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Abstract: We consider the Toeplitz matrices whose elements are the coefficients of Bazilevi¢ functions and
obtain upper bounds for the first four determinants of these Toeplitz matrices. The results presented here are
new and noble and the only prior compatible results are the recent publications by Thomas and Halim [1]
for the classes of starlike and close-to-convex functions and Radhika et al. [2] for the class of functions with
bounded boundary rotation.

Keywords: Toeplitz Determinants, Analytic, Univalent and Bazilevi¢ Functions

MSC: 30C45, 33C50, 30C80

1 Introduction

Let A denote the class of all functions f of the form
f(z) =2+ anz", M
n=2

which are analytic in the open unit disk U = {z : |z| < 1} and let S denote the subclass of .4 consisting of
univalent functions. Obviously, for functions f € S we must have f’ + 0in U. For f € S, we consider the family
B(3) of Bazilevic functions of type 3;0 < 3 < 1 so that

” (Z”’f@’)) 20,
[f(2)]"7

The family B(3) of Bazilevi¢ functions of type 3;0 < 8 < 1 provides a transition from the class of starlike
functions to the class of functions of bounded boundary rotation. To see this, we note that for the choice of
B =0, we have B(5) = S*(0) = S*, the class of starlike functions f € S so that R(zf’/f) > 0 in U and for the
choice of 3 = 1, we get the family R of functions f € S of bounded boundary rotation so that R ( f ’) >0inU.
(For further details see [3].)

Several authors (e.g. see [4-8]) have discussed various subfamilies of the well-known Bazilevi¢ functions
of type 8 from various viewpoints including their coefficient estimates. It is interesting to note in this
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connection that the earlier investigations on the subject do not seem to have made use of Toeplitz matrices
and determinants. Toeplitz matrices are one of the well-studied classes of structured matrices. They arise in all
branches of pure and applied mathematics, statistics and probability, image processing, quantum mechanics,
queueing networks, signal processing and time series analysis, to name a few (e.g see Ye and Lim [9]). Toeplitz
matrices have some of the most attractive computational properties and are amenable to a wide range of
disparate algorithms and determinant computations.

Here we consider the symmetric Toeplitz determinant

an  dn+1 *** An+g-1
an+1 :
Tg(n)=| .
anig-1 Qn

and obtain upper bounds for the coefficient body T,4(n); g = 2, 3; n = 1, 2, 3 where the entries of T4(n) are
the coefficients of functions f of the form (1) that are in the family of Bazilevi¢ functions B(3). As far as we are
concerned, the results presented here are new and noble and the only prior compatible results are the recent
publications by Thomas and Halim [1] for the classes of starlike and close-to-convex functions and Radhika
et al. [2] for the class of functions with bounded boundary rotation. We shall need the following result [10] in
order to prove our main theorems.

Lemmall. Let h(z) = 1+ X2, pnz" € P. Then for some complex valued x with |x| < 1 and some complex
valued ¢ with [¢] < 1.

2p2 = pt +x(4-p?)
4ps = pi +2(4 - p)pix - p1(4—p)x’ +2(4 - p1) (1 - [x[*)¢.

2 Coefficient estimates for Toeplitz determinant

In our first theorem we determine a sharp upper bound for the coefficient body T,(2).

Theorem 2.1. Let f given by (1) be in the class B(3); 0 < 3 < 1. Then we have the sharp bound

(-B*-68° -128°-653+5)
max{l,‘ (Br1) .

2 2 4
IT2(2)] = |03 - az‘ < W

Proof. First note that by equating the corresponding coefficients in the equation

1-B g1
Zifl(_zg = h(z)
[f(2)]
we obtain ’
_ 1
a = (B T 1) ) (2)
_p2 (B-1)pi
B2 2 ®
In view of (2) and (3), a simple computation leads to
2= p; _, (B-1)’p1  pip2(6-1) _ pi @

(B+2)>  4(B+1)*  (B+2)(B+1)? (B+1)%

Note that, by Lemma 1.1, we may write 2p, = p> + x(4 — p?) where without loss of generality we let O < p; =
p < 2. Substituting this into the above equation we obtain the following quadratic equation in terms of x.

(4-p) 2 (B+3)(4-php*  [(B7+66+9)p° - 4(5+1)°(2+5)°]p*
4B+2)2 2(B+1)2(B+2)? 4(B+1)4(8+2)? '

2 2
as —daj =
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Using the triangle inequality we obtain

(4-p»? (B+3)(4-pHp*  [(B +68+9)p* +4(8+1)*(2+5)*]p’
4(B+2)2 2B+ 1)2(Br2)2 4B+ 1)*(3+2)

Differentiating &(p, 3) with respect to p we obtain

=o(p, B).

