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Abstract: In this paper, by using the notion of upsets in residuated lattices and defining the operator D, (X),
for an upset X of a residuated lattice L we construct a new topology denoted by 7, and (L, 74) becomes a
topological space. We obtain some of the topological aspects of these structures such as connectivity and
compactness. We study the properties of upsets in residuated lattices and we establish the relationship
between them and filters. O. Zahiri and R. A. Borzooei studied upsets in the case of BL-algebras, their
results become particular cases of our theory, many of them work in residuated lattices and for that we offer
complete proofs. Moreover, we investigate some properties of the quotient topology on residuated lattices and
some classes of semitopological residuated lattices. We give the relationship between two types of quotient
topologies 7,,r and 7o . Finally, we study the uniform topology 7 and we obtain some conditions under
which (L/], ;) is a Hausdorff space, a discrete space or a regular space ralative to the uniform topology.
We discuss briefly the applications of our results on classes of residuated lattices such as divisible residuated
lattices, MV-algebras and involutive residuated lattices and we find that any of this subclasses of residuated
lattices with respect to these topologies form semitopological algebras.
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1 Introduction

Residuation is a fundamental concept of ordered structures and categories. The origin of residuated lattices is
in Mathematical Logic without contraction. The general definition of a residuated lattice was given by Galatos
et al. (2007)[1]. They first developed the structural theory of this kind of algebra about residuated lattices.

Hajek (1998)[2] introduced the notion of BL-algebras and the concepts of filters and prime filters in BL-
algebras in order to provide an algebraic proof of the completeness theorem of basic logic (BL, for short),
arising from the continuous triangular norms, familiar in the fuzzy logic frame-work. Using prime filters in
BL-algebras, he proved the completeness of Basic Logic. Soon after, Turunen (1999)[3] published a study on
BL-algebras and their deductive systems.

A weaker logic than BL called Monoidal t-norm based logic (MTL, for short) was defined by Esteva and
Godo (2001) [4] and proved by Jenei and Montagna (2002)[5] to be the logic of left continuous t-norms and
their residua. The algebraic counterpart of this logic is MTL-algebra, also introduced by Esteva and Godo
(2001)[4]. In Esteva and Godo (2001)[4] a residuated lattice L is called MTL-algebra if the prelinearity property
holds in L.
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Recently, Turunen and Mertanen (2008)[6] and D. Busneag et al. (2013)[7] defined the notion of semidi-
visible residuated lattice and investigated their properties. Also, D. Busneag et al. (2015) [8] investigated the
notion of Stonean residuated lattices and they discussed it from the view of ideal theory.

Semitopological and topological BL-algebras were defined by R. A. Borzooei et al. (2011)[9], and they
establish the relationships between them. A. Borumand Saeid and S. Motamed (2009)[10] introduced the set
of double complemented elements for any filter F in BL-algebras and studied their properties. In Borzooei
and Zahiri (2014)[11] the definition of double complemented elements for any filter F in BL-algebras was
generalized to the concept of Dy (F), for any upset F of the BL-algebra L. In fact, they show that any BL-
algebra L with that topology is a semitopological BL- algebra.

In the present paper, we work on a special type of topology induced by a modal and closure operator
denoted by D,(X), for an upset X of a residuated lattice L, where a is an element of L. We show that any
divisible residuated lattice L with this topology is a semitopological algebra.

The paper is organized as follows:

In Section 2, we recall the basic definitions and we put in evidence rules of calculus in a residuated lattice
which we need in the rest of the paper.

In Section 3, we consider the definition of upsets in the case of residuated lattices and we establish the
relationship between upsets and filters. We define the operator D, (X), for an upset X of a residuated lattice
L and we construct a new topology denoted by 74, where (L, 7,) becomes a topological space. We discuss
briefly the properties and applications of the operator D, in residuated lattices. Moreover, we obtain some of
the topological aspects of these structures such as connectivity and compactness.

In Section 4, we investigate some properties of quotient topologies on residuated lattices as 7,/r and

74 . Finally, we study some properties of the direct product of residuated lattices. One of the most important
findings is the characterization when (L/], 7;) becomes a Hausdorff space, a discrete space or a regular space
relative to the uniform topology 7.

In Section 5, we apply our results on classes of residuated lattices such as divisible residuated lattices,
MV-algebras and involutive residuated lattices and we find that any of this subclasses of residuated lattices
with respect to these topologies form semitopological algebras.

2 Preliminaries

In this section, we recall some basic notions relevant to residuated lattices which will need in the sequel.

Definition 2.1 ([1]). A residuated lattice is an algebra (L, v, A, ®, —,0, 1) of type (2, 2,2, 2,0, 0) such that
(Lr1) (L, v, A,0,1) is a bounded lattice;

(Lr2) (L, ®, 1) is a commutative monoid;

(Lr3) ® and — form an adjoint pair,i.e, a®x < biffx<a - b.

We call them simply residuated lattices. For examples of residuated lattices see [12-17].

In what follows (unless otherwise specified) we denote by L a residuated lattice. If L is totally ordered,
then L is called a chain.

For x e Land n > 1 we define x* = x - 0, x** = (x*)*, x*=1and x" = x" ' o x.

We refer to [3-21] for detailed proofs of these well-known results:

Lemma 2.2. Let L be a residuated lattice. Then for every x,y, z € L, we have:
(r) x-x=1,x-1=1,1->x=x;

(r2) x<yiffx-y=1;

(r3) Ifxvy=1, thenxoy=xAYy;

(rs) Ifx<y, thenzoXx<zoy,z—>X<z—->y,y—>2zZ<X—>2Zz;

(rs) x>y —2)=x0y)—>z=y->(Xx->2);
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(re) xo(yvz)=(x0y)v(xoz),andxo (yrz)<(x0y)A (X0 z);
(r7) (x=2)A(y—>2)=(xVvy) >z

(rs) (x—-2)v(y—>2)<(xnry) -z

(ro) x—>(yrnz)=(x-y)r(x—2z);

(ro) (x=y)v(x—2z)<x—(yvz);

(ri1) xvy<((x—=y)=>y)A{(y—>x)->x);

(ri2) (xvy) =x*ay*, (xay)" 2x*vy*;

(r13) (X > y*)** = x > y**;

(F1a) X™ = Y™ = y* > X = x> Y™ = (x> y**)
(ri5) x©@x*=0,1"=0,0"=1, x* =x7;

(rig) x<x™, xX™<x* > x, x>y<y" - x5

(r7) x—=-y<(x-y)"<x™ -y

(r18) X** @y** < (x@y)**, S0 (X**)n < (Xn)**

for every natural number n;

(ro) x* oy <(xoy)’

(r20) (xAy)™ <x™vy™<(xvy)*™.

Following the above mentioned literature, we consider the identities:
(i1) xAy=x0(x-y) (divisibility);

(i) XAy =[x"o(x">y")]" (semi - divisibility);
(i3) (x—=y)v(y—-x)=1 (pre - linearity);

(is) X" vx*™ =1;

(is) X = x;

(ig) x=x"".

Then the residuated lattice L is called:

(1) Divisible if L verifies (i1);

(i1) Semi-divisible if L verifies (i2);

(iii) MTL-algebra if L verifies (i3);

(iv) BL-algebra if L verifies (i1) and (i3);

(v) Stonean if L verifies (i4);

(v) G-algebra if L verifies (is);

(vi) Involutive if L verifies (ig).

DE GRUYTER

An MV-algebra is an algebra £ = (L, ®, %, 0) of type (2, 1, 0) satisfying the following equations:

(mv))xe(yez)=(xoy)®z;

(mvy)xey=yex;

(mvs)x&@0=x;

(mvy) X =x;

(mv5) X®0" = 0*;

(mve) (x*@y) " @y=("@ox)" @x,forallx,y,zeL.

Note that axioms (mv;) — (mvs) state that (L, &, *, 0) is a commutative monoid.

Every BL-algebra L with x** = x for all x € L, is an MV-algebra.
By Lemma 2.2, in the case of divisible residuated lattices we have:

Corollary 2.3 ([7]). If L is a divisible residuated lattice, then for every x, y € L we have:

(ra1) (X - x)*=0;
(r2) (x->y)"=x""
(r23) (xAy)™ =x""ny™;

(rzs) xo(ynrz)=(xoy)A(xoz);
(ras) xa(yvz)=(xay)v(xaz).

* %
—>y H
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On any residuated lattice L ([6, 8]) we may define an operator @ by setting forall x,y € L,
xey=(x"oy")". 4]
By (r5), the identity (1) is equivalent with
x®y=x" -y =y > x", forallx,yeL. )]

Lemma 2.4 ([8]). Let L be a residuated lattice and x, y, z € L. Then:
(re)xe0=x"*, xol=1,xox" =1;
(r7)x®@y=yex,x,y<xey;

(rs)xe(yoz)=(xay)oz;

(ro) Ifx<y,thenx@z<y®z.

In what follows we will establish other necessary properties of operator @ in a residuated lattice L.

Proposition 2.5. Let L be a residuated lattice and x,y, z € L. Then:
(r30) (x@y) " =xey=x""aoy";
(r31)Ifxvy=1,thenxaoy=1;

() xe(yvz) ' =(xey )A(xez");

(r3)xe (Y vz =(xey)ar(xez).

Proof. (r30). We obtain successively (x@y)** = (x* @y*)*** (1) (x*oy*)" =xoy (1) (X)) o) =
X** @y**.

(r31). Since x < x™*,y < y** and x**, y*
xey=1.

*

<x@®yimpliessxvy <x@y.Sincel =xvy<x@y,then
(r32). By (19), (r12), (r15) and (2) we obtain successively x & (y v z)* @D (yv2)
(r2) N (x®y* ) (xez").

* %k k (réS) x* =

* %% ("és) Xt =

2
yx-x- _)X**)/\(Z** - x** (:)

(r33). By (79), (r12), (r15) and (2) we obtain successively x & (y* v z*)* @y (y*vzh)

(yx- \/Z*)* (’g) (’:9)

(yva) Fx = (' az) @ (¢ sy a (e - 2)

o (7 az) Dt sy At 52 D (xey) A (xe2). -

Corollary 2.6. Let L be a residuated lattice and x, y € L. Then:

* % * %

(r3a) X @y) @y=( ox)" oxiff (X" >y )" >y = (y"" > x"")" > x

* %

Proof. (rs4). Since (x* @ y)* @y @ X >y )Y ey = (X > y™)Y™* >y and (y* @ x)" @ x @

(y** — X*‘»‘r)* @X (i) (y** — X**

* %

— x**. Thus, our claim holds. O

Deductive systems correspond to subsets closed with respect to Modus Ponens, their are also called filters, too.

