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Abstract: In this paper we develop and analyze the local discontinuous Galerkin (LDG) finite element method
for solving the general Lax equation. The local discontinuous Galerkin method has the flexibility for arbitrary
h and p adaptivity, and allows for hanging nodes. By choosing the numerical fluxes carefully we prove
stability and give an error estimate. Finally some numerical examples are computed to show the convergence
order and excellent numerical performance of proposed method.

Keywords: Lax equation, Local discontinuous Galerkin method, Stability analysis, Error estimates

MSC: 35510, 65M12

1 Introduction

In this paper we develop a local discontinuous Galerkin (LDG) method for general Lax equation

3
Ut + QUUxxx + 20UxUxx + Toazuzux + Uxxxxx = 0,
u(x,0) = uo(x). M

where « are arbitrary nonzero and real parameters. We do not pay attention to boundary condition; hence
the solution is considered to be either periodic or compactly supported.

There are only a few numerical works in the literature to solve the Lax equation. Xu and Shu [1] simulate
the solutions of the Kawahara equation, the generalized Kawahara equation and Ito’s fifth-order mKdV
equation. The general Lax equation discussed in our paper is different from the class of fifth-order equation
in [1]. The general Lax equation (1) is an important mathematical model with wide applications in quantum
mechanics, nonlinear optics, and describes motions of long waves in shallow water under gravity and in a
one-dimensional nonlinear lattice [2-4]. Typical examples are widely used in various fields such as solid state
physics, plasma physics, fluid physics and quantum field theory. It is well known that the Lax equation is
completely integrable equation, and it has many sets of conservation laws [5, 6]. For numerical study, Abdul-
Majid Wazwaz [7] revealed solitons and periodic solutions for the fifth-order nonlinear KdV equation using
the sine-cosine and the tanh methods. In [8] Cesar A studied the periodic and soliton solutions for the Lax
equation using a generalization of extended tanh method. The DG method is beneficial for parallel computing
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and has high-order accuracy. Meanwhile, it is flexibility and efficiency in terms of mesh and shape functions.
To our best knowledge, this is the first provably stable finite element method for the Lax equation.

The paper is organized as follows. In Section 2, notation and some preliminaries are described and cited.
In Section 3, we discuss the LDG scheme for the general Lax equation, and prove the cell entropy inequality
and L? stability by choosing the fluxes carefully in Section 4. In Section 5 we give an error estimate, and
some numerical experiments to illustrate the accuracy and capability of the method are given in Section 6.
Concluding remarks are provided in Section 7.

2 Notations and auxiliary results

In this section we introduce notations and definitions to be used later in the paper and also present some
auxiliary results.

2.1 Basic notations

We denote the mesh in [a, b] by I; = (x;_1, Xj,1) forj =1,2---N. The center of the cell is x; = %(x]-_% + X 1),
and the mesh size is denoted h; = x;

+17X with h = max; j<y h; being the maximum mesh size. We assume
that the mesh is regular, namely, that the ratio between the maximum and the minimum mesh sizes stays
bounded during mesh refinements. We define the piecewise-polynomial space V}, as the space of polynomials
of the degree up to k in each cell [;, i.e.

Vhi={v:ve Pk(I]-),x €lj,j=1,2,--N}.

Note that functions in V; are allowed to have discontinuities across element interfaces.
The solution of the numerical scheme is denoted by uy, which belongs to the finite element space V.
We denote by (uh);“+l and (uh)jjrl the values of uy at x;, 1 from the right cell I, and from the left cell Jj,
2 2 2

respectively. [uy] is used to denote uj — uy,, i.e. the jump of uy, at cell interfaces.

Lemma 2.1 ([9]). For any piecewise smooth function w € L*(£2), on each cell boundary point we define

[w] ' (f(@) ~F(w)) if[w] #0,

)
Hf' (@) iffw] =0,

B(fsw) = B(fiw,w") = {
wheref(w’, w™) is a monotone numerical flux consistent with the given flux f. Then 6(7; w) is non-negative and

bounded.

