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Abstract: In this paper, by using the notion of upsets in residuated lattices and de�ning the operator Da(X),
for an upset X of a residuated lattice L we construct a new topology denoted by τa and (L, τa) becomes a
topological space. We obtain some of the topological aspects of these structures such as connectivity and
compactness. We study the properties of upsets in residuated lattices and we establish the relationship
between them and �lters. O. Zahiri and R. A. Borzooei studied upsets in the case of BL-algebras, their
results become particular cases of our theory, many of them work in residuated lattices and for that we o�er
complete proofs.Moreover, we investigate someproperties of the quotient topology on residuated lattices and
some classes of semitopological residuated lattices. We give the relationship between two types of quotient
topologies τa/F and −

τa . Finally, we study the uniform topology τΛ and we obtain some conditions under
which (L/J, τΛ) is a Hausdor� space, a discrete space or a regular space ralative to the uniform topology.
We discuss brie�y the applications of our results on classes of residuated lattices such as divisible residuated
lattices, MV-algebras and involutive residuated lattices and we �nd that any of this subclasses of residuated
lattices with respect to these topologies form semitopological algebras.
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1 Introduction
Residuation is a fundamental concept of ordered structures and categories. The origin of residuated lattices is
inMathematical Logicwithout contraction. The general de�nition of a residuated latticewas given byGalatos
et al. (2007)[1]. They �rst developed the structural theory of this kind of algebra about residuated lattices.

Hajek (1998)[2] introduced the notion of BL-algebras and the concepts of �lters and prime �lters in BL-
algebras in order to provide an algebraic proof of the completeness theorem of basic logic (BL, for short),
arising from the continuous triangular norms, familiar in the fuzzy logic frame-work. Using prime �lters in
BL-algebras, he proved the completeness of Basic Logic. Soon after, Turunen (1999)[3] published a study on
BL-algebras and their deductive systems.

A weaker logic than BL called Monoidal t-norm based logic (MTL, for short) was de�ned by Esteva and
Godo (2001) [4] and proved by Jenei and Montagna (2002)[5] to be the logic of left continuous t-norms and
their residua. The algebraic counterpart of this logic is MTL-algebra, also introduced by Esteva and Godo
(2001)[4]. In Esteva andGodo (2001)[4] a residuated lattice L is calledMTL-algebra if the prelinearity property
holds in L.
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Recently, Turunen and Mertanen (2008)[6] and D. Buşneag et al. (2013)[7] de�ned the notion of semidi-
visible residuated lattice and investigated their properties. Also, D. Buşneag et al. (2015) [8] investigated the
notion of Stonean residuated lattices and they discussed it from the view of ideal theory.

Semitopological and topological BL-algebras were de�ned by R. A. Borzooei et al. (2011)[9], and they
establish the relationships between them. A. Borumand Saeid and S. Motamed (2009)[10] introduced the set
of double complemented elements for any �lter F in BL-algebras and studied their properties. In Borzooei
and Zahiri (2014)[11] the de�nition of double complemented elements for any �lter F in BL-algebras was
generalized to the concept of Dy(F), for any upset F of the BL-algebra L. In fact, they show that any BL-
algebra L with that topology is a semitopological BL- algebra.

In the present paper, we work on a special type of topology induced by a modal and closure operator
denoted by Da(X), for an upset X of a residuated lattice L, where a is an element of L. We show that any
divisible residuated lattice L with this topology is a semitopological algebra.

The paper is organized as follows:
In Section 2,we recall the basic de�nitions andwe put in evidence rules of calculus in a residuated lattice

which we need in the rest of the paper.
In Section 3, we consider the de�nition of upsets in the case of residuated lattices and we establish the

relationship between upsets and �lters. We de�ne the operator Da(X), for an upset X of a residuated lattice
L and we construct a new topology denoted by τa , where (L, τa) becomes a topological space. We discuss
brie�y the properties and applications of the operator Da in residuated lattices. Moreover, we obtain some of
the topological aspects of these structures such as connectivity and compactness.

In Section 4, we investigate some properties of quotient topologies on residuated lattices as τa/F and
−

τa . Finally, we study some properties of the direct product of residuated lattices. One of the most important
�ndings is the characterizationwhen (L/J, τΛ) becomes aHausdor� space, a discrete space or a regular space
relative to the uniform topology τΛ.

In Section 5, we apply our results on classes of residuated lattices such as divisible residuated lattices,
MV-algebras and involutive residuated lattices and we �nd that any of this subclasses of residuated lattices
with respect to these topologies form semitopological algebras.

2 Preliminaries
In this section, we recall some basic notions relevant to residuated lattices which will need in the sequel.

De�nition 2.1 ([1]). A residuated lattice is an algebra (L,∨,∧,⊙,→, 0, 1) of type (2, 2, 2, 2, 0, 0) such that
(Lr1) (L,∨,∧, 0, 1) is a bounded lattice;
(Lr2) (L,⊙, 1) is a commutative monoid;
(Lr3) ⊙ and→ form an adjoint pair, i.e., a ⊙ x ≤ b i� x ≤ a → b.

We call them simply residuated lattices. For examples of residuated lattices see [12–17].
In what follows (unless otherwise speci�ed) we denote by L a residuated lattice. If L is totally ordered,

then L is called a chain.
For x ∈ L and n ≥ 1 we de�ne x∗ = x → 0, x∗∗ = (x∗)∗, x0 = 1 and xn = xn−1 ⊙ x.
We refer to [3–21] for detailed proofs of these well-known results:

Lemma 2.2. Let L be a residuated lattice. Then for every x, y, z ∈ L, we have:
(r1) x → x = 1, x → 1 = 1, 1→ x = x;
(r2) x ≤ y i� x → y = 1;
(r3) If x ∨ y = 1, then x ⊙ y = x ∧ y;
(r4) If x ≤ y, then z ⊙ x ≤ z ⊙ y, z → x ≤ z → y, y → z ≤ x → z;
(r5) x → (y → z) = (x ⊙ y) → z = y → (x → z);
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(r6) x ⊙ (y ∨ z) = (x ⊙ y) ∨ (x ⊙ z), and x ⊙ (y ∧ z) ≤ (x ⊙ y) ∧ (x ⊙ z);
(r7) (x → z) ∧ (y → z) = (x ∨ y) → z;
(r8) (x → z) ∨ (y → z) ≤ (x ∧ y) → z;
(r9) x → (y ∧ z) = (x → y) ∧ (x → z);
(r10) (x → y) ∨ (x → z) ≤ x → (y ∨ z);
(r11) x ∨ y ≤ ((x → y) → y) ∧ ((y → x) → x);
(r12) (x ∨ y)∗ = x∗ ∧ y∗, (x ∧ y)∗ ≥ x∗ ∨ y∗;
(r13) (x → y∗∗)∗∗ = x → y∗∗;
(r14) x∗∗ → y∗∗ = y∗ → x∗ = x → y∗∗ = (x → y∗∗)∗∗;
(r15) x ⊙ x∗ = 0, 1∗ = 0, 0∗ = 1, x∗∗∗ = x∗;
(r16) x ≤ x∗∗, x∗∗ ≤ x∗ → x, x → y ≤ y∗ → x∗;
(r17) x → y ≤ (x → y)∗∗ ≤ x∗∗ → y∗∗;
(r18) x∗∗ ⊙ y∗∗ ≤ (x ⊙ y)∗∗, so (x∗∗)n ≤ (xn)∗∗
for every natural number n;
(r19) x∗ ⊙ y∗ ≤ (x ⊙ y)∗;
(r20) (x ∧ y)∗∗ ≤ x∗∗ ∨ y∗∗ ≤ (x ∨ y)∗∗.

Following the above mentioned literature, we consider the identities:
(i1) x ∧ y = x ⊙ (x → y) (divisibility);
(i2) (x∗ ∧ y∗)∗ = [x∗ ⊙ (x∗ → y∗)]∗ (semi − divisibility);
(i3) (x → y) ∨ (y → x) = 1 (pre − linearity);
(i4) x∗ ∨ x∗∗ = 1;
(i5) x2 = x;
(i6) x = x∗∗.
Then the residuated lattice L is called:
(i) Divisible if L veri�es (i1);
(ii) Semi-divisible if L veri�es (i2);
(iii) MTL-algebra if L veri�es (i3);
(iv) BL-algebra if L veri�es (i1) and (i3);
(v) Stonean if L veri�es (i4);
(v) G-algebra if L veri�es (i5);
(vi) Involutive if L veri�es (i6).

AnMV-algebra is an algebra L = (L,⊕, ∗, 0) of type (2, 1, 0) satisfying the following equations:
(mv1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z;
(mv2) x ⊕ y = y ⊕ x;
(mv3) x ⊕ 0 = x;
(mv4) x∗∗ = x;
(mv5) x ⊕ 0∗ = 0∗;
(mv6) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x, for all x, y, z ∈ L.

Note that axioms (mv1) − (mv3) state that (L,⊕, ∗, 0) is a commutative monoid.
Every BL-algebra L with x∗∗ = x for all x ∈ L, is an MV-algebra.
By Lemma 2.2, in the case of divisible residuated lattices we have:

Corollary 2.3 ([7]). If L is a divisible residuated lattice, then for every x, y ∈ L we have:
(r21) (x∗∗ → x)∗ = 0;
(r22) (x → y)∗∗ = x∗∗ → y∗∗;
(r23) (x ∧ y)∗∗ = x∗∗ ∧ y∗∗;
(r24) x ⊙ (y ∧ z) = (x ⊙ y) ∧ (x ⊙ z);
(r25) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
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On any residuated lattice L ([6, 8]) we may de�ne an operator ⊕ by setting for all x, y ∈ L,

x ⊕ y = (x∗ ⊙ y∗)∗. (1)

By (r5), the identity (1) is equivalent with

x ⊕ y = x∗ → y∗∗ = y∗ → x∗∗, for all x, y ∈ L. (2)

Lemma 2.4 ([8]). Let L be a residuated lattice and x, y, z ∈ L. Then:
(r26) x ⊕ 0 = x∗∗, x ⊕ 1 = 1, x ⊕ x∗ = 1;
(r27) x ⊕ y = y ⊕ x, x, y ≤ x ⊕ y;
(r28) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z;
(r29) If x ≤ y, then x ⊕ z ≤ y ⊕ z.

In what follows we will establish other necessary properties of operator ⊕ in a residuated lattice L.

Proposition 2.5. Let L be a residuated lattice and x, y, z ∈ L. Then:
(r30) (x ⊕ y)∗∗ = x ⊕ y = x∗∗ ⊕ y∗∗;
(r31) If x ∨ y = 1, then x ⊕ y = 1;
(r32) x ⊕ (y ∨ z)∗ = (x ⊕ y∗) ∧ (x ⊕ z∗);
(r33) x ⊕ (y∗ ∨ z∗)∗ = (x ⊕ y) ∧ (x ⊕ z).

Proof. (r30). We obtain successively (x⊕y)∗∗ = (x∗⊙y∗)∗∗∗ (r15)= (x∗⊙y∗)∗ = x⊕y (r15)= [(x∗∗)∗⊙(y∗∗)∗]∗ =
x∗∗ ⊕ y∗∗.

(r31). Since x ≤ x∗∗, y ≤ y∗∗ and x∗∗, y∗∗ ≤ x ⊕ y implies x ∨ y ≤ x ⊕ y. Since 1 = x ∨ y ≤ x ⊕ y, then
x ⊕ y = 1.

(r32). By (r9), (r12), (r15) and (2) we obtain successively x ⊕ (y ∨ z)∗ (2)= x∗ → (y ∨ z)∗∗∗ (r15)= x∗ →
(y∨ z)∗ (r12)= x∗ → (y∗ ∧ z∗) (r9)= (x∗ → y∗)∧(x∗ → z∗) (r14)= (y∗∗ → x∗∗)∧(z∗∗ → x∗∗) (2)= (x⊕ y∗)∧(x⊕ z∗).

(r33). By (r9), (r12), (r15) and (2) we obtain successively x ⊕ (y∗ ∨ z∗)∗ (2)= x∗ → (y∗ ∨ z∗)∗∗∗ (r15)= x∗ →
(y∗ ∨ z∗)∗ (r12)= x∗ → (y∗∗ ∧ z∗∗) (r9)= (x∗ → y∗∗) ∧ (x∗ → z∗∗) (2)= (x ⊕ y) ∧ (x ⊕ z).

Corollary 2.6. Let L be a residuated lattice and x, y ∈ L. Then:
(r34) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x i� (x∗∗ → y∗∗)∗∗ → y∗∗ = (y∗∗ → x∗∗)∗∗ → x∗∗.

Proof. (r34). Since (x∗ ⊕ y)∗ ⊕ y (2)= (x∗∗ → y∗∗)∗ ⊕ y (2)= (x∗∗ → y∗∗)∗∗ → y∗∗ and (y∗ ⊕ x)∗ ⊕ x (2)=
(y∗∗ → x∗∗)∗ ⊕ x (2)= (y∗∗ → x∗∗)∗∗ → x∗∗. Thus, our claim holds.

Deductive systems correspond to subsets closedwith respect toModusPonens, their are also called�lters, too.
Apart from their logical interest, �lters have important algebraic properties and they have been intensively
studied from an algebraic point of view. Filter theory plays an important role in studying logical algebras.

We consider L as a residuated lattice.

