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Abstract: In this paper, we introduce the notion of state maps from a semihoop H; to another semihoop H>,
which is a generalization of internal states (or state operators) on a semihoop H. Also we give a type of special
state maps from a semihoop H; to Hy, which is called internal state maps (or IS-maps). Then we give some
examples and basic properties of (internal) state maps on semihoops. Moreover, we discuss the relations
between state maps and internal states on other algebras. Then we introduce several kinds of filters by state
maps on semihoops, called SM-filters, state filters and dual state filters, respectively, and discuss the relations
among them. Furthermore we introduce and study the notion of prime SM-filters on semihoops. Finally, using
SM-filter, we characterize two kinds of state semihoops.
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1 Introduction

Residuated structures arise in many areas of mathematics, and are particularly common among algebras
associated with logical systems. The essential ingredients are a partial order <, a binary operation of
associative and commutative multiplication ® that respects the partial order, and a binary (left-)residuation
operation — characterized by x ® y < z if and only if x < y — z. Semihoops [14] are very important
and basic residuated structures in which the community of many-valued logicians got interested in the last
years, as they are building blocks for several interesting structures being the algebraic semantics for relevant
many-valued logics such as basic fuzzy logic (BL, for short). Apart from their logic interest, semihoops
have interesting algebraic properties and include kinds of important classes of algebras: Hoops which were
originally introduced by Bosbach [6, 7] under the name of complementary semigroups and Brouwerian
semilattices-the models of the conjunction-implication fragment of the intuitionistic propositional calculus.
A semihoop is called a hoop if x ® (x - y) = y ® (y = x) and a semihoop does not satisfy the divisibility
condition x A y = x ® (x — y). Therefore, semihoops are the most fundamental fuzzy structures. It will play
an important role in studying fuzzy logics and the related algebraic structures.

In order to measure the average truth-value of propositions in Lukasiewicz logic, Mundici [24] presented
an analogue of probability measure, called a state, as averaging process for formulas in Eukasiewicz logic.
States on MV-algebras have been deeply investigated. Consequently, the notion of states has been extended to
other logical algebras such as BL-algebras [25], MTL-algebras [20, 21], Ro-algebras [22] and residuated lattices
[12, 19, 23, 26].
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Since MV-algebras with state are not universal algebras, they do not automatically induce an assertional
logic. Flaminio and Montagna [15, 16] presented an algebraizable logic using a probabilistic approach, and
its equivalent algebraic semantics is precisely the variety of state MV-algebras. We recall that a state MV-
algebra is an MV-algebra whose language is extended by adding an operator(also called an internal state),
whose properties are inspired by ones of states with the addition property. State MV-algebras generalize,
for example, Hajek’s approach [17] to fuzzy logic with modality Pr (interpreted as probably) which has the
following semantic interpretation: The probability of an event a is presented as the truth value of Pr(a).
On the other hand, if s is a state, then s(a) is interpreted as the average appearance of the many valued
event a. Consequently, the notion of internal states has also been extended to other algebraic structures. For
example, the concept of a state BL-algebra was introduced by Ciungu et al.[11], as an extension of the concept
of a state MV-algebra. Subsequently, the concept of internal states was extended by Dvurecenskij et al.[13] to
R¢-monoids (not necessarily commutative). More generally, the state residuated lattices were introduced by
He and Xin [18].

We observed that the states and internal state on MV-algebras, BL-algebras, BCK-algebras and residuated
lattices are maps from an algebra X to [0, 1] and X to X, respectively. From the viewpoint of universal algebras,
itis meaningful to study a state map from an algebra X to another algebra Y. In particular, if Y = [0, 1], a state
can be seen as a state map from X to [0, 1], and if X = Y, a state operator can also be seen as a state map from
X — X. Based on this idea, we can conclude that a state map is not only a generalization of internal states but
also preserves the usual properties of states. Therefore, it is meaningful to introduce state map to the more
general fuzzy structures semihoops and providing an algebraic foundation for reasoning about probabilities
of fuzzy events in a new way. This is the motivation for us to investigate state maps on semihoop.