In the present paper we use C to denote a positive constant which may have a different value in each
occurrence. The usual notation of norms in Sobolev spaces will be used. For any integer s > 0, let H*(£2)
represent the well-known Sobolev space equipped with the norm || - ||s, which consists of functions with
(distributional) derivatives of order not greater than s in L(£2). Next, let the scalar inner product on L? be
denoted by (-, ), and the associated norm by | - |.

2.2 Projection

We will give the projection in one dimension [a, b], denoted by P, i.e.,for each j,

f(]P’w(x) —w(0))v(x) = 0, Vv e PX(Iy), 3)
Ij
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and special projection P*, i.e.,for each j,
/(Pm(x) —w())V(x) =0, ¥v e PI(I)),
Ij
+ +
and P w(X]-_%) = w(Xj_%),

f(um(x) —w())V(x) =0, ¥v e PI(I)),

I

and P_w(x];%) = w(xj%). (4)
There are some approximation results for the projection in [10-12]
1
o + R oo + B ||, < CRFL. (5)
where w® = Pw — w or w® = P*w — w, and

1
lwfllm = (5

N 1
DIy + (@D

N

The positive constant C, solely depending on w, is independent of h. 7, denotes the set of boundary points of
all elements Ij.

3 LDG Scheme

In this section, we define our LDG method for the general Lax equation (1), written in the following form:

2
(0% « «
ut+(§u2)xxx—(Eu)z()x“'(ﬁlﬁ)x+uxxxxx:0- (6)

To define the local discontinuous Galerkin method, we rewrite equation (1) as a first-order system:
2
f(u) = Tou’, B(2)=32°, b(2) = B'(2) =z, p = (b(x)u)x,
Z-Ux=0, qg-2x=0, v-qx=0, w—vx=0,
Ut + f(U)x + px — B(2)x + wx = 0. @)

Now we can use the local discontinuous Galerkin method to equation (1), resulting in the following scheme:
find up, pn, Wh, Vi, qn, zn € Vi, such that for all test functions p, ¢, ,n, £, 0 € Vy,

[ @owdx~ [ fauomdx- [ puoxdx+ [ Blzi)omdx
I; I I; Ij

~ [ wapxdx + (Fan)o oy - (Fan)o )y
I

(8a)
+ (Bhp Djur = (Brp" )i = (B(zn)p )jua
+ (B(Zh)er)j—% + (Wnp )ju1 - (VV\hPJr),;% =0,
[ prodx+ [ blznundedx - (B¢ )y + (Blzn)ins ) s =0, (8b)
I I
[ wapdx+ [ vigrdx = Ty + (Trp®)y =0, (80)

I I

[ vindx+ [ qundx = @ )jey + @)y =0, (8d)
I

I J
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[ angax+ [ zgdx— (B + (@D, =0, (8¢)
I j
/ zpfdx + f Upbxdx — (ﬁ},(?_)j% + (a‘hfﬁ)}__% =0. (8f)
Ui Ij

The "hat" terms in (8) in the cell boundary terms from integration by parts are the so-called "numerical
fluxes", which are single valued functions defined on the edges and should be designed based on different
guiding principles for different PDEs to ensure stability. It turns out that we can take the simple choices such
that

ﬂ:u;7 2;1:2}-;_7—1[‘”1]’ WIZVH_TZ[Zh]’ ﬁ!:p;’ VV;:W;’

+ _
@ - ain Bz - 2B gyt Bz - B, ©
Zp ~ %y

where 7, 72 > 0. Some dissipation terms in the flux of zj, v;, will give a control on the boundary terms. We
have omitted the half-integer indices j — % as all quantities in (8) are computed at the same points (i.e. the
interfaces between the cells). The flux f is a monotone flux. Examples of monotone fluxes which are suitable
for the local discontinuous Galerkin methods can be found in, e.g., [13]. For example, one could use the Lax-
Friedriches flux, which is given by

Ew,wh) = %(f(w‘) (W) —a(w’ -w)), a=max|f'(w)|. (10)

We remark that the choice for the fluxes (9) is not unique. In fact the crucial part is taking i, and py,, Wy, from
opposite sides, taking v except the dissipation term and Z}, except the dissipation term from opposite sides,
taking m and i, from opposite sides, and gy, = g;, [14-16].