De�nition 2.7 ([2]). An implicative �lter (�lter, for short) is a nonempty subset F of L such that
(F1) If x ≤ y and x ∈ F, then y ∈ F;
(F2) If x, y ∈ F, then x ⊙ y ∈ F.

We notice that:
1. F is an implicative �lter ([13]) of L i� 1 ∈ F and x, x → y ∈ F, then y ∈ F (that is, F is a deductive system

of L).
2. Every �lter is a latticeal �lter in the lattice (L,∧,∨), but the converse does not hold ([3, 14]).
Hence, if we denote by F(L) (Fi(L)) the set of all latticeal �lters (implicative �lters) of L, then Fi(L) ⊆

F(L).
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We have ([13]) Fi(L) = F(L) i� x ⊙ y = x ∧ y for every x, y ∈ L.
We recall ([3, 14]) that for a nonempty subset D of L we denote by ⟨D⟩ the �lter generated by D, and

⟨D⟩ = {x ∈ L ∶ d1 ⊙ ... ⊙ dn ≤ x, for some d1, ..., dn ∈ D}. If a ∈ L, the �lter generated by {a} will be denoted
by ⟨a⟩, and ⟨a⟩ = {x ∈ L ∶ an ≤ x for some n ≥ 1}. If F ∈ Fi(L) and a ∈ L ∖ F, then ⟨F ∪ {a}⟩ will be denoted
by F(a), and F(a) = {x ∈ L ∶ an → x ∈ F for some n ≥ 1}. If F, G ∈ Fi(L), then F ∨ G = F ∨Fi(L) G = ⟨F ∪ G⟩ =
{x ∈ L ∶ b ⊙ c ≤ x for some b ∈ F, c ∈ G}.

We say that P ∈ Fi(L), P ≠ L is a prime �lter ([14]) if for x, y ∈ L and x ∨ y ∈ P, then x ∈ P or y ∈ P. We
denote by Speci(L) the set of all prime �lters of L.

We recall that a �lterM of L is calledmaximal ifM ≠ L andM is not strictly contained in any proper �lter
of L.

Every maximal �lter M of L is obvious prime because, if there exist two proper �lters N, P ∈ Fi(L) such
that M = N ∩ P, then M ⊆ N and M ⊆ P, by the maximality of M we deduce that M = N = P, that is, M is an
inf-irreducible, so prime element in the lattice of �lters (Fi(L), ⊆) of L (by the distributivity of the lattice of
�lters (Fi(L), ⊆) of L ).

So, if we denote by Maxi(L) the set of all maximal �lters of L, then Maxi(L) ⊆ Speci(L).

Proposition 2.8 ([1, 3, 14]). For M ∈ Fi(L), M ≠ L, the following are equivalent:
(i) M is maximal;
(ii) If x ∉ M, then there exists n ≥ 1 such that (xn)∗ ∈ M.

For F ∈ Fi(L)wede�ne a relation≡F on L by x ≡F y i� x → y, y → x ∈ F, for all x, y ∈ L i� (x → y)⊙(y → x) ∈ F.
Then ([3, 14]) ≡F is a congruence relation on L. For x ∈ L we denote by [x] = x/F the class of congruence

of x modulo ≡F and L/F = {x/F ∶ x ∈ L}.
De�ne the binary operations∨,∧,⊙ and→ on L/F by (x/F)∨(y/F) = (x∨y)/F, (x/F)∧(y/F) = (x∧y)/F,

(x/F) ⊙ (y/F) = (x ⊙ y)/F and (x/F) → (y/F) = (x → y)/F for all x, y ∈ L.
Then (L/F,∨,∧,⊙,→, 0, 1) is a residuated lattice, which is called the quotient residuated lattice of L with

respect to F, where 0 = 0/F and 1 = 1/F.
The relation of order on L/F is de�ned by (x/F) ≤ (y/F) i� x → y ∈ F.
For a nonempty subset S of L we denote by S/F = {x/F ∶ x ∈ S}. Clearly, for x ∈ L, x/F = 0 i� x∗ ∈ F and

x/F = 1 i� x ∈ F.
We denote by π ∶ L → L/F the canonical epimorphism de�ned by π(x) = [x].

De�nition 2.9. If L, L
′

are residuated lattices, a map f ∶ L → L
′

is called morphism of residuated lattices if f is
a morphism of bounded lattices, f(x ⊙ y) = f(x) ⊙ f(y) and f(x → y) = f(x) → f(y) for every x, y ∈ L.

If f is a bijective map (one-to-one and onto), then we say that L and L
′

are isomorphic and we write L ≈ L
′

.

Remark 2.10. If F ∈ Fi(L
′

), then f−1(F) ∈ Fi(L). In particular f−1({1}) = {x ∈ L ∶ f(x) = 1} is denoted by
Ker(f) and Ker(f) ∈ Fi(L).

Clearly, f is one-to-one i� Ker(f) = {1}. Also, f(L) is a subalgebra of L
′

denoted by Im(f).

3 Construction of some topologies on residuated lattices
In general, the concept of topology represents the study of topological spaces. Important topological proper-
ties include connectedness and compactness.

A topology tells how elements of a set relate spatially to each other. The same set can have di�erent
topologies. For instance, the real line, the complex plane, and the Cantor set can be thought of as the same
set with di�erent topologies.

Let X be a set and let τ be a family of subsets of X. We denote byP(X) the family of all subsets of X. Then
τ is called a topology on X if:
T1. Both the empty set ∅ and X are elements of τ ;
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T2. Any union of elements of τ is an element of τ ;
T3. Any intersection of �nitely many elements of τ is an element of τ .

If τ is a topology on X, then the pair (X, τ) is called a topological space. The notation Xτ is used to denote
a set X endowed with the particular topology τ .

Themembers of τ are called open sets in X. A subset of X is said to be closed if its complement is in τ (i.e.,
its complement is open). A subset of X may be open, closed, both (clopen set), or neither. The empty set ∅
and X itself are always both closed and open. An open set containing a point x is called a neighborhood of x.

A set with a topology is called a topological space. A topological space (X, τ) is called connected if {∅, X}
is the set of all closed and open subsets of X.

A base (or basis) β for a topological space X with topology τ is a collection of open sets in τ such that
every open set in τ can be written as a union of elements of β. We say that the base generates the topology τ .

De�nition 3.1 ([11]). Let (X, ≤) be an ordered set. Then we de�ne ↑ ∶ P(X) → P(X), by ↑ S = {x ∈ X∣a ≤
x, for some a ∈ S}, for any subset S of X. A subset F of X is called an upset if ↑ F = F. We denote by U(X) the
set of all upsets of X. An upset F is called �nitely generated if there exists n ∈ N such that F =↑ {x1, x2, ..., xn},
for some x1, x2, ..., xn ∈ X.

Remark 3.2. Clearly, if F is a �lter of L, then F is an upset of L, but the converse does not hold. Indeed, we
consider L = {0, n, a, b, c, d, e, f ,m, 1} with 0 < n < a < c < m < 1, 0 < n < a < e < m < 1, 0 < n < b < c <
m < 1, 0 < n < b < f < m < 1, 0 < n < d < e < m < 1 and elements {a, b}, {a, d}, {b, d}, {a, f}, {c, d},
{b, e}, {c, e}, {c, f} and {e, f} are pairwise incomparable.

1

m

c e f

a b d

n

0

Then ([12]) L becomes a residuated lattice relative to the following operations :

→ 0 n a b c d e f m 1
0 1 1 1 1 1 1 1 1 1 1
n m 1 1 1 1 1 1 1 1 1
a f f 1 f 1 f 1 f 1 1
b e e e 1 1 e e 1 1 1
c d d e f 1 d e f 1 1
d c c c c c 1 1 1 1 1
e b b c b c f 1 f 1 1
f a a a c c e e 1 1 1
m n n a b c d e f 1 1
1 0 n a b c d e f m 1

⊙ 0 n a b c d e f m 1
0 0 0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 0 0 0 0 n
a 0 0 a 0 a 0 a 0 a a
b 0 0 0 b b 0 0 b b b
c 0 0 a b c 0 a b c c
d 0 0 0 0 0 d d d d d
e 0 0 a 0 a d e d e e
f 0 0 0 b b d d f f f
m 0 0 a b c d e f m m
1 0 n a b c d e f m 1

Then ↑ n = {n, a, b, c, d, e, f ,m, 1} is an upset, but n ⊙ n = 0, that is ↑ n is not a �lter.

In [11], O. Zahiri and R. A. Borzooei construct a topology on BL-algebras considering the notion of upsets, and
inspired by their work we construct a topology in the case of residuated lattices and some of their results will
become particular cases. We o�er complete proofs for the results available in residuated lattices.
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De�nition 3.3 ([11]). Let τ and τ
′

be two topologies on a given set X. If τ
′

⊆ τ , then we say that τ
′

is �ner than
τ . Let (X, τ) and (Y , τ

′

) be two topological spaces. A map f ∶ X → Y is called continuous if the inverse image
of each open set of Y is open in X. A homeomorphism is a continuous function, bijective and has a continuous
inverse.

Lemma 3.4 ([11]). Let β and β
′

be two bases for topologies τ and τ
′

, respectively on X. Then the following are
equivalent:
(i) τ

′

is �ner than τ ;
(ii) For any x ∈ X and each basis element B ∈ β containing x, there is a basis element B

′

∈ β
′

such that
x ∈ B

′

⊆ B.

De�nition 3.5 ([11]). Let (A, ∗) be an algebra of type 2 and τ be a topology on A. Then (A, ∗, τ) is called:
(i) Right (left) topological algebra, if for all a ∈ A the map ∗ ∶ A → A de�ned by x ↦ a ∗ x (x ↦ x ∗ a) is
continuous;
(ii) Semitopological algebra if A is a right and left topological algebra.
If (A, ∗) is a commutative algebra, then right and left topological algebras are equivalent.

De�nition 3.6 ([11]). Let A be a nonempty set, {∗i}i∈I be a family of binary operations on A and τ be a topology
on A. Then:
(i) (A, {∗i}i∈I , τ) is a right (left) topological algebra, if for i ∈ I, (A, ∗i , τ) is a right (left) topological algebra;
(ii) (A, {∗i}i∈I , τ) is a right (left) semitopological algebra, if for i ∈ I, (A, ∗i , τ) is a right (left) semitopological
algebra.

On any residuated lattice L we de�ne an operator ⊖ by setting for all x, y ∈ L,

x ⊖ y = x∗ ⊕ y. (3)

By (r5), the identity (3) is equivalent with

x ⊖ y = x∗ ⊕ y = x∗∗ → y∗∗ = y∗ → x∗, for all x, y ∈ L. (4)

De�nition 3.7. Consider L a residuated lattice and a ∈ L. For any nonempty upset X of L we de�ne the set

Da(X) = {x ∈ L∣an ⊖ x ∈ X, for some n ∈ N},

where an ⊖ x = a ⊖ (an−1 ⊖ x), for any n ∈ {2, 3, 4, ...}.

Lemma 3.8. Let L be a residuated lattice and a, x ∈ L. Then:
(r35) an ⊖ x = (a∗∗)n → x∗∗;
(r36) (an ⊖ x)∗∗ = an ⊖ x, for any n ∈ N.

Proof. (r35). Mathematical induction relative to n.
If n = 2, by (r5), (r30) and identity (4) we obtain successively a2 ⊖ x = a ⊖ (a ⊖ x) id.(4)= a∗∗ → (a∗ ⊕

x)∗∗ (r30)= a∗∗ → (a∗ ⊕ x) id.(4)= a∗∗ → (a∗∗ → x∗∗) (r5)= (a∗∗ ⊙ a∗∗) → x∗∗ = (a∗∗)2 → x∗∗.
Suppose an−1 ⊖ x = (a∗∗)n−1 → x∗∗. By (r5) we obtain successively an ⊖ x = a ⊖ (an−1 ⊖ x) = a∗∗ →

((a∗∗)n−1 → x∗∗) (r5)= (a∗∗ ⊙ (a∗∗)n−1) → x∗∗ = (a∗∗)n → x∗∗. Therefore, an ⊖ x = (a∗∗)n → x∗∗, for any
n ∈ N.

(r36). By (r30)we have (an⊖x)∗∗ = [a⊖(an−1⊖x)]∗∗ id.(4)= [a∗⊕(an−1⊖x)]∗∗ (r30)= a∗⊕(an−1⊖x) id.(4)=
a ⊖ (an−1 ⊖ x) = an ⊖ x, for any n ∈ N.

A directly consequence of (r35) is the following result:

Proposition 3.9. Let L be a residuated lattice and a ∈ L. For any nonempty upset X of L the set Da(X) = {x ∈
L ∶ (a∗∗)n → x∗∗ ∈ X, for some n ∈ N}.
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Remark 3.10. If a = 1, then Da(X) = D1(X) = {x ∈ L ∶ x∗∗ ∈ X} is the set of double complemented elements of
X.

Corollary 3.11. If L is a residuated lattice and a, x ∈ L, then:
(r37) a ⊙ x ≤ a ∧ x ≤ a ∨ x ≤ a∗∗ ∨ x∗∗ ≤ a ⊕ x;
(r38) x∗∗ ≤ a ⊖ x ≤ an ⊖ x, for any n ∈ N.