This paper is structured in five sections. In order to make the paper as self-contained as possible, we
recapitulate in Section 2 the definition of semihoops, and review their basic properties that will be used in
the remainder of the paper. In Section 3, we introduce the notion of state maps (or simply, S-maps), which
is a generalization of states on semihoops. Also, we give a characterization of two kinds of semihooops. In
Section 4, we discuss the relations between state maps on semihoops and internal states on other algebras,
respectively. In Section 5, we introduce several kinds of filters by state maps on semihoops, called SM-filters,
state filters and dual state filters, respectively, and discuss the relations among them. Using SM-filter, we
characterize two kinds of state semihoops.

2 Preliminaries

In this section, we summarize some definitions and results about semihoop, which will be used in the
following sections of the paper.

Definition 2.1 ([14]). Analgebra (H, ®, —, A, 1) of type (2,2,2,0) is called a semihoop if it satisfies the following
conditions:

(1) (H, A, 1) is a A-semilattice with upper bound 1,

(2) (H, ®, 1) is a commutative monoid,

B)(xey)—>z=x->(y—>2z),foralx,y,zcH.

In what follows, by H we denote the universe of a semihoop (H, ®, >, A, 1). For any x ¢ H and a natural
number n, we define x° = 1and x* = x* '@ xforn > 1.

On a semihoop (H, ®, —, A, 1) we define x < y iff x » y = 1. It is easy to check that < is a partial order
relation on H and for all x € H, x < 1. A semihoop H is bounded if there exists an element O € H such that
0 < x for all x € H. In a bounded semihoop (H, ®, —, A, 0, 1), we define the negation * : x* = x — 0 for all
x e L.If x** = x, for all x € H, then the bounded semihoop H is said to have the Double Negation Property, or
(DNP) for short. We define a relation 1 on Hby x L y iff y** < x*.If x ® x = x, that is, x> = x for all x € H, then
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the semihoop H is said to be idemopent. A semihoop H is called a hoop if x ® (x - y) =y © (y - x) for all
X,y € H. Also, ineveryhoop H, x Ay =x ® (x - y) forall x, y € H, see [14].

Proposition 2.2 ([14, 30]). In any semihoop (H, ®, —, A, 1), the following properties hold: for all x, y, z € H,
Dxoy<ziffx<y -z

Q)XOYy<XAY, X<y —>X,

Bl-x=x,x—>1=1,

Bxo(x-—y)<y,

GB)Ifx<y,theny »z<x—>z,z->x<z->yandx0z<yoz,
6)x<(x=>y) =y,

D ((x=>y)=y)=>y=x-y,
®)x~(y>2) =y~ (x—>2),
@)x-y<(z-ox)=>(z=y),x>y<(y—>2z) > (x~2),
(10)x - (X Ay)=x >,

(ID)xey=x0(x—>x0Y).

Proposition 2.3 ([4, 30]). In a bounded semihoop (H, ®,—, A, 0, 1), the following properties hold: for all
x,y,zeH,

(1)1*=0,0" =1,

(2) x < x**, where x** = (x*)*,

B)xox  =0,x"* =x*,

(4) x <y implies y* < x*,

BG)x—y<y" —>x",

(6) (x> y"" )" =x=y",

MDxoy™ <(xoy)™,

(&) (x""oy)" = (xoy)"

Proposition 2.4 ([14]). Let (H, ®, —, A, 1) be a semihoop and for all x,y € H, we definexuy = ((x -» y) —
y) A ((y = x) = x). Then the following conditions are equivalent:

(1) u is an associative operation on H,

2)x<yimpliesxuz<yuzforallx,y,zecH,

B)xu(yrz)<(xuy)a(xuz)forallx,y,zeH,

(4) u is the join operation on H.

Definition 2.5 ([14]). A semihoop is called a u-semihoop if it satisfies one of the equivalent conditions of
Proposition 2.4.

Proposition 2.6 ([30]). In a u-semihoop, the following properties hold: for all x,y, z € H,
MDxo(yuz)=(xoy)u(xez),

2)xu(yoz)z(xuy)oe(xuz),

B)xuy" > (xuy)tand x™ uy" > (xuy)™ for any natural numbers m, n.

Proof. The proofs are easy, and we hence omit the details. O

Definition 2.7 ([1, 2]). Let (H, -, ®, 1) be a hoop. H is called:

(1) a basic hoopif (x > y) > z< ((y > x) - z) > zforany x,y, z € H.
(2) a Wajsberg hoop (x - y) -y =(y - x) - xforany x,y € H.

(3) a Godel hoop if x ® x = x for any x € H.

