). Then

ȳ − y′ ∉ −int(D). (4.2)

Proof. We proceed by contradiction. Assuming that

ȳ − y′ ∈ −int(D).

We derive from y∗ ∈ D∗/{0} that
y∗T(ȳ − y′) < 0. (4.3)

Since (x̄, ȳ) is a feasible solution of (SOP), we get from (4.1) that

((F × G)(x̄) − (y′, z′)) ⊂ Y(F × G)+(x′; (y′, z′))(x̄ − x′), (4.4)
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and G(x̄) ∩ −E ≠ ∅. Taking z̄ ∈ G(x̄) ∩ −E, we obtain from the constraint condition z∗ ∈ E∗ that

z∗T z̄ ≤ 0.

Then, we derive from z∗Tz′ ≥ 0 that
z∗T(z̄ − z′) ≤ 0. (4.5)

Furthermore, it yields from the �rst constraint of (MWD) and (4.4) that

y∗T(ȳ − y′) + z∗T(z̄ − z′) ≥ 0. (4.6)

By (4.5) and (4.6), we get
y∗T(ȳ − y′) ≥ 0.

This is a contradiction to (4.3).

Theorem 4.3 (Strong duality). Let (x̄, ȳ) ∈ graph(F) and z̄ ∈ G(x̄) ∩ (−E). Suppose that (x̄, ȳ) is a weak
minimizer of (SOP) and ((F − ȳ) × G) is nearly D × E-subconvexlike map on S. If there exists x̂ ∈ S such that
G(x̂) ∩ −intE ≠ ∅ and

((F × G)(x) − (ȳ, z̄)) ⊂ Y(F × G)+(x̄; (ȳ, z̄))(x − x̄), for all x ∈ S, (4.7)

then there exist y∗ ∈ D∗/{0} and z∗ ∈ E∗ such that (x̄, ȳ, z̄, y∗, z∗) is a feasible solution for (MWD).
Furthermore, if the Weak Duality Theorem 4.2 between (SOP) and (MWD) holds, then (x̄, ȳ, z̄, y∗, z∗) is a weak
maximizer of (MWD).

Proof. It yields fromTheorem 3.6 that there are y∗ ∈ D∗/{0} and z∗ ∈ E∗ such that (x̄, ȳ, z̄, y∗, z∗) is a feasible
solution of (MWD). We only need to prove that (x̄, ȳ, z̄, y∗, z∗) is a weak maximizer of (MWD). We proceed by
contradiction. If there exists a feasible solution (x0, y0, z0, y∗0 , z∗0) of (MWD) such that

y0 − ȳ ∈ intD,

that is
ȳ − y0 ∈ −intD,

which contradicts the Weak Duality Theorem 4.2 between (SOP) and (MWD).

Theorem 4.4 (Converse duality). Let (x′, y′) ∈ graph(F), z′ ∈ G(x′)∩(−E) and (4.1) be satis�ed for any x ∈ S.
If there exist y∗ ∈ D∗/{0} and z∗ ∈ E∗ such that (x′, y′, z′, y∗, z∗) is a feasible solution of (MWD), then (x′, y′)
is a weak minimizer of (SOP).

Proof. It results directly from Theorem 3.8.

4.2 Wolfe Type Duality

Let us �x a point d0 ∈ D/{0Y}. Suppose that (x′, y′) ∈ graph(F) and z′ ∈ G(x′)∩−E. Considering the following
problem (WD), called Wolfe type dual problem of (SOP):

(WD)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max y′ + z∗Tz′ ⋅ d0

s. t. y∗Ty + z∗Tz ≥ 0, ∀ (y, z) ∈ Y(F × G)+(x′; (y′, z′))(x),∀ x ∈ T(S, x̄),
y∗Td0 = 1,
(y∗, z∗) ∈ (D∗/{0Y∗}) × E∗.

Denote by K2 the set of all feasible points of (WD), i.e. the set of points (x′, y′, z′, y∗, z∗) satisfying all the
constraints of Problem (WD). Let W2 = {y′ + z∗Tz′ ⋅ d0 ∶ (x′, y′, z′, y∗, z∗) ∈ K2}.
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De�nition 4.5. A feasible point (x′, y′, z′, y∗, z∗) of the problem (WD) is said to be a weakmaximizer of (WD)
if

(W2 − (y′ + z∗Tz′ ⋅ d0)) ∩ int(D) = ∅.