With such a choice of fluxes we can get the theoretical results of the L? stability.

4 Stability analysis

Theorem 4.1 (cell entropy inequality). For periodic or compactly supported boundary conditions, the solution
uy, to the semi-discrete LDG scheme (8) satisfies the following cell entropy inequality

1d 2
>dt Uupdx + ;.1 - ;1 <O0. (11)
I
Proof. Choosing the test function 6 = —wj, in (8f), we obtain
- f Zpwidx - / (W)X + (Tiwp);_s ~ (Tiwh); 1 = 0. (12)
I I
Since (8) holds for any test functions in V, we can choose
P=Uns =2y =ZhsN=~qn,§ =Vn, 0= —Pp (13)

Then we have
;jt[ updx — I[f(uh)(uh)xdx—I/Ph(uh)de+I[B(Zh)(uh)de
= [ wnCun)edx + (PG - (Fanui);y
I

+ (Brun )y~ By 1 ~ (Banui)joa
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2

[ przndx + [ b(znun(mdx - BEn) @z + (BE@z);-1 =0,
I; I

] ]

* (B(zh)u;;)]-fl + (V’Vﬁuﬁ)pr; - (V,V;u;)j—% =0,

f wpzpdx + f Vi (zp)xdx - (ﬁzﬁ)H% + (vAhz;)].f% =0,

U] I

—/vhqth— fqh(qh)de+(é71qH),-+g—(flzq;?),-_; =0,
Y] L
[ aivndx + [ zui)edx = Gy + (EviDpy =0,
Y] I

- [ zwpndx - [ un(pr)rdx+ @by - (Tpi)yy 0.
5 I

Summing up Egs. (12) and (14), we obtain
1d
2 dt 7

+(B(Zﬁ)uﬁ)j+% - (B(Z;)qu)j—% - (B’(Z)UH)H% + (B’(Z)UZ))'—%

~(b(zn) @21 )js 1 + (B(20)nz1)j-1 = (Dhtn)je1 + (PRUR);-1

+(ﬁ\hu;)j+% - (ﬁth)j_% + (lﬁlpi_l)j+% - (lfhp;;)j—;

_(W};u;)ﬂ-% + (WZU;F:)j—% + (VV\hu};)jJr; - (Vv\hu;)}'—%

H(@wi )y = @y g + (az)yey - (Vi)

—(‘77:2;)14; + (‘7712;);—% - (57:‘/;)14; + (ZZVD]‘—%

updx ~ F(un)j s+ FQup)jos + (Fun)un)jes = (Flun)u); s

2

1, 1
5 (@) + 5 (ah)}-

L+ (q\hfﬂ)jar% - (‘Thq;)j—% =0.

2
where F(up) = [ f(s)ds. We introduce a short-hand notation

D,

o1 = ~F(up)jus + (Flun)up)jes + (Bzi)u )jes = (Blzn)u )y
_(b(zh)ﬁ;lzﬁ)}ﬁr% - (p};u;)]‘*’% + (ﬁ\hu;l)jJr% + (ﬁ\hp}:)”%

_(W;u;)]#% + (Vv\hu;z)H% + (lﬁ,Wﬁ)H% + (V};ZE)]}%

1
2

P P 1, o
—(Vhzp )j+% = (Znvp )j+% - E(Qh )f+% +(qnqn )j+;
Then we have
1d
2 dt

Ij

2
uhdx+¢>j+% —@1-7% +@j7%

and the extra term O is given by

6;-1 = ([F(un)] - fun)[un] = (B(zn)un] + B(zn)[un] + b(zn)Tn[z1]
+[unpn] = Pulun] = an[pn] + [unwn] = Wi[un] - @n[wh]
a;