Proposition 2.8 ([3]). Let (H, ®, —, 1) be a bounded hoop. Then
(1) bounded basic hoops are definitionally equivalent to BL-algebras.
(2) bounded Wajsberg hoops are definitionally equivalent to MV-algebras.
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Let (H, ®, —, A, 1) be a semihoop. A nonempty set F of H is called a filter of H if it satisfies: (1) x, y € F implies
x@yeF;(2QxeF,yecHandx < yimplyy ¢ F. Afilter F of H is called a proper filter if F # H. A proper filter F
of H is called a maximal filter if it is not contained in any proper filter of H. A nonempty set F of H is a filter
of Hifand onlyif 1 € Fand if x, x —» y € F, then y € F. A propet filter F of a semihoop H is called a prime filter
of H, if for any filters F1, F, of H such that F; n F, ¢ F, then F; ¢ F or F, ¢ F. For more details about filters in
semihoops, see [4].

Definition 2.9 ([4, 28]). Let (H, -, ®, A, 1) be a semihoop. H is called:
(1) a simple semihoop if it has exactly two filters: {1} and H.
(2) alocal semihoop if it has only one maximal filter.

3 State maps on semihoops

In this section, we introduce the notion of state maps on a semihoop and investigate some related properties
of state maps.

Definition 3.1. Let (X, ®1, —>1, A1, 11) and (Y, ®2, —>2, A2, 12) be two semihoops. A map o : X — Y is called
a state map from X to Y, which is denoted simply by S-map, if it is satisfies the following conditions:
(SM1) x <1 y implies o(x) <2 o(¥);
(SM2)o(x »1y) =o((x >1y) >1y) »20(y);
(SM3)o(x©1y) =0(x) @20(x =1 (x©1Y));
(SM4) o(x) @2 0(y) € o(X);
(SM5) 5(x) A2 o(y) € o(X);
(SM6) 5(x) =2 o(y) € o(X).
forallx,y € X.
The pair (X, Y, o) is said to be a S-map semihoop. Moreover, if X = Y and o? = o, then o is called an internal
state map on X, simply IS-map on X, in this case, (H, o) is said to be an IS-map semihoop.

Now, we present some examples for S-maps on semihoops.

Example 3.2. Let Hi and H» be two semihoops. Then the map 1y,, defined by 1x,(x) = 1, forall x € Hy, isa
S-map from H; to H.

Example 3.3. Let H be a semihoop. One can check that idy is a S-map on H.

Example3.4. Let Hy = {01, ai, bl, Ci, 11} and H, = {02, a, bz, Ca, 12}, where 01 <a; < bl, c1 <1y and
0, < ay < by < ¢y £ 1,. Define operations ®; and —; fori = 1, 2 as follows:

1|0 ai b1 e 1, @ |01 a1 b1 ¢ 11 |0 a by & 1
0, [ L, L, 1, 1, 1 0 {00 00 0 0 0,0, [ 1, 1, 1, 1, 1,
a [0 1, 1; 1 1, a |0 a a a aa 0 1, 1, 1, 1,
by |07 ¢ 1; ¢ 1; by |0 a by a1 11 by |02 ¢ 1, 1, 1
¢ |0 by b1 1, 1 €1 |01 a1 a; ¢ 13¢ |0 by by 1, 1
1, |03 a1 b1 ¢ 1 1, |00 a3 b1 ¢ 111 |02 a by 2 1

© |02 a by ¢ 1
0 |02 02 0 0 O
ar 0, a ar as as
bz 0, a ar az bz
c; |02 a a; ¢ ¢
1 |02 a; b2 ¢ 1
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Then (H1,—1,®1, A1, 11) and (Ha, —2, ®2, A2, 12) are semihoops. Now, we define a map o : Hy — H; as
follows:

02: Xzol
o(x)={az, x=ai,b:.

12! X =1Cq, 11
One can check that o is a S-map from H; to H.

Example 3.5. Let H = [0, 1] be the real interval. If for x,y € H, we define x ® y =max{0,x +y — 1} and
x -y =min{1,1 - x + y}, then (H, ®, —, 0, 1) becomes a hoop, and hence it is a semihoop. Now we define
o : Hy — H as follows:

0, X=01;
U(X): %’ X:alybl;
1,

x=c1, 11
where H; is given in Example 3.4. One can easily check that o is a S-map from H; to H.
Next, we present some properties of S-maps on semihoops.