Proof. (r37). Indeed, a ⊙ x ≤ a ∧ x ≤ a ∨ x ≤ a∗∗ ∨ x∗∗. By (r27) and identity (2) we obtain successively
a ⊕ x id.(2)= a∗ → x∗∗ ≥ x∗∗ and a ⊕ x (r27)= x ⊕ a id.(2)= x∗ → a∗∗ ≥ a∗∗, hence a∗∗ ∨ x∗∗ ≤ a ⊕ x.

(r38). Since an ⊖ x (r35)= (a∗∗)n → x∗∗
(r4)≥ a∗∗ → x∗∗ = a ⊖ x ≥ x∗∗, hence x∗∗ ≤ a ⊖ x ≤ an ⊖ x, for any

n ∈ N.

The following properties hold for any residuated lattice:
(r39) z → y ≤ (x → z) → (x → y) and z → y ≤ (y → x) → (z → x);
(r40) (x → y) ⊙ (y → z) ≤ x → z.

In the next result, we investigate some properties of the operator Da(X) for nonempty upsets. Clearly,
Da(∅) = ∅.

In Proposition 3.3, [11], there are the properties of operator Da for BL-algebras, we o�er complete proofs
for them in the case of residuated lattices:

Theorem 3.12. If L is a residuated lattice and a, x ∈ L. Consider X, Y two nonempty upsets of L. Then:
(i) Da(X) is an upset of L;
(ii) 1 ∈ Da(X), a ∈ Da(X) and X ⊆ Da(X);
(iii) am ⊖ (an ⊖ x) = am+n ⊖ x, for any m, n ∈ N;
(iv) if X ⊆ Y , then Da(X) ⊆ Da(Y);
(v) Da(Da(X)) = Da(X);
(vi) if F is a �lter of L, then Da(F) is a �lter of L;
(vii) if a ≤ s, then Ds(X) ⊆ Da(X);
(viii) if {Xα∣α ∈ I} is a family of upsets of L, then Da(∪{Xα∣α ∈ I}) = ∪(Da({Xα∣α ∈ I}));
(ix) if {X1, X2, ..., Xn} is a �nite set of upsets of L, then Da(∩{Xi ∣ i = 1, 2, ..., n}) = ∩{Da(Xi)∣ i = 1, 2, ..., n};
(x) Da(Dx(X)) = Dx(Da(X));
(xi) if X1, X2, X3 are upsets of L, then Da(X1)∩[Da(X2)∪Da(X3)] = [Da(X1)∩Da(X2)]∪[Da(X1)∩Da(X3)]
and Da(X1) ∪ [Da(X2) ∩ Da(X1)] = [Da(X1) ∪ Da(X2)] ∩ [Da(X1) ∪ Da(X3)].

Proof. (i). Clearly, Da(X) ⊆↑ Da(X). We consider s ∈↑ Da(X), then there exists x ∈ Da(X) such that x ≤ s.
Since x ∈ Da(X) we have an ⊖ x ∈ X, by (r35) we deduce that (a∗∗)n → x∗∗ ∈ X, for some n ∈ N. By (r4) and
(r16), since x ≤ s we obtain successively x∗∗ ≤ s∗∗, (a∗∗)n → x∗∗ ≤ (a∗∗)n → s∗∗. Since X is an upset of L
and (a∗∗)n → x∗∗ ∈ X, then (a∗∗)n → s∗∗ ∈ X, hence s ∈ Da(X) and so ↑ Da(X) ⊆ Da(X). We deduce that
Da(X) is an upset of L.

(ii). Since 1 ∈ X, by (r35) we have an ⊖ 1 = (a∗∗)n → 1∗∗ = (a∗∗)n → 1 = 1 ∈ X, for any n ∈ N. Hence
1 ∈ Da(X).

Since 1 ∈ X, by (r18) and (r35) we have an ⊖ a = (a∗∗)n → a∗∗ = 1 ∈ X, for any n ∈ N. Hence a ∈ Da(X).
Now, we consider x ∈ X. Then by (r16) and (r38) we have x ≤ x∗∗ ≤ an ⊖ x ∈ X, hence x ∈ Da(X). We

deduce that X ⊆ Da(X).
(iii). Consider m, n ∈ N and a, x ∈ L. By (r5) and (r36) we obtain successively am ⊖ (an ⊖ x) id.(4)=

(a∗∗)m → (an ⊖ x)∗∗ (r36)= (a∗∗)m → (an ⊖ x) id.(4)= (a∗∗)m → ((a∗∗)n → x∗∗) (r5)= [(a∗∗)m ⊙(a∗∗)n] → x∗∗ =
(a∗∗)m+n → x∗∗ id.(4)= am+n ⊖ x.

(iv). Consider X ⊆ Y and x ∈ Da(X). Then there exists n ∈ N such that an ⊖ x ∈ X ⊆ Y and so x ∈ Da(Y).
Hence Da(X) ⊆ Da(Y).
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(v). Since X ⊆ Da(X), by (iv) we have Da(X) ⊆ Da(Da(X)). Consider x ∈ Da(Da(X)). Then there exists
m ∈ N such that am ⊖ x ∈ Da(X) and so an ⊖ (am ⊖ x) ∈ X, for some n ∈ N. By (iii) we have an+m ⊖ x ∈ X and
so x ∈ Da(X). Hence Da(X) = Da(Da(X)).

(vi). Consider F a �lter of L. Then F is a nonempty upset and by (ii) we have 1 ∈ Da(F). Let x, x → y ∈
Da(F), then there arem, n ∈ N such that (a∗∗)n → x∗∗ ∈ F and (a∗∗)m → (x → y)∗∗ ∈ F. By (r5) and (r17)we
obtain successively ((a∗∗)n → x∗∗) → ((a∗∗)n+m → y∗∗) = ((a∗∗)n → x∗∗) → ((a∗∗)n ⊙ (a∗∗)m → y∗∗) (r5)=

(a∗∗)m → [((a∗∗)n → x∗∗) → ((a∗∗)n → y∗∗)]
(r39)≥ (a∗∗)m → (x∗∗ → y∗∗)

(r17)≥ (a∗∗)m → (x → y)∗∗ ∈ F.
Since F is a �lter and (a∗∗)n → x∗∗ ∈ F, then (a∗∗)n+m → y∗∗ ∈ F, hence y ∈ Da(F). We deduce that

Da(F) is a �lter of L.
(vii). Consider a ≤ s and x ∈ Ds(X), then there exists n ∈ N such that (s∗∗)n → x∗∗ ∈ X. By (r4)we obtain

successively a ≤ s, a∗∗ ≤ s∗∗, (a∗∗)n ≤ (s∗∗)n , (s∗∗)n → x∗∗ ≤ (a∗∗)n → x∗∗. Since (s∗∗)n → x∗∗ ∈ X, then
(a∗∗)n → x∗∗ ∈ X, hence x ∈ Da(X). We deduce that Ds(X) ⊆ Da(X).

(viii). Consider x ∈ L. Then we have the equivalences:
x ∈ Da(∪{Xα∣α ∈ I}) i� an ⊖ x ∈ ∪{Xα∣α ∈ I} i�
an ⊖ x ∈ Xα, for some n ∈ N, and α ∈ I i�
x ∈ Da(Xα), for some n ∈ N and α ∈ I i�
x ∈ ∪(Da({Xα∣α ∈ I})). Hence Da(∪{Xα∣α ∈ I}) =
∪(Da({Xα∣α ∈ I})).
(ix). Following (iv), since ∩{Xi ∣ i = 1, 2, ..., n} ⊆ Xi , for any i ∈ {1, 2, ..., n}, then Da(∩{Xi ∣ i =

1, 2, ..., n}) ⊆ Da(Xi), for any i ∈ {1, 2, ..., n}, hence Da(∩{Xi ∣ i = 1, 2, ..., n}) ⊆ ∩{Da(Xi)∣ i = 1, 2, ..., n}.
Consider x ∈ ∩{Da(Xi)∣ i = 1, 2, ..., n}. Then there existm1,m2, ...,mn ∈ N such that (a∗∗)mi → x∗∗ ∈ Xi , for
any i ∈ {1, 2, ..., n}.

Consider now p = max{m1,m2, ...,mn}. By (r4), since mi ≤ p, for any i ∈ {1, 2, ..., n}, then (a∗∗)mi →
x∗∗ ≤ (a∗∗)p → x∗∗. Since (a∗∗)mi → x∗∗ ∈ Xi , then (a∗∗)p → x∗∗ ∈ Xi , for any i ∈ {1, 2, ..., n}. It follows
that (a∗∗)p → x∗∗ ∈ ∩{Xi ∣ i = 1, 2, ..., n}, hence x ∈ Da(∩{Xi ∣ i = 1, 2, ..., n}). We deduce that Da(∩{Xi ∣ i =
1, 2, ..., n}) = ∩{Da(Xi)∣ i = 1, 2, ..., n}.

(x). We have successively:
Da(Dx(X)) = {t ∈ L∣ an ⊖ t ∈ Dx(X), for some n ∈ N} =
= {t ∈ L∣ xm ⊖ (an ⊖ t) ∈ X, for some m, n ∈ N}
id.(4)= {t ∈ L∣ (x∗∗)m → (an ⊖ t)∗∗ ∈ X, for some m, n ∈ N}
(r36)= {t ∈ L∣ (x∗∗)m → (an ⊖ t) ∈ X, for some m, n ∈ N}
id.(4)= {t ∈ L∣ (x∗∗)m → [(a∗∗)n → t∗∗] ∈ X, for some m, n ∈ N}
(r5)= {t ∈ L∣ (a∗∗)n → [(x∗∗)m → t∗∗] ∈ X, for some m, n ∈ N}
id.(4)= {t ∈ L∣ an ⊖ (xm ⊖ t) ∈ X, for some m, n ∈ N}
= {t ∈ L∣ xm ⊖ t ∈ Da(X), for some m ∈ N} = Dx(Da(X)).
(xi). It follows from (viii) and (ix).

In universal algebra, for a nontrivial lattice A, a unary mapping f ∶ P(A) → P(A) is called laticeal modal
operator on A if it satis�es the conditions: For all A1, A2 ⊆ A,
(1) A1 ⊆ f(A1);
(2) f(f(A1)) = f(A1);
(3) f(A1 ∩ A2) = f(A1) ∩ f(A2).

A laticeal modal operator is calledmonotone if it satis�es:
(m) If A1 ⊆ A2, then f(A1) ⊆ f(A2).

Following Theorem 3.12 (ii), (iv), (v), and (viii) we deduce:

Corollary 3.13. Let a ∈ L. Then the map Da ∶ U(L) → U(L) is a laticeal monotone modal operator.
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Proof. Following Theorem 3.12 (ii), (iv), (v), and (viii) we deduce that the map Da ∶ U(L) → U(L) is a
laticeal monotone modal operator.

We recall that, for a residuated lattice L, by U(L) we denote the set of all upsets of L.

Corollary 3.14. For any a ∈ L, the map Da ∶ U(L) → U(L) is a closure operator and Da = Da∗∗ .

Proof. Following Theorem 3.12 (i), (ii), (iv) and (v), we deduce that Da is a closure operator.
Consider X an upset of L. Following Theorem 3.12 (vii), since by (r16) we have a ≤ a∗∗, then Da∗∗(X) ⊆

Da(X). Consider now x ∈ Da(X). Then there exists n ∈ N such that (a∗∗)n → x∗∗ ∈ X. By (r15) we have
a∗∗∗∗ = a∗∗, then (a∗∗∗∗)n → x∗∗ ∈ X, hence x ∈ Da∗∗(X). We deduce that Da(⋅) = Da∗∗(⋅).

Lemma 3.15. Let a ∈ L and F be a �lter of L. Then Da(F) = D1(F) i� a∗∗ ∈ F.

Proof. ”⇒ ”. Consider a ∈ L and F a �lter of L such thatDa(F) = D1(F). Following Theorem3.12 (ii), we have
a ∈ Da(F) = D1(F), then a ∈ D1(F), and we have successively a ∈ D1(F), (1∗∗)n → a∗∗ ∈ F, 1n → a∗∗ ∈ F,
1→ a∗∗ ∈ F, a∗∗ ∈ F.

” ⇐ ”. Suppose a∗∗ ∈ F. By Theorem 3.12 (vii), since a ≤ 1, then D1(F) ⊆ Da(F). Consider now x ∈
Da(F). Then there exists n ∈ N such that (a∗∗)n → x∗∗ ∈ F. Since a∗∗ ∈ F and F is a �lter of L, then (a∗∗)n ∈ F,
for any n ∈ N. By (a∗∗)n ∈ F, (a∗∗)n → x∗∗ ∈ F, we deduce x∗∗ ∈ F. Since x∗∗ = (1∗∗)n → x∗∗ ∈ F, then
x ∈ D1(F), hence Da(F) ⊆ D1(F). We deduce that Da(F) = D1(F).

Corollary 3.16. Let L be an involutive residuated lattice, a ∈ L and F be a �lter of L. Then Da(F) = F i� a ∈ F.

Proof. ” ⇒ ”. Consider a ∈ L and F a �lter of L such that Da(F) = F. Following Theorem 3.12 (ii), we have
a ∈ Da(F) = F, then a ∈ F.

” ⇐ ”. Suppose a ∈ F. By Theorem 3.12 (ii), a ∈ F ⊆ Da(F). Consider now x ∈ Da(F). Then there exists
n ∈ N such that (a∗∗)n → x∗∗ ∈ F. Since a ≤ a∗∗ ∈ F and F is a �lter of L, then (a∗∗)n ∈ F, for any n ∈ N.
By (a∗∗)n ∈ F, (a∗∗)n → x∗∗ ∈ F, we deduce x∗∗ ∈ F, hence x ∈ F. Therefore, Da(F) ⊆ F. We deduce that
Da(F) = F.

