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Abstract: In this paper, we introduce the notion of state maps from a semihoop H1 to another semihoop H2,
which is a generalization of internal states (or state operators) on a semihoopH. Alsowe give a type of special
state maps from a semihoop H1 to H1, which is called internal state maps (or IS-maps). Then we give some
examples and basic properties of (internal) state maps on semihoops. Moreover, we discuss the relations
between state maps and internal states on other algebras. Then we introduce several kinds of �lters by state
maps on semihoops, called SM-�lters, state �lters and dual state �lters, respectively, and discuss the relations
among them. Furthermorewe introduce and study the notion of prime SM-�lters on semihoops. Finally, using
SM-�lter, we characterize two kinds of state semihoops.
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1 Introduction
Residuated structures arise in many areas of mathematics, and are particularly common among algebras
associated with logical systems. The essential ingredients are a partial order ≤, a binary operation of
associative and commutative multiplication ⊙ that respects the partial order, and a binary (left-)residuation
operation → characterized by x ⊙ y ≤ z if and only if x ≤ y → z. Semihoops [14] are very important
and basic residuated structures in which the community of many-valued logicians got interested in the last
years, as they are building blocks for several interesting structures being the algebraic semantics for relevant
many-valued logics such as basic fuzzy logic (BL, for short). Apart from their logic interest, semihoops
have interesting algebraic properties and include kinds of important classes of algebras: Hoops which were
originally introduced by Bosbach [6, 7] under the name of complementary semigroups and Brouwerian
semilattices-the models of the conjunction-implication fragment of the intuitionistic propositional calculus.
A semihoop is called a hoop if x ⊙ (x → y) = y ⊙ (y → x) and a semihoop does not satisfy the divisibility
condition x ∧ y = x ⊙ (x → y). Therefore, semihoops are the most fundamental fuzzy structures. It will play
an important role in studying fuzzy logics and the related algebraic structures.

In order to measure the average truth-value of propositions in Lukasiewicz logic, Mundici [24] presented
an analogue of probability measure, called a state, as averaging process for formulas in Łukasiewicz logic.
States onMV-algebras have been deeply investigated. Consequently, the notion of states has been extended to
other logical algebras such as BL-algebras [25], MTL-algebras [20, 21], R0-algebras [22] and residuated lattices
[12, 19, 23, 26].
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Since MV-algebras with state are not universal algebras, they do not automatically induce an assertional
logic. Flaminio and Montagna [15, 16] presented an algebraizable logic using a probabilistic approach, and
its equivalent algebraic semantics is precisely the variety of state MV-algebras. We recall that a state MV-
algebra is an MV-algebra whose language is extended by adding an operator(also called an internal state),
whose properties are inspired by ones of states with the addition property. State MV-algebras generalize,
for example, Hajek’s approach [17] to fuzzy logic with modality Pr (interpreted as probably) which has the
following semantic interpretation: The probability of an event a is presented as the truth value of Pr(a).
On the other hand, if s is a state, then s(a) is interpreted as the average appearance of the many valued
event a. Consequently, the notion of internal states has also been extended to other algebraic structures. For
example, the concept of a state BL-algebra was introduced by Ciungu et al.[11], as an extension of the concept
of a state MV-algebra. Subsequently, the concept of internal states was extended by Dvurečenskij et al.[13] to
R`-monoids (not necessarily commutative). More generally, the state residuated lattices were introduced by
He and Xin [18].

We observed that the states and internal state onMV-algebras, BL-algebras, BCK-algebras and residuated
lattices aremaps fromanalgebra X to [0, 1] and X to X, respectively. From the viewpoint of universal algebras,
it ismeaningful to study a statemap from an algebra X to another algebra Y. In particular, if Y = [0, 1], a state
can be seen as a state map from X to [0, 1], and if X = Y, a state operator can also be seen as a state map from
X → X. Based on this idea, we can conclude that a state map is not only a generalization of internal states but
also preserves the usual properties of states. Therefore, it is meaningful to introduce state map to the more
general fuzzy structures semihoops and providing an algebraic foundation for reasoning about probabilities
of fuzzy events in a new way. This is the motivation for us to investigate state maps on semihoop.

This paper is structured in �ve sections. In order to make the paper as self-contained as possible, we
recapitulate in Section 2 the de�nition of semihoops, and review their basic properties that will be used in
the remainder of the paper. In Section 3, we introduce the notion of state maps (or simply, S-maps), which
is a generalization of states on semihoops. Also, we give a characterization of two kinds of semihooops. In
Section 4, we discuss the relations between state maps on semihoops and internal states on other algebras,
respectively. In Section 5, we introduce several kinds of �lters by state maps on semihoops, called SM-�lters,
state �lters and dual state �lters, respectively, and discuss the relations among them. Using SM-�lter, we
characterize two kinds of state semihoops.

2 Preliminaries
In this section, we summarize some de�nitions and results about semihoop, which will be used in the
following sections of the paper.

De�nition 2.1 ([14]). Analgebra (H,⊙,→,∧, 1) of type (2,2,2,0) is called a semihoop if it satis�es the following
conditions:
(1) (H,∧, 1) is a ∧-semilattice with upper bound 1,
(2) (H,⊙, 1) is a commutative monoid,
(3) (x ⊙ y) → z = x → (y → z), for all x, y, z ∈ H.

In what follows, by H we denote the universe of a semihoop (H,⊙,→,∧, 1). For any x ∈ H and a natural
number n, we de�ne x0 = 1 and xn = xn−1 ⊙ x for n ≥ 1.

On a semihoop (H,⊙,→,∧, 1) we de�ne x ≤ y i� x → y = 1. It is easy to check that ≤ is a partial order
relation on H and for all x ∈ H, x ≤ 1. A semihoop H is bounded if there exists an element 0 ∈ H such that
0 ≤ x for all x ∈ H. In a bounded semihoop (H,⊙,→,∧, 0, 1), we de�ne the negation ∗ ∶ x∗ = x → 0 for all
x ∈ L. If x∗∗ = x, for all x ∈ H, then the bounded semihoop H is said to have the Double Negation Property, or
(DNP) for short. We de�ne a relation ⊥ on H by x ⊥ y i� y∗∗ ≤ x∗. If x⊙ x = x, that is, x2 = x for all x ∈ H, then
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the semihoop H is said to be idemopent. A semihoop H is called a hoop if x ⊙ (x → y) = y ⊙ (y → x) for all
x, y ∈ H. Also, in every hoop H, x ∧ y = x ⊙ (x → y) for all x, y ∈ H, see [14].

Proposition 2.2 ([14, 30]). In any semihoop (H,⊙,→,∧, 1), the following properties hold: for all x, y, z ∈ H,
(1) x ⊙ y ≤ z i� x ≤ y → z,
(2) x ⊙ y ≤ x ∧ y, x ≤ y → x,
(3) 1→ x = x, x → 1 = 1,
(4) x ⊙ (x → y) ≤ y,
(5) If x ≤ y, then y → z ≤ x → z, z → x ≤ z → y and x ⊙ z ≤ y ⊙ z,
(6) x ≤ (x → y) → y,
(7) ((x → y) → y) → y = x → y,
(8) x → (y → z) = y → (x → z),
(9) x → y ≤ (z → x) → (z → y), x → y ≤ (y → z) → (x → z),
(10) x → (x ∧ y) = x → y,
(11) x ⊙ y = x ⊙ (x → x ⊙ y).

Proposition 2.3 ([4, 30]). In a bounded semihoop (H,⊙,→,∧, 0, 1), the following properties hold: for all
x, y, z ∈ H,
(1) 1∗ = 0, 0∗ = 1,
(2) x ≤ x∗∗, where x∗∗ = (x∗)∗,
(3) x ⊙ x∗ = 0, x∗∗∗ = x∗,
(4) x ≤ y implies y∗ ≤ x∗,
(5) x → y ≤ y∗ → x∗,
(6) (x → y∗∗)∗∗ = x → y∗∗,
(7) x∗∗ ⊙ y∗∗ ≤ (x ⊙ y)∗∗,
(8) (x∗∗ ⊙ y)∗ = (x ⊙ y)∗.