~[vazn] + Vnlza] + Zalvn] + [5H] - dnlan])jy + ma[va)” + malza]’

With the definition (9) of the numerical fluxes and after some algebraic manipulation, we easily obtain

~[B(zn)un] + B(zn)[un] + b(zn)dn[z4] = O
[Unpn] = Pr[un] - tn[pn] =0

(14)

(15)

(16)

17)

(18)
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[upwn] — Wp[up] - @p[wy] = 0

=[vazn] + Vi[zn] + Zp[vn] = O

2
q
[J

) Gilan = Sl

and hence
0j-1 = ([F(un)] —J@[uh])i_% > 0. 19)

where the last inequality follows from the monotonicity of the flux (10). This finishes the proof of the cell
entropy inequality. O

Summing up over I;, we obtain the following L? stability of numerical solution.

Theorem 4.2 (L? stability). The solution u to the semi-discrete LDG scheme (8) satisfies the following L*
stability

1d [

2
—— [ updx<O0.
2dtJ h
a

5 Error estimates

We state the main error estimates of the semi-discrete LDG scheme (8). We have the following theorem.

Theorem 5.1. Let u be the exact solution of the problem (1), which is sufficiently smooth with bounded
derivatives. Let uy, be the numerical solution of the semi-discrete LDG scheme (8). For rectangular triangulations
of I; x Jj, if the finite element space V}, is the piecewise polynomials of degree k > 2, then for small enough h
there holds the following error estimates

|u—uy| < Ch. (20)

Proof. First we would like to make an a priori assumption that, for small enough h, there holds [17]
|u-uy| < h. (21)
Suppose that the interpolation property (5) is satisfied, then the a priori assumption (21) implies that
|t —uplloo < Ch?, | Qu - up]eo < Ch?, (22)

where Q = P or Q = P* is the projection operator.
Notice that the equations (8) are also satisfied when the numerical solutions uy, pn, Wn, Vi, qn, Zn are
replaced by the exact solutions u, p, w, v, q, z. We then obtain the cell error equation

[ = unpdx~ [ (F) - Fun)pedx~ [ (p-p)pxdx+ [ (B(2) - B(zn))oxdx
I; I;

I; Ij
- [ W= wi)pmdx s (F@) = F)p oy = ((F) = F@n)p sy
Ij
+((P=P0)p Djer = (P =P)p" )i = (B(2) = B(zn))p )y
+((B(2) ~B@)p )iy + (W= W)p oy = (W= Wa)p )y + [ (b - pr)odx
Ij
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+ [ (b(2)u=bian))undxdx - (b(2)u-BEn)T)6 )0y + (b2 -BEn)T)6 "),y
Ij
+f(w—wh)gpdx+ f(v—vh)gaxdx—((v—ﬂ,)cpf)ﬂ%+((V_]7;l)<p+)j7%
v [ v=vindx+ [ (a-anymdx-((@-@)n )y + (@- Gy @)

v [(a-angdx+ [(z-z)edx- (-2 )y + (F- B,y
5 L

+ [ (z—zp)0dx+ | (u—up)bxdx — ((u—1p)0 i1 + ((u—1y)0");_1 = 0.
11[ h I}f h n)0 )jp1 n)0)j-1