Proposition 3.6. Let H;, i = 1, 2 be semihoops and o be a S-map from H; to H,. Then we have: forany x, y € Hy,
(1) o(11) =1y;

(2 a(x01y) 20(x) ©20(y);

Blo(x =>1y) <2 0(x) »20(y) andifx <1y, theno(x »1y) = o(x) -2 a(y);

(4) o0(H.) is a subalgebra of H;.

PTOOf. (1) Applyil’lg (SMZ), we have 0’(11) = 0'(01 —>1 01) = O’((Ol —>1 01) —>1 01) ) 0(01) = 0(11 —>1
01) »20(01) =0(01) =2 0(01) = 1,.

(2 Fromx @1y < x®1y, we gety <1 x -1 (x ®1 ¥) by Proposition 2.2(1). By (SM1), we have o(y) <2 o(x —>1
(x ®1y)). Applying (SM3), we get o(x ©1 y) = 0(X) ©2 o(x =1 (X ©1Y)) 22 o(x) @2 7 (¥).

(3) By (SM2), wededuce o (x =1 y) = o((x =1y) »1¥) =2 0(y) <2 o(x) =2 o(y) by (5) and (6) of Proposition
2.2.1fx <1 y, then o(x) <, o(y). This means o(x) —2 o(y) = 1. Moreover, o(x -1 y) =o((x >1¥) 1Y) =2
o(y)=o(l1=1y) »20(y) =o(y) »20(y) = 1. Thus o(x >1 y) = o (x) 2 ().

(4) It follows from (SM4), (SM5), (SM6) and (1). O

Definition 3.7. Let H; and H, be two bounded semihoops. A S-map o from H1 to H; is called a regular if it
satisfies (01) = 03.

Note that the S-map o given in Example 3.2 is not regular and the S-map o given in Example 3.4 is regular.
In the following we give some characterizations for a S-map becoming regular.

Theorem 3.8. Let H;, i =1, 2 be two bounded Wajsberg semihoops and o be a S-map from H; to H,. Then the
following are equivalent:

(1) o is regular,

(2) o(x*) = (o(x))** forany x,y € Ha,

(3) x 11 yimplies o(x) 1, o(y) forany x,y € Hy.

Proof. (1)=(2) By (1) and (SM2), we get o(x*!) = o(x =1 01) = o((x =1 01) =1 01) =2 0(01) = o(x) —2
0z = (a(x))™.
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(2=(3) Suppose that x 11 y. Then y™** <; x™, it follows that o(y***) <1 o(x**). By (2) we have
(a(y))*™ <5 (o(x))*. Hence we have o(x) 12 o(y).

(3)=(1) Since 07" = 1", we get 1; 11 01. By (3) we have 0(11) 12 0(01), and so o(01)***? <3 o(11)".
From Proposition 3.6(1), 0(01)**** <, o(11)™ = 15> = 0, and hence 0(01)*?*> = 0,. It follows that
0(01)*2*2*2 = 1,. By Proposition 2.2(7), o(01)*2*?*2 = 5(01)** = 15, that is, 6(01) —2 02 = 15. This shows
that 0(01) <3 03,0 0(01) =0,. O

Proposition 3.9. Let H be a semihoop and o be an IS-map on H. Then we have: for any x,y € H,
1) o(1) = 1;

@o(xoy)20(x)0o(y);

B)o(x—>y)<o(x) > o(y)andifx <y, theno(x > y) =o(x) > o(y);

@) o(o(x)oa(y))=c(x)0a(y);

B)o(a(x) no(y)) =o(x) ra(y);

(6)a(o(x) > o(y)) =c(x) > o(y);

(7) o(H) = Fix(c), where Fix(c) = {x e H| o(x) = x};

(8) o (H) is a subalgebra of H;

(9) Ker(c) is a filter of H, where Ker(o) = {x € Hlo(x) = 1}.

Proof. (1) It follows from Proposition 3.6(1).

(2) It follows from Proposition 3.6(2).

(3) It follows from Proposition 3.6(3).

(4) From (SM4), we have o(x) ® o(y) = o(z) for some z ¢ H. Hence o(c(x) ® o(y)) = 02(2) = o(z) =
o(x) ® o(y) by the definition of the IS-maps.

(5) It is similar to (4).

(6) It is similar to (1).

(7) Let € o(H). Then x = o(z) for some z € H. Hence o(x) = ¢%(2) = ¢(z) = x. So x € Fix(c). Conversely
assume x € Fix(o). Then x = o(x) € o(H). This shows that (7) is true.