Proposition 2.4 ([14]). Let (H,⊙,→,∧, 1) be a semihoop and for all x, y ∈ H, we de�ne x ⊔ y = ((x → y) →
y) ∧ ((y → x) → x). Then the following conditions are equivalent:
(1) ⊔ is an associative operation on H,
(2) x ≤ y implies x ⊔ z ≤ y ⊔ z for all x, y, z ∈ H,
(3) x ⊔ (y ∧ z) ≤ (x ⊔ y) ∧ (x ⊔ z) for all x, y, z ∈ H,
(4) ⊔ is the join operation on H.

De�nition 2.5 ([14]). A semihoop is called a ⊔-semihoop if it satis�es one of the equivalent conditions of
Proposition 2.4.

Proposition 2.6 ([30]). In a ⊔-semihoop, the following properties hold: for all x, y, z ∈ H,
(1) x ⊙ (y ⊔ z) = (x ⊙ y) ⊔ (x ⊙ z),
(2) x ⊔ (y ⊙ z) ≥ (x ⊔ y) ⊙ (x ⊔ z),
(3) x ⊔ yn ≥ (x ⊔ y)n and xm ⊔ yn ≥ (x ⊔ y)mn for any natural numbers m, n.

Proof. The proofs are easy, and we hence omit the details.

De�nition 2.7 ([1, 2]). Let (H,→,⊙, 1) be a hoop. H is called:
(1) a basic hoop if (x → y) → z ≤ ((y → x) → z) → z for any x, y, z ∈ H.
(2) a Wajsberg hoop (x → y) → y = (y → x) → x for any x, y ∈ H.
(3) a Gödel hoop if x ⊙ x = x for any x ∈ H.

Proposition 2.8 ([3]). Let (H,⊙,→, 1) be a bounded hoop. Then
(1) bounded basic hoops are de�nitionally equivalent to BL-algebras.
(2) bounded Wajsberg hoops are de�nitionally equivalent to MV-algebras.
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Let (H,⊙,→,∧, 1) be a semihoop. A nonempty set F ofH is called a �lter ofH if it satis�es: (1) x, y ∈ F implies
x⊙ y ∈ F; (2) x ∈ F, y ∈ H and x ≤ y imply y ∈ F. A �lter F of H is called a proper �lter if F ≠ H. A proper �lter F
of H is called a maximal �lter if it is not contained in any proper �lter of H. A nonempty set F of H is a �lter
of H if and only if 1 ∈ F and if x, x → y ∈ F, then y ∈ F. A proper �lter F of a semihoop H is called a prime �lter
of H, if for any �lters F1, F2 of H such that F1 ∩ F2 ⊆ F, then F1 ⊆ F or F2 ⊆ F. For more details about �lters in
semihoops, see [4].

De�nition 2.9 ([4, 28]). Let (H,→,⊙,∧, 1) be a semihoop. H is called:
(1) a simple semihoop if it has exactly two �lters: {1} and H.
(2) a local semihoop if it has only one maximal �lter.

3 State maps on semihoops
In this section, we introduce the notion of state maps on a semihoop and investigate some related properties
of state maps.

De�nition 3.1. Let (X,⊙1,→1,∧1, 11) and (Y ,⊙2,→2,∧2, 12) be two semihoops. A map σ ∶ X → Y is called
a state map from X to Y, which is denoted simply by S-map, if it is satis�es the following conditions:
(SM1) x ≤1 y implies σ(x) ≤2 σ(y);
(SM2) σ(x →1 y) = σ((x →1 y) →1 y) →2 σ(y);
(SM3) σ(x ⊙1 y) = σ(x) ⊙2 σ(x →1 (x ⊙1 y));
(SM4) σ(x) ⊙2 σ(y) ∈ σ(X);
(SM5) σ(x) ∧2 σ(y) ∈ σ(X);
(SM6) σ(x) →2 σ(y) ∈ σ(X).
for all x, y ∈ X.

The pair (X, Y , σ) is said to be a S-map semihoop.Moreover, if X = Y and σ2 = σ, then σ is called an internal
state map on X, simply IS-map on X, in this case, (H, σ) is said to be an IS-map semihoop.

Now, we present some examples for S-maps on semihoops.

Example 3.2. Let H1 and H2 be two semihoops. Then the map 1H1 , de�ned by 1H1(x) = 12 for all x ∈ H1, is a
S-map from H1 to H2.

Example 3.3. Let H be a semihoop. One can check that idH is a S-map on H.

Example 3.4. Let H1 = {01, a1, b1, c1, 11} and H2 = {02, a2, b2, c2, 12}, where 01 ≤ a1 ≤ b1, c1 ≤ 11 and
02 ≤ a2 ≤ b2 ≤ c2 ≤ 12. De�ne operations ⊙i and→i for i = 1, 2 as follows:

→1 01 a1 b1 c1 11
01 11 11 11 11 11
a1 01 11 11 11 11
b1 01 c1 11 c1 11
c1 01 b1 b1 11 11
11 01 a1 b1 c1 11

⊙1 01 a1 b1 c1 11
01 01 01 01 01 01
a1 01 a1 a1 a1 a1
b1 01 a1 b1 a1 11
c1 01 a1 a1 c1 11
11 01 a1 b1 c1 11

→2 02 a2 b2 c2 12
02 12 12 12 12 12
a2 02 12 12 12 12
b2 02 c2 12 12 12
c2 02 b2 b2 12 12
12 02 a2 b2 c2 12

⊙2 02 a2 b2 c2 12
02 02 02 02 02 02
a2 02 a2 a2 a2 a2
b2 02 a2 a2 a2 b2
c2 02 a2 a2 c2 c2
12 02 a2 b2 c2 12
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Then (H1,→1,⊙1,∧1, 11) and (H2,→2,⊙2,∧2, 12) are semihoops. Now, we de�ne a map σ ∶ H1 → H2 as
follows:

σ(x) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

02, x = 01

a2, x = a1, b1

12, x = c1, 11

.

One can check that σ is a S-map from H1 to H2.

Example 3.5. Let H = [0, 1] be the real interval. If for x, y ∈ H, we de�ne x ⊙ y =max{0, x + y − 1} and
x → y =min{1, 1 − x + y}, then (H,⊙,→, 0, 1) becomes a hoop, and hence it is a semihoop. Now we de�ne
σ ∶ H1 → H as follows:

σ(x) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, x = 01;
1
2 , x = a1, b1;
1, x = c1, 11

where H1 is given in Example 3.4. One can easily check that σ is a S-map from H1 to H.

Next, we present some properties of S-maps on semihoops.

Proposition 3.6. Let Hi , i = 1, 2be semihoops andσ beaS-map fromH1 to H2. Thenwehave: for any x, y ∈ H1,
(1) σ(11) = 12;
(2) σ(x ⊙1 y) ≥ σ(x) ⊙2 σ(y);
(3) σ(x →1 y) ≤2 σ(x) →2 σ(y) and if x ≤1 y, then σ(x →1 y) = σ(x) →2 σ(y);
(4) σ(H1) is a subalgebra of H2.

Proof. (1) Applying (SM2), we have σ(11) = σ(01 →1 01) = σ((01 →1 01) →1 01) →2 σ(01) = σ(11 →1

01) →2 σ(01) = σ(01) →2 σ(01) = 12.
(2) From x ⊙1 y ≤ x ⊙1 y, we get y ≤1 x →1 (x ⊙1 y) by Proposition 2.2(1). By (SM1), we have σ(y) ≤2 σ(x →1

(x ⊙1 y)). Applying (SM3), we get σ(x ⊙1 y) = σ(x) ⊙2 σ(x →1 (x ⊙1 y)) ≥2 σ(x) ⊙2 σ(y).
(3) By (SM2),wededuceσ(x →1 y) = σ((x →1 y) →1 y) →2 σ(y) ≤2 σ(x) →2 σ(y)by (5) and (6) of Proposition
2.2. If x ≤1 y, then σ(x) ≤2 σ(y). This means σ(x) →2 σ(y) = 1. Moreover, σ(x →1 y) = σ((x →1 y) →1 y) →2

σ(y) = σ(11 →1 y) →2 σ(y) = σ(y) →2 σ(y) = 12. Thus σ(x →1 y) = σ(x) →2 σ(y).
(4) It follows from (SM4), (SM5), (SM6) and (1).