Remark 3.17. (i). By Theorem 3.12 (vi), if F is a proper �lter, then Da(F) is a proper �lter or Da(F) = L. We
consider the lattice L = {0, a, c, d,m, 1}with 0 < a < m < 1, 0 < c < d < m < 1, but a incomparable with c and
d.

1
m

d

a
c

0

Then ([12], page 233) L becomes a residuated lattice relative to the following operations:

→ 0 a c d m 1
0 1 1 1 1 1 1
a d 1 d d 1 1
c a a 1 1 1 1
d a a m 1 1 1
m 0 a d d 1 1
1 0 a c d m 1

⊙ 0 a c d m 1
0 0 0 0 0 0 0
a 0 a 0 0 a a
c 0 0 c c c c
d 0 0 c c c d
m 0 a c c m m
1 0 a c d m 1
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We have ⟨a⟩ = {a,m, 1} is a proper �lter of L, Dm(⟨a⟩) = {x ∈ L ∣ (m∗∗)n → x∗∗ ∈ ⟨a⟩, for some n ∈ N} =
{x ∈ L ∣ 1→ x∗∗ ∈ ⟨a⟩} = ⟨a⟩ and Dc(⟨a⟩) = {x ∈ L ∣ (c∗∗)n → x∗∗ ∈ ⟨a⟩, for some n ∈ N} = {x ∈ L ∣ c → x∗∗} =
L.

Moreover, ⟨a⟩ is a maximal �lter of L and Dc(⟨a⟩) = L ≠ ⟨a⟩. So, if M is a maximal �lter, then Dx(M) = M
or Dx(M) = L, for any x ∈ L.

(ii). There are residuated lattices L such that for a proper �lter F of L, there is a ∈ L and Da(F) = L. Indeed,
we consider L = {0, a, b, c, d, e, f ,m, 1} with 0 < a < c < m < 1, 0 < a < e < m < 1, 0 < b < c < m < 1,
0 < b < f < m < 1, 0 < d < e < m < 1 and elements {a, b}, {a, f}, {a, d}, {b, d}, {b, e}, {d, c}, {c, e},
{c, f} and {e, f} are pairwise incomparable.

1

m

c e f

a b d

0

Then ( [12]) L is a residuated lattice with the following operations:

→ 0 a b c d e f m 1
0 1 1 1 1 1 1 1 1 1
a m 1 m 1 m 1 m 1 1
b m m 1 1 m m 1 1 1
c m m m 1 m m m 1 1
d m m m m 1 1 1 1 1
e m m m m m 1 m 1 1
f m m m m m m 1 1 1
m m m m m m m m 1 1
1 0 a b c d e f m 1

⊙ 0 a b c d e f m 1
0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 a
b 0 0 0 0 0 0 0 0 b
c 0 0 0 0 0 0 0 0 c
d 0 0 0 0 0 0 0 0 d
e 0 0 0 0 0 0 0 0 e
f 0 0 0 0 0 0 0 0 f
m 0 0 0 0 0 0 0 0 m
1 0 a b c d e f m 1

Let F = ⟨1⟩ = {1}. Since Dm(⟨1⟩) = {x ∈ L∣(m∗∗)n → x∗∗ ∈ ⟨1⟩, for some n ∈ N} = {x ∈ L∣0 → x∗∗ ∈ ⟨1⟩} =
{x ∈ L∣1 ∈ ⟨1⟩} = L.

(iii). There are residuated lattices L such that for a prime �lter F, there is a ∈ L such that Da(F) is not
prime. Indeed, we consider L = {0, a, b, n, c, d, 1} with 0 < a < n < d < 1, 0 < b < n < c < 1, but (a, b) and
(c, d) are pairwise incomparable.

1

c d

n

a b

0
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Then ([12], page 191) L becomes a residuated lattice relative to the operations:

→ 0 a b n c d 1
0 1 1 1 1 1 1 1
a b 1 b 1 1 1 1
b a a 1 1 1 1 1
n 0 a b 1 1 1 1
c 0 a b d 1 d 1
d 0 a b c c 1 1
1 0 a b n c d 1

⊙ 0 a b n c d 1
0 0 0 0 0 0 0 0
a 0 a 0 a a a a
b 0 0 b b b b b
n 0 a b n n n n
c 0 a b n c n c
d 0 a b n n d d
1 0 a b n c d 1

Clearly, ⟨c⟩ = {c, 1} is a prime �lter of L. Since Dn(⟨c⟩) = {x ∈ L∣(n∗∗)m → x∗∗ ∈ ⟨c⟩, for some m ∈ N} =
{x ∈ L∣1 → x∗∗ ∈ ⟨c⟩} = {x ∈ L∣x∗∗ ∈ ⟨c⟩} = {n, c, d, 1}, hence Dn(⟨c⟩) = {n, c, d, 1}. Since n = a ∨ b, but
a ∉ Dn(⟨c⟩) and b ∉ Dn(⟨c⟩), we deduce Dn(⟨c⟩) is not prime.

(iv). There are residuated lattices L such that for a �lter F, there is a ∈ L such that Da(F) is prime, but
F is not prime. Indeed, we consider L = {0, a, b, c, d, e, f , 1} with 0 < a < c < e < 1, 0 < b < e < f < 1
0 < b < c < e < 1, 0 < b < d < e < 1, and elements {a, b}, {a, d}, {a, f}, {c, d}, {c, f}, and {e, f} are
pairwise incomparable.

1

e f

c d

a b

0

Then [12] L becomes a MTL-algebra with the following operations:

→ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a f 1 f 1 f 1 f 1
b e e 1 1 1 1 1 1
c d e f 1 f 1 f 1
d c c c c 1 1 1 1
e b c b c f 1 f 1
f a a c c e e 1 1
1 0 a b c d e f 1

⊙ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 a 0 a 0 a 0 a
b 0 0 0 0 0 0 b b
c 0 a 0 a 0 a b c
d 0 0 0 0 d d d d
e 0 a 0 a d e d e
f 0 0 b b d d f f
1 0 a b c d e f 1

Since ⟨e⟩ = {e, 1}, with e = c ∨ d, but c ∉ ⟨e⟩ and d ∉ ⟨e⟩, then ⟨e⟩ is not a prime �lter. Since Dd(⟨e⟩) = {x ∈
L∣(d∗∗)n → x∗∗ ∈ ⟨e⟩, for some n ∈ N} = {x ∈ L∣d → x∗∗ ∈ ⟨e⟩} = {d, e, f , 1}. Hence Dd(⟨e⟩) = {d, e, f , 1},
which is a prime �lter of L, but ⟨e⟩ is not prime.

(v). If M ∈ Maxi(L) is a maximal �lter and Da(M) is a proper �lter, then Da(M) = M. Indeed, by Theorem
3.12 (ii), M ⊆ Da(M) and Da(M) is a proper �lter. We get that if M is a maximal �lter, then M = Da(M).
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There are residuated lattices L such that Da(M) is a maximal �lter, but M ∉ Maxi(L). We consider L =
{0, n, a, b, c, d, 1} with 0 < n < a < b < c, d < 1, but c and d are incomparable.

1

c d

b

a

n

0

Then ([12]) L becomes a distributive residuated lattice relative to the following operations:

→ 0 n a b c d 1
0 1 1 1 1 1 1 1
n d 1 1 1 1 1 1
a n n 1 1 1 1 1
b n n a 1 1 1 1
c 0 n a d 1 d 1
d n n a c c 1 1
1 0 n a b c d 1

⊙ 0 n a b c d 1
0 0 0 0 0 0 0 0
n 0 0 0 0 n 0 n
a 0 0 a a a a a
b 0 0 a b b b b
c 0 n a b c b c
d 0 0 a b b d d
1 0 n a b c d 1

Clearly, ⟨a⟩ = {a, b, c, d, 1} is the unique maximal �lter of L and ⟨b⟩ = {b, c, d, 1} is a �lter of L. Since
Dc(⟨b⟩) = {x ∈ L∣(c∗∗)n → x∗∗ ∈ ⟨b⟩, for some n ∈ N} = {x ∈ L∣1 → x∗∗ ∈ ⟨b⟩} = {x ∈ L∣x∗∗ ∈ ⟨b⟩} =
{a, b, c, d, 1} = ⟨a⟩. Therefore, Dc(⟨b⟩) = ⟨a⟩ is the unique maximal �lter of L, but ⟨b⟩ is not maximal.

Proposition 3.18. Let a ∈ L and F be a �lter of L. Then:
(i) if M is a maximal �lter of L and a∗∗ ∈ M, then Da(M) = M;
(ii) D1(F) is a prime �lter i� Da(F) is prime;
(iii) (an)∗ ∈ F, for some n ∈ N i� Da(F) = L;
(iv) if M is a maximal �lter of L, then Da(M) = L i� a ∈ L ∖M.
Moreover, if M is a maximal �lter of L, then Da(M) = M i� a ∈ M.

Proof. (i). Let M be a maximal �lter of L and a∗∗ ∈ M. Following Theorem 3.12 (ii) and (vi) we have Da(M)
is a �lter and M ⊆ Da(M). We must to prove that Da(M) is a proper �lter of L. If 0 ∈ Da(M), then by (r5)
and (r15) we obtain successively 0 ∈ Da(M), (a∗∗)n → 0∗∗ ∈ M, (a∗∗)n → 0 ∈ M, (a∗∗)n−1 ⊙ a∗∗ → 0 ∈ M,
(a∗∗)n−1 → [a∗∗ → 0] ∈ M, (a∗∗)n−1 → a∗∗∗ ∈ M, (a∗∗)n−1 → a∗ ∈ M. Since a∗∗ ∈ M and M is a �lter of L,
then (a∗∗)n−1 ∈ M. Since (a∗∗)n−1 ∈ M, (a∗∗)n−1 → a∗ ∈ M, then a∗ ∈ M. Since a∗, a∗∗ ∈ M and M is a �lter
of L, then 0 = a∗ ⊙ a∗∗ ∈ M, a contradiction. Hence Da(M) ≠ L.

By hypothesis, M is a maximal �lter and M ⊆ Da(M) ≠ L, then Da(M) = M.
(ii). Let F be a �lter of L. Following Theorem 3.12 (vi), D1(F) and Da(F) are �lters of L. Suppose D1(F)

is a prime �lter of L and x∨ y ∈ D1(F). If x∨ y ∈ D1(F), then (1∗∗)n → (x∨ y)∗∗ = (x∨ y)∗∗ ∈ F, for any n ∈ N.
Since F is a �lter and (x ∨ y)∗∗ ≤ (a∗∗)n → (x ∨ y)∗∗, then (a∗∗)n → (x ∨ y)∗∗ ∈ F, hence x ∨ y ∈ Da(F).

Since x ∨ y ∈ D1(F) and D1(F) is prime, then x ∈ D1(F) or y ∈ D1(F). It follows that x∗∗ ∈ F or y∗∗ ∈ F.
We have successively x∗∗ ∈ F, x∗∗ ≤ (a∗∗)n → x∗∗ ∈ F or y∗∗ ∈ F, y∗∗ ≤ (a∗∗)m → y∗∗ ∈ F, then x ∈ Da(F) or
y ∈ Da(F), for some m, n ∈ N. Hence Da(F) is prime.

Now, suppose Da(F) is prime and for a = 1 we deduce D1(F) is prime, too.
(iii). Suppose (an)∗ ∈ F, for some n ∈ N. Following Theorem 3.12 (ii), F ⊆ Da(F), then (an)∗ ∈ Da(F).

By Theorem 3.12 (ii) and (vi), we obtain a ∈ Da(F) and Da(F) is a �lter, then an ∈ Da(F), for any n ∈ N. Since
an ∈ Da(F), (an)∗ ∈ Da(F) and Da(F) is a �lter, then 0 = an ⊙ (an)∗ ∈ Da(F). Hence Da(F) = L.
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Now, suppose Da(F) = L. Then 0 ∈ Da(F), (a∗∗)n → 0∗∗ ∈ F, (a∗∗)n → 0 ∈ F, for some n ∈ N.
We prove by induction that (a∗∗)n+1 → 0 = an+1 → 0, for n ∈ N. Clear, for n = 0. Suppose (a∗∗)n → 0 =

an → 0, for n ∈ N. By (r5), (a∗∗)n+1 → 0 = ((a∗∗)n ⊙ a∗∗) → 0 = a∗∗ → ((a∗∗)n → 0) = a∗∗ → (an → 0) =
an → a∗∗∗ = an → (a → 0) = an+1 → 0.

Since (a∗∗)n → 0 ∈ F, then an → 0 ∈ F, that is (an)∗ ∈ F.
(iv). Consider M a maximal �lter of L.
” ⇒ ”. Consider Da(M) = L. If a ∈ M, then we get a∗∗ ∈ M, and by (i) we obtain L = Da(M) = M, a

contradiction. We deduce a ∉ M, that is, a ∈ L ∖M.
”⇐ ”. Consider a ∈ L ∖M. SinceM is a maximal �lter, then following Proposition 2.8 there is n ∈ N such

that (an)∗ ∈ M, and by (iii) we obtain Da(M) = L.
Now, the fact that Da(M) = M i� a ∈ M is routine.