Apart from their logical interest, filters have important algebraic properties and they have been intensively

studied from an algebraic point of view. Filter theory plays an important role in studying logical algebras.
We consider L as a residuated lattice.

Definition 2.7 ([2]). Animplicative filter (filter, for short) is a nonempty subset F of L such that
(F1)Ifx<yandx € F, theny ¢ F;
(F2)Ifx,yeF,thenx®yc¢€F.

We notice that:

1. F is an implicative filter ([13]) of Liff 1 ¢ Fand x, x — y € F, then y € F (that is, F is a deductive system
of L).

2. Every filter is a latticeal filter in the lattice (L, A, v), but the converse does not hold ([3, 14]).

Hence, if we denote by F(L) (Fi(L)) the set of all latticeal filters (implicative filters) of L, then F;(L) <
F(L).
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We have ([13]) /(L) = F(L) iffxoy =xnyforevery x,y € L.

We recall ([3, 14]) that for a nonempty subset D of L we denote by (D) the filter generated by D, and
(D)={xeL:d1®...0dy <x, forsomeds,...,dn € D}.If a € L, the filter generated by {a} will be denoted
by (a), and (a) = {x e L: a" < xforsomen > 1}.If F e 7;(L) and a € L \ F, then (F u {a}) will be denoted
by F(a),and F(a) = {xeL:a" - xeFforsomen>1}.IfF,G ¢ Fi(L),then Fv G =F vz ) G=(FUG) =
{xeL:boc<xforsomeb¢cF,ceG}.

We say that P € F;(L), P + L is a prime filter ([14]) if for x,y e Land x vy € P, thenx € Pory € P. We
denote by Spec;(L) the set of all prime filters of L.

We recall that a filter M of L is called maximal if M # L and M is not strictly contained in any proper filter
of L.

Every maximal filter M of L is obvious prime because, if there exist two proper filters N, P € F;(L) such
that M = Nn P, then M ¢ N and M c P, by the maximality of M we deduce that M = N = P, that is, M is an
inf-irreducible, so prime element in the lattice of filters (F;(L), <) of L (by the distributivity of the lattice of
filters (Fi(L),c) of L).

So, if we denote by Max;(L) the set of all maximal filters of L, then Max;(L) < Spec;(L).

Proposition 2.8 ([1, 3, 14]). For M € F;(L), M = L, the following are equivalent:
(i) M is maximal;
(ii) If x ¢ M, then there exists n > 1 such that (x")* € M.

For F € F;(L) wedefinearelation=pon Lby x = yiffx - y,y - x € F,forallx, y € Liff (x > y)®(y —» x) € F.

Then ([3, 14]) =f is a congruence relation on L. For x € L we denote by [x] = x/F the class of congruence
of xmodulo=pand L/F = {x/F:x € L}.

Define the binary operations v, A, ®and —-on L/F by (x/F)v(y/F) = (xvy)/F, (x/F)n(y/F) = (xry)/F,
(x/F)®o (y/F)=(x®y)/Fand (x/F) - (y/F)=(x - y)/Fforallx,y ¢ L.

Then (L/F, v, A, ®, —, 0, 1) is a residuated lattice, which is called the quotient residuated lattice of L with
respect to F, where0 = 0/Fand 1 = 1/F.

The relation of order on L/F is defined by (x/F) < (y/F) iffx - y € F.

For a nonempty subset S of L we denote by S/F = {x/F : x € S}. Clearly, for x € L, x/F = 0iff x* € F and
x/F=1iffxeF.

We denote by 7 : L — L/F the canonical epimorphism defined by = (x) = [x].

Definition 2.9. IfL, L' are residuated lattices,amap f : L — L' is called morphism of residuated lattices if f is
a morphism of bounded lattices, f(x ©y) = f(x) @ f(y) and f(x - y) = f(x) f(y) forevery x,y € L.
Iff is a bijective map (one-to-one and onto), then we say that L and L are isomorphic and we write L ~ L.

Remark 2.10. IfF € Fi(L'), then f~(F) € Fi(L). In particular f*({1}) = {x € L : f(x) = 1} is denoted by
Ker(f) and Ker(f) € Fi(L).
Clearly, f is one-to-one iff Ker(f) = {1}. Also, f(L) is a subalgebra of L' denoted by Im(f).

3 Construction of some topologies on residuated lattices

In general, the concept of topology represents the study of topological spaces. Important topological proper-
ties include connectedness and compactness.

A topology tells how elements of a set relate spatially to each other. The same set can have different
topologies. For instance, the real line, the complex plane, and the Cantor set can be thought of as the same
set with different topologies.

Let X be a set and let 7 be a family of subsets of X. We denote by P(X) the family of all subsets of X. Then
7 is called a topology on X if:

T1. Both the empty set @ and X are elements of 7;
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T,. Any union of elements of 7 is an element of r;
Ts. Any intersection of finitely many elements of 7 is an element of 7.

If 7 is a topology on X, then the pair (X, 7) is called a topological space. The notation X is used to denote
a set X endowed with the particular topology 7.

The members of 7 are called open sets in X. A subset of X is said to be closed if its complement is in 7 (i.e.,
its complement is open). A subset of X may be open, closed, both (clopen set), or neither. The empty set &
and X itself are always both closed and open. An open set containing a point x is called a neighborhood of x.

A set with a topology is called a topological space. A topological space (X, 7) is called connected if { @, X }
is the set of all closed and open subsets of X.

A base (or basis) 3 for a topological space X with topology 7 is a collection of open sets in = such that
every open set in 7 can be written as a union of elements of 3. We say that the base generates the topology .

Definition 3.1 ([11]). Let (X, <) be an ordered set. Then we define 1t : P(X) — P(X), by1 S = {x € X|]a <
X, for some a € S}, for any subset S of X. A subset F of X is called an upset if 1 F = F. We denote by U(X) the
set of all upsets of X. An upset F is called finitely generated if there exists n € N such that F =t {x1, X2, ..., Xn},
for some x1,x2, ..., Xn € X.

Remark 3.2. Clearly, if F is a filter of L, then F is an upset of L, but the converse does not hold. Indeed, we
consider L = {0,n,a, b,c,d,e,f,m,1} withO<n<a<c<m<1l,0<n<a<e<m<1l,0<n<b<c<
m<1l,0<n<b<f<m<1l,0<n<d<e<mc<1andelements{a,b}, {a,d}, {b,d}, {a,f}, {c,d},
{b, e}, {c, e}, {c,f} and {e, f} are pairwise incomparable.

Then ([12]) L becomes a residuated lattice relative to the following operations :

—»|0nabcdefmil ©|0Onabcdefmil
0Oj1 111111111 0000000000 O
niml11111111 n{000000000 n
al|lf f1f1f1f11 al00a0a0ala a
bleeelleell 1 b|000bbOODbD b
clddefldef11 c|00abcOabc c
dlcccccl11111 d|00000dddd d
e|lbbcbhbcf1f11 e|00a0Oadede e
flaaacceell 1 flooobbddff f
minnabcdef11 m|{OOabcdef mm
1|0 nabcdefml 1|Onabcdefml

Thent n={n,a,b,c,d,e,f, m,1}is anupset, but n ® n = 0, that is 1 n is not a filter.

In [11], O. Zahiri and R. A. Borzooei construct a topology on BL-algebras considering the notion of upsets, and
inspired by their work we construct a topology in the case of residuated lattices and some of their results will
become particular cases. We offer complete proofs for the results available in residuated lattices.
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Definition 3.3 ([11]). Let r and 7 be two topologies on a given set X. If rc T, then we say that T is finer than
7. Let (X, ) and (Y, 7 ) be two topological spaces. Amap f : X — Y is called continuous if the inverse image
of each open set of Y is open in X. A homeomorphism is a continuous function, bijective and has a continuous
inverse.

Lemma 3.4 ([11]). Let 3 and 8 be two bases for topologies T and T, respectively on X. Then the following are
equivalent:

(1) 7 is finer than r;

(ii) Ifor any x € X and each basis element B € 3 containing x, there is a basis element B « 6' such that
xeB cB.

Definition 3.5 ([11]). Let (A, %) be an algebra of type 2 and T be a topology on A. Then (A, *, ) is called:

(i) Right (left) topological algebra, if for all a ¢ A themap * : A — A defined by x — a = x (x » x x a) is
continuous;

(ii) Semitopological algebra if A is a right and left topological algebra.

If (A, %) is a commutative algebra, then right and left topological algebras are equivalent.

Definition 3.6 ([11]). Let A be a nonempty set, { *; }i; be a family of binary operations on A and t be a topology
on A. Then:

(1) (A, {*i}ie1, 7) is a right (left) topological algebra, if fori € I, (A, *;, T) is a right (left) topological algebra;
(i) (A, {*i}ier, ) is a right (left) semitopological algebra, if fori € I, (A, *;, 7) is a right (left) semitopological
algebra.

On any residuated lattice L we define an operator © by setting forall x,y € L,
xey=x"@y. 3

By (rs5), the identity (3) is equivalent with

*

xoy=x"@oy=x"" >y =y" 5> x*, forallx,y e L. (4)

Definition 3.7. Consider L a residuated lattice and a € L. For any nonempty upset X of L we define the set
Dq(X) = {xeLla" ©xeX, forsomen ¢ N},

wherea"ex=ae (a"*ex), foranyne{2,3,4,...}.

Lemma 3.8. Let L be a residuated lattice and a, x € L. Then:

*k

(rss)a"ex=(a")" - x*;
(r36) (a"©x)** =a" ex, foranyn e N.

Proof. (r3s). Mathematical induction relative to n.

id.(4) o

If n = 2, by (rs), (r30) and identity (4) we obtain successively a’ © x = a © (a © x) - (a* ®

)x-x- (réo) ax—x— id':(“) a**

= (ax- EBX) = (a** o ox** (’:5) (a** @a**) L (a**)z o Xt

Suppose a" ' © x = (a**)"! — x**. By (rs) we obtain successively a" e x =a e (a" ' ex) =a** -
(@) = x) @ (@ o (@)™ 1) > x** = (a**)" - x**. Therefore, a" © x = (a**)" — x**, for any
neN.