De�nition 3.7. Let H1 and H2 be two bounded semihoops. A S-map σ from H1 to H2 is called a regular if it
satis�es σ(01) = 02.

Note that the S-map σ given in Example 3.2 is not regular and the S-map σ given in Example 3.4 is regular.
In the following we give some characterizations for a S-map becoming regular.

Theorem 3.8. Let Hi , i = 1, 2 be two bounded Wajsberg semihoops and σ be a S-map from H1 to H2. Then the
following are equivalent:
(1) σ is regular,
(2) σ(x∗1) = (σ(x))∗2 for any x, y ∈ H1,
(3) x ⊥1 y implies σ(x) ⊥2 σ(y) for any x, y ∈ H1.

Proof. (1)⇒(2) By (1) and (SM2), we get σ(x∗1) = σ(x →1 01) = σ((x →1 01) →1 01) →2 σ(01) = σ(x) →2

02 = (σ(x))∗2 .
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(2)⇒(3) Suppose that x ⊥1 y. Then y∗1∗1 ≤1 x∗1 , it follows that σ(y∗1∗1) ≤1 σ(x∗1). By (2) we have
(σ(y))∗2∗2 ≤2 (σ(x))∗. Hence we have σ(x) ⊥2 σ(y).
(3)⇒(1) Since 0∗1∗1

1 = 1∗1 , we get 11 ⊥1 01. By (3) we have σ(11) ⊥2 σ(01), and so σ(01)∗2∗2 ≤2 σ(11)∗2 .
From Proposition 3.6(1), σ(01)∗2∗2 ≤2 σ(11)∗2 = 1∗2

2 = 02, and hence σ(01)∗2∗2 = 02. It follows that
σ(01)∗2∗2∗2 = 12. By Proposition 2.2(7), σ(01)∗2∗2∗2 = σ(01)∗2 = 12, that is, σ(01) →2 02 = 12. This shows
that σ(01) ≤2 02, so σ(01) = 02.

Proposition 3.9. Let H be a semihoop and σ be an IS-map on H. Then we have: for any x, y ∈ H,
(1) σ(1) = 1;
(2) σ(x ⊙ y) ≥ σ(x) ⊙ σ(y);
(3) σ(x → y) ≤ σ(x) → σ(y) and if x ≤ y, then σ(x → y) = σ(x) → σ(y);
(4) σ(σ(x) ⊙ σ(y)) = σ(x) ⊙ σ(y);
(5) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y);
(6) σ(σ(x) → σ(y)) = σ(x) → σ(y);
(7) σ(H) = Fix(σ), where Fix(σ) = {x ∈ H ∣ σ(x) = x};
(8) σ(H) is a subalgebra of H;
(9) Ker(σ) is a �lter of H, where Ker(σ) = {x ∈ H∣σ(x) = 1}.

Proof. (1) It follows from Proposition 3.6(1).
(2) It follows from Proposition 3.6(2).
(3) It follows from Proposition 3.6(3).
(4) From (SM4), we have σ(x) ⊙ σ(y) = σ(z) for some z ∈ H. Hence σ(σ(x) ⊙ σ(y)) = σ2(z) = σ(z) =
σ(x) ⊙ σ(y) by the de�nition of the IS-maps.
(5) It is similar to (4).
(6) It is similar to (1).
(7) Let ∈ σ(H). Then x = σ(z) for some z ∈ H. Hence σ(x) = σ2(z) = σ(z) = x. So x ∈ Fix(σ). Conversely
assume x ∈ Fix(σ). Then x = σ(x) ∈ σ(H). This shows that (7) is true.
(8) It follows from (1), (2), (3) and (4).
(9) It is straightforward.

Next, we consider properties of IS-map to characterize two kinds of semihoops. The following results and the
next one are proved in [30], where (SM2) replace by (SM2’)σ(x → y) = σ(x) → σ(x ∧ y). We can show the
same results without the identity (SM2’).

Theorem 3.10. Let H be a semihoop. Then the following are equivalent:
(1) H is a hoop;
(2) every IS-map σ on H satis�es σ(x) ⊙ σ(x → y) = σ(y) ⊙ σ(y → x) for all x, y ∈ H.

Proof. The proof is similar to that of He et al [30].(Theorem 4.7 ).

Theorem 3.11. Let H be a semihoop. Then the following are equivalent:
(1) H is idemopent;
(2) every IS-map σ on H satis�es σ(x ∧ y) = σ(y) ⊙ σ(y) = σ(x) ⊙ σ(x → y) for all x, y ∈ H.

Proof. The proof is similar to that of He et al [30].(Theorem 4.8 ).

Here, we give relations between IS-map and Riečan states on semihoops.

De�nition 3.12 ([30]). Let H be a bounded semihoop. A Riečan state on H is a founction s ∶ H Ð→ [0, 1] such
that the following conditions hold: for all x, y ∈ H,
(1) s(1) = 1,
(2) if x�y, then s(x + y) = s(x) + s(y).
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Let H be a semihoop, σ be an IS-map on H and s be a Riečan state on H. Then s is called σ-compatible if
σ(x) = σ(y) ⇒ s(x) = s(y) for all x, y ∈ H.

We denote by RS[H] and RSσ[H] the set of all Riečan states and σ-compatible Riečan states on H,
respectively.

Theorem 3.13. Let H be a semihoop and σ be an IS-map on H. Then there is a one-to-one correspondence
between σ-compatible Riečan states on H and Riečan states on σ(H).

Proof. (1) Suppose that s is a Riečan state on σ(H). De�ne a mapping ϕ ∶ RS[σ(H)] → RSσ[H] as follows:
ϕ(s)(x) ∶= s(σ(x)) for all x ∈ H. We will prove that ϕ(s) is a Riečan state on H. Clearly, ϕ(s)(1) = s(σ(1)) =
s(1) = 1. Next, we will show that ϕ(s)(x + y) = ϕ(s)(x) + ϕ(s)(y) when x ⊥ y. In order to do this, we prove
that σ(x + y) = σ(x) + σ(y) for x ⊥ y. Now, suppose that x ⊥ y. From Theorem 3.8(3), we have σ(x) ⊥ σ(y).
Then σ(x) +σ(y) = (σ(x))∗ → (σ(y))∗∗. Moreover, σ(x + y) = σ(x∗y∗∗) = σ(x∗) → σ(x∗ ∧ y∗∗). Since x ⊥ y,
then y∗∗ ≤ x∗. It follows that σ(x + y) = σ(x∗) → σ(y∗∗) = (σ(x))∗ → (σ(y))∗∗ = σ(x) + σ(y). Now, we
prove that ϕ(s)(x + y) = ϕ(s)(x) + ϕ(s)(y) when x ⊥ y. Since σ(x + y) = σ(x) + σ(y) for x ⊥ y, we have that
ϕ(s)(x + y) = s(σ(x + y)) = s(σ(x) + σ(y)) = s(σ(x)) + s(σ(y)) = ϕ(s)(x) + ϕ(s)(y). Therefore, ϕ(s) is a
Riečan state on H. Moreover, let σ(x) = σ(y) for all x, y ∈ H, then ϕ(s)(x) = s(σ(x)) = s(σ(y)) = ϕ(s)(y).
Thus, ϕ(s) is a σ-compatible state on H. Therefore, the mapping ϕ is well de�ned.
(2) Assume that s is a σ-compatible Riečan state on H. The mapping ψ ∶ RSσ[H] → RS[σ(H)] is de�ned by
ψ(s)(σ(x)) ∶= s(x) for all x ∈ H. Let σ(x) = σ(y), then s(x) = s(y) for all x, y ∈ H. Now, we show that ψ(s)
is a Riečan state on σ(H). Let σ(x) ⊥ σ(y). Then σ(σ(x) + σ(y)) = σ((σ(x))∗ → (σ(y))∗∗) = σ(σ(x∗) →
σ(y∗∗)) = σ(x)∗ → σ(y)∗∗ = σ(x) + σ(y). Based on this, we have that ψ(s)(σ(x) + σ(y)) = ψ(s)(σ(σ(x) +
σ(y))) = s(σ(x)+σ(y)) = s(σ(x))+ s(σ(y)) = ψ(s)(σ(σ(x)))+ψ(s)(σ(σ(y))) = ψ(s)(σ(x))+ψ(s)(σ(y)).
Moreover, ψ(s)(σ(1)) = s(1) = 1. That means that ψ(s) is a Riečan state on σ(H). Therefore, ψ is a mapping
of RSσ[H] into RS[σ(H)].
(3) Let s1, s2 be σ-compatible states on H and ψ(s1) = ψ(s2). Then we have ψ(s1)(σ(x)) = ψ(s2)(σ(x)),
which implies s1(x) = s2(x) for all x ∈ H. Thus, s1 = s2. Now, suppose that s is a Riečan state on σ(H), then
we have that (ψ(ϕ(s))(σ(x)) = ϕ(s)(x) = s(σ(x)). Therefore, ψ is a bijective mapping from RSσ[H] onto
RS[σ(H)] and ψ−1 = ϕ.