Define
Qlj(“‘“hyp—ph,W—Wh,V—Vh,q—thZ—Zh;P,¢,§0’77,§:9)
= [ u=unypdx~ [ (0 -pryoxdx— [ (w-wy)px
Ij I I
(2= B)p Njer — (=B )y + (W=W0)p )y
(W= )1+ [ (p-pu)odx+ [ (w-wh)odx
I Ij
+f(v_vh)‘deX_((V_ﬁ)<P_)j+%+((V_‘771)<P+)j—% 4)
L
+ [ -vimdx+ [(@-anymdx-((a-@)n )y + (@~ @)y
I Ij
+ [(@-angax+ [ (z-zngdx - (2= ) )y + (- Ay
I I;
+f(z—zh)edx+/(u—uh)exdx—((u—ﬁ},)ﬁf)”% +((u_a‘h)9+)]_7%,
I Ij
573j(f’uauh;p)
= [ (F@) = Fun))pxx = ((FQ0) = FQum))p )joy + (F@) = Fum)p*)y s @)
I
and

9{}(Ba b;Za U, Zp, Up; p, ¢)

=~ [ (B(2) - B(zn))pedx + (B(2) - Bz)o s - (B(2) - Ba)o"); o6
L

- [ (@)~ b(za) unxdx + (b2 - BER) @) sy - ((b(2)u =~ BEn)TH)6 )y
Ij
Summing over j, the error equation (23) becomes

N
Zglij(u —Upy D —Phs W—Wp,V—=Vp,d —qh, 2 — Zp; P, ¢’ 90’771‘599)
j=1 27)

=9;(f, u, un; p) + Rj(B, b; 2, U, zp, Un; p, ¢)-
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Denoting
eu=u-up=Pu-u,- (P'u-u)=Pe,- (P'u-u),

ep=p-pn=Pp-pp—(Pp-p)=Pey - (Pp-p),
ew=w-wp=Pw-wy - (Pw-w) =Pey - (Pw-w),
ev=v-vp=Pv—-v, - (Pv-v)=Pe, - (Pv-v),
eg=q-qn=Pq-qn-(Pq-q)=Peg—(Pq-q),
e;=z-zp=Pz-z- (Pz-2)=Pe; - (Pz-2).
Take the test fuctions

p=P ey, =Pe;, p=Pes,n=-Peq, £ =Pey, 0 = —(Pey + Pep),

from the linearity of (; we obtain the energy equality

N
> A (P ey, Pey, Pew, Pey, Peg, Pes; P ey, Pe;, Pe;, —Pey, Pey, —(Pey + Pep))
j=1
N
ZQ[(]P’ u-u,Pp-p,Pw-w,Pv-v,Pq-q,Pz- z; P ey, Pe;, Pe,, (28)
j=1

- Peg, Pey, —(Pew + Pep)) + 9;(f, u, up; P ey)
+9;(B, b; z, u, zy, up; Prey, Pez).

First we consider the left-hand side of the energy equation (28).
Lemma 5.2. The following equation holds
N
> A (P ey, Pey, Pew, Pey, Peg, Pe; P ey, Pez, Pe;, —Pey, Pey, —(Pey + Pep))

j=1

(29)

N\r—\
Q.‘Q_

b
/(]P’ ey)’dx + Z( [Pey]? + m1[Pey]” + TZ[PEZ]Z)I-_L.
2
a
The proof is by the same argument as that used for the stability result in Section 4.
Lemma 5.3. There exist numerical entropy fluxes B3; o1 such that the following equation holds

2Ai(P'u-u,Pp-p,Pw-w,Pv-v,Pqg-q,Pz-z;
P*ey, Pe;, Pe;, ~Peq, Pey, —(Pew + Pep))

Sf%(P+eu)2dx+Bj+%+Bj_% (30)

+e([Preu)’ + [Pez]” + [Peg]” + [Pey]®); s
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Proof. As to the first term of right-hand side in (28), we first write out all the terms
(P u-u,Pp-p,Pw-w,Pv-v,Pq-q,Pz-zP"ey, Pe;,
Pe,, -Pegy, Pey, —(Pew + Pep))
= f(IP’+u —u)P eydx - f(IP’p -p) (P ey)xdx - f(]P’w - w)(P"ey)xdx