2 2
‘a3 —az‘ <

d(2(p,8)) _ P[P’ (8 -38+2)-25>+45" + 148+ 8]
op (B+1)4(B+2) :

= Ovyields either p = 0 or

Setting 76 (qﬁgp, 5)

2 2B -4p*-14B-8
- B -38+2

But 23> - 453° - 148 - 8 < 0 for 0 < 3 < 1. Therefore, the maximum of |a3 - a3| is attained at the end points

p1=pe[0,2].
For p; = 0, we have p, = 2x. Therefore, from (4),

‘az_az‘: 41x° <4
PTRAT (B+2)2 T (B+2)7
2 2 _2(8-1)

For p; = 2 wehave a; = B and as = B~ (502 which yields

2 oy |4(-8"-68> -128> - 68 +5)
|%‘“4§‘ G+ 13 +2)?

The result is sharp for the functions given by

27Pf(z) 14z

[f()]"F 1-7 .

Remark 2.2. Theorem 2.1 for 3 = O yields the bound \a% - a%] < 5 for the class of starlike functions S*
confirming the bound obtained by Thomas and Halim [1] and for B = 1 yields the bound |a§ - a%\ < 5/9 for
the class of functions with bounded boundary rotation R confirming the bound obtained by Radhika et al. [2].

In our next theorem, we determine an upper bound for the coefficient body T, (3).

Theorem 2.3. Let f given by (1), be in the class B(8), 0 < 3 < 1. Then

IN(B)| 4 }
9(B+3)2(B+1)(B+2)2" (2+p)2]"

|T2(3)| = |a§ - a%‘ < max{

where
N(B) = 48° + 408" + 1523° + 883> — 13125* - 50963> — 80243 — 42480 + 2268.

Proof. By equating the corresponding coefficients in the equation,

27Pf(2)
zZ TV _p
rare "
we obtain »
1
©= Gy ©)
@ P _ (B-1)pi and ©

TB+2 2B+1)2
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B+3 (5+1)(5+2) 6(6+1)3 )
In view of (6) and (7) and applying Lemma 1, denoting X = 4 — p> and Y = (1 — |x|*)¢, where 0 < p < 2 and
<] < 1 we get,

ag =

2 o B8+1087 +478% + 1488° + 383" + 77853 + 115332 +13685+1296 6
As— 3= 144(B +3)2(B+ 1)5(B + 2)2 P
B +68+9 o X’y p’x’y
T4B+ 1B+ 2P T 43132 4(B13)2
(B+5)xX’p1Y +ﬁ +58° +118° +19ﬂ+36p%XY
T2(8+3)2(8+2)(B+1)  12(8+3)2(B+2)(B+1)
. pix’x* B+5
16(8+3)  4(B+32(B+2)(B+1)"
B%+108 + 25 2922 x*X?
T 4(B+3)2(B+2)2(B+ 12PN Y T4 2)2
ﬁ +56 +115 +195+36 4
G321
B8 +108% +368% + 745> + 1315 + 180
12(8+3)2(B+2)2(B+1)*
B (8+3)
2(8+2)*(B+1)?

As in the proof of Theorem 2.1, without loss of generality, we can write p; = p, where O < p < 2. Then an
application of triangle inequality gives,

(2-p)’* |X|4+(6+5)(p ~2p)(4-p*)* x?
16(3 + 3)2 4(B+3)%(B+2)(B+1)
B2 +108 + 25
+[4(5+3)2(ﬂ+2)(6+1)2p (4=
p (p 2)(4-p )(B +55 +115 +198 +36)
24(B+3)2(B+2)(B+1)3
_(BF+28-1)(4-p*)* p(4-p*) ]|X|2
4(B+3)%(B+2)? 4(B+3)?
+[ (8+3) (8+5)(4-p*)°p
2(8+2)2(B+1)2 2(8+3)2(B+2)(B+1)
(5 +103* +368° + 748° + 13158 + 180)p* (4 - p?)
12(8+3)2(B+1)*(B+2)? ]'X'
+ |N1(5)p6 _Nz(ﬁ)p‘*‘ + i?ﬁ_f3))2
(B* +58° +118% + 198 + 36)p> (4 - p?)
12(8+3)*(B+2)(B+1)3
=w(p, |x|)

2 2
1X3X

Xxpi

Xxp%.