4 Relations between state maps on semihoops and states on other
algebras

De�nition 4.1 ([10]). A Bosbach state on a bounded pseudo-hoop (A,⊙,→,↝, 0, 1) is a function s ∶ A →
[0, 1] such that the following conditions hold: for any x, y ∈ A:
(B1) s(x) + s(x → y) = s(y) + s(y → x);
(B2) s(x) + s(x ↝ y) = s(y) + s(y ↝ x);
(B3) s(0) = 0 and s(1) = 1.

Proposition 4.2 ([10]). Let A be a bounded pseudo-hoop and s be a Bosbach state on A. Then for all x, y ∈ A
the following properties hold:
(1) y ≤ x implies s(y) ≤ s(x) and s(x → y) = s(x ↝ y) = 1 − s(x) + s(y);
(2) s(x−) = s(x∼) = 1 − s(x), where x− = x → 0 and x∼ = x ↝ 0.

De�nition 4.3. A state-morphism map on a bounded hoop A is a function m ∶ A → [0, 1] such that:
(SM1) m(0) = 0;
(SM2) m(x → y) = min{1, 1 −m(x) +m(y)}.

Proposition 4.4. Every state-morphism map on a bounded hoop A is a Bosbach state on A.
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Proof. Letm be a state-morphismmaponA. Thenm(1) = m(0−) = m(0→ 0) = min{1, 1−m(0)+m(0) = 1}.
(B3) holds. Consider m(x) + m(x → y) = m(x) + min{1, 1 − m(x) + m(y) = min{1 + m(x), 1 + m(y)} =
m(y) +m(y → x). Hence (B1) is true. Since A is a hoop, (B2) is true, too. Combining the above arguments we
get that m is a Bosbach state on A.

Proposition 4.5. Every state-morphism on a bounded hoop A is a state map from A to the hoop H =
([0, 1],⊙,→, 0, 1) given in Example 3.5.

Proof. Assume m is a state-morphism map on a bounded hoop A. By Propositions 4.2 and 4.4, (SM1) holds.
Now we check (SM2). Let x, y ∈ A. By de�nition of 4.3, we have

m((x → y) → y) → m(y)
= min{1, 1 −m((x → y) → y) +m(y))}
= min{1, 1 − (1 −m(x → y) +m(y)) +m(y))}
= m(x → y).

For (SM3), we have
m(x) ⊙m(x → x ⊙ y)

= 0 ∨ (m(x) +m(x → x ⊙ y) − 1)
= 0 ∨ (m(x) + (1 −m(x) +m(x ⊙ y)) − 1)
= 0 ∨m(x ⊙ y)
= m(x ⊙ y).

For (SM4), we have m(x) ⊙ m(y) = max{0,m(x) + m(y) − 1} = 1 − m(y) + m(x) = min{1, 1 − m(y) +
m(x)} = m(y → x) and hence m(x) ⊙m(y) ∈ m(A). This shows that (SM4) holds.

Note that m(x) → m(y) = min{1, 1 − m(x) + m(y)} = m(x → y). It follows that m(x) → m(y) ∈ m(A),
that is (SM6).

For (SM5), we have m(x) ∧ m(y) = m(x) ⊙ (m(x) → m(y)). From (SM4) and (SM6), we get that (SM5)
holds.

De�nition 4.6 ([30]). A state semihoop is a pair (H, σ) where H is a bounded semihoop and σ ∶ H → H is a
mapping, called state operator, such that for any x, y ∈ H the following conditions are satis�ed:
(1) σ(0) = 0;
(2) x ≤ y implies σ(x) ≤ σ(y);
(3) σ(x → y) = σ(x) → σ(x ∧ y);
(4) σ(x ⊙ y) = σ(x) ⊙ σ(x → x ⊙ y);
(5) σ(σ(x) ⊙ σ(y)) = σ(x) ⊙ σ(y);
(6) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y).

Theorem 4.7. Let H be a bounded semihoop and σ ∶ H → H be a mapping on H preserving → . Then the
following conditions are equivalent:
(1) (H, σ) is an IS-map semihoop;
(2) (H, σ) is a state semihoop.

Proof. (1) ⇒ (2) If H is a bounded semihoop and σ ∶ H → H is a mapping on H preserving→. Then σ(x →
y) = σ(x → x ∧ y) = σ(x) → σ(x ∧ y). From proposition 3.9 and de�nition 4.6, we can obtain that (H, σ) a
state semihoop.

(2) ⇒ (1) Let (H, σ) be a state semihoop and σ preserving→. We only need to prove that (SM2) holds.
Since ((x → y) → y) → y = x → y, so we have σ((x → y) → y) → σ(y) = σ(((x → y) → y) → y) = σ(x → y).
Thus σ is an IS-map on H and hence (H, σ) is an IS-map semihoop.

Inspired by Ciungu’s state BL-algebras [11], He and Xin enlarged the language of residuated lattice by
introducing a new operator, an internal state on residuated lattice in [18].
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De�nition 4.8 ([18]). A state residuated lattice is a pair (A, σ) where A is a residuated lattice and σ ∶ A → A
is a mapping, called state operator, such that for any x, y ∈ A the following conditions are satis�ed:
(1) σ(0) = 0;
(2) x → y = 1 implies σ(x) → σ(y) = 1;
(3) σ(x → y) = σ(x) → σ(x ∧ y);
(4) σ(x ⊙ y) = σ(x) ⊙ σ(x → x ⊙ y);
(5) σ(σ(x) ⊙ σ(y)) = σ(x) ⊙ σ(y);
(6) σ(σ(x) → σ(y)) = σ(x) → σ(y);
(7) σ(σ(x) ∨ σ(y)) = σ(x) ∨ σ(y);
(8) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y).

Let (H;⊙,→, 0, 1) be a bounded ⊔-semihoop. For any x, y ∈ H, we set x⊔ y = ((x → y) → y)∧((y → x) → x).
Then (H,∧,⊔,→,⊙, 0, 1) is a residuated lattice. (see [2, 3])

Theorem 4.9. Let H be a bounded ⊔-semihoop and σ ∶ H → H be a mapping on H preserving → . Then the
following conditions are equivalent:
(1) σ is an IS-map on H;
(2) (H, σ) is a state residuated lattice.

Proof. (1) ⇒ (2) If H is a bounded ⊔-semihoop and σ ∶ H → H is a mapping on H preserving →. Then
σ(x → y) = σ(x → x ∧ y) = σ(x) → σ(x ∧ y). Moreover, by Proposition 3.9(5),(6), we have σ(σ(x) ⊔ σ(y)) =
σ(((σ(x) → σ(y)) → σ(y))∧((σ(y) → σ(x)) → σ(x))) = σ(x)⊔σ(y). Therefore, (H, σ) is a state residuated
lattice.

(2) ⇒ (1) Let (H, σ) be a state residuated lattice and σ preserving→. We only need to prove that (SM2)
holds. Since ((x → y) → y) → y = x → y, so we have σ((x → y) → y) → σ(y) = σ(((x → y) → y) → y) =
σ(x → y). Thus σ is an IS-map on H.