(8) It follows from (1), (2), (3) and (4).

(9) It is straightforward. O

Next, we consider properties of IS-map to characterize two kinds of semihoops. The following results and the
next one are proved in [30], where (SM2) replace by (SM2")o(x — y) = o(x) - o(x A y). We can show the
same results without the identity (SM2°).

Theorem 3.10. Let H be a semihoop. Then the following are equivalent:
(1) H is a hoop;
(2) every IS-map o on H satisfies o(x) ® o(x = y) =o(y) @ o(y — x) forall x,y € H.

Proof. The proof is similar to that of He et al [30].(Theorem 4.7 ). O

Theorem 3.11. Let H be a semihoop. Then the following are equivalent:
(1) H is idemopent;
(2) every IS-map o on H satisfies c(x Ay) = a(y) @ o(y) = o(x) @ o(x - y) forall x,y € H.

Proof. The proof is similar to that of He et al [30].(Theorem 4.8 ). O

Here, we give relations between IS-map and Riecan states on semihoops.

Definition 3.12 ([30]). Let H be a bounded semihoop. A RieCan state on H is a founction s : H — [0, 1] such
that the following conditions hold: for all x,y € H,

Ds(1)=1,

(2)ifx1y, thens(x +y) = s(x) +s(y).
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Let H be a semihoop, o be an IS-map on H and s be a Riecan state on H. Then s is called o-compatible if
a(x)=0(y) =s(x)=s(y)forallx,y € H.

We denote by RS[H] and RS,[H] the set of all Riecan states and o-compatible Rie¢an states on H,
respectively.

Theorem 3.13. Let H be a semihoop and o be an IS-map on H. Then there is a one-to-one correspondence
between o-compatible Riecan states on H and RieCan states on o (H).

Proof. (1) Suppose that s is a RieCan state on o(H). Define a mapping ¢ : RS[c(H)] - RS,[H] as follows:
o(s)(x) :=s(o(x)) for all x € H. We will prove that ¢(s) is a RieCan state on H. Clearly, ¢(s)(1) = s(c(1)) =
s(1) = 1. Next, we will show that ¢(s)(x + y) = ¢(s)(x) + »(s)(y) when x 1 y. In order to do this, we prove
that o(x +y) = o(x) + o(y) for x 1 y. Now, suppose that x 1 y. From Theorem 3.8(3), we have o(x) 1 o(y).
Theno(x) +o(¥) = (6(x))* = (o(y))**. Moreover, o (x +y) = o(x*y**) =o(x*) - o(x* Ay*™).Since x 1y,
then y** < x*. It follows that o (x + y) = o(x*) - o(¥y**) = (c(x))* = (c(¥))*" = o(x) + o(¥). Now, we
prove that o(s)(x +y) = ¢(s)(x) + ¢(s)(y) when x L y. Since o(x +y) = o(x) + o(y) for x 1 y, we have that
p(s)(x+y) =s(a(x+y)) = s(a(x) +o(y)) = s(a(x)) +5(c(y)) = #(5)(x) +¢(5)(y). Therefore, ¢(s) is a
Riecan state on H. Moreover, let o(x) = o(y) forall x,y € H, then ¢(s)(x) = s(a(x)) = s(a(y)) = ©(s5)(¥)-
Thus, (s) is a o-compatible state on H. Therefore, the mapping ¢ is well defined.

(2) Assume that s is a o-compatible Riecan state on H. The mapping ¢» : RSs[H] — RS[c(H)] is defined by
P(s)(o(x)) :=s(x) forall x € H. Let o(x) = o(y), then s(x) = s(y) for all x, y € H. Now, we show that ¢(s)
is a RieCan state on o(H). Let o(x) 1L o(y). Then o(o(x) + o(¥)) = o((c(x))* = (a(y))**) = o(c(x*) -
a(y™)) =o(x)" = o(y)" = o(x) + o(y). Based on this, we have that 1 (s)(o(x) + o (y)) = ¥(s)(c(a(x) +
a(¥))) =s(a(x)+o(y)) =s(a(x)) +s(a(y)) = ¥(s)(a(c(x))) +¥(s)(a(c(¥))) = %(s)(a(x)) +¢(s)(o(¥))-
Moreover, 1(s)(c(1)) = s(1) = 1. That means that +(s) is a Rie¢an state on o(H). Therefore, 1) is a mapping
of RS, [H] into RS[o(H)].