(r36). By (r30) we have (a"ex)** =[ao (a" ' ox)]** " [a* & (" ex)]™* 2 a* & (a" ' ox)
ac(a"'ex)=a"ex,foranyneN. O

X

id.(4)

A directly consequence of (r35) is the following result:

Proposition 3.9. Let L be a residuated lattice and a € L. For any nonempty upset X of L the set Dq(X) = {x €
L:(a™)" - x* e X, forsomen e N}.
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Remark 3.10. Ifa =1, then Da(X) = D1(X) = {x € L : x** € X} is the set of double complemented elements of
X.

Corollary 3.11. If L is a residuated lattice and a, x € L, then:
(rs;7)aex<anx<avx<a™vx*™*<aex;
(rsg) x** <aex<a®eox,foranyneN.

Proof. (r37).Indeed,a @ x < anx <avx<a*™ vx™. By (ry7) and identity (2) we obtain successively

id.(2 r id.(2
2) ) s a :()x*—>a**2a**,hencea**vx**§aeax.

. r (rs)
(r38). Since a" © x (r35) (@) > x" 2 a*” > x" =aex>x"",hencex™ <aox < a" o x, forany

neN. O

aox a* - x"*>x""andaex

* %

The following properties hold for any residuated lattice:
(r9)z—>y<(x—>2) > (x>y)andz >y < (y—x) > (z > x);
(rao) (x = y)o(y—>2z)<x—z.

In the next result, we investigate some properties of the operator D,(X) for nonempty upsets. Clearly,
D4(2) = @.

In Proposition 3.3, [11], there are the properties of operator D, for BL-algebras, we offer complete proofs
for them in the case of residuated lattices:

Theorem 3.12. If L is a residuated lattice and a, x € L. Consider X, Y two nonempty upsets of L. Then:

(i) Da(X) is an upset of L;

(ii) 1 € Dg(X), a € Dg(X) and X € Dqa(X);

(iiiya™ e (a"ex) =a™ " o x, foranym,n e N;

(iv) if X € Y, then Da(X) € Da(Y);

(V) Da(Da(X)) = Da(X);

(vi) if Fis a filter of L, then Do (F) is a filter of L;

(vii)ifa < s, then Ds(X) € Da(X);

(viii) if {Xa|o € I'} is a family of upsets of L, then Dq(U{Xa|a € I}) = U(Da({Xal|a € I}));

(ix) if {X1, X2, ..., Xn} is a finite set of upsets of L, then Do (n{X;|i=1,2,...,n}) =n{Da(X;)|i=1,2,...,n};
(X) Da(Dx(X)) = Dx(Da(X));

(xi)if X1, X2, X3 areupsets of L, then D (X1) N[Da(X2) UDa(X3)] = [Da(X1) nDa(X2)]U[Da(X1) nDa(X3)]
and Dq(X1) U [Da(X2) N Da(X1)] = [Da(X1) UDa(X2)] N [Da(X1) UDa(X3)].

Proof. (i). Clearly, Dq(X) ct Dq(X). We consider s €t Dq(X), then there exists x € Dq(X) such that x < s.
Since x € Dq(X) we have a" © x € X, by (r35) we deduce that (a**)" — x** € X, for some n € N. By (r4) and
(r16), since x < s we obtain successively x** < s**, (a*)" - x™* < (a**)" - s**. Since X is an upset of L
and (a**)" - x** € X, then (a**)" - s** € X, hence s € Dg(X) and s0 + Dq(X) S Dq(X). We deduce that
Dg4(X) is an upset of L.

(ii). Since 1 € X, by (r35) wehave a" © 1 = (a**)" - 1™ = (a™*)" - 1 = 1 € X, for any n € N. Hence
1 e Dy(X).

Since 1 € X, by (r15) and (r35) wehave a" o a = (a**)" - a** =1 € X, forany n € N. Hence a € Dq(X).

Now, we consider x € X. Then by (r16) and (r3s) we have x < x** < a" © x € X, hence x € Dy(X). We
deduce that X ¢ Dy (X).

(iii). Consider m,n € N and a,x ¢ L. By (r5) and (r3s) we obtain successively a™ o (a" © x) 4.(4)

(a**)m N (anex)** (r;(,) (a**)m = (a"ex) id‘:(“) (a**)m N ((a**)n o ox*t (r:5) [(a**)m G(ax—x—)n] Soxtt =
(ax-x-)m+n . X>(->(- id':(l‘) am+n o X.
(iv). Consider X ¢ Y and x € D4(X). Then there exists n € Nsuch that a”" e x e X ¢ Y and so x € Ds(Y).

Hence Dy (X) € Du(Y).
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(v). Since X € Dq(X), by (iv) we have D4 (X) € Da(Da(X)). Consider x € Da(Dq(X)). Then there exists
m e Nsuch that a™ © x € Do(X) and so a" © (a™ © x) € X, for some n € N. By (iii) we have a™*™ © x € X and
so x € Dq(X). Hence Dg(X) = Da(Da(X)).

(vi). Consider F a filter of L. Then F is a nonempty upset and by (ii) we have 1 € Dq(F). Let x,x > y €
Dq(F), then thereare m, n e Nsuch that (a**)" - x** e Fand (a**)™ —» (x » y)** € F. By (rs) and (r17) we
obtain successively ((ax—*)n N X**) N ((a**)er N y**) _ ((a**)n N Xx—x-) N ((ax-x-)n o (a**)m N y*x-) (YZS)

(a**)m N [((a**)n N X**) — ((a**)n N y**)] (r§9) (a**)m N (X** — y**) (r£7) (a**)m — (X — y)** c F.

Since F is a filter and (a**)" — x** ¢ F, then (a**)™™ — y** ¢ F, hence y € Dq(F). We deduce that
Dq(F)isafilterof L.

(vii). Consider a < sand x € Ds(X), then there exists n € Nsuch that (s**)" — x** € X. By (r4) we obtain
successively a <'s, a** <™, (a**)" < (s™), (s7*)" = x* < (a*)" - x**. Since (s**)" - x** € X, then
(a**)" - x** € X, hence x € Dq(X). We deduce that Ds(X) c Da(X).

(viii). Consider x € L. Then we have the equivalences:

x € Da(u{XalaeI})iff a" © x e U{Xa|a € I} iff

a*exeXa,, forsomeneN, and « € Iiff

x € Da(Xa), for some n € N and « € I iff

x € U(Da({Xa|a€I})). Hence Da(u{Xa|la e I}) =

U(Da({Xala e I})).

(ix). Following (iv), since n{X;| i = 1,2,...,n} ¢ X;, foranyi ¢ {1,2,...,n}, then Ds(n{X;| i =
1,2,...,n}) € Dg(X;), foranyie {1,2,...,n}, hence Do(n{Xi|i=1,2,...,n}) cn{Da(X;)|i=1,2,...,n}.
Consider x € n{Dq(X;)|i=1,2,...,n}. Then there exist my, ma, ..., my € Nsuch that (a**)™ — x** € X;, for
anyie{1,2,...,n}.

Consider now p = max{mi, ma, ..., mp}. By (r4), since m; < p, foranyie {1, 2, ..., n}, then (a**)™ —
X <(a**)P - x**. Since (a**)™ — x** € X;, then (a**)P - x** € X;, foranyi € {1, 2, ..., n}. It follows
that (a**)? - x** en{X;]i=1,2,...,n}, hence x € Dg(n{X;|i=1,2,...,n}). We deduce that D, (n{X;| i =
1,2,...,n}) =n{Da(X;)|i=1,2,...,n}.

(x). We have successively:

Da(Dx(X)) ={teL|a"eteDx(X), forsomeneN} =

={teL|x" o (a"ot)cX, forsome m,n e N}

40 {tel](x**)™ - (a" ©t)** € X, for some m, n € N}

() {teL|(x*)™ > (a" ot) € X, for some m, n ¢ N}

4.L4) {teL|(xX™*)™ > [(a**)" - t**] € X, for some m,n € N}

) {teL|(a™)" > [(x*)" > t**] e X, for some m, n € N}

4L {teLla" e (x"et) X, forsome m,neN}
={teL|x™oteDy(X), for some m e N} = Dy(Dq(X)).

(xi). It follows from (viii) and (ix). O

In universal algebra, for a nontrivial lattice A, a unary mapping f : P(A) — P(A) is called laticeal modal
operator on A if it satisfies the conditions: For all A;, A, c A,

(1) A1 < f(A1);

(2) f(f(A1)) = f(A1);

(3) f(A1nAz) = f(A1) nf(A2).

A laticeal modal operator is called monotone if it satisfies:
(YTI) IfA; c A, thenf(Al) Sf(Az).

Following Theorem 3.12 (ii), (iv), (v), and (viii) we deduce:

Corollary 3.13. Leta € L. Then the map D, : U(L) — U(L) is a laticeal monotone modal operator.
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Proof. Following Theorem 3.12 (ii), (iv), (v), and (viii) we deduce that the map D, : U(L) - U(L) is a
laticeal monotone modal operator. O

We recall that, for a residuated lattice L, by U(L) we denote the set of all upsets of L.
Corollary 3.14. Forany a € L, themap D, : U(L) — U(L) is a closure operator and Dq = Dg++.

Proof. Following Theorem 3.12 (i), (ii), (iv) and (v), we deduce that D, is a closure operator.

Consider X an upset of L. Following Theorem 3.12 (vii), since by (r1¢) we have a < a**, then Dg++ (X) <
D4 (X). Consider now x € Dq(X). Then there exists n € N such that (a**)" — x** € X. By (r15) we have
a™** =a**, then (a***)" - x** e X, hence x € Do+« (X). We deduce that D4(-) = Dg++(*). O

Lemma 3.15. Let a € L and F be a filter of L. Then Dq(F) = D1(F) iffa** € F.

Proof. ” = ”. Consider a ¢ L and F afilter of L such that D,(F) = D1 (F). Following Theorem 3.12 (ii), we have
a € Dq(F) = D1(F), then a € D1(F), and we have successively a € D1(F), (1**)" - a** ¢ F, 1" - a** € F,
1-a"*eF,a"¢F.

” < ”. Suppose a** € F. By Theorem 3.12 (vii), since a < 1, then D1(F) c Dq(F). Consider now x ¢
D4 (F). Then there exists n € Nsuch that (a**)" — x** € F. Since a** € Fand Fisafilter of L, then (a**)" € F,
foranyn € N. By (a**)" € F, (a**)" - x** € F, we deduce x** ¢ F. Since x** = (1**)" — x** ¢ F, then
x € D1(F), hence Dy(F) < D1(F). We deduce that D,(F) = D1(F). O

Corollary 3.16. Let L be an involutive residuated lattice, a € L and F be a filter of L. Then D4(F) = Fiffa € F.