A state operator σ on a BL-algebra L was introduced in Ciungu et al. (2011) as a mapping σ ∶ L → L satisfying
conditions (1) and (3)–(6) in De�nition 4.8. We know that BL-algebras are special cases of residuated lattices
satisfying the conditions of divisibility and prelinearity. Consequently, a BL-algebra satis�es the property:
x ∨ y = ((x → y) → y) ∧ ((y → x) → x) for any x, y ∈ L. Therefore, in the case of BL-algebras, condition
(4) implies the validity of (2) and conditions (5) and (6) imply the validity of (7) and (8). Hence the notion
of a state residuated lattice essentially generalizes that of a state BL-algebra. Moreover, it has been proved
(Ciungu et al. 2011) that a mapping σ ∶ L → L is a state operator on an MV-algebra L (Flaminio and Montagna
2007, 2009) if and only if it is a state operator on L taken as a BL-algebra. From this point of view, the notion
of a state residuated lattice also generalizes that of a state MV-algebra. Based on this, we have the following
results [18].

Corollary 4.10. Let H be a bounded basic hoop and σ ∶ H → H be a mapping on H preserving → . Then the
following conditions are equivalent:
(1) σ is an IS-map on H;
(2) (H, σ) is a state BL-algebra.

Proof. It follows from Proposition 2.8(1) and Theorem 4.9.

Corollary 4.11. Let H be a bounded Wajsberg hoop and σ ∶ H → H be a mapping on H. Then the following
conditions are equivalent:
(1) σ is an IS-map on H preserving→;
(2) (H, σ) is a state MV-algebra.

Proof. It follows from Proposition 2.8(2) and Theorem 4.9.

As we know, every hoop H is a BCK-meet semilattice in which a partial order over H can be de�ned as usual.
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De�nition 4.12 ([5]). A state BCK-meet semilattice is a pair (A, σ) where A is a BCK-meet semilattices and
σ ∶ A → A is a mapping, called state operator, such that for any x, y ∈ A the following conditions are satis�ed:
(1) x → y = 1 implies σ(x) → σ(y) = 1;
(2) σ(x → y) = σ(x → y) → y) → σ(y);
(3) σ(σ(x) → σ(y)) = σ(x) → σ(y);
(4) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y).

Proposition 4.13. Let H be a hoop and σ ∶ H → H be an IS-map on H. Then the {→,∧} subreduct of (H, σ) is
a state BCK-meet semilattice.

Proof. It follows from De�nition 3.1 and De�nition 4.12.

Since the class of equality algebra and the class of BCK-∧-semilattice with meet are categorically equivalent,
then we have the following result.

De�nition 4.14 ([27]). A state equality algebra is a pair (A, σ) where A is an equality algebra and σ ∶ A → A
is a mapping, called state operator, such that for any x, y ∈ A the following conditions are satis�ed:
(1) x ≤ y implies σ(x) ≤ σ(y);
(2) σ(x ∼ x ∧ y) = σ(x ∼ x ∧ y) ∼ y) ∼ σ(y);
(3) σ(σ(x) → σ(y)) = σ(x) → σ(y);
(4) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y).

Proposition 4.15. Let H be a hoop and σ ∶ H → H be an IS-map on H. Then the {∼,∧} subreduction of (H, σ)
is a state equality algebra, where x ∼ y = x → (x ∧ y).

Proof. It follows from De�nition 4.14.

5 State map �lters in semihoops
In this section, we introduce state map �lters of semihoops.

De�nition 5.1. Let H1 and H2 be semihoops, σ ∶ H1 → H2 be a S-map from H1 to H2, F be a �lter of H1. If
σ−1(σ(F)) ⊆ F, we call F to be a SM-�lter of (H1,H2, σ).

Example 5.2. Consider the Example 3.4, one can easily check that the SM-�lter of (H1,H2, σ) are
{a1, b1, c1, 1},{11} and H1.

Example 5.3. Let H1 and H2 be semihoops andσ be a S-map fromH1 to H2. Then Ker(σ) = {x ∈ H1∣σ(x) = 12}
is a SM-�lter of (H1,H2, σ).

Proof. Let K = Ker(σ) and x, y ∈ K. Then σ(x) = 12 and σ(y) = 12. By Proposition 3.6(2) we have σ(x⊙1 y) ≥2

σ(x) ⊙2 σ(y) = 12 ⊙2 12 = 12. This means x ⊙1 y ∈ K. Let x ∈ K and x ≤ y. Then 12 = σ(x) ≤ σ(y) and
hence σ(y) = 12. This shows that y ∈ K. It follows that K is a �lter of H1. Moreover let x ∈ σ−1σ(K). Then
σ(x) ∈ σ(K) = {12} and hence σ(x) = 12. Therefore x ∈ K. This shows that σ−1σ(K) ⊆ K, or K is a SM-�lter of
(H1, σ).

De�nition 5.4. Let H be a semihoop and σ be an IS-map on H.
(1) A �lter F of H is called state �lter of (H, σ) if x ∈ F implies σ(x) ∈ F for all x ∈ H [31],
(2) A �lter F of H is called dual state �lter of (H, σ) if σ(x) ∈ F implies x ∈ F for all x ∈ H,
(3) A �lter F of H is called strong state �lter of (H, σ) if it is both a state �lter and a dual state �lter of (H, σ).
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Proposition 5.5. Let H be a semihoop and σ be an IS-map on H. Then each SM-�lter of H is a state �lter on H.

Proof. Let x ∈ F. Then σ(x) ∈ σ(F). Therefore, σ(σ(x)) ∈ σ(F), that is σ(x) ∈ σ−1(σ(F)) ⊆ F. So σ(x) ∈ F.
However, the converse of Proposition 5.5 is not true in general.

Example 5.6. Let H = {0, a, b, 1} with 0 ≤ a, b ≤ 1. Consider the operation→ and ⊙ as follows:

⊙ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Then H is semihoop. Now, we de�ne σ follows: σ0 = a, σa = a, σb = 1, σ1 = 1. One can easily check that σ is
an IS-map on H. It is clear that {a, 1} is a state �lter of (H, σ), but it is not a SM-�lter of (H, σ).

Proposition 5.7. Let H be a semihoop, σ be an IS-map on H and F ⊆ H. Then the following are equivalent:
(1) F is a SM-�lter of H,
(2) F is a strong state �lter on H.

Proof. (1)⇒(2) Let F be a SM-�lter of (H, σ). By Proposition 5.5 we only need to prove that σ(x) ∈ F implies
x ∈ F. Let σ(x) ∈ F. Then σ(x) = σ(σ(x)) ∈ σ(F). Hence there is t ∈ F such that σ(x) = σ(t). It follows from
(1) that x ∈ σ−1(σ(t)) ⊆ σ−1(σ(F)) ⊆ F. That is x ∈ F.
(2)⇒(1) Assume that F is a strong state �lter on H. For x ∈ σ−1(σ(F)), we have σ(x) ∈ σ(F). Since F is strong
�lter of H, we get x ∈ F and hence σ−1(σ(F)) ⊆ F.

Let H1 and H2 be two semihoops and σ be a S-map from H1 to H2. For any nonempty set X of H1, we denote
by ⟨X⟩σ the SM-�lter of (H1, σ) generated by X, that is, ⟨X⟩σ is the smallest SM-�lter of (H1, σ) containing X.

Let H be be a semihoop and σ be an IS-map on H. For any nonempty set X of H, we denote by ⟨X⟩S (⟨X⟩DS)
the state �lter (the dual state �lter) of (H, σ) generated by X, that is, ⟨X⟩S (⟨X⟩DS) is the smallest state �lter
(the dual state �lter) of (H, σ) containing X.

Denote (X)DS = {x ∈ H ∣ σ(x) ≥ x1 ⊙ σ(x1) ⊙ ⋯ ⊙ xm ⊙ σ(xm), xi ∈ X}. In the following we discuss the
structures of ⟨X⟩S, ⟨X⟩DS and ⟨X⟩σ.

Theorem 5.8. Let H be a semihoop, σ be an IS-map on H and X ⊆ H. Then
(1) ⟨X⟩S = {x ∈ H ∣ x ≥ x1 ⊙ σ(x1) ⊙⋯⊙ xn ⊙ σ(xn), xi ∈ X,m ∈ N},
(2) (X)DS is a dual state �lter of (H, σ) containing X, and hence ⟨X⟩DS ⊆ (X)DS,
(3) ⟨X⟩σ = ⟨X⟩S ∪ (X)DS.