Georgescu et al. (2015)[15] calledGelfand residuated lattices those residuated lattices inwhich any prime �lter
is included in a unique maximal �lter. They are also called normal residuated lattices. Examples of Gelfand
residuated lattices are Boolean algebras, BL-algebras and Stonean residuated lattices (see [8]).

Proposition 3.19. Let a ∈ L and P ∈ Speci(L) be a prime �lter. If P = Da(P), then L is Gelfand (normal)
residuated lattice. The converse does not hold.

Proof. Let P be a prime �lter of L such that P = Da(P). Using Zorn’s Lemma we deduce that P is contained in
amaximal �lter. Suppose that there are two distinct maximal �ltersM1 andM2 such that P ⊆ M1 and P ⊆ M2.
Since M1 ≠ M2, there is a ∈ M1 such that a ∉ M2. By Theorem 3.12 (ii) and (vi) we have that a ∈ Da(P) and
Da(P) is a �lter, then (an)∗∗ ∈ Da(P) = P, for any n ∈ N. Hence (an)∗∗ ∈ P, for any n ∈ N.

Following Proposition 2.8, there is n ≥ 1 such that (an)∗ ∈ M2. Then (an)∗∗ ∉ M2, hence (an)∗∗ ∉ P, a
contradiction.

For the converse we consider the residuated lattice L from Remark 3.17 (v). The prime �lter of L are ⟨a⟩ =
{a, b, c, d, 1}, ⟨b⟩ = {b, c, d, 1}, ⟨c⟩ = {c, 1} and ⟨d⟩ {d, 1}. The maximal �lter of L is ⟨a⟩, which include
the all other prime �lters. Hence L is Gelfand, but Dc(⟨b⟩) = ⟨a⟩ ≠ ⟨b⟩.

Proposition 3.20. Let F ∈ Fi(L) and a ∈ F. For x ∈ Da(F) the following assertions are equivalent:
(i) Da(F) = F;
(ii) x∗∗ ∈ F, then x ∈ F.

Proof. (i) ⇒ (ii). Consider Da(F) = F. By hypothesis F is a �lter and a ∈ F, then a∗∗ ∈ F, (a∗∗)n ∈ F, for
every n ∈ N. Since F is a �lter and (a∗∗)n ∈ F, (a∗∗)n → x∗∗ ∈ F, then x∗∗ ∈ F. We obtain successively
F = Da(F) = {x ∈ L ∣ (a∗∗)n → x∗∗ ∈ F, for some n ∈ N} = {x ∈ L ∣ x∗∗ ∈ F}, that is, if x∗∗ ∈ F, then x ∈ F, for
all x ∈ L.

(ii) ⇒ (i). By hypothesis F is a �lter and a ∈ F, then a∗∗ ∈ F, (a∗∗)n ∈ F, for every n ∈ N. Since F is a
�lter and (a∗∗)n ∈ F, (a∗∗)n → x∗∗ ∈ F, then x∗∗ ∈ F. We obtain successively Da(F) = {x ∈ L ∣ (a∗∗)n → x∗∗ ∈
F, for some n ∈ N} = {x ∈ L ∣ x∗∗ ∈ F} = F.

Theorem 3.21. Let a ∈ L and F be a �lter of L. For x ∈ Da(F) the following assertions are equivalent:
(i) Da(F) = F;
(ii) x∗∗ ∈ F i� x ∈ F.

Proof. (i) ⇒ (ii). Consider Da(F) = F. By hypothesis F is a �lter and x ∈ Da(F) = F, by (r16) we obtain
x ≤ x∗∗ ∈ F, so, if x ∈ F, then x∗∗ ∈ F. Now, we prove that if x∗∗ ∈ F, then x ∈ F. Since F is a �lter and x∗∗ ∈ F,
x∗∗ ≤ (a∗∗)n → x∗∗ ∈ F, for any n ∈ N, then x ∈ Da(F) = F.

(ii) ⇒ (i). By Theorem 3.12, (ii) we have F ⊆ Da(F). Now, we consider x ∈ Da(F) such that x∗∗ ∈ F
i� x ∈ F. Since x∗∗ ∈ F and x∗∗ ≤ (a∗∗)n → x∗∗ ∈ F, for any n ∈ N, then we obtain successively Da(F) =
{x ∈ L ∣ (a∗∗)n → x∗∗ ∈ F, for some n ∈ N} ⊆ {x ∈ L ∣ x∗∗ ∈ F} ⊆ F. Therefore, Da(F) = F.
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Remark 3.22. Examples of residuated lattices which satisfy the conditions from Proposition 3.20 and Theorem
3.21 are Boolean algebras, MV-algebras and involutive residuated lattices.

Corollary 3.23. The set τa = {Da(X)∣ X ∈ U(L)} is a topology on L and (L, τa) is a topological space.

Proof. Let a ∈ L. Clearly, Da(∅) = ∅ and Da(L) = L. Following Theorem 3.12 (viii) and (ix) the set τa =
{Da(X)∣ X ∈ U(L)} is a topology on L and (L, τa) is a topological space.

Proposition 3.24. The set βa = {Da(↑ x)∣ x ∈ L)} is a base for the topology τa on L.

Proof. Let Z be an open subset of (L, τa). Then there is X ∈ U(L) such that Z = Da(X). Since X is an upset,
then X = ∪{↑ x∣ x ∈ X} and by Theorem 3.12 (viii), we deduce that Da(X) = ∪{Da(↑ x)∣ x ∈ X}. Hence βa is a
base for the topology τa on L.

Corollary 3.25. Every open set X relative to the topology τa is an upset. But the converse does not hold.

Proof. Following Corollary 3.23 and Proposition 3.24 we have (L, τa) is a topological space with βa a base for
the topology τa . Since every union of elements of βa is an upset and every open set X relative to τa can be
written as a union of elements of βa , then X is an upset.

For the converse we consider the residuated lattice L from Remark 3.17 (v), where ↑ n = {n, a, b, c, d, 1}
is an upset of L. The upsets of L are ↑ 0 = L, ↑ n = {n, a, b, c, d, 1}, ↑ a = {a, b, c, d, 1}, ↑ b = {b, c, d, 1},
↑ c = {c, 1}, ↑ d = {d, 1} and ↑ 1 = {1}, so U(L) = {↑ 0, ↑ n, ↑ a, ↑ b, ↑ c, ↑ d, ↑ 1}. Since the base of topology
τp on L is the set βp = {Dp(↑ x)∣ p ∈ L and ↑ x ∈ U(L)} = {z ∈ L∣ (p∗∗)n → z∗∗ ∈↑ x for some n ∈ N}, then
it is easy to verify that ↑ n can not be written as a union of elements of βp . Therefore, ↑ n is not an open set
relative to the topology τp .

Proposition 3.26. If u, v ∈ L such that u ≤ v, then the topology τv is �ner than topology τu .

Proof. We denote by βu , βv basis of the topology τu , respectively τv .
Consider t ∈ L and Du(↑ x) ⊆ βu an element of the basis βu such that t ∈ Du(↑ x). Then there exists n ∈ N

such that (u∗∗)n → t∗∗ ∈↑ x, that is, x ≤ (u∗∗)n → t∗∗. Following Theorem 3.12 (ii) we have t ∈ Dv(↑ t).
Following Theorem 3.12 (vii), since u ≤ v, then Dv(↑ t) ⊆ Du(↑ t). We prove that Du(↑ t) ⊆ Du(↑ x). Now,
we consider s ∈ Du(↑ t). Then there exists m ∈ N such that (u∗∗)m → s∗∗ ∈↑ t and so t ≤ (u∗∗)m → s∗∗. By

(r4), (r35) and (r36) we obtain successively t ≤ (u∗∗)m → s∗∗, t∗∗
(r4)≤ [(u∗∗)m → s∗∗]∗∗ (r35),(r36)= (u∗∗)m →

s∗∗. Since x ≤ (u∗∗)n → t∗∗ ≤ (u∗∗)n → [(u∗∗)m → s∗∗] (r5)= (u∗∗)m+n → s∗∗, then x ≤ (u∗∗)m+n → s∗∗,
hence (u∗∗)m+n → s∗∗ ∈↑ x and so s ∈ Du(↑ x).

Since Du(↑ t) ⊆ Du(↑ x) and Dv(↑ t) ⊆ Du(↑ t), it follows that Dv(↑ t) ⊆ Du(↑ t) ⊆ Du(↑ x).
Clearly, Dv(↑ t) ⊆ βv is an element of the basis βv . We deduce that for any t ∈ Du(↑ x) ⊆ βu , there is a

basis element Dv(↑ t) ⊆ βv such that t ∈ Dv(↑ t) ⊆ Du(↑ t) ⊆ Du(↑ x). Following Lemma 3.4 we deduce that
the topology τv is �ner than topology τu .

Lemma 3.27. If X is a nonempty subset of L and a ∈ L, then X is a compact subset of (L, τa) i� X ⊆ Da(↑
{xi1 , xi2 , ..., xin}), for some xi1 , xi2 , ..., xin ∈ X and i ∈ I.

Proof. ”⇐ ”. Suppose X ⊆ Da(↑ {xi1 , xi2 , ..., xin}), for some xi1 , xi2 , ..., xin ∈ X and {Da(Xi)∣i ∈ I} be a family
of open subsets of L whose union contains X. For any j ∈ {1, 2, ..., n}, there is ij ∈ I such that xij ∈ Da(Xij).
Following Theorem 3.12 (i) and (iv), we have Da(xij) ⊆ Da(Xij), for any j ∈ {1, 2, ..., n}. By Theorem 3.12
(viii)weobtainX ⊆ Da(↑ {xi1 , xi2 , ..., xin}) =Da(xi1)∪Da(xi2)∪...∪Da(xin) ⊆Da(Xi1)∪Da(Xi2)∪...∪Da(Xin).
Hence X is compact.

” ⇒ ”. Now, suppose X be a compact subset of L. Since X ⊆ ∪{↑ x∣x ∈ X}, then by Theorem 3.12(ii),
X ⊆ ∪{Da(↑ x)∣x ∈ X}. Hence {Da(↑ x)∣x ∈ X} is a family of open subsets of L whose union contains X.
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By hypothesis, there are x1, x2, ..., xn ∈ X such that X ⊆ Da(↑ x1) ∪ Da(↑ x2) ∪ ... ∪ Da(↑ xn). By Theorem
3.12(viii) we obtain X ⊆ Da(↑ {x1, x2, ..., xn}).

Theorem 3.28. The topological space (L, τa) is connected.

Proof. Consider X a non-empty subset of L such that is both closed and open relative to the topology τa . If X
is an open set, by Corollary 3.25, then X is an upset. If 0 ∈ X and X is an upset, then X = L. If 0 ∈ L−X, since X
is closed, we get L − X is open, by Corollary 3.25, L − X is an upset of L, since 0 ∈ L − X, then L − X = L. Hence
X = ∅, a contradiction. We conclude that {∅, L} is the set of all subsets of L which are both closed and open.
That is, (L, τa) is connected.

4 Some Properties of Quotient Topology on Residuated Lattices
Proposition 4.1. Let P, Q ∈ Fi(L) and a ∈ L such that Q ⊆ P. Then D[a](P/Q) = Da(P)/Q, where [a] =
{a/Q ∣ a ∈ L}.

Proof. Consider x ∈ L. Then
D[a](P/Q) = {[x] ∈ L/Q∣ [a]m ⊖ [x] ∈ P/Q, for some m ∈ N} = {[x] ∈ L/Q∣ [am ⊖ x] ∈ P/Q} = {[x] ∈

L/Q∣ am ⊖ x ∈ P} = Da(P)/Q.

Following Proposition 3.24 we obtain the following result.

Remark 4.2. (i). Let F ∈ Fi(L) and a ∈ L. Then (L/F, τa/F) is a topological space, where the set τa/F =
{Da/F(X/F)∣ X ∈ U(L)} is a topology on L/F and the set {Da/F(↑ x/F)∣ x/F ∈ L/F} is a base for the topology
τa/F on L/F.

If π ∶ L → L/F is the canonical morphism de�ned by π(x) = [x], then π is a continuous map. Indeed, if O
is an open set with respect the topology τa/F , then O = ⋃{Da/F(↑ xi/F)∣ for some xi/F ∈ L/F}, and π−1(O) =
π−1(⋃Da/F(↑ xi/F)) = ⋃π−1(Da/F(↑ xi/F)) = ⋃Da(π−1(↑ xi/F)), which is an open set on (L, τa).

(ii) Let F ∈ Fi(L) and a ∈ L. Then (L/F, −τa) is a topological space, where the set −

τa= {Da(X)/F∣ X ∈ U(L)}
is a topology on L/F and the set {Da(↑ x)/F∣ x/F ∈ L/F} is a base for the topology −

τa .
If π ∶ L → L/F is the canonical morphism de�ned by π(x) = [x], then π is a continuous map. Indeed, if

O is an open set with respect the topology −

τa , then O = ⋃{Da(↑ xi)/F∣ for some xi/F ∈ L/F}, and π−1(O) =
π−1(⋃Da(↑ xi)/F) = ⋃π−1(Da(↑ xi)/F) = ⋃Da(π−1(↑ xi/F)), which is an open set on (L, τa).

Theorem 4.3. Let F be a �lter of L and a, x ∈ L. Then:
(i) Da(↑ x)/F ⊆ Da/F(↑ x/F).
(ii) The topology τa/F is �ner than −

τa , where −

τa is the quotient topology of L/F.