Theorem 4.6 (Weak Duality). Let (x′, y′) ∈ graph(F), z′ ∈ G(x′) ∩ −E, and

((F × G)(x) − (y′, z′)) ⊂ Y(F × G)+(x′; (y′, z′))(x − x′), for all x ∈ S. (4.8)

Suppose that (x̄, ȳ) and (x′, y′, z′, y∗, z∗) are feasible points for (SOP) and (WD), respectively. Then

ȳ − y′ − z∗Tz′ ⋅ d0 ∉ −intD. (4.9)

Proof. Firstly, since x̄ ∈ S and G(x̄) ∩ (−E) ≠ ∅, taking z̄ ∈ G(x̄) ∩ (−E), we get from (4.8) that

((F × G)(x̄) − (y′, z′)) ⊂ Y(F × G)+(x′; (y′, z′))(x̄ − x′), for all x ∈ S.

Then, it yields from the �rst constraint condition of problem (WD) that

y∗T(ȳ − y′) + z∗T(z̄ − z′) ≥ 0. (4.10)

Assuming that
ȳ − (y′ + z∗Tz′ ⋅ d0) ∈ −intD.

Because z∗T z̄ ≤ 0, we get that z∗T z̄ ⋅ d0 ∈ −D and

ȳ + z∗T z̄ ⋅ d0 − (y′ + z∗Tz′ ⋅ d0) ∈ −D − intD ⊂ −intD.

Noticing that y∗ ∈ D∗/{0Y∗} and y∗Td0 = 1, we have

y∗T(ȳ − y′) + z∗T(z̄ − z′) < 0,

which contradicts (4.10). Thus, we obtain ȳ − y′ − z∗Tz′ ⋅ d0 ∉ −int(D), as desired.

Theorem 4.7 (Strong duality). Let (x̄, ȳ) ∈ graph(F) and z̄ ∈ G(x̄) ∩ (−E). Suppose that (x̄, ȳ) is a weak
minimizer of (SOP) and for some (y∗, z∗) ∈ (D∗/{0})×E∗ with y∗Td0 = 1 such that (3.6) and (3.7) are satis�ed.
If

((F × G)(x) − (ȳ, z̄)) ⊂ Y(F × G)+(x̄; (ȳ, z̄))(x − x̄), for all x ∈ S, (4.11)
then (x̄, ȳ, z̄, y∗, z∗) is a feasible solution for (WD). Furthermore, if the Weak Duality Theorem 4.6 between
(SOP) and (WD) holds, then (x̄, ȳ, z̄, y∗, z∗) is a weak maximizer of (WD).

Proof. By the given conditions, it is obvious that (x̄, ȳ, z̄, y∗, z∗) is a feasible solution for (WD) and

z∗T z̄ = 0.

Next, we show that
(W2 − ȳ − z∗T z̄ ⋅ d0) ∩ intD = ∅.

Let (x′, y′, z′, y∗1 , z∗1) be a feasible solution for (WD) such that

y′ + z∗T1 z′ ⋅ d0 ∈ (W2 − ȳ − z∗T z̄ ⋅ d0) ∩ intD.

It yields from z∗T z̄ = 0 that
y′ + z∗T1 z′ ⋅ d0 ∈ (W2 − ȳ) ∩ int(D).

Therefore,
y′ + z∗T1 z′ ⋅ d0 − ȳ ∈ int(D).

This contradicts the Weak Duality Theorem 4.6 between (SOP) and (WD).

Theorem 4.8 (Converse duality). Let (x′, y′) ∈ graph(F), z′ ∈ G(x′) ∩ (−E) and (4.8) be satis�ed for any
x ∈ S. If there exists y∗ ∈ D∗/{0} and z∗ ∈ E∗ such that (x′, y′, z′, y∗, z∗) is a feasible solution of (MWD) and
z∗Tz′ = 0, then (x′, y′) is a weak minimizer of (SOP).

Proof. It implies directly from Theorem 3.8.



1138 | X. Kong et al.

5 Conclusions
Wehave established the separating of sets type and Kuhn-Tucker type optimality conditions for a constrained
set-valued optimization problem in the sense of weak e�ciency. We also present the weak, strong and
converse duality theorems for Mond-Weir type and Wofe type dual problems. The generalized convexity
assumed in current paper is called nearly cone-subconvexlikeness,which ismoreweaker than several existed
generalized convexities. The derivative we adopted is so called the limit set, which has very nice properties.
In recent years, there has been a growing interest to investigate set-valued optimization by utilizing di�erent
derivatives. In [22], we used higher-order radial derivatives to establish the optimality conditions and duality
theorems for set-valued optimization, because di�erent types of derivatives of a set-valued mapping vary
with respect to the existence and properties. This leads to di�erent methods and results by using di�erent
derivatives.
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