Ij Ij I

+((Pp —p)_(IF’+€u)_)j+% - ((Pp —P)_(Eﬁeu))r)j—% + ((Pw - W)_(P+eu)_)i+§

—((Pw-w) (P"ey)");_ 1+ [ (Pp-p)Pedx+ | (Pw—w)Pe,dx
o e

] ]

+ / (Pv - v)(Pe;)xdx — ((Pv - v)f(IP’ez)f)]-Jr% + ((Pv - v)f(IPez)Jr)]-,%
Ij

v [(@v-v)(-Pej)dx+ [ (Pg-q)(-Pe)dx - ((Bq-q) (-Peq) ).
I I

+((Pq—q)_(—]P>eq)+)j_% +f(IP’q—q)]P>evdx+ f(IPz—z)(Pev)xdx
I I

J J

— ((Pz-2)"(Pes) )y + (Pz-2)"(Pe) )yy + [ (2= 20) (<(Pey + Pey)))dx

I

+ /(]P’W —u)(~(Pew + Pep)))xdx - (Pu—u)" (~(Pew + Pep))) )j. s
I;

+(F*u-u)" (~(Pew +Pey)))™); .
Using the property of the special projection P, P~ and P*, the expression (31) becomes
2Ai(P'u-u,Pp-p,Pw-w,Pv-v,Pq-q,Pz-zP'ey, Pe,,
Pe,, -Pegy, Pey, —(Pey + Pep))
= [ Pru-w)Preudx+ ((Bp-p) (Frew) )y - (Bp-p) (Pen)); s
5

+ (Pw-w)" (PTeu) )jy1 = (Pw-w) (P ew)"); s

~ ((Bv-v)"(Pe:) )y + ((BY - v) (Pex)™); s
- ((Pg-q) (-Peq) )jo1 + ((Pg - ) (-Peg) )y
- ((Pz-2)"(Pey) )joy + (B2 -2)" (Per) )y s
1,4+ 32
S;}_[Z(]P) eu) dx+B]-+% +Bj_%
+e([P eu]® + [Pe:]” + [Peg]” + [Pey]*); .
where
B=Pp-p) (P ey)” +(Pw-w) (P ey,)” - (Pv-v) (Pe;)”
- (Pq-q) (-Peg)” - (Pz-2)" (Pey)".
Then we finish the proof of Lemma 5.3.

The estimate for the second term of right-hand side in (28) is given in the following lemma.

— 1099

€3

(32)

(33)

Lemma 5.4 ([18]). Suppose that the interpolation property (5) is satisfied; then we have the following estimate

for

ul N1, = 2 7 2 2k+1
Y 9i(fsusunsPen) <3 ——B(frun); 1 [P eu]i s +Cf(IP’+eu) dx + Ch™ ",
i1 2 2 g

j=1 j 4

(34)
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For the proof of this lemma, we refer readers to Lemmas 3.4 and 3.5 in [18]. For the linear flux f(u) = cu, this
a priori assumption is unnecessary, hence the result in Theorem 5.1 holds for any k > 0.
The estimate for the final term of right-hand side in (28) is given in the following lemma.

Lemma 5.5 ([17]). Suppose that the interpolation property (5) is satisfied; then we have the following estimate
for

N
| > >R;(B, b; z, u, zn, up; P ey, Pe; )|
i1

N

<D 2(Ib (2)u(Pz - 2)[Pe:]] + b(2) (Pz - 2)” [F el G5)
j=1
. %|\P+eu|\2 + C|[Pes|? + Ch¥*2,

For the proof of this lemma, we refer readers to Lemmas 4.6 in [17].
Plugging (29), (30), (34) and (35) into the equality (28), we can obtain

b
1d N1 N
2dt /(P+e“)2dx + (5 Peq]” + milPey]* + ma[Pe:])s + 3 2 A(Fsun)yy [Preu]) s
2 j=1 j=1
b (36)
N
<C / %(IF’J'eu)zdx + 5 e([Preu]” + [Pez]? + [Peg]” + []P’ev]z)j_; + Ch* + cn?t,
a j=1 ’
the fact that the initial error
lu(, 0) - up(-, 0)| < Ch**?, (37)

and the interpolating property (5) finally give us the error estimate (20).