(3) Let s1, s2 be o-compatible states on H and ¢(s1) = ¥(s2). Then we have ¢(s1)(c(x)) = ¥(s2)(c(x)),
which implies s1(x) = s2(x) for all x € H. Thus, s; = s2. Now, suppose that s is a Rie¢an state on o(H), then
we have that (v(¢(s))(0(x)) = p(s)(x) = s(o(x)). Therefore, 1 is a bijective mapping from RS, [H] onto
RS[o(H)]and ¢ = ¢. O

4 Relations between state maps on semihoops and states on other
algebras

Definition 4.1 ([10]). A Bosbach state on a bounded pseudo-hoop (A, ®, —,~,0,1) is a function s : A —
[0, 1] such that the following conditions hold: for any x,y € A:

(BD) s(x) +s(x = y) =s(y) +s(y - x);

(B2) s(x) +s(x ~y) =s(y) +s(y ~ x);

(B3)s(0) =0ands(1) = 1.

Proposition 4.2 ([10]). Let A be a bounded pseudo-hoop and s be a Bosbach state on A. Then for all x,y € A
the following properties hold:

(1) y < ximpliess(y) <s(x)ands(x > y) =s(x ~y) =1-5(x) +s(y);
2)s(x")=s(x")=1-5s(x),wherex” =x -> 0andx™ = x ~ 0.

Definition 4.3. A state-morphism map on a bounded hoop A is a functionm : A — [0, 1] such that:
(SM1) m(0) = 0;
(SM2) m(x - y) = min{1,1-m(x) + m(y)}.

Proposition 4.4. Every state-morphism map on a bounded hoop A is a Bosbhach state on A.
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Proof. Let mbe astate-morphism mapon A. Thenm(1) = m(0~) = m(0 — 0) = min{1, 1-m(0)+m(0) = 1}.
(B3) holds. Consider m(x) + m(x — y) = m(x) + min{1,1 - m(x) + m(y) = min{1l + m(x),1 + m(y)} =
m(y) + m(y — x). Hence (B1) is true. Since A is a hoop, (B2) is true, too. Combining the above arguments we
get that m is a Bosbach state on A. O

Proposition 4.5. Every state-morphism on a bounded hoop A is a state map from A to the hoop H =
([0, 1], ®, —, 0, 1) given in Example 3.5.

Proof. Assume m is a state-morphism map on a bounded hoop A. By Propositions 4.2 and 4.4, (SM1) holds.
Now we check (SM2). Let x, y € A. By definition of 4.3, we have
m((x —y) —y)—>m(y)
=min{1,1-m((x > y) —>y)+m(y))}
=min{1,1-(1-m(x—>y)+m(y))+m(y))}
=m(x—>y).
For (SM3), we have
mx)em(x >xoy)
=0v(mx)+m(x—>xoy)-1)
=ov(m(x)+(1-m(x)+m(xoy))-1)
=0vm(xoy)
=m(xoQy).
For (SM4), we have m(x) ® m(y) = max{0, m(x) + m(y) - 1} = 1 —m(y) + m(x) = min{1,1 - m(y) +
m(x)} = m(y — x) and hence m(x) ® m(y) e m(A). This shows that (SM4) holds.
Note that m(x) -» m(y) = min{1,1 - m(x) + m(y)} = m(x — y). It follows that m(x) - m(y) € m(4),
that is (SM6).
For (SM5), we have m(x) A m(y) = m(x) ® (m(x) — m(y)). From (SM4) and (SM6), we get that (SM5)
holds. O

Definition 4.6 ([30]). A state semihoop is a pair (H, o) where H is a bounded semihoop and o : H - His a
mapping, called state operator, such that for any x, y € H the following conditions are satisfied:

(1) 5(0) = 0;

(2) x < yimplies o(x) < o(y);

B)o(x>y) =0(x) > o(xry);

Bo(xoy)=c(x)0c(x>x0Y);

B)o(a(x)@0o(y)) =a(x)©a(y);

(6)a(a(x) Aa(y)) =o(x) no(y).

Theorem 4.7. Let H be a bounded semihoop and o : H — H be a mapping on H preserving — . Then the
following conditions are equivalent:

(1) (H, o) is an IS-map semihoop;

(2) (H, o) is a state semihoop.