Proof. ” = . Consider a € L and F a filter of L such that D,(F) = F. Following Theorem 3.12 (ii), we have
aeDy(F)=F,thenacF.

” «< ”. Suppose a ¢ F. By Theorem 3.12 (ii), a € F ¢ Dq(F). Consider now x € D,(F). Then there exists
n € Nsuch that (a**)" - x** € F. Since a < a** € F and F is a filter of L, then (a**)" ¢ F, forany n € N.
By (a**)" € F, (a**)" — x** ¢ F, we deduce x** ¢ F, hence x ¢ F. Therefore, D,(F) c F. We deduce that
Do(F) = F. O

Remark 3.17. (i). By Theorem 3.12 (vi), if F is a proper filter, then D,(F) is a proper filter or D4(F) = L. We
consider the lattice L = {0, a, c,d,m,1} withO <a<m < 1,0 < c <d < m< 1, but aincomparable with c and
d.

1

;

/
<
A%

0]

Then ([12], page 233) L becomes a residuated lattice relative to the following operations:

-»|0ac dm1 ©|0acdmi
0Oj111111 000000 O
aldldd1l 1 al0a00a a
claal 111 c|00ccc c
dlaam11 1 d|00ccc d
miOad d1l 1 m|Oaccmm
1|0acdmi1l 1|0acdm1
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We have (a) = {a, m, 1} is a proper filter of L, Dm({a)) = {x € L | (m**)" - x** € (a), forsomen ¢ N} =
{xeL|1->x"e(a)}=(a)and D.({a)) ={xeL|(c*™)" > x** e(a), forsomeneN}={xeL|c—>x""}=

L.

Moreover, (a) is a maximal filter of L and D.({a)) = L # {a). So, if M is a maximal filter, then Dy(M) = M

or Dy(M) =L, forany x € L.

(ii). There are residuated lattices L such that for a proper filter F of L, thereis a € L and D,(F) = L. Indeed,
we consider L = {0,a,b,c,d,e,f,m,1} withO<a<c<m<1l,0<a<e<m<1,0<b<c<m«<]l,
O<b<f<m<1,0<d<e<mc<1andelements{a,b}, {a,f}, {a,d}, {b,d}, {b,e}, {d,c}, {c,e},

{c,f} and {e, f} are pairwise incomparable.

Then ( [12]) L is a residuated lattice with the following operations:

Oabcdef mil

Oabcdefmi

11111111
mlmlmlml
mmllmml1
mmml mmm1l
mmmml111
mmmmml ml
mmmmmm1l 1
mmmmmmm1l
Oabcdef mil

N e e T T = N = =Y

m 3™ a0 s o)
P 3™ a0 s o6

Let F = (1) = {1}. Since Dm({1)) = {x € L|(m**)" - x** € (1), forsome n e N} = {x ¢ L|0 - x** € (1)}

{xeLjle(1)}=L.

(iii). There are residuated lattices L such that for a prime filter F, there is a € L such that D,(F) is not
prime. Indeed, we consider L = {0, a, b,n,c,d,1} withO<a<n<d<1,0<b<n<c<1,but(a,b)and

(¢, d) are pairwise incomparable.

c/l\d
N,/
a/ \b
N,/

00000000
00000000
00000000
00000000
00000000
00000000 e
00000000O0 f
00000000 m
Oabcdefmi

QU O T O
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Then ([12], page 191) L becomes a residuated lattice relative to the operations:

—-|0abncdl ©|0abncdil
01111111 0/{0000000O0
alblbl1111 al0aO0aaaa
blaal11111 b{OObbbbb
n|0Oab1111 nf0Oabnnnn
c|0abd1ldi1 c|0Oabncnc
d|Oabccl1 d|Oabnndd
1|0abncdil 1({0abncdl

Clearly, {(c) = {c, 1} is a prime filter of L. Since Dn({c)) = {x € L|(n"*)™ — x** € (c), forsome m € N} =
{xeLll > x™ e{c)} ={xeLix* e{(c)} ={n,c,d, 1}, hence Dr({c)) = {n,c,d,1}. Sincen = av b, but
a ¢ Dy({c))and b ¢ D,({c)), we deduce Dn({c)) is not prime.

(iv). There are residuated lattices L such that for a filter F, there is a € L such that D,(F) is prime, but
F is not prime. Indeed, we consider L = {0,a,b,c,d,e,f,1} withO <a<c<e<1,0<b<e<f<1
O<b<c<e<1,0<b<dc<ecx<1,andelements{a,b}, {a,d}, {a,f}, {c,d}, {c,f}, and {e,f} are
pairwise incomparable.

S\
SN
SN
N,/

Then [12] L becomes a MTL-algebra with the following operations:

—>|0abcdef 1 ©®©|0abcdef 1
0Oj11111111 0|00000000O0
alfi1fi1f1f1 al0a0a0aO0a
bleel11111 b|00O0O0O0OO0ODbLD
cldef1f1f1 c|0a0aOabc
dlccccl1111 d|oooodddd
e|lbcbcfi1f1 el0aOadede
flaacceell floobbddf f
1|0abcdef1 1{0abcdef 1

Since (e) = {e, 1}, withe = cv d, but c ¢ (e) and d ¢ (e), then (e) is not a prime filter. Since Dy({e)) = {x €
LI(d**)" - x** € (e), forsome ne N} ={xeL|d > x** e (e)} ={d,e,f,1}. Hence D4({e)) = {d,e,f, 1},
which is a prime filter of L, but (e) is not prime.

(v). If M € Max;(L) is a maximal filter and D,(M) is a proper filter, then Dq(M) = M. Indeed, by Theorem
3.12 (ii), M c Dq(M) and D4(M) is a proper filter. We get that if M is a maximal filter, then M = Dq(M).
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There are residuated lattices L such that D,(M) is a maximal filter, but M ¢ Max;(L). We consider L =

{0,n,a,b,c,d,1} withO<n<a<b<c,d<1,but cand d are incomparable.

Then ([12]) L becomes a distributive residuated lattice relative to the following operations:

N
c d

b
|
a
|
n
|

0

—-|0nabcdl ®|0nabcdl
01111111 00000000
njdl111111 n|0000no0OnN
alnnl11111 al0O0aaaaa
blnnall1ll b|0O0Oabbbb
c|Onadldi1 c|lOnabcbhc
dinnacci1l1 d|00abbdd
1|0nabcdl 1|0nabcd1l

Clearly, {(a) = {a,b,c,d,1} is the unique maximal filter of L and (b) = {b,c,d, 1} is a filter of L. Since
Dc((b)) = {x € LI(c*™)* - x** € (b), forsome n e N} = {x € L|]1 - x** ¢ (b)} = {x € L|x** ¢ (b)} =
{a,b,c,d, 1} =(a). Therefore, Dc({b)) = (a) is the unique maximal filter of L, but (b) is not maximal.

Proposition 3.18. Let a € L and F be a filter of L. Then:

(i) if M is a maximal filter of L and a** € M, then Dq(M) = M;
(i1) D1(F) is a prime filter iff D4 (F) is prime;

(iii) (a")* € F, forsome n e Niff Do(F) = L;

(iv) if M is a maximal filter of L, then Dqo(M) = Liffae L ~ M.
Moreover, if M is a maximal filter of L, then Dq(M) = M iffa € M.

Proof. (i).Let M be a maximal filter of L and a** ¢ M. Following Theorem 3.12 (ii) and (vi) we have D,(M)
is a filter and M ¢ D4(M). We must to prove that D,(M) is a proper filter of L. If 0 € Dq(M), then by (rs)
and (r15) we obtain successively 0 € Ds(M), (a**)" - 0** e M, (a**)" - 0e M, (a**)" ' 0 a** - 0eM,
(@Y s [a - 0]eM, ()" - a*** e M, (a**)" " - a* € M. Since a** ¢ M and M is a filter of L,
then (a**)"* e M. Since (a**)"* e M, (a**)"' - a* € M, then a* ¢ M. Since a*, a** ¢ M and M is a filter
of L, then 0 = a* ® a** € M, a contradiction. Hence D,(M) # L.

By hypothesis, M is a maximal filter and M € Dq(M) # L, then D,(M) = M.

(ii). Let F be a filter of L. Following Theorem 3.12 (vi), D1(F) and D, (F) are filters of L. Suppose D1 (F)
isaprime filterof Land x vy € D1(F).If xvy € D1(F), then (1**)" - (xvy)** = (xvy)** € F,foranyn ¢ N.
Since Fisafilterand (x vy)*™ < (a**)" - (x vy)**, then (a**)" - (x vy)** € F, hence x vy € Dq(F).

Since x vy € D1 (F) and D, (F) is prime, then x € D1 (F) ory € D1 (F). It follows that x** € For y** ¢ F.
We have successively x** € F, x** < (™))" - x* e Fory* e F,y** < (a**)™ — y** € F, then x € D4(F) or
y € D4(F), for some m, n € N. Hence D,(F) is prime.

Now, suppose D (F) is prime and for a = 1 we deduce D, (F) is prime, too.

(iii). Suppose (a")* ¢ F, for some n € N. Following Theorem 3.12 (ii), F € D4(F), then (a")* € D4(F).
By Theorem 3.12 (ii) and (vi), we obtain a € D4 (F) and D4(F) is a filter, then a" € D4(F), forany n € N. Since
a" € Dq(F), (a™)* € Da(F) and D4 (F) is a filter, then 0 = a" ® (a")* € Do(F). Hence Dq(F) = L.
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Now, suppose D,(F) = L. Then O € Dy (F), (a**)" - 0" ¢ F, (a**)" - 0 ¢ F, for some n € N.

We prove by induction that (a**)"*' - 0 = a™*! - 0, for n € N. Clear, for n = 0. Suppose (a**)" - 0 =
a" - 0,forneN. By (r5), (a*)" - 0=((a")"0a**) »0=a"* - ((a*)" - 0)=a** - (a" - 0) =
anéa***:an%(aﬁo):arwl_)()'

Since (a**)" - 0 ¢ F, thena" — 0 ¢ F, thatis (a")* ¢ F.

(iv). Consider M a maximal filter of L.

” = ”. Consider Da(M) = L. If a € M, then we get a** € M, and by (i) we obtain L = D,(M) = M, a
contradiction. We deduce a ¢ M, thatis, a € L ~ M.