2

‘a a3|

(4-p*)p* +

+

where

B8+ 108" +478° + 1485° + 3838 + 7784° + 115382 +13685+1296
144(5+3)2(5 + 2)2(B + 1)6

Ni(B) =

B2+68+9
4(B+2)2(B+1)*

N2 (B) =
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We need to find the maximum value of ¥(p, |x|) on [0, 2] x [0, 1]. First, assume that there is a maximum
at an interior point ¥ (po, |xo|) of [0, 2] x [0, 1]. Differentiating ¥(p, |x|) with respect to |x| and equating it
to 0 implies that p = po = 2, which is a contradiction. Thus for the maximum of ¥ (p, |x|), we need only to
consider the end points of [0, 2] x [0, 1].

For p = 0 we obtain

4 __ 4
(B+3)2 ~ (B+2)*

b AEr28-1)
(B+3)27 (8+3)(5+2)

w(0, |x]) = X +

For p = 2 we obtain
®(2, |x]) = |64N1(8) - 16N2(5)] .
For |x| = 0 we obtain

w(p,0) = [N1(8)p° - N2(8)p"|

(8" +58° +115* + 195 +36)p° (4 -p*) _p(4-p*)’
12(8+3)2(B+2)(B+1)3 4(B+3)2"°

which has the maximum value |N1(8)p® - N2(3)p*| on [0, 2].
For |x| = 1 we obtain

2-p)*(4-p°)°  (B+5)(°-2p)(4-p*)’
16(5 +3)? 4(B+3)2(B+2)(B+1)
[(ﬁz +108+25)p*(4-p*)°  p(4-p°)’
4(B+3)2(B+2)(B+1)2 4(B+3)2
(8 +58% +1182 +198+36)p°(p - 2)(4 - p?)
24(B+3)2(B+2)(B+1)3
(B +28-1)(4-p*)
©4(B+3)2(B+2)? ]
+[ (8+3) (8+5)(4-p*)’p

¥(p,1) =

2(8+2)2(B+1)? (4-p")p” + 2(8+3)2(B+2)(B+1)

, (8% +105" +365° + 745 + 1315 + 180)p" (4 - p*)
12(B+3)2(B+2)2(B+1)4
6 4 (4-p*)?
+‘N1(5)P - N2(B)p ‘+W
(8% +58% +118% +198 +36)p° (4 - p?)
12(8+3)2(B+2)(B+1)3

which has the maximum values |64N1(3) — 16N, (3)| for p = 2 and

4
2152 forp =0. O

Remark 2.4. Theorem 2.3 for 3 = O yields the bound |T»(3)| < 7 for the class of starlike functions S* confirming
the bound obtained by Thomas and Halim [1] and for 3 = 1 yields the bound |T»(3)| < 4/9 for the class of
functions with bounded boundary rotation R confirming the bound obtained by Radhika et al. [2].

Theorem 2.5. Let f given by (1) be in the class B(3), (0 <3< 1; 8 # ), then

~|

IT3(2)| = || |a3 a2 a3 .
a; as a M2 (5)Ms (5)], 8(|glj§?2)l »if 5= Po,

max

a, as a, <{max}|M1(ﬁ)Mz(5)|, 8|§4+1§f2>| s if B # fo,

where 3y ~ 0.3676 is the positive root of the polynomial

48* +328° +808° + 648 -36 =0,
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48" +328° + 8087 + 645 — 36
3(B+1)3(B+2)(B+3)

4(48° + 345" + 1084 + 14087 + 323 - 54)

3(B+1)4(B+2)2(B+3)

Mi(B) =

My(B) =

and
88" + 528> + 124/3” + 1408 + 108

Ms(B) = 3(B+1)3(B+2)(B+3)

Proof. Write
|T53(2)| = |a§ —2aya3 +2a3a, - aza4‘
= |(a2 - a4)(a§ —2d3+ (,12(14)‘ .
Using the same techniques as in Theorem 2.3, one can obtain with simple computations that
|az — as] < |M1(B8)| for B8+ Bo.