To complete the proof, let us verify the a priori assumption (21). For k > 1, we can consider h small enough
so that Ch* < 1h, where Cis the constant in (20) determined by the final time T. Then, if t* = sup{t : |u-uy| <
h}, we would have ||u(t*) — up(t*)|| = h by continuity if t* is finite. On the other hand, our proof implies that
(20) holds for ¢ < t*, in particular |u(t*) - un(t*)| < Ch* < 1h. This is a contradiction if t* < T. Hence t* > T
and our a priori assumption (21) is justified. O

6 Numerical examples

In this section, we perform numerical experiments of the local discontinuous Galerkin method applied to
the general Lax equation. We use the third order Runge-Kutta method and time steps are suitably adjusted in
order to show a dominant spatial accuracy. All the computations were performed in double precision. This is
not the most efficient method for the time discretization to our LDG scheme. However, we will not address the
issue of time discretization efficiency in this paper. We have verified that the results shown are numerically
convergent in all cases with the aid of successive mesh refinements.

Example 6.1. We consider the standard Lax equation (1) with o = 10in I = [-5, 5], the exact solution is of the
form

u(x,t)y=-1+ 35ech2(§(x - 14t))). (38)

The L? and L' errors and the numerical orders of accuracy at time ¢t = 0.0001 are contained in Table 1. We
can see that the method with P* elements gives (k + 1)-th order of accuracy in both L? and L* norms.
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Example 6.2. In this example, we test the scheme for the standard Lax equation with o = 10 in I = [-10, 10].
We take the soliton solutions of the form

u(x, t) = %\/Esechz(%%(x —et)). (39)

We choose the constants ¢ = 16. The L? and L' errors and the numerical orders of accuracy for u at time
t = 0.0001 with uniform meshes are contained in Table 2. Periodic boundary conditions are used. We can see
that the method with P¥ elements gives a uniform (k + 1)-th order of accuracy for u in both norms.

Example 6.3. In this example, we test the scheme for the Lax equation with o = 20. The solutions are of the
form

S~ 4
> _/\sechz( A

st =
u(x,t) ” 5

(x + At)). (40)
We choose the constants A = —16. The L? and L errors and the numerical orders of accuracy for u at time
t = 0.0001 with uniform meshes are contained in Table 3. Periodic boundary conditions are used. We can see
that the method with P¥ elements gives a uniform (k + 1)-th order of accuracy for u in both norms.

Table 1. Accuracy test for Lax equation with the exact solution (38). Periodic boundary condition in [-5, 5]. Uniform meshes
with N cells at final time T = 0.0001

N L2-error order L1-error order
30 0.250025095519879 - 0.505252806535136 -
35 0.214456885190837 1.00 0.430576720947450 1.04
P° | 40 0.187734914641832 1.00 0.378541378730034 0.96
45 0.166927435692666 1.00 0.335344338561188 1.03
50 0.150268168708905 1.00 0.302686728389871 0.97
30 | 1.879039441453699E-002 - 3.286545740223012E-002 -

35 | 1.517793447466294E-002 | 1.39 | 2.648611321788866E-002 | 1.40
P! | 40 | 1.175185014958489E-002 | 1.92 | 2.051650636107464E-002 | 1.91
45 | 9.301100063281460E-003 | 1.99 | 1.623421704551745E-002 | 1.99
50 | 7.543588974233264E-003 | 1.99 | 1.316444163568550E-002 | 1.99
30 | 5.437341211792110E-003 - 9.452351537362624E-003 -