” < ”, Consider a € L \ M. Since M is a maximal filter, then following Proposition 2.8 there is n € N such
that (a™)* € M, and by (iii) we obtain Dq(M) = L.

Now, the fact that D,(M) = M iff a € M is routine. O

Georgescu et al. (2015)[15] called Gelfand residuated lattices those residuated lattices in which any prime filter
is included in a unique maximal filter. They are also called normal residuated lattices. Examples of Gelfand
residuated lattices are Boolean algebras, BL-algebras and Stonean residuated lattices (see [8]).

Proposition 3.19. Let a € L and P € Spec;(L) be a prime filter. If P = Dq(P), then L is Gelfand (normal)
residuated lattice. The converse does not hold.

Proof. Let P be a prime filter of L such that P = D,(P). Using Zorn’s Lemma we deduce that P is contained in
a maximal filter. Suppose that there are two distinct maximal filters M; and M, such that P ¢ M; and P ¢ M.
Since My # M3, there is a € M; such that a ¢ M,. By Theorem 3.12 (ii) and (vi) we have that a € D,(P) and
Dq(P) is a filter, then (a")** € Dq(P) = P, for any n € N. Hence (a")** € P, forany n € N.

Following Proposition 2.8, there is n > 1 such that (a")* € M,. Then (a")** ¢ M>, hence (a")** ¢ P, a
contradiction.

For the converse we consider the residuated lattice L from Remark 3.17 (v). The prime filter of L are (a) =
{a,b,c,d, 1}, (b) ={b,c,d, 1}, (c) ={c,1} and (d) {d, 1}. The maximal filter of L is (a), which include
the all other prime filters. Hence L is Gelfand, but D.({b)) = (a) = (b). O

Proposition 3.20. Let F ¢ F;(L) and a € F. For x € D,(F) the following assertions are equivalent:
(i) Da(F) = F;
(ii) x** € F, thenx € F.

Proof. (i) = (ii). Consider Dq(F) = F. By hypothesis F is a filter and a ¢ F, then a** € F, (a**)" € F, for
every n € N. Since F is a filter and (a**)" € F, (a**)" - x** ¢ F, then x** ¢ F. We obtain successively
F=Dgq(F)={xeL|(a™)" > x™ €eF, forsomeneN} ={xeL|x"™ eF}, thatis, if x** € F, then x € F, for
all x e L.

(ii) = (i). By hypothesis F is a filter and a ¢ F, then a** ¢ F, (a**)" ¢ F, for every n € N. Since Fis a
filterand (a**)" € F, (a**)" — x** € F, then x** ¢ F. We obtain successively Dq(F) = {x e L| (a**)" - x** ¢
F, forsomeneN} ={xeL|x"" e¢F}=F. O

*

Theorem 3.21. Let a € L and F be a filter of L. For x € D4(F) the following assertions are equivalent:
(i) Da(F) = F;
(i) x** e Fiffx e F.

Proof. (i) = (ii). Consider D,(F) = F. By hypothesis F is a filter and x € D,(F) = F, by (r1¢) we obtain
x<x** eF,so,ifx ¢ F, then x** ¢ F. Now, we prove that if x** € F, then x € F. Since Fis a filter and x** € F,
X < (a**)" > x** e F,forany n e N, then x € Do(F) = F.

(ii) = (i). By Theorem 3.12, (ii) we have F ¢ D,(F). Now, we consider x € D,(F) such that x** ¢ F
iff x € F. Since x** € Fand x** < (a**)" - x** ¢ F, for any n ¢ N, then we obtain successively D, (F) =
{xeL|(a"™)">x"" cF, forsomeneN} c{xeL|x"" ¢F}cF.Therefore, Dq(F) = F. O
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Remark 3.22. Examples of residuated lattices which satisfy the conditions from Proposition 3.20 and Theorem
3.21 are Boolean algebras, MV-algebras and involutive residuated lattices.

Corollary 3.23. The set tq = {Dq(X)| X € U(L)} is a topology on L and (L, 74) is a topological space.

Proof. Let a € L. Clearly, Dq(@) = @ and Dq(L) = L. Following Theorem 3.12 (viii) and (ix) the set 7, =
{Dq(X)| X € U(L)} is a topology on L and (L, 74) is a topological space. O

Proposition 3.24. The set 3, = {Dq(* x)| x € L)} is a base for the topology T, on L.

Proof. Let Z be an open subset of (L, 74). Then there is X € U(L) such that Z = D,(X). Since X is an upset,
then X = u{t x| x € X} and by Theorem 3.12 (viii), we deduce that D,(X) = u{Dq(1 x)| x € X}. Hence 8, is a
base for the topology 7, on L. O

Corollary 3.25. Every open set X relative to the topology 7, is an upset. But the converse does not hold.

Proof. Following Corollary 3.23 and Proposition 3.24 we have (L, 74) is a topological space with 3, a base for
the topology 74. Since every union of elements of 3, is an upset and every open set X relative to 7, can be
written as a union of elements of 3,4, then X is an upset.

For the converse we consider the residuated lattice L from Remark 3.17 (v), wheret n = {n, a, b, c,d, 1}
is an upset of L. The upsetsof Laret0=L, tn = {n,a,b,c,d,1},ta={a,b,c,d,1},1 b ={b,c,d, 1},
tc={c,1},1d={d,1}andt1={1},soU(L) ={1 0,1t n,ta,t b, c,td,1 1}.Since the base of topology
pon Listheset B, = {Dp(t x)|p e Land t x e U(L)} ={z e L| (p**)" —» z** et x for some n € N}, then
it is easy to verify that 1 n can not be written as a union of elements of 8,. Therefore, 1 n is not an open set
relative to the topology 7. O

Proposition 3.26. Ifu, v € L such that u < v, then the topology T, is finer than topology 7.

Proof. We denote by 3y, 3, basis of the topology 7, respectively 7.
Consider t € L and D, (1 x) ¢ By an element of the basis 3, such that t € D, (1 x). Then there exists n ¢ N
such that (u**)" — t** €t x, thatis, x < (u*)" - t**. Following Theorem 3.12 (ii) we have t € D, (1 t).
Following Theorem 3.12 (vii), since u < v, then Dy (1 t) € Dy(1 t). We prove that D, (1 t) € Dy(t x). Now,
we consider s € Dy, (1 t). Then there exists m € N such that (u**)™ - s** et tandsot < (u**)™ — s**. By
(r4)

wx e (2

(r4), (r35) and (r3) e obtain successively ¢ < (u**)™ - s [(w)m o g ] (990e) (peoeym

$**. Since x < (W) > £ < (W) > [(W)" > 57 (1) (W)™N S s then x < (W)™ > §*%,
hence (u**)™" - s** et xand so s € Dy (1 x).

Since Dy (1 t) € Dy(1 x) and Dy (1 t) € Dy(1 t), it follows that D, (1 t) € Dy (1 t) € Du(1 x).

Clearly, Dy (1 t) € By is an element of the basis 3,. We deduce that for any ¢ € D, (1 x) € By, there is a
basis element D, (1 t) < 8y such that ¢ € Dy (1 t) € Dy(1 t) € Du(?t x). Following Lemma 3.4 we deduce that
the topology 7 is finer than topology 7. O

Lemma 3.27. If X is a nonempty subset of L and a € L, then X is a compact subset of (L, 7a) iff X € Dq(?
{Xi,» Xi,5 ..., Xi, }), for some x;,, Xi,, ..., xi, e Xand i e I.

Proof. ” <= ”.Suppose X ¢ Do (1 {xi,, Xi,, ..., Xi, }), for some x; , X;,, ..., xi, € Xand {Dq(X;)|i € I'} be a family
of open subsets of L whose union contains X. Forany j € {1, 2, ..., n}, there is i; € I such that x;; € Da(Xj,).
Following Theorem 3.12 (i) and (iv), we have Da(x;,) S Da(X;,), foranyj € {1,2,...,n}. By Theorem 3.12
(viii) weobtain X € Dq (1 {Xi,, X5 «+e» Xi, }) =Da(Xi, )UDa(Xi,)U...UDa(X;,) € Da(Xi, )uDg (X3, )U...uDq(X;,).
Hence X is compact.

” = ”. Now, suppose X be a compact subset of L. Since X ¢ u{t x|x ¢ X}, then by Theorem 3.12(ii),
X ¢ u{Dqa(? x)|x € X}. Hence {Dq4(1 x)|x € X} is a family of open subsets of L whose union contains X.
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By hypothesis, there are x1, X2, ..., Xxn € X such that X € Dq(1 x1) UDg(1 x2) U ... UDg(1 xn). By Theorem
3.12(viii) we obtain X € Da (1 {X1, X2, ..., Xn}). O

Theorem 3.28. The topological space (L, 74) is connected.

Proof. Consider X a non-empty subset of L such that is both closed and open relative to the topology 74. If X
is an open set, by Corollary 3.25, then X is an upset. If 0 € X and X is an upset, then X = L. If 0 ¢ L - X, since X
is closed, we get L — X is open, by Corollary 3.25, L — X is an upset of L, since 0 ¢ L — X, then L — X = L. Hence
X = @, a contradiction. We conclude that {@, L} is the set of all subsets of L which are both closed and open.
Thatis, (L, 74) is connected. O

4 Some Properties of Quotient Topology on Residuated Lattices

Proposition 4.1. Let P,Q ¢ Fi(L) and a € L such that Q c P. Then D,)(P/Q) = Da(P)/Q, where [a] =
{a/Q|acL}.

Proof. Consider x € L. Then
Diq1(P/Q) = {[x] € L/Q| [a]™ © [x] € P/Q, forsome m € N} = {[x] € L/Q|[a" e x] € P/Q} = {[x] €
L/Q|a™ e x € P} = Da(P)/Q. O

Following Proposition 3.24 we obtain the following result.

Remark 4.2. (i). Let F € F;i(L) and a € L. Then (L/F, 74r) is a topological space, where the set 7,/p =
{D4r(X/F)| X € U(L)} is a topology on L/F and the set {Dq/r(t x/F)| x/F € L/F} is a base for the topology
TajF ON L/F.

Ifm: L — L/F is the canonical morphism defined by =(x) = [x], then = is a continuous map. Indeed, if O
is an open set with respect the topology 7,/r, then O = U{Dqr(* xi/F)| for some x;/F € L/F}, and 7 1(0) =
7 N (UDgr(t xi/F)) =Un ™ (Dar(1 Xi/F)) =UDa (7" (1 xi/F)), which is an open set on (L, 7a).