We need to show that
’a% -2a3 + aza4‘ < |M2(B)]-

In view of (2), (3) and (7) and Lemma 1, where we denote X = 4 — p* and
Y = (1 -|x|*)¢, where 0 < p < 2 and |¢| < 1, one may easily get,

| i p3 (B-1)°pi  (B-1)pipa
|a§—2a§+aza4| = ’(5+1)2 - ((ﬁ+22)2 + 4(5”"1)41 - (5+1)2(ﬁ1+ 2))
, P (p3 _ _(B-1pip> +<5—1)(25—1)pi)’
B+1)\B+3 (B+1)(B+2) 6(8+1)3
et p3 (B-1)P1 , (B-1)pip
(B+1)2 T(B+2)2 2(B+1)F  T(B+1)2(B+2)
L by (B-D)pip; +(6—1)(26—1)p?‘
B+1)(B+3) (B+1)2(B+2) 6(8+1)4
pi 1

4 2.2 2
= G+ 1) - 227 [pl +X°x +2p1XX]

(B-1%% .,  (B-Dpt [
205+ T 2(+1)2(B+2) [P+ xx]

D1 3 >
+W[pﬁZmXx—plXx +2XY]
L(B-1D)(28-1)p

6(8+1)% )

Applying the triangle inequality and assuming that p; = p, where 0 < p < 2 we obtain
2 2 1 2 1 2 2v1012
a; -2as + azaa| < [4(5‘*1)(5+3) (P - ZP) + W(‘*—p )] (4-p7)x|
., (B+55+8)
2(8+1)2(B+2)*(8+3)
. p>  (90-p° 78" -158° + 138> + 888)p*
(B+1)? 12(B+1)4(B+2)*(B+3)
(4-p*)

p(4-p)x|

PR B
2(6+1)(B+3)
- 2(p, )
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We need to find the maximum value of 2(p, |x|) on [0, 2] x [0, 1]. First, assume that there is a maximum at
an interior point 2(po, |xo|) of [0, 2] x [0, 1]. Differentiating 2(p, |x|) with respect to |x| and equating it to
zero implies that p = po = 2, which is a contradiction. Thus for the maximum of 2(p, |x|), we need only to
consider the end points of [0, 2] x [0, 1].

For p = 0 we obtain
8

20K - gl < Gy

For p = 2 we obtain

4(4° + 348" + 1088 + 1408% + 328 - 54)

Q(zr‘xl): 3(,@+1)4(,6+2)2(6+3) :MZ(B)'
For |x| = O we obtain
| P (90 - B° - 78* - 158° + 135° + 885) 4
. 0) = ‘(m 077 12+ D (5+2)2(3+3)

p 2
GG )

which has maximum value 2(p, 0) = M, (3) attained at the end point p = 2.
For |x| = 1 we obtain

O(p,1) - | P O0=F 78"~ 155’ + 135" + 88)
PGy 12(8+1)4(8+2)%(B+3)
1 242 1 2 2
+W(4_p ) +Wp (4—p )
(B*+5B+8) 2., 2
MR R R LA
which has maximum value 2(p, 1) = ﬁ atp =0and 2(p, 1) = My(3) at p = 2. Hence

‘a% -2a3 + a2a4‘ < max{|M2(ﬁ)|, (ﬁ+82)2} .

Thus

IT3(2)] = |(a2 - @4)(@5 - 245 + aza4) | < max{|M1(/3)M2(ﬂ), 8|Ml(5)|}.

(B+2)?

For the case 8 = 3o, we compute |a, — a4| as follows

pi b3 (B-Upwpo  (8-1)(28-1)p]
B+1 B+3 (B+1)(B+2) 6(8+1)3 )

Since, each |p;| < 2, an application of triangle inequality shows that

|az - au| :’

83% + 525> + 1248 + 1408 + 108

laz — a4| < |M3(B8)| = 3(B+1)3(B+2)(B+3)

Therefore

IT5(2)[ = ’(az —az)(a3 - 2a5 + azaz;)‘ < max{|M2(5)M3(ﬂ), 8 [Ms(8)] }

(B+2)?
This completes the proof of Theorem 2.5. O

Remark 2.6. Theorem 2.5 for 3 = 0 yields the bound |T5(2)| < 8 for the class of starlike functions S* confirming
the bound obtained by Thomas and Halim [1] and for 3 = 1 yields the bound |T5(2)| < 4/9 for the class of
functions with bounded boundary rotation R confirming the bound obtained by Radhika et al. [2].
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Theorem 2.7. Let f given by (1), be in the class B(3) ,0 < 3 < 1. Then

1 a; as 1
|T3(1)|=|]|az 1 a2 gmax{1+,|M4(,B)|}
@ a 1 4(B+2)?
where 6 5 4 3 2
Mz,(ﬁ):ﬁ + 83> +188" —4B° - 518 —206+32.