Proof. (i). Da/F(↑ x/F) = {u/F ∈ L/F∣ x/F ≤ ((a/F)∗∗)n → (u/F)∗∗} = {u/F ∈ L/F∣ x → [(a∗∗)n → u∗∗] ∈ F}
and Da(↑ x)/F = {v/F ∶ v ∈ Da(↑ x)}. Let u/F ∈ Da(↑ x)/F. Then there exists v ∈ Da(↑ x) such that u/F = v/F
and so x → [(a∗∗)n → v∗∗] = 1, for some n ∈ N. Since u ≡F v, then x → [(a∗∗)n → u∗∗] = x → [(a∗∗)n →
v∗∗] = 1, that is x → [(a∗∗)n → u∗∗] ∈ F, hence u/F ∈ Da/F(↑ x/F). Therefore, Da(↑ x)/F ⊆ Da/F(↑ x/F).

(ii). ByProposition 3.24 the set{Da/F(↑ x/F) ∶ x/F ∈ L/F} is a base for the topology τa/F on L/F. Moreover,
the set {Da(↑ x)/F ∶ x ∈ L} is a base for the topology −

τa . Now, the proof of (ii) is straightforward by (i).

Let L, L
′

be residuated lattices. On L× L
′

we consider the relation of order (x, y) ≤ (x
′

, y
′

) i� x ≤ x
′

and y ≤ y
′

and the operations
(x, y) ∧ (x

′

, y
′

) = (x ∧ x
′

, y ∧ y
′

),
(x, y) ∨ (x

′

, y
′

) = (x ∨ x
′

, y ∨ y
′

),
(x, y) ⊙ (x

′

, y
′

) = (x ⊙ x
′

, y ⊙ y
′

),
(x, y) → (x

′

, y
′

) = (x → x
′

, y → y
′

) for all x, y ∈ L and x
′

, y
′

∈ L
′

.
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Then L × L
′

with the above operations is a residuated lattice called direct product of L and L
′

.

Lemma 4.4 ([17]). Let L, L
′

be residuated lattices. Then K is a �lter of L × L
′

i� there exist P ∈ Fi(L) and
Q ∈ Fi(L

′

) such that K = P × Q.

Proof. ” ⇒ ”. If K ∈ Fi(L × L
′

), we consider P = {x ∈ L ∶ (x, x
′

) ∈ K for some x
′

∈ L
′

} and Q = {x
′

∈ L
′

∶
(x, x

′

) ∈ K for some x ∈ L}.
Clearly, K = P × Q. Since (1, 1) ∈ K we get 1 ∈ P. Let x, y ∈ P. Then there exist x

′

, y
′

∈ L
′

such that
(x, x

′

), (y, y
′

) ∈ K. Thus, (x, x
′

) ⊙ (y, y
′

) = (x ⊙ y, x
′

⊙ y
′

) ∈ K, so x ⊙ y ∈ P.
Consider x ≤ y and x ∈ P. Then there exists x

′

∈ L
′

such that (x, x
′

) ∈ K. Since (x, x
′

) ≤ (y, x
′

), then
y ∈ P, hence P ∈ Fi(L). Similarly, Q ∈ Fi(L

′

).
”⇐ ”. Let K = P×Q for some P ∈ Fi(L) and Q ∈ Fi(L

′

). Clearly, K ∈ L×L
′

. We consider (x, y), (p, q) ∈ K.
Then x, p ∈ P and y, q ∈ Q, that is x⊙ p ∈ P, y⊙ q ∈ Q. Therefore, (x, y) ⊙ (p, q) = (x⊙ p, y⊙ q) ∈ P × Q = K.

Now, we consider (x, y) ∈ K such that (x, y) ≤ (p, q). Then x ≤ p with x ∈ P and y ≤ q with y ∈ Q. Since
P ∈ Fi(L) and Q ∈ Fi(L

′

), then p ∈ P and q ∈ Q, that is (p, q) ∈ K. Hence K ∈ Fi(L × L
′

).

Lemma 4.5. Let P, Q ∈ Fi(L) and a ∈ L. Then Da(P) × Da(Q) = Da(P × Q).

Proof. By Lemma 4.4, Da(P) × Da(Q) =
{x ∈ L∣an ⊖ x ∈ P, for some n ∈ N}× {y ∈ L∣am ⊖ y ∈ Q, for some m ∈ N} = {x × y ∈ L × L∣(at ⊖ x, at ⊖ y) ∈

P × Q, for some t ≥ max{m, n} ∈ N} = Da(P × Q).

Consider the topological spaces (L, τa) and (L, τb).

Theorem 4.6. Let P, Q ∈ Fi(L)and a, b ∈ L. Then there exists a homeomorphism from L×L
Da(P×Q) to

L
Da(P)×

L
Da(Q) .

Proof. We de�ne φ ∶ L × L → L
Da(P) ×

L
Da(Q) , by φ(x, y) = ( x

Da(P) ,
y

Da(Q)). Clearly, φ is onto. Let (x, y) ∈ L × L.
Then (x, y) ∈ ker(φ) i� x/Da(P) = 1/Da(P) and y/Da(Q) = 1/Da(Q) i� x ∈ Da(P) and y ∈ Da(Q). Hence
ker(φ) = Da(P) × Da(Q). It follows easily by Lemma 4.5 that Da(P) × Da(Q) = Da(P × Q). Consider the map
h ∶ L×L

Da(P×Q) →
L

Da(P) ×
L

Da(Q) , de�ned by h( (x,y)
Da(P)×Da(Q)) = (x/Da(P), y/Da(Q)), then by the �rst isomorphism

theorem h becomes an isomorphism. If we suppose that X is an open subset of L
Da(P) ×

L
Da(Q) , then there exist

U, V ∈ τb open subsets such that X = L
Da(P) ×

L
Da(Q) . Clearly, h

−1 = U×V
Da(P×Q) is an open subset of L×L

Da(P×Q) .
Hence h is a continuous map. In the same manner we can prove that h−1 is a continuous map. Therefore, h
is a homeomorphism.

4.1 Uniform topology on quotient residuated lattice L/J
In this section based on the work of Ghorbani and Hasankhani (2010)[18] we de�ne and study a uniform
topology τΛ on the quotient residuated lattice L/J, where J is a �lter of L.

If X is a non-empty set, U and V are subsets of X × X. Then:
U o V = {(x, y) ∈ X × X ∶ (z, y) ∈ U and (x, z) ∈ V for some z ∈ X},
U−1 = {(x, y) ∈ X × X ∶ (y, x) ∈ U},
△ = {(x, x) ∈ X × X ∶ x ∈ X}.
In universal algebra if X is a non-empty set, then a non-empty collection K of subsets of X × X is called a

uniformity on X if it satis�es the following conditions:
(U1) △ ⊆ U for any U ∈ K,
(U2) if U ∈ K, then U−1 ∈ K,
(U3) if U ∈ K, then there exists a set V ∈ K such that V o V ⊆ U,
(U4) if U, V ∈ K, then U ∩ V ⊆ K,
(U5) if U ∈ K and U ⊆ V ⊆ X × X, then V ∈ K.
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The pair (X, K) is called a uniform structure.
In Ghorbani and Hasankhani (2010)[18], Theorem 2.10, it was proved that if Λ is a family of �lters of a

residuated lattice L which is closed under intersection. If we consider the sets UF = {(x, y) ∈ L × L ∶ x ≡F y}
for every F ∈ Λ and K∗ = {UF ∶ F ∈ Λ}, then K = {U ⊆ L × L ∶ UF ⊆ U for some UF ∈ K} is a uniformity on L.
Let U ∈ K, de�ne U[x] = {y ∈ L ∶ (x, y) ∈ U}.

Then τΛ = {O ⊆ L ∶ ∀x ∈ O, ∃U ∈ K such that U[x] ⊆ O} is a topology on L and is called the uniform
topology on L induced by Λ.

In [18], Theorem 3.1, it was proved that if J is a �lter of L. For each F ∈ Λ, let F = ⟨F ∨ J⟩/J. Then Λ∗ =
{F ∶ F ∈ Λ} gives a uniform topology on L/J, where UF = {([x], [y]) ∈ L/J × L/J ∶ [x] ≡F [y]}.

The set τ = {O ⊆ L/J ∶ π−1(O) ∈ τΛ}, where π ∶ L → L/J is the canonical epimorphism, τ becomes the
quotient topology on L/J, and τΛ∗ becomes the uniform topology induced by Λ∗ on L/J.

Lemma 4.7. Let F, Q ∈ Fi(L) and a ∈ L. Then:
(i) ⟨{a} ∪ F⟩ ⊆ Da(F), but the converse does not hold;
(ii) ⟨{a} ∪ Q ∪ F⟩ ⊆ Da(⟨Q ∪ F⟩), but the converse does not hold.

Proof. (i). Let F ∈ Fi(L) and a ∈ L. If x ∈ ⟨{a} ∪ F⟩ then x ≥ a ⊙ f , for some f ∈ F. We obtain successively

(a∗∗)n → x∗∗
(r4)≥ (a∗∗)n → (a ⊙ f)∗∗

(r4)≥ a∗∗ → (a ⊙ f)∗∗ (r14)= a → (a ⊙ f)∗∗ = a → [(a ⊙ f)∗ → 0] (r5)=
[a⊙ (a⊙ f)∗] → 0 (r5)= [a⊙ (a → f∗)] → 0 ≥ f∗ → 0 = f∗∗ ≥ f ∈ F, that is x ∈ Da(F). Thus ⟨{a} ∪ F⟩ ⊆ Da(F).

For the converse we consider L = {0, n, a, b, c, d, e, f ,m, 1} with 0 < n < a < c < e < m < 1, 0 < n < b <
d < f < m < 1 and the elements {a, b}, {c, d}, {e, f} are pairwise incomparable.

1

m

e f

c d

a b

n

0

Then([12]) L becomes a distributive residuated lattice relative to the following operations:

→ 0 n a b c d e f m 1
0 1 1 1 1 1 1 1 1 1 1
n m 1 1 1 1 1 1 1 1 1
a f f 1 f 1 f 1 f 1 1
b e e e 1 1 1 1 1 1 1
c d d e f 1 f 1 f 1 1
d c c c e e 1 1 1 1 1
e b b c d e f 1 f 1 1
f a a a c c e e 1 1 1
m n n a b c d e f 1 1
1 0 n a b c d e f m 1

⊙ 0 n a b c d e f m 1
0 0 0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 0 0 0 0 n
a 0 0 a 0 a 0 a 0 a a
b 0 0 0 0 0 0 0 b b b
c 0 0 a 0 a 0 a b c c
d 0 0 0 0 0 b b d d d
e 0 0 a 0 a b c d e e
f 0 0 0 b b d d f f f
m 0 0 a b c d e f m m
1 0 n a b c d e f m 1

Let F = {1,m, f}, then ⟨{d} ∪ F⟩ = {x ∈ L ∶ x ≥ d ⊙ t for some t ∈ F} = {d, e, f ,m.1}. But Dd(F) =
{x ∈ L ∶ (d∗∗)n → x∗∗ ∈ F} = {L}, hence ⟨{d} ∪ F⟩ ⊂ Dd(F).
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(ii). Let F, Q ∈ Fi(L) and a ∈ L. If x ∈ ⟨{a} ∪ Q ∪ F⟩ then x ≥ a ⊙ q ⊙ f , for some q ∈ Q, f ∈ F. We obtain

successively (a∗∗)n → x∗∗
(r4)≥ (a∗∗)n → (a ⊙ q ⊙ f)∗∗

(r4)≥ a∗∗ → (a ⊙ q ⊙ f)∗∗ (r14)= a → (a ⊙ q ⊙ f)∗∗ =
a → [(a⊙ q⊙ f)∗ → 0] (r5)= [a⊙(a⊙ q⊙ f)∗] → 0 (r5)= [a⊙(a → (q⊙ f)∗)] → 0 ≥ (q⊙ f)∗ → 0 = (q⊙ f)∗∗ ≥
(q ⊙ f) ∈ ⟨Q ∪ F⟩, that is x ∈ Da(⟨Q ∪ F⟩). Thus ⟨{a} ∪ Q ∪ F⟩ ⊂ Da(⟨Q ∪ F⟩).

For the converse we consider the residuated lattice L from (i), let Q = {1,m} and F = {1,m, f}, then
⟨{b} ∪ Q ∪ F⟩ = {x ∈ L ∶ x ≥ b ⊙ q ⊙ t for some q ∈ Q, t ∈ F} = {b, c, d, e, f ,m.1}. But Db(⟨Q ∪ F⟩) =
{x ∈ L ∶ (d∗∗)n → x∗∗ ∈ ⟨Q ∪ F⟩} = {L}, hence ⟨{b} ∪ F⟩ ⊂ Db(⟨Q ∪ F⟩).

Clearly, if a ∈ L and J, F ∈ Fi(L), then ⟨J ∪ F⟩ ∈ Fi(L) and Da(⟨J ∪ F⟩) ∈ Fi(L), too.

Theorem 4.8. Let a ∈ L. The lattice (Da(Fi(L)), ⊆) is a complete Brouwerian lattice (hence distributive).