35 | 2.586643947316112E-003 | 4.82 | 4.388740273521469E-003 | 4.98
P? | 40 | 1.634177482372270E-003 | 3.44 | 2.801872130043346E-003 | 3.36
45 | 1.131356506174137E-003 | 3.12 | 1.911467182749563E-003 | 3.25
50 | 8.272791940860751E-004 | 2.97 | 1.442019800374107E-003 | 2.67

7 Conclusion

We have discussed the application of local discontinuous Galerkin methods to solve the general Lax equation.
We prove stability and give an error estimate. Numerical examples for general Lax equation are given to illus-
trate the accuracy and capability of the methods. Although not addressed in this paper, the method is flexible
for general geometry, unstructured meshes and h-p adaptivity, and has excellent parallel efficiency. These
results indicate that the LDG method is a good tool for solving such nonlinear equations in mathematical
physics.
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Table 2. Accuracy test for Lax equation with the exact solution (39) choosing ¢ = 16. Periodic boundary condition in [-10, 10].
Uniform meshes with N cells at time t = 0.0001

N L2-error order L1-error order
45 0.262562836987084 - 0.442363863105017 -
50 0.236725114862793 0.98 0.407435575492229 0.78
p® | 55 0.215485037022766 0.99 0.363985847157329 1.18
60 0.197724527583503 0.99 0.338792804920091 0.82
65 0.182656542818417 0.99 0.308965096338155 1.15
70 0.169714225008466 0.99 0.290019731047581 0.85
45 | 3.880589332295393E-002 - 5.917128300448593E-002 -
50 | 3.206033525121685E-002 1.81 4.853508770943189E-002 1.88
pt 55 | 2.671598323277074E-002 1.91 3.977612736077588E-002 2.09
60 | 2.262802545703084E-002 1.91 3.386667345536551E-002 1.85
65 | 1.940528673241487E-002 1.92 2.904070662670210E-002 1.92
70 | 1.682010624218387E-002 1.93 2.485815847211677E-002 2.10
45 | 1.506187123768599E-002 - 2.442327109945212E-002 -
50 | 1.019076038429557E-002 3.71 1.683162047008102E-002 3.53
p2 55 | 6.815580704424561E-003 4.22 1.089819034720809E-002 4.56
60 | 4.952438129993914E-003 3.67 7.619139588922541E-003 411
65 | 3.872358100972614E-003 3.07 5.450917599415668E-003 4.18
70 | 3.191727848648557E-003 2.61 4.358328765569666E-003 3.02

Table 3. Accuracy test for Lax equation with the exact solution (40) choosing A = —16. Periodic boundary condition in [-5, 5].
Uniform meshes with N cells at time ¢t = 0.0001

N L2-error order L-error order
30 | 9.885941626628193E-002 - 0.169366079037095 -
35 | 8.485448377283446E-002 | 0.99 0.143501208768824 1.08
P° | 40 | 7.431484018739452E-002 | 0.99 0.126755684746074 0.93
45 | 6.609867111817130E-002 0.99 0.111915629567131 1.06
50 | 5.951526640818351E-002 1.00 0.101306503082584 0.95
30 | 1.019279381151275E-002 - 1.535758890466971E-002 -
35 | 8.340246396509980E-003 1.30 1.239027721246629E-002 1.39
P! | 40 | 6.482260809629124E-003 1.89 9.583787194704823E-003 1.92
45 | 5.146246954540782E-003 | 1.96 | 7.574137237557694E-003 | 2.00
50 | 4.183737195964606E-003 1.97 6.140217793902676E-003 2.00
30 | 2.704100139391892E-003 - 3.924975265062904E-003 -
35 | 1.514846548183961E-003 3.76 2.201195114825479E-003 3.75
P2 | 40 | 8.785309061922388E-004 4.08 1.282439894082946E-003 4.05
45 | 5.986846947394631E-004 3.26 7.895185077491700E-004 411
50 | 4.319620667412239E-004 3.10 5.491810801293127E-004 3.45
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