(B+1)*(B+2)?
Proof. Expanding the determinant by using equations (2) and (3) and applying Lemma 1.1, we have

T3(1) =1+2a5(as - 1) - a3
~ 2p3 p»  (B-Dpi
’1+(ﬁ+1)2((6+2) 25+ 1)2 1)
p; _ (B-1)’pi  ppi(F-1)
(B+2)2  4(B+1)"  (B+1)2(B+2)
. 2p3 (p%+XX)_(ﬁ—1)p?_ 2p (B-1)’py
B+1)22+p)\ 2 (B+1)*  (B+1)2  4(B+1)*
1 pi(B-1) (pi+Xx
S 4(B+2)? (6+1)2(5+2)( 2 )
1. pi L piXx  (B-1)p1 __ 2pi
(B+1)2(B+2) (B+1)2(B+2) (B+1)4 (B+1)2
pi X*x? piXx  (1-5)%p}
T 4(B+2)2 4(B+2)2 2(B+2)2  4(B+1)
_ pi(1-8)  piXx(1-p)
2(8+1)2(B+2) 2(B+1)2(B+2)
_ 1 (1-8) 1 (1-5)?
_1+pl{[(ﬁ+1)2(2+ﬁ)+(ﬁ+l)‘*_4(ﬁ+2)2_4(5+1)“
(1-5) 2p3 (1+8)(B+2)-(B+1)°
_2(5+1)4(5+2)]_(ﬁ+1)2”ﬁXX[ 2(8+1)2(B+2)2 ]
X*x? 2p?
S 4(B+2)?2 (B+1)2
4
SATeT 1§7‘*1(,3+2)2 [4(8+1)2(8+2) +4(1-B)(5+2)* - (B+1)"
~(1-8)*(B+2) -2(1-8)(B+1)*(8+2)]
LW oy [(1+6)(6+2)—(ﬂ+1)2]_ Xx* 2pi
(B+1)2 71 2(B+1)2(B +2)? 4(B+2)> (B+1)
382+ 148+15 4 2p? _—

+ - 1 nx-o L ey
4B+ 1B+ 22 T (B2 25+ ) (B 22PN T (g2

=1

[pzl' + X2+ Zp%Xx] +

Without loss of generality, we let O < p1 = p < 2. Now substituting this into the above equation and applying
the triangle inequality we obtain the following quadratic equation in terms of x.

(4-p*)* p’(4-p*) o+ |1 (387 + 148 +15)p* - 8(8+1)*(B+2)*| ,
4(B +2)2 208+ 1)(B+2)2 T 4B+ )43 +2)? p

(4 - p?)? p*(4-p?) ll ](3[32+14/3+15)p2—8(ﬁ+1)2(5+2)2|p2]

IT3(1)] < Ix* +

S4(B+2)2 2B+ 1)(p+2)? 45+ 1) (B+2)?
=I'(p,B).
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Differentiating I"(p, 8) with respect to p we obtain
d(I'(p,B)) p[p*(B'+28° +38% +128+14) + 48’ + 138° + 148 + 15]
op - (B+1)4(B+2)2 '
Setting o (I'(p, 8)) /op = O yields either p = 0 or

2 —4p%-138°-145-15
P s B 321 128+ 14

But -48> —138% - 143 - 15 < 0 for 0 < 3 < 1. Therefore, the maximum of |T5(1)| is attained at the end points
p1=pe[0,2].

Forp; =Owehavea; =0andas =1

XZ
4B +2)2

o’ <1+t
4(8+2)2 " 4(B+2)?

which yields

IT3(1)|=1+

For p1 = 2 we obtain

4(38% + 148+ 15) 8
|T3(1)| <1+ (/6+1)4(6+2)2 - (,6+1)2 < |M4(ﬁ)|'
where 6 5 4 3 2
_ B°+8p° +188" - 48> 5187 - 205 + 32
Mal#)= G+ (5+2) '
This completes the proof of Theorem 2.7. O

Remark 2.8. Theorem 2.5 for 3 = 0 yields the bound |T5(1)| < 8 for the class of starlike functions S* confirming
the bound obtained by Thomas and Halim [1] and for 3 = 1 yields the bound |T5(1)| < 13/9 for the class of
functions with bounded boundary rotation R confirming the bound obtained by Radhika et al. [2].
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