Proof. Clearly, if {Xi ∶ i ∈ I} is a family of �lters from L, then the in�mum of this family is ∧iDa(Xi) =
∩i∈IDa(Xi) and the supremum is ∨iDa(Xi) = ∪i∈IDa(Xi), that is the lattice (Da(Fi(L)),∨i ,∧i , ⊆, {1}, L) is
complete.

By Lemma 3.27 we have that an upset X of L is compact i� X ⊆ Da(↑ {xi1 , xi2 , ..., xin}), for some
xi1 , xi2 , ..., xin ∈ X and i ∈ I. Since any �lter is an upset we deduce that the compact elements of Da(Fi(L))
are exactly the upsets generated by the principal �lters of L, which are �lters, too.

Following Theorem 3.12, (xi) we deduce that the lattice (Da(Fi(L))), ⊆) is distributive.

Following Lemma 4.7 and Theorem 3.1 from [18] we obtain:

Lemma 4.9. Consider J a �lter of L and a ∈ L. For each F ∈ Λ, let Da(F) = Da(⟨J ∪ F⟩)/J. Then Λ = {Da(⟨J ∪
F⟩)/J ∈ L/J ∶ F ∈ Λ} gives a uniform topology on L/J, where UDa(F)

= {([x], [y]) ∈ L/J × L/J ∶ [x] ≡Da(F)
[y]}.

That is, L/J is a topological space with the uniform topology τΛ induced by Λ.

For a residuated lattice L and a topology τ de�nedon the set L, the pair (L, τ) is called a topological residuated
lattice if the operations ∧,∨,⊙ and→ are continuous with respect to τ .

In the same manner as Theorem 3.2 from [18] the following result can be proved:

Theorem 4.10. For each x ∈ L and F ∈ Λ, π(UF[x]) = UDaF[[x]]. Hence each UDaF[[x]] is open in the quotient
topology and τΛ ⊆ τ . Moreover, τΛ∗ ⊆ τΛ ⊆ τ .

Following Lemma 4.7, Lemma 4.9, Theorem 4.10 and Theorem 3.3 from [18] we obtain:

Theorem 4.11. τ = τΛ∗ = τΛ in L/J. Moreover, if J is a �lter, then (L/J, τΛ) is a topological residuated lattice.

We recall that for any non-empty set X of L, we denote by Xc = L ∖ X. In the same manner as Theorem 3.9
and Theorem 3.10, from [18] the following result can be proved:

Theorem 4.12. (L/J, τΛ) is Hausdor� i� J is closed and (L/J, τΛ) is discrete i� J is open.

Theorem 4.13. Let J be a �lter of L. If J is closed relative to the uniform topology τΛ, then (L/J, τΛ) is a regular
space.

Proof. Consider J a �lter of L such that J is closed relative to the uniform topology τΛ, then (L/J, τΛ) is
Hausdor�. Since every Hausdor� and locally compact topological space is regular, we have to prove that
(L/J, τΛ) is locally compact.

Let [x] ∈ L/J. Since L is a locally compact space by uniform topology induced by Λ, there exists an open
neighborhood O of x and a compact set K such that x ∈ O ⊆ K. Since π is open and continuous map, we have
that π(O) is open and π(K) is compact such that [x] ∈ π(O) ⊆ π(K). Thus L/J is locally compact at [x] and
hence is locally compact.
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5 Some Classes of Semitopological Residuated Lattices
By de�nition the class of BL-algebras is a subclass of divisible residuated lattices. In [11], O. Zahiri and R. A.
Borzooei studied the (semi)topological algebras and for a BL-algebra L they proved that (see Theorem3.17,[11])
(L, {∨,∧,⊙}, τa) is a semitopological BL-algebra and (L, {→}, τa) is a right semitopological BL-algebra, for
an element a ∈ L. We prove that their result works in the case of divisible residuated lattices, which is a larger
class than BL-algebras.

We notice the following rules of calculus:

Lemma 5.1. If L is a residuated lattice, then for a, p, q ∈ L and m ≥ 1 we have:
(ε1) (a∗∗)m → (q ∨ p)∗∗ = [(a∗∗)m → (q ∨ p)∗∗]∗∗;
(ε2) q → [(a∗∗)m → (q ∨ p)∗∗] = 1;
(ε3) ((a∗∗)m → (p∗∗)) → [(a∗∗)m → (q ∨ p)∗∗] = 1;
(ε4) [q ∧ ((a∗∗)m → (p∗∗))] → [((a∗∗)m → (q∗∗)) ∧ ((a∗∗)m → (p∗∗))] = 1;
(ε5) [q ⊙ ((a∗∗)m ∧ (p∗∗))] → [(q ⊙ p)∗∗] = 1.

Proof. (ε1). Following (r35) we have am ⊖ (q ∨ p) = (a∗∗)m → (q ∨ p)∗∗, by (r36) we obtain am ⊖ (q ∨ p) =
(am ⊖ (q ∨ p))∗∗ = [(a∗∗)m → (q ∨ p)∗∗]∗∗. Hence (a∗∗)m → (q ∨ p)∗∗ = [(a∗∗)m → (q ∨ p)∗∗]∗∗.

The rule of calculus (ε1) holds if instead of (q ∨ p) we have (q ∧ p), (q ⊙ p), (q → p) or p.
(ε2). Since q ≤ q ∨ p ≤ (q ∨ p)∗∗ ≤ (a∗∗)m → (q ∨ p)∗∗, we obtain q → [(a∗∗)m → (q ∨ p)∗∗] = 1.
(ε3). Since p∗∗ ≤ (q∨p)∗∗ and by (r4), we obtain (a∗∗)m → p∗∗ ≤ (a∗∗)m → (q∨p)∗∗, that is ((a∗∗)m →

(p∗∗)) → [(a∗∗)m → (q ∨ p)∗∗] = 1.
(ε4). Since q ≤ q∗∗ ≤ (a∗∗)m → (q∗∗), then [q ∧ ((a∗∗)m → (p∗∗))] ≤ [((a∗∗)m → (q∗∗)) ∧ ((a∗∗)m →

(p∗∗))]. Hence [q ∧ ((a∗∗)m → (p∗∗))] → [((a∗∗)m → (q∗∗)) ∧ ((a∗∗)m → (p∗∗))] = 1.
(ε5). Since q ≤ q∗∗, (a∗∗)m ∧ (p∗∗) ≤ (p∗∗), then q ⊙ ((a∗∗)m ∧ (p∗∗)) ≤ (q∗∗) ⊙ (p∗∗). By (r18),

(q∗∗)⊙(p∗∗) ≤ (q⊙p)∗∗, then [(q∗∗)⊙(p∗∗)] → (q⊙p)∗∗ = 1. Hence [q⊙((a∗∗)m∧(p∗∗))] → [(q⊙p)∗∗] =
1.

De�nition 5.2. Let τ be a topology on the divisible residuated lattice L. If (L, {∗i}, τ), where {∗i} ⊆
{∨,∧,⊙,→} is a (semi)topological algebra, then (L, {∗i}, τ) is a (semi)topological divisible residuated lattice.
For simplicity, if {∗i} ⊆ {∨,∧,⊙,→}, we consider (L, τ) instead of (L, {∨,∧,⊙,→}, τ).

Theorem 5.3. Let L be a divisible residuated lattice and a ∈ L. Then:
(i) (L, {∨,∧,⊙}, τa) is a semitopological divisible residuated lattice;
(ii) (L, {→}, τa) is a right semitopological divisible residuated lattice.

Proof. (i). Consider q an arbitrary element of L.
(1). We prove that (L, {∨}, τa) is a semitopological divisible residuated lattice.
Consider the map ϕq ∶ L → L, de�ned by ϕq(x) = q ∨ x, for any x ∈ L. Following Proposition 3.24 the set

βa = {Da(↑ x)∣ x ∈ L)} is a base for the topology τa on L. Then it su�ces to prove that ϕ−1q (Da(↑ x)) ∈ τa , for
any x ∈ L.

Let x ∈ L, then we obtain successively ϕ−1q (Da(↑ x)) = {p ∈ L∣ϕq(p) ∈ Da(↑ x)} = {p ∈ L∣(a∗∗)n →
(q ∨ p)∗∗ ∈ ↑ x, for some n ∈ N} = {p ∈ L∣x ≤ (a∗∗)n → (q ∨ p)∗∗, for some n ∈ N}.

Consider the set A = {p ∈ L∣x ≤ (a∗∗)n → (q ∨ p)∗∗, for some n ∈ N} and we show that the set A is an
upset of L. Let p ∈ A and p ≤ s, for some s ∈ L. Then there is n ∈ N such that x ≤ (a∗∗)n → (q ∨ p)∗∗. By (r4),
(a∗∗)n → (q ∨ p)∗∗ ≤ (a∗∗)n → (q ∨ s)∗∗, and so s ∈ A. Hence A is an upset. Now, we prove that Da(A) = A,
then we deduce that A ∈ τa , that is ϕ−1q (Da(↑ x) ∈ τa , hence ϕq is a continuous map.

Let p ∈ Da(A). Then there is m ∈ N such that (a∗∗)m → (p∗∗) ∈ A, that is x ≤ (a∗∗)n → (q ∨ ((a∗∗)m →
(p∗∗)))∗∗, for some n ∈ N.

We obtain successively
[(a∗∗)n → (q ∨ ((a∗∗)m → (p∗∗)))∗∗] →
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[(a∗∗)m+n → (q ∨ p)∗∗] (r5)=
[(a∗∗)n → (q ∨ ((a∗∗)m → (p∗∗)))∗∗] →

[(a∗∗)n → ((a∗∗)m → (q ∨ p)∗∗)]
(r39)≥

[q ∨ ((a∗∗)m → (p∗∗))]∗∗ → [(a∗∗)m → (q ∨ p)∗∗] (ε1)=
[q ∨ ((a∗∗)m → (p∗∗))]∗∗ → [(a∗∗)m → (q ∨ p)∗∗]∗∗ (r22)=
([q ∨ ((a∗∗)m → (p∗∗))] → [(a∗∗)m → (q ∨ p)∗∗])∗∗ (r22)=
([q ∨ ((a∗∗)m → (p∗∗))] → [(a∗∗)m → (q ∨ p)∗∗])∗∗ (r7)=
([q → [(a∗∗)m → (q ∨ p)∗∗]] ∧ [((a∗∗)m → (p∗∗)) →
[(a∗∗)m → (q ∨ p)∗∗]])∗∗ (ε2)=
(1 ∧ [((a∗∗)m → (p∗∗)) → [(a∗∗)m → (q ∨ p)∗∗]])∗∗ (ε3)=
(1 ∧ 1)∗∗ = 1∗∗ = 1.
By (r2), (a∗∗)n → (q ∨ ((a∗∗)m → (p∗∗)))∗∗ ≤ (a∗∗)m+n → (q ∨ p)∗∗.
We deduce that x ≤ (a∗∗)n → (q∨((a∗∗)m → (p∗∗)))∗∗ ≤ (a∗∗)m+n → (q∨ p)∗∗, hence x ≤ (a∗∗)m+n →

(q ∨ p)∗∗, that is p ∈ A. Following Theorem 3.12 (ii), we deduce that A = Da(A), that is ϕq is a continuous
map.

(2). We prove that (L, {∧}, τa) is a semitopological divisible residuated lattice.
Consider the map φq ∶ L → L, de�ned by φq(x) = q ∧ x, for any x ∈ L. Following Proposition 3.24 the set

βa = {Da(↑ x)∣ x ∈ L)} is a base for the topology τa on L. Then it su�ces to prove that φ−1q (Da(↑ x)) ∈ τa , for
any x ∈ L.

Let x ∈ L, then we obtain successively φ−1q (Da(↑ x)) = {p ∈ L∣φq(p) ∈ Da(↑ x)} = {p ∈ L∣(a∗∗)n →
(q ∧ p)∗∗ ∈ ↑ x, for some n ∈ N} = {p ∈ L∣x ≤ (a∗∗)n → (q ∧ p)∗∗, for some n ∈ N}.

Consider the set B = {p ∈ L∣x ≤ (a∗∗)n → (q ∧ p)∗∗, for some n ∈ N} and we show that the set B is an
upset of L. Let p ∈ B and p ≤ s, for some s ∈ L. Then there is n ∈ N such that x ≤ (a∗∗)n → (q ∧ p)∗∗. By (r4),
(a∗∗)n → (q ∧ p)∗∗ ≤ (a∗∗)n → (q ∧ s)∗∗, and so s ∈ B. Hence B is an upset. Now, we prove that Da(B) = B,
then we deduce that B ∈ τa , that is φ−1q (Da(↑ x) ∈ τa , hence φq is a continuous map.

Let p ∈ Da(B). Then there is m ∈ N such that (a∗∗)m → (p∗∗) ∈ B, that is x ≤ (a∗∗)n → (q ∧ ((a∗∗)m →
(p∗∗)))∗∗, for some n ∈ N.