(ii) Let F € Fi(L) and a € L. Then (L/F, 74) is a topological space, where the set 7,= {Dq(X)/F| X € U(L)}
is a topology on L/F and the set {D,(1 x)/F| x/F € L/F} is a base for the topology 74 .

Ifm : L - L/F is the canonical morphism defined by n(x) = [x], then = is a continuous map. Indeed, if
0 is an open set with respect the topology 7a, then O = U{Da(% x;)/F| for some x;/F € L/F}, and =~ *(0) =
7' (UDa(1 x:)/F) = Un " (Da(t xi)/F) = UDa(7* (1 xi/F)), which is an open set on (L, 7q).

Theorem 4.3. Let F be a filter of L and a, x € L. Then:
(i) Da(t x)/F € Do/r(1 x/F).
(ii) The topology 7, is finer than rq, where 74 is the quotient topology of L/F.

Proof. (i). Dajr(t x/F) = {u/F € LJF| x/F < ((a/F)**)" - (u/F)**} = {u/F e L/F|x ~ [(a**)" > u**] ¢ F}
and Dy(1 x)/F ={v/F:veDa(t x)}.Letu/F € Dq(* x)/F. Then there exists v € D,(* x) such that u/F = v/F
andso x —» [(a**)" - v**] = 1, for some n € N. Since u =f v, then x - [(a**)" - u™ ] =x - [(a™*)" >
v*™*] =1, thatis x - [(a**)" - u**] € F, hence u/F € Dy/p(1 x/F). Therefore, Dq(t x)/F € Dg/p(1 x/F).
(ii). By Proposition3.24 the set {D,/r(1 x/F) : x/F € L/F} is abase for the topology 7,/ on L/F. Moreover,
the set {Dq (1 x)/F : x € L} is a base for the topology 7, . Now, the proof of (ii) is straightforward by (i). O

Let L, L' be residuated lattices. On L x L we consider the relation of order (x,y) < (x', y’) iff x < x and y< y,
and the operations
(6Y) A (Y = (nx,y ny),
L)V () = (v yvy),
(X’y)Q(X,’y’):(XQX’,y(Dy),’ ., ,
x,y)=>(x,y)=(x—-x,y—->y)forallx,yeLandx,y eL.
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Then L x L' with the above operations is a residuated lattice called direct product of L and L.

Lemma 4.4 ([17]). Let L, L' be residuated lattices. Then K is a filter of L x L iff there exist P ¢ F;(L) and
Qe Fi(L") suchthatK = P x Q.

Proof. ” = . If K € F;(L x L'), we consider P = {x € L : (x,x') e K for some x_ ¢ L’} and Q = {x’ el :
(x, xl) € K forsome x € L}.

Clearly, K = P x Q. Since (1,1) € K we get 1 € P. Let x,y € P. Then there exist x',y/ ¢ L' such that
(x,x'), (y,y’) € K. Thus, (x,x') o] (y,y') =(xoy, X @y’) eK,soxoyceP.

Consider x < y and x € P. Then there exists x ¢ L’ such that (x,x') e K. Since (x, x') < (y, x'), then
y € P, hence P ¢ F;(L). Similarly, Q € F;(L).

”«<”. LetK=PxQforsomeP e F;(L)and Q ¢ ]—‘i(L'). Clearly, K € L x L. We consider (x,y), (p,q) € K.
Thenx,p e Pandy,q € Q, thatisx®p € P, y ® q € Q. Therefore, (x,y) ©(p,q) = (x®p,y©q) e PxQ =K.

Now, we consider (x, y) € K such that (x,y) < (p, q). Then x < p with x ¢ Pand y < g with y € Q. Since
PeFi(L)and Q ¢ ]fi(L’), then p e Pand q € Q, thatis (p, q) € K. Hence K € F;(L x L'). O

Lemma 4.5. Let P,Q € Fi(L)and a € L. Then Dq(P) x Dq(Q) = Da(P x Q).
Proof. By Lemma 4.4, Dy(P) x Da(Q) =

{xeLla"oxeP, forsomeneN}x {yeLla®oyeQ, forsomemeN}={xxyeLxL|(a'ex,a"ey)e
P x Q, forsome t > max{m,n} e N} = Dq(P x Q). O

Consider the topological spaces (L, 7,) and (L, 7).

Theorem 4.6. Let P, Q € F;(L) and a, b € L. Then there exists a homeomorphism from

52070y [0 527y * Bl

Proof. We define ¢ : L x L — 5t X 5oy BY (X, ¥) = (55> 5tqy)- Cleatly, ¢ is onto. Let (x,y) ¢ L x L.
Then (x,y) € ker(¢) iff x/Dq(P) = 1/Dq(P) and y/D4(Q) = 1/D4(Q) iff x € Dq(P) and y € Dq(Q). Hence
ker(¢) = Da(P) x Da(Q). It follows easily by Lemma 4.5 that D4 (P) x Dq(Q) = Dq(P x Q). Consider the map
h: bthxay ~ D.Py X Do(ay» defined by h(m) (x/Da(P),y/Da(Q)), then by the first isomorphism
theorem h becomes an isomorphism. If we suppose that X is an open subset of

Do (P) X 5 (Q), then there exist

1 _ UxV LxL
D (P) Do (Q) Clearly, ™" = D, (PxQ) is an open subset of IRCTOR
Hence h is a continuous map. In the same manner we can prove that h~! is a continuous map. Therefore, h

is a homeomorphism. O

U,V € 1, open subsets such that X =

X

4.1 Uniform topology on quotient residuated lattice L/J

In this section based on the work of Ghorbani and Hasankhani (2010)[18] we define and study a uniform
topology 71 0n the quotient residuated lattice L/J, where J is a filter of L.

If X is a non-empty set, U and V are subsets of X x X. Then:

UoV={(x,y)eXxX: (z,y)eUand (x,z) € V for some z € X},

T ={(x,y)eXxX: (y,x) e U},

A={(x,x)eXxX: xeX}.

In universal algebra if X is a non-empty set, then a non-empty collection K of subsets of X x X is called a
uniformity on X if it satisfies the following conditions:
(U1)acUforany U € K,
(U,)if UeK,then U €K,
(U3) if U € K, then there exists aset V e Ksuchthat Vo Vc U,
(Us)ifU,VeK,thenUNnVcK,
(Us)ifUeKandUcVcXxX,thenVeKk.
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The pair (X, K) is called a uniform structure.

In Ghorbani and Hasankhani (2010)[18], Theorem 2.10, it was proved that if A is a family of filters of a
residuated lattice L which is closed under intersection. If we consider the sets Ur = {(x,y) e LxL : x=p y}
forevery Fe Aand K* = {Ufr : Fe A},then K={U c L x L : Ur c U for some Ur € K} is a uniformity on L.
Let U e K, define U,y = {y e L : (x,y) e U}.

Then74 ={0 c L : Vx € 0,3U ¢ K such that Up,j ¢ O} is a topology on L and is called the uniform
topology on L induced by A.

In [18], Theorem 3.1, it was proved that if J is a filter of L. For each F € A, let F = (Fv])/]. Then A* =
{F : F e A} gives a uniform topology on L/J, where Uz = {([x], [y]) e L/T xL/J : [x] =F [¥]}.

Thesetr ={0OcL/] : « *(0) € 74}, where r : L — L/J is the canonical epimorphism,  becomes the
quotient topology on L/J, and 74+ becomes the uniform topology induced by A* on L/].

Lemma 4.7. Let F,Q ¢ F;(L) and a € L. Then:
(i) ({a} UF) c Dq(F), but the converse does not hold;
(if) ({a} UQUF) c Dq({Q U F)), but the converse does not hold.

Proof. (i).LetF e Fi(L)anda € L.Ifx € ({a} uF) thenx > a ® f, for some f ¢ F. We obtain successively

(r4) (r4)
(ax-x-)n_>x>u— rZ" (ax-x-)n_)(a®f)>(->(- 21‘ a**—>(a®f)** (rél»)a_)(a@f)**:a_)[(a@f)x-_)0] (E)

[ao(aof)] -0 [ao(a—f)] > 02f —0=f"*>fcF,thatis x ¢ Da(F). Thus ({a} UF) ¢ Da(F).
For the converse we consider L = {0, n,a, b,c,d,e,f,m,1} withO<n<a<c<e<m<1,0<n<b<
d < f <m < 1and the elements {a, b}, {c, d}, {e, f} are pairwise incomparable.

1

|
AN
N
SN,
N
|

(0]

Then([12]) L becomes a distributive residuated lattice relative to the following operations:

-|0nabcdefmil ©|0nabcdefmil
o1 111111111 0000000000 O
nim111111111 n|000000000 n
alf f1f1f1f11 al00a0a0al0a a
bleeell11111 1 b|0000000bb b
clddef1f1f11 c|00a0al0abc c
d|lccceell111 d|00000bbdd d
e|lbbcdeflf11 e|00a0Oabcde e
flaaacceell 1 flooobbddff f
minnabcdef 11 m|0OOabcdef mm
1|0 nabcdefmi1l 1|O0nabcdefmil

Let F = {1,m,f}, then ({d}uF) ={x e L : x >dotforsomet e F} ={d,e,f,m.1}. But D4(F) =
{xeL : (d*)" - x"* eF}={L}, hence ({d} UF) c Dy(F).
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(ii). Let F,Qe Fi(L)anda e L. If x e ({a} UQUF) thenx >a o q o f, for some g € Q, f € F. We obtain

(r4) * 5% (rl4)

successively (a**)" —» x** 2" (a**)" > (a@qof)*" (rﬁ) a*t > (aeqof)” "2 a->(aeqof)” =
a-[(aoqof) ~0] P [ao(@oqof)]-0" [ao(a~(qof))]»02(qof) »0=(qof)" >
(qof)e(QuUF), thatisx € Da({QUF)). Thus ({a} uQUF) c Da({QUF)).

For the converse we consider the residuated lattice L from (i), let Q = {1, m} and F = {1, m, f}, then
({p}uQuUF)={xeL : x>boqotforsomeq e Q,t ¢ F} ={b,c,d,e,f,m.1}. But D,({Q U F)) =
{xeL: (d)">x" e{(QuF)}={L}, hence ({b} UF) c D,({QUF)). O

Clearly,ifaec Land ], F € Fi(L), then (Ju F) € F;(L) and D4 ({J U F)) € F;(L), too.
Theorem 4.8. Let a € L. The lattice (D4 (Fi(L)), €) is a complete Brouwerian lattice (hence distributive).