Proof. (1) The proof is similar to that of He et al [30].(Theorem 4.13).
(2) Let x, y ∈ (X)DS. Then σ(x) ≥ x1 ⊙ σ(x1) ⊙ ⋯ ⊙ xn ⊙ σ(xn) for some xi ∈ X, n ∈ N and σ(y) ≥

y1 ⊙ σ(y1) ⊙ ⋯ ⊙ ym ⊙ σ(ym) for some yj ∈ X,m ∈ N. Hence σ(x ⊙ y) ≥ σ(x) ⊙ σ(y) ≥ x1 ⊙ σ(x1) ⊙
⋯ ⊙ xn ⊙ σ(xn) ⊙ y1 ⊙ σ(y1) ⊙ ⋯ ⊙ ym ⊙ σ(ym). So x ⊙ y ∈ (X)DS. Assume x ≤ y and x ∈ (X)DS. Then
σ(y) ≥ σ(x) ≥ x1 ⊙ σ(x1) ⊙ ⋯ ⊙ xn ⊙ σ(xn) for some xi ∈ X. It follows that y ∈ (X)DS. This shows that (X)DS
is a �lter of H. Moreover, let σ(x) ∈ (X)DS. Then σ(σ(x)) ≥ x1 ⊙ σ(x1) ⊙ ⋯⊙ xn ⊙ σ(xn) for some xi ∈ X and
hence σ(x) ≥ x1 ⊙ σ(x1) ⊙ ⋯ ⊙ xn ⊙ σ(xn) for some xi ∈ X. This shows that x ∈ (X)DS and hence (X)DS is a
dual state �lter of (H, σ). Clearly X ⊆ (X)DS.

(3) Denote B = ⟨X⟩S ∪ (X)DS. Let x, y ∈ B. If x, y ∈ ⟨X⟩S, then x ⊙ y ∈ ⟨X⟩S ⊆ B by (1). If x, y ∈ (X)DS, then
x⊙y ∈ (X)DS ⊆ B by (2). Let x ∈ ⟨X⟩S and y ∈ (X)DS. Then σ(x) ∈ ⟨X⟩S since ⟨X⟩S is a state �lter of (H, σ) by (1).
Henceσ(x) ≥ x1⊙σ(x1)⊙⋯⊙xn⊙σ(xn) for some xi ∈ X andσ(y) ≥ y1⊙σ(y1)⊙⋯⊙ym⊙σ(ym) for some yj ∈ X
andhence σ(x⊙y) ≥ σ(x)⊙σ(y) ≥ x1⊙σ(x1)⊙⋯⊙xn⊙σ(xn)⊙y1⊙σ(y1)⊙⋯⊙ym⊙σ(ym) for some xi , yj ∈ X.
It follows that x ⊙ y ∈ (X)DS ⊆ B. Combining the above arguments we get that B is closed on ⊙. It is easy to
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check that if x ∈ B and x ≤ y then y ∈ B. Clearly X ⊆ B. Nowweprove that B is a state �lter. Let x ∈ B. If x ∈ ⟨X⟩S,
then σ(x) ∈ ⟨X⟩S since ⟨X⟩S is a state �lter. If x ∈ (X)DS, then σ(x) ∈ ⟨X⟩S ⊆ B. So B is a state �lter. Moreover
we prove that B is a dual state �lter. Let σ(x) ∈ B. If σ(x) ∈ ⟨X⟩S, then x ∈ (X)DS ⊆ B. Let σ(x) ∈ (X)DS. Then
x ∈ (X)DS since (X)DS is a dual state �lter by (2). This shows that B a dual state �lter. By Proposition 5.7, B a
SM-�lter. Let F be a SM-�lter of (H, σ) containing X and x ∈ B. If x ∈ ⟨X⟩S, then x ≥ x1⊙σ(x1)⊙⋯⊙xn⊙σ(xn)
for xi ∈ X. Since X ⊆ F and F is a SM-�lter of (H, σ), we have x1 ⊙ σ(x1) ⊙ ⋯ ⊙ xn ⊙ σ(xn) ∈ F. So x ∈ F. If
x ∈ (X)DS, then σ(x) ∈ ⟨X⟩S by (1). If σ(x) ≥ x1 ⊙ σ(x1) ⊙ ⋯ ⊙ xn ⊙ σ(xn) for xi ∈ X. Since F is a SM-�lter of
(H, σ) containing X, then x1 ⊙σ(x1)⊙⋯⊙ xn⊙σ(xn) ∈ F and hence σ(x) ∈ F. Note that F is also a dual state
�lter, we have x ∈ F. Combining the above arguments we get B ⊆ F. It follows that B = ⟨X⟩σ.

Proposition 5.9. Let H be a semihoop, σ be an IS-map and F be state �lters of (H, σ) and a ∉ F. Then
(1) ⟨a⟩σ = {x ∈ H ∣ x ≥ (a ⊙ σ(a))n , n ≥ 1} ∪ {x ∈ H ∣ σ(x) ≥ (a ⊙ σ(a))n , n ≥ 1},
(2) ⟨F, {a}⟩σ = {x ∈ H ∣ x ≥ f ⊙ (a ⊙ σ(a))n , f ∈ F, n ≥ 1} ∪ {x ∈ H ∣ σ(x) ≥ f ⊙ (a ⊙ σ(a))n , f ∈ F, n ≥ 1},
(3) if a ≤ b, then ⟨b⟩σ ⊆ ⟨a⟩σ,
(4) ⟨a ⊙ a⟩σ = ⟨a⟩σ,
(5) ⟨σ(a)⟩σ = ⟨a⟩σ,
(6) ⟨a ⊙ σ(a)⟩σ = ⟨a⟩σ,
(7) if H is a ⊔-semihoop, then ⟨a⟩σ ∩ ⟨b⟩σ = ⟨(a ⊙ σ(a)) ⊔ (b ⊙ σ(b))⟩σ .

Proof. The proofs of (1)–(4) are obvious.
(5) Let x ∈ ⟨σ(a)⟩σ. Then x ≥ (σ(a)⊙σ2(a))n = (σ(a))2n ≥ (a⊙σ(a))2n orσ(x) ≥ (a⊙σ(a))2n andhence

x ∈ ⟨a⟩σ. Conversely, let x ∈ ⟨a⟩σ. Then x ≥ (a⊙σ(a))n or σ(x) ≥ (a⊙σ(a))n. Hence σ(x) ≥ (σ(a)⊙σ2(a))n.
It follows that σ(x) ∈ ⟨σ(a)⟩σ. Since ⟨σ(a)⟩σ is a dual state �lter we have x ∈ ⟨σ(a)⟩σ.

(6) Since a ⊙ σ(a) ≤ a we have ⟨a⟩σ ⊆ ⟨a ⊙ σ(a)⟩σ by (3). Conversely, by use of (3), (4) and (5) we have
⟨a ⊙ σ(a)⟩σ = ⟨σ(a ⊙ σ(a))⟩σ ⊆ ⟨σ(a) ⊙ σ2(a)⟩σ = ⟨σ(a) ⊙ σ(a)⟩σ = ⟨σ(a)⟩σ = ⟨a⟩σ.

(7) Suppose that H is a ⊔-semihoop. From a⊙σ(a) ≤ (a⊙σ(a))⊔(b⊙σ(b)), we have that ⟨(a⊙σ(a))⊔
(b ⊙ σ(b))⟩σ ⊆ ⟨a ⊙ σ(a)⟩σ = ⟨a⟩σ. Similarly, we can prove ⟨(a ⊙ σ(a)) ⊔ (b ⊙ σ(b))⟩σ ⊆ ⟨b⟩σ. Thus,
⟨(a⊙σ(a))⊔(b⊙σ(b))⟩σ ⊆ ⟨a⟩σ ∩⟨b⟩σ. Conversely, let x ∈ ⟨a⟩σ ∩⟨b⟩σ. Then there exist n,m, s, t ≥ 1, such
that x ≥ (a ⊙ σ(a))n or σ(x) ≥ (a ⊙ σ(a))m, and x ≥ (b ⊙ σ(b))s or σ(x) ≥ (b ⊙ σ(b))t. To complete the
proof, we divide four cases as following:

(a) Let x ≥ (a ⊙ σ(a))n and x ≥ (b ⊙ σ(b))s. Then x ≥ (a ⊙ σ(a))n ⊔ (b ⊙ σ(b))s ≥ ((a ⊙ σ(a)) ⊔ (b ⊙
σ(b)))ns ≥ (((a ⊙ σ(a)) ⊔ (b ⊙ σ(b))) ⊙ σ((a ⊙ σ(a)) ⊔ (b ⊙ σ(b))))ns by Proposition 2.6(3). We deduce
that x ∈ ⟨(a ⊙ σ(a)) ⊔ (b ⊙ σ(b))⟩σ.