We obtain successively
[(a∗∗)n → (q ∧ ((a∗∗)m → (p∗∗)))∗∗] → [(a∗∗)m+n → (q ∧ p)∗∗] (r5)=

[(a∗∗)n → (q ∧ ((a∗∗)m → (p∗∗)))∗∗] → [(a∗∗)n → ((a∗∗)m → (q ∧ p)∗∗)]
(r39)≥

[q ∧ ((a∗∗)m → (p∗∗))]∗∗ → [(a∗∗)m → (q ∧ p)∗∗] (ε1)=
[q ∧ ((a∗∗)m → (p∗∗))]∗∗ → [(a∗∗)m → (q ∧ p)∗∗]∗∗ (r22)=
([q ∧ ((a∗∗)m → (p∗∗))] → [(a∗∗)m → (q ∧ p)∗∗])∗∗ (r9)=
([q ∧ ((a∗∗)m → (p∗∗))] → [((a∗∗)m → (q∗∗)) ∧ ((a∗∗)m → (p∗∗))])∗∗ (ε4)= 1∗∗ = 1.
By (r2), (a∗∗)n → (q ∧ ((a∗∗)m → (p∗∗)))∗∗ ≤ (a∗∗)m+n → (q ∧ p)∗∗.
We deduce that x ≤ (a∗∗)n → (q ∧ ((a∗∗)m → (p∗∗)))∗∗ ≤ (a∗∗)m+n → (q ∧ p)∗∗, hence x ≤ (a∗∗)m+n →

(q ∧ p)∗∗, that is p ∈ B. Following Theorem 3.12 (ii), we deduce that B = Da(B), that is φq is a continuous
map.

(3). We prove that (L, {⊙}, τa) is a semitopological divisible residuated lattice.
Consider the map ψq ∶ L → L, de�ned by ψq(x) = q ⊙ x, for any x ∈ L. Following Proposition 3.24 the set

βa = {Da(↑ x)∣ x ∈ L)} is a base for the topology τa on L. Then it su�ces to prove that ψ−1q (Da(↑ x)) ∈ τa , for
any x ∈ L.

Let x ∈ L, then we obtain successively ψ−1q (Da(↑ x)) = {p ∈ L∣ψq(p) ∈ Da(↑ x)} = {p ∈ L∣(a∗∗)n →
(q ⊙ p)∗∗ ∈ ↑ x, for some n ∈ N} =

{p ∈ L∣x ≤ (a∗∗)n → (q ⊙ p)∗∗, for some n ∈ N}.
Consider the set C = {p ∈ L∣x ≤ (a∗∗)n → (q ⊙ p)∗∗, for some n ∈ N} and we show that the set C is an

upset of L. Let p ∈ C and p ≤ s, for some s ∈ L. Then there is n ∈ N such that x ≤ (a∗∗)n → (q⊙ p)∗∗. By (r4),
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(a∗∗)n → (q ⊙ p)∗∗ ≤ (a∗∗)n → (q ⊙ s)∗∗, and so s ∈ C. Hence C is an upset. Now, we prove that Da(C) = C,
then we deduce that C ∈ τa , that is ψ−1q (Da(↑ x) ∈ τa , hence ψq is a continuous map.

Let p ∈ Da(C). Then there is m ∈ N such that (a∗∗)m → (p∗∗) ∈ C, that is x ≤ (a∗∗)n → (q ⊙ ((a∗∗)m →
(p∗∗)))∗∗, for some n ∈ N.

We obtain successively
[(a∗∗)n → (q ⊙ ((a∗∗)m → (p∗∗)))∗∗] → [(a∗∗)m+n → (q ⊙ p)∗∗] (r5)=

[(a∗∗)n → (q ⊙ ((a∗∗)m → (p∗∗)))∗∗] → [(a∗∗)n → ((a∗∗)m → (q ⊙ p)∗∗)]
(r39)≥

[q ⊙ ((a∗∗)m → (p∗∗))]∗∗ → [(a∗∗)m → (q ⊙ p)∗∗] (ε1)=
[q ⊙ ((a∗∗)m → (p∗∗))]∗∗ → [(a∗∗)m → (q ⊙ p)∗∗]∗∗ (r22)=
([q ⊙ ((a∗∗)m → (p∗∗))] → [(a∗∗)m → (q ⊙ p)∗∗])∗∗ (r5)=
([q ⊙ (a∗∗)m ⊙ ((a∗∗)m → (p∗∗))] → [(q ⊙ p)∗∗])∗∗ (i1)=
([q ⊙ ((a∗∗)m ∧ (p∗∗))] → [(q ⊙ p)∗∗])∗∗ (ε5)= 1∗∗ = 1.
By (r2), (a∗∗)n → (q ⊙ ((a∗∗)m → (p∗∗)))∗∗ ≤ (a∗∗)m+n → (q ⊙ p)∗∗.
We deduce that x ≤ (a∗∗)n → (q⊙((a∗∗)m → (p∗∗)))∗∗ ≤ (a∗∗)m+n → (q⊙p)∗∗, hence x ≤ (a∗∗)m+n →

(q ⊙ p)∗∗, that is p ∈ C. Following Theorem 3.12 (ii), we deduce that C = Da(C), that is ψq is a continuous
map.

Since ∨,∧,⊙ are commutative and from (1), (2) and (3)we deduce that (L, {∨,∧,⊙}, τa) is a semitopo-
logical divisible residuated lattice.

(ii). We prove that (L, {→}, τa) is a right semitopological divisible residuated lattice.
Consider the map ωq ∶ L → L, de�ned by ωq(x) = q → x, for any x ∈ L. Following Proposition 3.24 the set

βa = {Da(↑ x)∣ x ∈ L)} is a base for the topology τa on L. Then it su�ces to prove that ω−1q (Da(↑ x)) ∈ τa , for
any x ∈ L.

Let x ∈ L, then we obtain successively ω−1q (Da(↑ x)) = {p ∈ L∣ωq(p) ∈ Da(↑ x)} = {p ∈ L∣(a∗∗)n → (q →
p)∗∗ ∈ ↑ x, for some n ∈ N} = {p ∈ L∣x ≤ (a∗∗)n → (q → p)∗∗, for some n ∈ N}.

Consider the set D = {p ∈ L∣x ≤ (a∗∗)n → (q → p)∗∗, for some n ∈ N} and we show that the set D is an
upset of L. Let p ∈ D and p ≤ s, for some s ∈ L. Then there is n ∈ N such that x ≤ (a∗∗)n → (q → p)∗∗. By
(r4), (a∗∗)n → (q → p)∗∗ ≤ (a∗∗)n → (q → s)∗∗, and so s ∈ D. Hence D is an upset. Now, we prove that
Da(D) = D, then we deduce that D ∈ τa , that is ω−1q (Da(↑ x) ∈ τa , hence ωq is a continuous map.

Let p ∈ Da(D). Then there is m ∈ N such that (a∗∗)m → (p∗∗) ∈ D, that is x ≤ (a∗∗)n → (q → ((a∗∗)m →
(p∗∗)))∗∗, for some n ∈ N.

We obtain successively
(a∗∗)n → [q → ((a∗∗)m → (p∗∗))]∗∗ (r22)= (a∗∗)n → [(q∗∗) → ((a∗∗)m → (p∗∗))∗∗] (ε1)=
(a∗∗)n → [(q∗∗) → ((a∗∗)m → (p∗∗))] (r5)= (a∗∗)n → [((q∗∗) ⊙ (a∗∗)m) → (p∗∗)] (r5)=
(a∗∗)n → [(a∗∗)m → ((q∗∗) → (p∗∗))] (r5)= [(a∗∗)n ⊙ (a∗∗)m] → [(q∗∗) → (p∗∗)] =
(a∗∗)n+m → [(q∗∗) → (p∗∗)] (r22)= (a∗∗)n+m → (q → p)∗∗.
We deduce that x ≤ (a∗∗)n → (q → ((a∗∗)m → (p∗∗)))∗∗ = (a∗∗)m+n → (q → p)∗∗, hence

x ≤ (a∗∗)m+n → (q → p)∗∗, that is p ∈ D. Following Theorem 3.12 (ii), we deduce that D = Da(D), that
is ωq is a continuous map.

Since → is not commutative we deduce that (L, {→}, τa) is a right semitopological divisible residuated
lattice.

We recall ([12]) that a residuated lattice L with double-negation property (x∗∗ = x, for all x ∈ L) is called
involutive. It is known that the classes of divisible residuated lattices and involutive residuated lattices are
di�erent (see [12]). The following result is an easy consequence of Lemma 2.2, Lemma 5.1 and Theorem 5.3.

Corollary 5.4. Let L be an involutive residuated lattice and a ∈ L. Then:
(i) (L, {∨,∧,⊙}, τa) is a semitopological involutive residuated lattice;
(ii) (L, {→}, τa) is a right semitopological involutive residuated lattice.
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In [3] it was proved that L is an MV-algebra i� L is an involutive BL-algebra. Therefore, following Theorem 5.3
and Corollary 5.4 we deduce that:

Corollary 5.5. Let L be an MV-algebra and a ∈ L. Then:
(i) (L, {∨,∧,⊙}, τa) is a semitopological MV-algebra;
(ii) (L, {→}, τa) is a right semitopological MV-algebra.

Corollary 5.6. Let L be a divisible residuated lattice. For any �lter F of L and a, x ∈ L, then:
(i) Da(↑ x)/F = Da/F(↑ x/F);
(ii) The topologies τa/F and −

τa on L/J are the same, where −

τa is the quotient topology of L/F.

Proof. (i). By Theorem 4.3 (i) we get Da(↑ x)/F ⊆ Da/F(↑ x/F), then it remains to prove Da/F(↑ x/F) ⊆
Da(↑ x)/F. Let u/F ∈ Da/F(↑ x/F). Then there exists n ∈ N such that x → [(a∗∗)n → u∗∗] ∈ F. Let f =
x → [(a∗∗)n → u∗∗]. Then by (r5) we obtain x → ((a∗∗)n → [f → u∗∗]) = f → [x → ((a∗∗)n → u∗∗)] =
f → f = 1 and so by (r15) and (r22) we get 1 = x → ((a∗∗)n → [f → u∗∗]) ≤ x → ((a∗∗)n → [f → u∗∗]∗∗) =
x → ((a∗∗)n → [f∗∗ → u∗∗]) = x → ((a∗∗)n → [f → u]∗∗). Hence f → u ∈ Da(↑ x). Since f ∈ F, then
f /F = 1/F and so (f → u)/F = f /F → u/F = 1/F → u/F = (1 → u)/F = u/F. That is (f → u) ≡F u. Therefore,
u/F ∈ Da(↑ x)/F.

(ii). ByProposition 3.24 the set{Da/F(↑ x/F) ∶ x/F ∈ L/F} is a base for the topology τa/F on L/F. Moreover,
the set {Da(↑ x)/F ∶ x ∈ L} is a base for the topology −

τa . Now, the proof of (ii) is straightforward by (i).

Corollary 5.7. Let L be an involutive residuated lattice. For any �lter F of L and a, x ∈ L, then:
(i) Da(↑ x)/F = Da/F(↑ x/F);
(ii) The topologies τa/F and −

τa on L/F are the same, where −

τa is the quotient topology of L/F.

Proof. (i). By Theorem 4.3 (i) we get Da(↑ x)/F ⊆ Da/F(↑ x/F), then it remains to prove Da/F(↑ x/F) ⊆
Da(↑ x)/F. Let u/F ∈ Da/F(↑ x/F). Then there exists n ∈ N such that x → [(a∗∗)n → u∗∗] ∈ F. Let f = x →
[(a∗∗)n → u∗∗]. Then by (r5) we obtain x → ((a∗∗)n → [f → u∗∗]) = f → [x → ((a∗∗)n → u∗∗)] = f → f = 1
and so by the involutive property (that is, x = x∗∗, for all x ∈ L) we get 1 = x → ((a∗∗)n → [f → u∗∗]) =
x → ((a∗∗)n → [f → u]∗∗). Hence f → u ∈ Da(↑ x). Since f ∈ F, then f /F = 1/F and so (f → u)/F =
f /F → u/F = 1/F → u/F = (1→ u)/F = u/F. That is (f → u) ≡F u. Therefore, u/F ∈ Da(↑ x)/F.

(ii). ByProposition 3.24 the set{Da/F(↑ x/F) ∶ x/F ∈ L/F} is a base for the topology τa/F on L/F. Moreover,
the set {Da(↑ x)/F ∶ x ∈ L} is a base for the topology −

τa . Now, the proof of (ii) is straightforward by (i).

6 Conclusions
In Borzooei and Zahiri (2014)[11] the de�nition of double complemented elements for any �lter F in BL-
algebras, initially, introduced by A. Borumand Saeid and S. Motamed (2009)[10], was generalized to the
concept of Dy(F), for any upset F of the BL-algebra L. Their aim was to show that any BL-algebra L with
that topology is a semitopological BL-algebra, so in that way they could construct many semitopological BL-
algebras. Our goal is to extend the study in the case of residuated lattices. Therefore, we work on a special
type of topology induced by a modal and closure operator denoted by Da(X), for an upset X of a residuated
lattice L, where a is an element of L.

We discuss brie�y the properties and applications of the operator Da(⋅) in residuated lattices. We obtain
someof the important topological aspects of these structures such as connectivity and compactness.We study
some properties of quotient topologies on residuated lattices by considering two types of quotient topologies
denoted by τa/F and −

τa . We study the uniform topology τΛ and we obtain important characterizations as
(L/J, τΛ) becomes a Hausdor� space i� J is closed relative to the uniform topology. Also, we study some
properties of the direct product of residuated lattices.
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Finally, we apply our results on classes of residuated lattices such as divisible residuated lattices, MV-
algebras and involutive residuated lattices and we �nd that any of this subclasses of residuated lattices with
respect to these topologies form semitopological algebras.

In this way we can construct many semitopological algebras on residuated lattices.

Acknowledgement: The author is very grateful to the anonymous referees for their useful remarks and
suggestions.
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