Proof. Clearly, if {X; : i € I} is a family of filters from L, then the infimum of this family is A;Dq(X;) =
NierDa(X;) and the supremum is v;Dq(X;) = UierDa(X;), that is the lattice (Da(Fi(L)), Vi, A1, S, {1}, L) is
complete.

By Lemma 3.27 we have that an upset X of L is compact iff X ¢ Da(t {xi,,Xi,, ..., Xi, }), for some
Xi» Xiys -+, Xi, € X and i € I. Since any filter is an upset we deduce that the compact elements of D,(F;(L))
are exactly the upsets generated by the principal filters of L, which are filters, too.

Following Theorem 3.12, (xi) we deduce that the lattice (D4 (Fi(L))), <) is distributive. O

Following Lemma 4.7 and Theorem 3.1 from [18] we obtain:

Lemma 4.9. Consider ] a filter of Land a € L. Foreach F € A, let Dq(F) = Da({JUF))/]. Then A = {Dq({J U
F))/] €L/] : F € A} gives a uniform topology on L/J, where Us.i = {([x],[¥]) e L/Tx LT : [x] 55 [v]}-
That is, L/] is a topological space with the uniform topology r induced by A.

For aresiduated lattice L and a topology r defined on the set L, the pair (L, 7) is called a topological residuated
lattice if the operations A, v, ® and — are continuous with respect to 7.
In the same manner as Theorem 3.2 from [18] the following result can be proved:

Theorem 4.10. Foreachx € L and F € A, 7(Ur[x]) = Up7[[x]]. Hence each U;%[[x]] is open in the quotient
topology and r < 7. Moreover, Tp» € 71 C T.

Following Lemma 4.7, Lemma 4.9, Theorem 4.10 and Theorem 3.3 from [18] we obtain:
Theorem 4.11. 7 = 74- = 7 in L/]. Moreover, if ] is a filter, then (L/], 7) is a topological residuated lattice.

We recall that for any non-empty set X of L, we denote by X° = L \ X. In the same manner as Theorem 3.9
and Theorem 3.10, from [18] the following result can be proved:

Theorem 4.12. (L/], 7;) is Hausdorffiff ] is closed and (L[], m) is discrete iff ] is open.

Theorem 4.13. Let ] be a filter of L. If ] is closed relative to the uniform topology T, then (L/], 1) is a regular
space.

Proof. Consider ] a filter of L such that ] is closed relative to the uniform topology =+, then (L/], ;) is
Hausdorff. Since every Hausdorff and locally compact topological space is regular, we have to prove that
(L/J, ) is locally compact.

Let [x] € L/J. Since L is a locally compact space by uniform topology induced by A, there exists an open
neighborhood O of x and a compact set K such that x € O c K. Since = is open and continuous map, we have
that 7(0) is open and 7 (K) is compact such that [x] € 7(0) ¢ = (K). Thus L/J is locally compact at [x] and
hence is locally compact. O
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5 Some Classes of Semitopological Residuated Lattices

By definition the class of BL-algebras is a subclass of divisible residuated lattices. In [11], O. Zahiri and R. A.
Borzooei studied the (semi)topological algebras and for a BL-algebra L they proved that (see Theorem 3.17,[11])
(L,{v, A, ®}, 1) is a semitopological BL-algebra and (L, {—}, 74) is a right semitopological BL-algebra, for
an element a € L. We prove that their result works in the case of divisible residuated lattices, which is a larger
class than BL-algebras.

We notice the following rules of calculus:

Lemma 5.1. If L is a residuated lattice, then for a, p, q € L and m > 1 we have:
(e1) (@)™ > (qvp)™ =[(@)" > (gvp)™"]™;

(e2) g~ [(a™)" > (qvp)™]=1;

(3) (@)™ > (™)) = [(@)" > (gvp)™]=1;

(ea) [gn ((@)" = (P N] = [((@)" = (@) A ((@a™)" > ()] =1
(es) [go ((@™)" A (p™))] > [(gop)™]=1.

Proof. (e1). Following (r3s) wehavea™ e (qvp) = (a*™)™ - (qvp)**, by (r3¢) we obtaina™ © (q v p) =
(@"e(qvp)™=[(a™)" - (qgvp)"™]™. Hence (a**)" - (gvp)"™ =[(a"")" - (gvp)™]".

The rule of calculus (1) holds if instead of (q v p) we have (g Ap), (g ®p), (q - p) or p.

(e2).Sinceg<qgvp<(gvp)™<(a**)" - (gvp)*™,weobtaing - [(a**)™ - (gvp)™]=1.

(e3).Sincep™* < (qvp)** and by (r4), weobtain (a**)™ - p** < (a**)™ - (qvp)**, thatis ((a**)™ -
(™)) = [(@)" > (qgvp)~]=1.

(e4).Since g < g™ < (a™*)™ - ("), then[g A ((a™)" - (p*")] < [((@™)" = (g"")) A ((a™)™ >
(p™))]- Hence [g A ((a™)" — (p™))] = [((@™)" = (")) A ((@™)" = (p™))] = 1.

(e5). Since g < ¢**, (a**)" A (p™) < (p™"), then g © ((a™)™ A (p**)) < (¢*") © (p™™). By (r1s),
(@)e(p™) <(qop)**, then[(g*")o(p**)] » (qop)** = 1. Hence [qo((a**)"A(p*™))] » [(q0p)*"] =
1. O

Definition 5.2. Let T be a topology on the divisible residuated lattice L. If (L, {*;},T), where {*;} ¢
{V, A, ®, =} is a (semi)topological algebra, then (L, {+;}, T) is a (semi)topological divisible residuated lattice.
For simplicity, if {*;} € {v, A, ®, >}, we consider (L, 7) instead of (L, {v, A, ®, >}, 7).

Theorem 5.3. Let L be a divisible residuated lattice and a € L. Then:
(i) (L, {v, A, ®}, 7a) is a semitopological divisible residuated lattice;
(i1) (L, {—}, 7a) is a right semitopological divisible residuated lattice.

Proof. (i). Consider g an arbitrary element of L.

(1). We prove that (L, {v}, 74) is a semitopological divisible residuated lattice.

Consider the map ¢4 : L — L, defined by ¢4(x) = g v x, for any x € L. Following Proposition 3.24 the set
Ba = {Da(? x)| x € L)} is a base for the topology 7, on L. Then it suffices to prove that cp,}l(Da(T X)) € 7q, for
anyx e L.

Let x € L, then we obtain successively ¢;" (Da(t x)) = {p € Llpq(p) € Da(t x)} = {p € L|(a**)" -
(gqvp)*“etx, forsomeneN}={peLlx<(a*™)" - (qgvp)*, forsomen e N}.

Consider the set A = {p € Lix < (a**)" — (q v p)**, forsome n ¢ N} and we show that the set A is an
upsetof L. Letp e Aand p < s, for some s € L. Then thereis n € Nsuch that x < (a**)" — (qvp)**. By (r4),
(@' > (qvp)™ <(a™)" - (qvs)*",and sos € A. Hence A is an upset. Now, we prove that Ds(A) = A,
then we deduce that A € 74, that is <p;1 (Dq (1 x) € 7a, hence ¢y is a continuous map.

Let p € Dg(A). Then there is m € N such that (a**)™ — (p**) € A, thatisx < (a™)" - (¢ v ((a* )™ -
(p**)))**, forsome n € N.

We obtain successively

[(@™)" = (gv ((@)" = (™))"] -
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a**)errl

~(qvp)™]®

[(
[(@)" > (qv((@a)" > (P**)))(**]) -
* % * % * % I39

[(@*)" = ((@™)" > (qvp)™)] > o

[av (@)™ =@ NI = [(@*)" = (avp)*”] E=1( )

[qv (@)™ > (P )] > [(a™)" > (gvp)™]™" 'éz)

(Tqv (@)™ = (P*)N] = [(@)" > (qvp)" N =

*% * % * % w7y kx (17)

(lgv ((@a)" > @)D= [(a™)" > (gvp)”])™ =

([g = [(a)" ~(q vp)**(]] A (@)™ > (p™)) ~

(@)™ > (qvp)“I)™ < o

(LA[((@)™ > (p*)) = [(@*)" > (gvp)*™]])*™ 2

(1A =1""=1.

By (r2), (a™)" = (g v ((a™)" - (p*)))"" < (a™)™™" > (qvp)*.

We deduce that x < (a**)" = (gv ((a*)" = (p**)))** < (a**)™ " > (gvp)**, hence x < (a**)"™*" -
(g v p)*, thatis p € A. Following Theorem 3.12 (ii), we deduce that A = D4(A), that is ¢4 is a continuous
map.

(2). We prove that (L, {A}, 7¢) is a semitopological divisible residuated lattice.

Consider the map ¢4 : L — L, defined by ¢4(x) = g A x, for any x € L. Following Proposition 3.24 the set
Ba = {Da(1 x)| x € L)} is a base for the topology 7, on L. Then it suffices to prove that ¢;" (Dqa(1 X)) € 74, for
any x € L.

Let x ¢ L, then we obtain successively ¢;' (Da(t x)) = {p € L|¢q(p) € Da(t x)} = {p € L|(a**)" -
(gArp) T etx, forsomeneN} ={pelLjx<(a*™)"—> (qgap)*”, forsomen e N}.

Consider the set B = {p € Lix < (a**)" - (¢ Ap)**, forsome n € N} and we show that the set B is an
upset of L. Let p e Band p < s, for some s € L. Then there is n € Nsuch that x < (a**)" - (g Ap)**. By (r4),
(@' = (gap)™ <(a™)" - (qAs)*™, and so s € B. Hence B is an upset. Now, we prove that D,(B) = B,
then we deduce that B ¢ 74, that is ¢;1 (Da(1 x) € 74, hence ¢q is a continuous map.

Let p € Dq(B). Then there is m € N such that (a**)™ — (p**) € B, thatis x < (a**)" - (g A ((a**)" -
(p**)))**, for some n € N.

We obtain successively

[(a**)n_)(q/\((a**)m_)(p**)))**]_)[(a**)m+n_)(q/\p)>('>('] (g) ( )

* % * % * % * % * % * % * % 139

[(@)" > (gr (@)™ > (™))™ > [(@™)" > ((a)" > (gAp)™)] 2

* % * % * % * % * % ( 1)

[gn (@)™ > (PN > [(@™)" > (g Ap)™] E=( :

[gn (@)™ = (P )] > [(a™)" > (gAp)™]™ (ré;

*% *% *% %7y *x (T

([gn (@)™ > (@™ N] = [(@)" > (grp)™ D)™ = -

([gr (@) = (PN = [((@)" > (¢")) A (@) > (P )™ 2717 =1,

By (r2), (a™)" > (g A ((@)" = (p*)))™ < (a™)™™" > (g Ap)™".