(b) Let σ(x) ≥ (a⊙ σ(a))m and σ(x) ≥ (b⊙ σ(b))t. Similarly to (a) we can get σ(x) ∈ ⟨(a⊙ σ(a)) ⊔ (b⊙
σ(b))⟩σ. Since ⟨(a ⊙ σ(a)) ⊔ (b ⊙ σ(b))⟩σ is a dual state �lter we have x ∈ ⟨(a ⊙ σ(a)) ⊔ (b ⊙ σ(b))⟩σ.

(c) Let x ≥ (a ⊙ σ(a))n and σ(x) ≥ (b ⊙ σ(b))t. Then σ(x) ≥ (σ(a) ⊙ σ(a))n ≥ (a ⊙ σ(a))2n and
σ(x) ≥ (b⊙σ(b))t. Thus σ(x) ≥ (a⊙σ(a))2n ⊔(b⊙σ(b))t ≥ ((a⊙σ(a))⊔ (b⊙σ(b)))2nt ≥ (((a⊙σ(a))⊔
(b ⊙ σ(b))) ⊙ σ((a ⊙ σ(a)) ⊔ (b ⊙ σ(b))))2nt. It follows that σ(x) ∈ ⟨(a ⊙ σ(a)) ⊔ (b ⊙ σ(b))⟩σ. Since
⟨(a ⊙ σ(a)) ⊔ (b ⊙ σ(b))⟩σ is a dual state �lter we have x ∈ ⟨(a ⊙ σ(a)) ⊔ (b ⊙ σ(b))⟩σ.

(d) Let σ(x) ≥ (a ⊙ σ(a))m and x ≥ (b ⊙ σ(b))s. Similarly to the case (c) we can get x ∈ ⟨(a ⊙ σ(a)) ⊔
(b ⊙ σ(b))⟩σ.

Combining the above arguments we can prove ⟨a⟩σ ∩ ⟨b⟩σ ⊆ ⟨(a ⊙ σ(a)) ⊔ (b ⊙ σ(b))⟩σ. Therefore
⟨a⟩σ ∩ ⟨b⟩σ = ⟨(a ⊙ σ(a)) ⊔ (b ⊙ σ(b))⟩σ.

De�nition 5.10. Let H1 and H2 be two semihoops and σ be a S-map from H1 to H2. A proper SM-�lter F of
(H1,H2, σ) is called a prime SM-�lter of (H1,H2, σ), if for all SM-�lters F1, F2 of (H1, σ) such that F1 ∩F2 ⊆ F,
then F1 ⊆ F or F2 ⊆ F.

Let H1 and H2 be two semihoops and σ be a S-map from H1 to H2. We denote by PSMF[H] the set of all prime
SM-�lters of (H1, σ).
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Example 5.11. Consider the Example 3.4, one can check that F = {a1, b1, c1, 11} is a prime SM-�lter of (H1, σ).

Theorem 5.12. Let H be a⊔-semihoop, σ be an IS-map and F be a proper SM-�lter of (H, σ). Then the following
are equivalent:
(1) F is a prime SM-�lter of (H, σ),
(2) if ((x ⊙ σ(x)) ⊔ (y ⊙ σ(y))) ⊙ σ((x ⊙ σ(x)) ⊔ (y ⊙ σ(y))) ∈ F for some x, y ∈ H, then x ∈ F or y ∈ F.

Proof. (1) ⇒ (2) Let ((x ⊙ σ(x)) ⊔ (y ⊙ σ(y))) ⊙ σ((x ⊙ σ(x)) ⊔ (y ⊙ σ(y))) ∈ F for some x, y ∈ H. Then
⟨x⟩σ ∩ ⟨y⟩σ = ⟨(x⊙σ(x)) ⊔ (y⊙σ(y))⟩σ ⊆ F. Since F is a prime SM-�lter of (H, σ), then ⟨x⟩σ ⊆ F or ⟨y⟩σ ⊆ F.
Therefore, x ∈ F or y ∈ F.

(2) ⇒ (1) Suppose that F1, F2 ∈ SMF[L] such that F1 ∩ F2 ⊆ F and F1 ⊈ F and F2 ⊈ F. Then there exist
x ∈ F1 and y ∈ F2 such that x, y ∉ F. Since F1, F2 are SM-�lter of (H, σ), then x⊙ σ(x) ∈ F1 and y⊙ σ(y) ∈ F2.
From x⊙σ(x), y⊙σ(y) ≤ (x⊙σ(x))⊔ (y⊙σ(y)), we obtain (x⊙σ(x))⊔ (y⊙σ(y)) ∈ F1 ∩ F2 ⊆ F and hence
((x⊙ σ(x)) ⊔ (y⊙ σ(y)))⊙ σ((x⊙ σ(x)) ⊔ (y⊙ σ(y))) ∈ F1 ∩ F2 ⊆ F. By (2), we get that x ∈ F or y ∈ F, which
is a contradiction. Therefore, F is a prime SM-�lter of (H, σ).

De�nition 5.13. Let H1 and H2 be two semihoops and σ be a S-map from H1 to H2. A proper SM-�lter of
(H1,H2, σ) is called a maximal SM-�lter if it not strictly contained in any proper SM-�lter of (H1,H2, σ).

Example 5.14. Let H1 and H2 be two semihoops and σ be a S-map from H1 to H2 in Example 3.4. One can easily
check that F = {a1, b1, c1, 11} is a maximal SM-�lter of (H1,H2, σ).

Proposition 5.15. Let H be a bounded ⊔-semihoop, σ be an IS-map and F be a proper SM-�lter of (H, σ). Then
the following are equivalent:
(1) F is a maximal SM-�lter of (H, σ),
(2) for any a ∉ F, there is an integer n ≥ 1 such that (σ(a)n)∗ ∈ F.

Proof. (1) ⇒ (2) Suppose that F is a maximal SM-�lter of (H, σ), and let a ∉ F. Then ⟨F, a⟩σ = H, which
implies 0 ∈ ⟨F, a⟩σ. Then there is f ∈ F and an integer n ≥ 1 such that 0 = f ⊙ (a ⊙ σ(a))n. So we have
0 = σ(0) ≥ σ(f) ⊙ σ(a)2n. Therefore, σ(f) ≥ (σ(a)2n)∗. Thus, (σ(a)2n)∗ ∈ F.

(2) ⇒ (1) Let a satisfy the condition. Since (σ(a)n)∗ ⊙ (a ⊙ σ(a))n ≤ (σ(a)n)∗ ⊙ (σ(a))n = 0 and
(σ(a)n)∗ ∈ F, we obtain 0 ∈ ⟨F, a⟩σ, that is, ⟨F, a⟩σ = H. Therefore, F is a maximal SM-�lter of (H, σ).

Proposition 5.16. Let H1 and H2 be two bounded semihoops and σ be a S-map from H1 to H2.
(1) If F2 is �lter of σ(H1), then σ−1(F2) is a SM-�lter of (H1,H2, σ).
(2) If σ is an IS-map on H and F is a maximal �lter of σH, then σ−1(F) is a maximal SM-�lter of H.

Proof. (1) Suppose that F2 is a �lter of σ(H1). If x, y ∈ σ−1(F2), then σ(x), σ(y) ∈ F2. It follows that σ(x) ⊙
σ(y) ∈ F2. Since σ(x⊙ y) ≥ σ(x)⊙σ(y) and σ(x⊙ y) ∈ σ(H1), we have σ(x⊙ y) ∈ F2, that is, x⊙ y ∈ σ−1(F2).
Let x, y ∈ H1 such that x ∈ σ−1(F2) and x ≤ y. Then σ(x) ≤ σ(y). Since σ(x) ∈ F and σ(y) ∈ σ(H1), we can
obtain that σ(y) ∈ F2, that is, y ∈ σ−1(F2). Thus, σ−1(F2) is a �lter of H1. Note that σ(σ−1(x) = x for any
x ∈ H1. Hence σ−1(σ(σ−1(F)) = σ−1(F). Thus σ−1(F2) is a SM-�lter of H1.
(2) Now, suppose that F is a maximal �lter of σ(H). Let a ∉ σ−1(F), thus σ(a) ∉ F. By the maximality of
F, there is an integer n ≥ 1 such that (σ(a)n)∗ ∈ F ⊆ σ(H). Since σ((σ(a)n)∗) = (σ(a)n)∗ ∈ F, we have
(σ(a)n)∗ ∈ σ−1(F). Therefore, σ−1(F) is a maximal SM-�lter of H.