We deduce that x < (a**)" = (gA ((@™)" = (p*)))" < (a**)™" > (gAp)**, hencex < ()™ -
(g Ap)**, thatis p € B. Following Theorem 3.12 (ii), we deduce that B = D,(B), that is ¢4 is a continuous
map.

(3). We prove that (L, {®}, 1) is a semitopological divisible residuated lattice.

Consider the map v4 : L — L, defined by 14(x) = g ® x, for any x € L. Following Proposition 3.24 the set
Ba = {Da(1 x)| x € L)} is a base for the topology 7, on L. Then it suffices to prove that v;* (Da(* X)) € 74, for
any x € L.

Let x € L, then we obtain successively ¢;'(Da(t x)) = {p € Lltq(p) € Da(t X)} = {p € L|(a**)" -
(qop)™*etx, forsomeneN} =

{pelix<(a™)" > (qop)*™, forsome n e N}.

Consider theset C = {p € L|x < (a**)" - (q @ p)*”, for some n ¢ N} and we show that the set C is an
upset of L. Let p e Cand p < s, for some s € L. Then thereis n € Nsuch that x < (a**)" - (qop)**. By (r4),
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(@) > (gop)™ <(a**)" - (q®s)**, and so s € C. Hence C is an upset. Now, we prove that D(C) = C,
then we deduce that C € 74, that is 1; ' (Da(* X) € 74, hence ¢ is a continuous map.

Let p € Dg(C). Then there is m € N such that (a**)™ —» (p**) € C, thatisx < ()" - (¢ @ ((a*)™ -
(p**)))**, forsome n € N.

We obtain successively

[(@)" > (g0 ((@)" = ("))~ [(@)™" > (qop)*]™

(@) = (@ (@) > (p*))*] > [(@)" = (@*)" > (gop)*)] ¥’

[go (@)~ (PN =~ [(@)" = (gop)™] 'Y

[0 (@)™ = (@™ )]™* = [(@)" > (qop)]*

([ge (@) > (™))~ [(@)" = (qop)~ )™ ¥

([ao (@)™ (@)~ ("))~ [(gop) ) ¥

([go (@)™ A (™ D] = [(qop) )™ =1 - 1.

By (r2), (@™)" > (qo ((@™)" - (p™)))*" < (a™)"" > (qop)™.

We deducethatx < (a™*)" > (go ((a™)™ - (p*)))"* <(a**)™" > (qop)**, hence x < (a*)™" —
(q@p)**, thatis p € C. Following Theorem 3.12 (ii), we deduce that C = D,(C), that is 1), is a continuous
map.

Since v, A, ® are commutative and from (1), (2) and (3) we deduce that (L, {v, A, ®}, 7¢) is a semitopo-
logical divisible residuated lattice.

(ii). We prove that (L, {—}, 74) is a right semitopological divisible residuated lattice.

Consider the map wy : L — L, defined by wq(x) = g — x, for any x € L. Following Proposition 3.24 the set
Ba = {Da(1 x)| x € L)} is a base for the topology 7, on L. Then it suffices to prove that w; " (D4 (1 X)) € 7q, for
anyx e L.

Let x € L, then we obtain successively w; ' (Da(* x)) = {p € Llwg(p) € Da(t x)} = {p € L|(a**)" > (q —
p)Fetx, forsomeneN}={peLlx<(a™™)"—>(qg—p)*™, forsomeneN}.

Consider theset D = {p ¢ L|x < (a**)" - (q — p)**, for some n € N} and we show that the set D is an
upset of L. Let p € D and p < s, for some s € L. Then there is n € N such that x < (a**)" - (¢ - p)**. By
(ra), (@) - (@ > p)** < (a**)" - (¢ - s)*", and so s € D. Hence D is an upset. Now, we prove that
Dq(D) = D, then we deduce that D € 74, that is w, 1(Da(1 x) € 74, hence wy is a continuous map.

Let p € Dq(D). Then there is m € N such that (a**)™ — (p**) € D, thatisx < (a**)" -» (¢ » ((a™)™ -
(p**)))**, forsome n € N.

We obtain successively

(@) = [g > (@)™ > (NI Z (@) > [(@) > (@)~ ()]

(@)= [(@"™) = (@)= N2 (@)= [(g) @ (a)") » (p*)] “

(@) > [@)" = (@) =~ N2 (@) o @)"] > [(a") > (p*)] -

(@*)mm (") » (p*)] (r22) (@)™ S (g - p)**.

We deduce that x < (a**)" - (¢ —» ((a*)" - (P*™)))*™* = (a*)™" - (¢ - p)*”, hence
x < (a*)™" > (g - p)**, thatis p € D. Following Theorem 3.12 (ii), we deduce that D = D4(D), that
is wq is a continuous map.

Since — is not commutative we deduce that (L, {—}, 1) is a right semitopological divisible residuated
lattice. O

€1)
)

We recall ([12]) that a residuated lattice L with double-negation property (x** = x, for all x € L) is called
involutive. It is known that the classes of divisible residuated lattices and involutive residuated lattices are
different (see [12]). The following result is an easy consequence of Lemma 2.2, Lemma 5.1 and Theorem 5.3.

Corollary 5.4. Let L be an involutive residuated lattice and a € L. Then:
(i) (L, {v, A, ®}, 1a) is a semitopological involutive residuated lattice;
(ii) (L, {—}, 7a) is a right semitopological involutive residuated lattice.
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In [3] it was proved that L is an MV-algebra iff L is an involutive BL-algebra. Therefore, following Theorem 5.3
and Corollary 5.4 we deduce that:

Corollary 5.5. Let L be an MV-algebra and a € L. Then:
(1) (L, {v, A, ®}, 7a) is a semitopological MV-algebra;
(ii) (L, {—}, 7a) is a right semitopological MV-algebra.

Corollary 5.6. Let L be a divisible residuated lattice. For any filter F of L and a, x € L, then:
(i) Da(t x)/F = Do/p(1 x/F);
(ii) The topologies 74r and 7o On L/] are the same, where 7, is the quotient topology of L/F.

Proof. (i). By Theorem 4.3 (i) we get Da(1 x)/F < Dg/r(t x/F), then it remains to prove D, /r(t x/F) ¢
Dq(t x)/F. Let u/F € Dq/p(1 x/F). Then there exists n € N such that x - [(a**)" - u™*] € F. Letf =
x = [(a™)" - u™*]. Then by (rs) we obtain x — ((a™*)" - [f > u™*]) =f > [x - ((@)" > u™™)] =
f—f=1andsoby (ris)and (rax)wegetl=x — ((a™)" > [f = u™*]) <x > ((@*)" > [f > u™*]*") =
x = (@)= [ > u™])=x—> ((@")" - [f > u]*™). Hence f — u € Dq(* x). Since f ¢ F, then
f/F=1/Fandso (f - u)/F =f/F - u/F =1/F - u/F = (1 —» u)/F = u/F. That is (f - u) = u. Therefore,
u/F eDq(t x)/F.

(i1). By Proposition 3.24 the set { D,/r(1 x/F) : x/F € L/F} isabase for the topology 7,/ on L/F. Moreover,
the set {Dq(1 x)/F : x € L} is a base for the topology 7, . Now, the proof of (ii) is straightforward by (i). O

Corollary 5.7. Let L be an involutive residuated lattice. For any filter F of L and a, x € L, then:
(1) Da(t x)/F = Dgsp(t x/F);
(ii) The topologies 74/r and 7 on L/F are the same, where 4 is the quotient topology of L/F.

Proof. (i). By Theorem 4.3 (i) we get Da(? x)/F < Dgyr(t x/F), then it remains to prove Dy /r(t x/F) ¢
Dq(?t x)/F. Let u/F € Dq/p(1 x/F). Then there exists n € N such that x - [(a*™*)" - u**] ¢ F. Letf = x -
[(a**)" > u**]. Then by (rs) weobtain x —» ((a**)" > [f > u™*]) =f > [x > (") > u**)]=f > f=1
and so by the involutive property (that is, x = x**, forall x e L)we get 1 = x » ((a**)" - [f - u™])
x = ((@™)" - [f - u]™). Hence f — u € Dq(1 x). Since f € F, then f/F = 1/F and so (f - u)/F
f/F - u/F=1/F - u/F =(1 - u)/F =u/F. Thatis (f - u) =r u. Therefore, u/F € Dq(1 x)/F.

(i1). By Proposition 3.24 the set { D, /r (1 x/F) : x/F € L/F} isabase for the topology 7,/ on L/F. Moreover,
the set {Dq(1 x)/F : x € L} is a base for the topology 7, . Now, the proof of (ii) is straightforward by (i). O

6 Conclusions

In Borzooei and Zahiri (2014)[11] the definition of double complemented elements for any filter F in BL-
algebras, initially, introduced by A. Borumand Saeid and S. Motamed (2009)[10], was generalized to the
concept of Dy(F), for any upset F of the BL-algebra L. Their aim was to show that any BL-algebra L with
that topology is a semitopological BL-algebra, so in that way they could construct many semitopological BL-
algebras. Our goal is to extend the study in the case of residuated lattices. Therefore, we work on a special
type of topology induced by a modal and closure operator denoted by D, (X), for an upset X of a residuated
lattice L, where a is an element of L.

We discuss briefly the properties and applications of the operator D, (-) in residuated lattices. We obtain
some of the important topological aspects of these structures such as connectivity and compactness. We study
some properties of quotient topologies on residuated lattices by considering two types of quotient topologies
denoted by 7,/r and Ta . We study the uniform topology 71 and we obtain important characterizations as
(~L/J, 77) becomes a Hausdorff space iff J is closed relative to the uniform topology. Also, we study some
properties of the direct product of residuated lattices.
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Finally, we apply our results on classes of residuated lattices such as divisible residuated lattices, MV-
algebras and involutive residuated lattices and we find that any of this subclasses of residuated lattices with
respect to these topologies form semitopological algebras.

In this way we can construct many semitopological algebras on residuated lattices.

Acknowledgement: The author is very grateful to the anonymous referees for their useful remarks and
suggestions.
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