Proposition 5.17. Let H be a bounded semihoop and σ be an IS-map on H preserving ⊙.
(1) If F is a SM-�lter of (H, σ), then σ(F) is a SM-�lter of (σ(H), σ).
(2) If F is a maximal SM-�lter of (H, σ), then σ(F) is a maximal SM-�lter of (σ(H), σ).

Proof. (1) Let σ(x), σ(y) ∈ σ(F), then x, y ∈ σ−1σ(F) ⊆ F. Since F is a �lter, thus x ⊙ y ∈ F and hence
σ(x) ⊙ σ(y) = σ(x ⊙ y) ∈ σ(F). Let σ(x), σ(y) ∈ σ(H) such that σ(x) ∈ σ(F) and σ(x) ≤ σ(y). Since



1074 | Y.L. Fu et al.

σ(x) ∈ σ(F) we have x ∈ σ−1σ(F) ⊆ F. So x ∈ F. By Proposition 5.7 we have σ(x) ∈ F. Since σ(x) ≤ σ(y)
we get σ(y) ∈ F. Using Proposition 5.7 again we obtain y ∈ F, and so σ(y) ∈ σ(F). Thus, σ(F) is a �lter of
σ(H). Now let x ∈ σ(F). Then x = σ(t) for some t ∈ F and hence σ(x) = σ2(t) = σ(t) = x ∈ σ(F). It follows
that σ(F) is a state �lter of (H, σ). Let x ∈ σ(H) and σ(x) ∈ σ(F). Then x = σ(t) for some t ∈ H. Hence
x = σ(t) = σ2(t) = σ(σ(t)) = σ(x) ∈ σ(F). This means that σ(F) is a dual state �lter of (σ(H), σ). Therefore
σ(H) is a strong state �lter of (σ(H), σ). By Proposition 5.7 we have that σ(F) is a SM-�lter of (σ(H), σ).
(2) Now, let F be maximal and σ(a) ∉ σ(F). Then a ∉ F, and there is an integer n ≥ 1 such that (σ(a)n)∗ ∈ F
and hence σ((σ(a)n)∗) = (σ(a)n)∗ ∈ σ(F). Since σ(σ(a)n) ≥ (σσ(a))n = (σ(a))n, we have (σ(a)n)∗ ≥
σ((σ(a)n)∗). Hence (σ(a)n)∗ ∈ σ(F). Therefore, σ(F) is a maximal SM-�lter of (σ(H), σ).

Corollary 5.18. Let H be a bounded semihoop and σ be an IS-map on H.
(1) If F is a (maximal) �lter of σ(H), then σ−1(F) is a strong state (maximal)�lter of (H, σ).
(2) If σ is preserving ⊙ and F is a strong state (maximal) �lter of (H, σ), then σ(F) is a strong state (maximal)
�lter of (σ(H), σ).

Proof. (1) It follows from Proposition 5.7 and 5.16.
(2) It follows from Proposition 5.7 and 5.17.

Now, we introduce two kinds of semihoops and give some characterizations of them.

De�nition 5.19. Let H be a semihoop and σ ∶ H → H be an IS-map on H. If (H, σ) has exactly one maximal
SM-�lter , we call (H, σ) to be state local.

Theorem 5.20. Let H be a semihoop and σ be an IS-map on H. Then the following are equivalent:
(1) (H, σ) is state local;
(2) σ(H) is local.

Proof. (1) ⇒ (2) Let F be the only maximal SM-�lter of (H, σ). We prove that σ(F) is the only maximal �lter
of σ(H). First, σ(F) is a proper �lter of σ(H). In fact, if σ(F) = σ(H), then 0 ∈ σ(F), which implies 0 ∈ F,
a contradiction. Now, let G be a �lter of σ(H), G ≠ σ(H) and let x ∈ G. It follows from Corollary 5.18(1) that
σ−1(G) is a SM-�lter of (H, σ). Thus σ−1(G) is a proper SM-�lter of (H, σ). Moreover, if σ−1(G) = H, then
0 ∈ σ−1(G), so 0 ∈ G, a contradiction. It follows that σ−1(G) ⊆ F. if x = σ(x) ∈ G, then x ∈ σ−1(G), it follows
that x ∈ F. But x = σ(x), so x ∈ σ(H). ThusG ⊆ σ(F). Hence σ(G) is the onlymaximal �lter of σ(H). Therefore,
σ(H) is local.
(2) ⇒ (1) Suppose that G is the only maximal �lter of σ(H). By Corollary 5.18(1), we have that σ−1(G) is
a maximal SM-�lter of (H, σ). We will prove that σ−1(G) is the only maximal SM-�lter of (H, σ). Let G be a
SM-�lter of (H, σ), F ≠ L. Then σ(F) is a proper �lter of σ(H), so σ(F) ⊆ G. Let x ∈ F then σ(x) ∈ σ(F) ⊆ G.
Thus, x ∈ σ−1(G). It follows that F ⊆ σ−1(G). Therefore, (H, σ) is state local.

De�nition 5.21. Let H a be semihoop and σ ∶ H → H be an IS-map on H. If (H, σ) has two SM-�lters {1} and
H, we call (H, σ) to be simple.

Theorem 5.22. Let H a be semihoop and σ ∶ H → H be an IS-map on H such that σ preserving ⊙ . Then the
following are equivalent:
(1) (H, σ) is simple;
(2) σ(H) is simple and Ker(σ) = {1}.

Proof. (1) ⇒ (2) Let F be a �lter of σ(H) and F ≠ {1}. It follows from Corollary 5.18(1) that σ−1F is a SM-�ter
of (H, σ). Since (H, σ) is state simple, we have that σ−1(F) = {1} or σ−1(F) = H. Notice that F ⊆ σ−1F (if
x ∈ F, then σx = x, that is, x ∈ σ−1F, we obtain that σ−1F ≠ {1}. Thus, σ−1F = H. Then 0 ∈ σ−1F, that is,
0 = σ0 ∈ F. So we obtain that F = σH. Therefore, σH is simple.

By Example 5.3 we have Ker(σ) is a SM-�lter of (H, σ) and Ker(σ) ≠ H. It follows that Ker(σ) = {1}.
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(2) ⇒ (1) Let F be a SM-�lter of (H, σ) and F ≠ {1}. By Corollary 5.18(2), we obtain that σF is a �lter of
σH. Since σH is simple, we obtain that σF = {1} or σF = σx. Since Ker(σ) = {1}, we have F ≠ {1}. Thus,
σF = σx. Then 0 ∈ σF, that is, 0 ∈ F. It follows that F = H. Therefore (H, σ) is state simple.

6 Conclusion
Weobserved that the states and state operators onMV-algebras, BL-algebras andBCK-algebras, aremaps from
an algebra X to [0, 1] and X to X, respectively. From the viewpoint of universal algebras, it is meaningful to
study a statemap fromanalgebraX to anther algebra Y. Indeed, if Y = [0, 1], a state canbe seenas a statemap
from X to [0, 1], and if X = Y, a state operator can also be seen as a state map from X → X. Based on this idea,
we introduce a notion of state maps on semihoops by extending the codomain of a state (or internal state) to
a more general algebraic structure, that is, from a semihoop H1 to an arbitrary semihoop H2. We give a type
of special state map from a semihoop H to H, called internal state map (or IS-map), which is a generalization
of internal states (or state operators) on some types of semihoops. We try to give a uni�ed model of states
and internal states on some important logic algebras. By the arguments in the paper we can see that state
maps on an semihoops are generalization of internal states on BL-algebras, MV-algebras, equality algebras
and BCK-algebras. In the next work, it is worthy to portray some types of logic algebras and corresponding
logics by use of state maps.
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