Proof. (1) = (2) If H is a bounded semihoop and ¢ : H — H is a mapping on H preserving —. Then o(x —
y) =o(x > xAy) =a(x) - o(x Ay). From proposition 3.9 and definition 4.6, we can obtain that (H, c) a
state semihoop.

(2) = (1) Let (H, o) be a state semihoop and o preserving —. We only need to prove that (SM2) holds.
Since ((x > y) »y) >y =x->y,sowehaveo((x > y) »y) > o(y) =o(((x > y) > y) »y) =a(x >y).
Thus ¢ is an IS-map on H and hence (H, o) is an IS-map semihoop. O

Inspired by Ciungu’s state BL-algebras [11], He and Xin enlarged the language of residuated lattice by
introducing a new operator, an internal state on residuated lattice in [18].
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Definition 4.8 ([18]). A state residuated lattice is a pair (A, o) where A is a residuated lattice and o : A - A
is a mapping, called state operator, such that for any x, y € A the following conditions are satisfied:

(1) a(0) = 0;

(2) x >y = 1implies o(x) - o(y) = 1;

Bo(x—>y)=0(x) > a(xry);

(4)o(x0y)=c(x)0c(x>x0Y);

B)o(o(x)@a(y)) =o(x)@a(y);

(6)o(a(x) > a(y)) =a(x) > a(y);

(M) a(o(x) vo(y)) =o(x)va(y);

(8 a(a(x) na(y)) =o(x) Ano(y).

Let (H; ®, —, 0, 1) be a bounded u-semihoop. Forany x, y € H,weset xuy = ((x > y) > y) A ((y = x) = x).
Then (H, A, U, », ®, 0, 1) is a residuated lattice. (see [2, 3])

Theorem 4.9. Let H be a bounded u-semihoop and o : H — H be a mapping on H preserving — . Then the
following conditions are equivalent:

(1) o is an IS-map on H;

(2) (H, o) is a state residuated lattice.

Proof. (1) = (2) If H is a bounded u-semihoop and ¢ : H — H is a mapping on H preserving —. Then
o(x >y)=0c(x > xny)=oc(x) > o(x Ay). Moreover, by Proposition 3.9(5),(6), we have o(c(x) U (y)) =
a(((e(x) > a(y)) > ac(¥))A((a(y) = 0(x)) = o(x))) = a(x)uo(y). Therefore, (H, o) is a state residuated
lattice.

(2) = (1) Let (H, o) be a state residuated lattice and o preserving —. We only need to prove that (SM2)
holds. Since ((x > y) > y) >y =x > y,sowehaveo((x > y) > y) > o(y) =o(((x >y) »>y) > y) =
o(x - y). Thus o is an IS-map on H. O

A state operator o on a BL-algebra L was introduced in Ciungu et al. (2011) as a mapping o : L — L satisfying
conditions (1) and (3)-(6) in Definition 4.8. We know that BL-algebras are special cases of residuated lattices
satisfying the conditions of divisibility and prelinearity. Consequently, a BL-algebra satisfies the property:
xvy=((x—->y)>y)A((y - x) - x) forany x, y € L. Therefore, in the case of BL-algebras, condition
(4) implies the validity of (2) and conditions (5) and (6) imply the validity of (7) and (8). Hence the notion
of a state residuated lattice essentially generalizes that of a state BL-algebra. Moreover, it has been proved
(Ciungu et al. 2011) that a mapping o : L — L is a state operator on an MV-algebra L (Flaminio and Montagna
2007, 2009) if and only if it is a state operator on L taken as a BL-algebra. From this point of view, the notion
of a state residuated lattice also generalizes that of a state MV-algebra. Based on this, we have the following
results [18].

Corollary 4.10. Let H be a bounded basic hoop and o : H — H be a mapping on H preserving — . Then the
following conditions are equivalent:

(1) o is an IS-map on H;

(2) (H, o) is a state BL-algebra.

Proof. It follows from Proposition 2.8(1) and Theorem 4.9. O

Corollary 4.11. Let H be a bounded Wajsberg hoop and o : H — H be a mapping on H. Then the following
conditions are equivalent:

(1) o is an IS-map on H preserving —;

(2) (H, o) is a state MV-algebra.

Proof. 1t follows from Proposition 2.8(2) and Theorem 4.9. O

As we know, every hoop H is a BCK-meet semilattice in which a partial order over H can be defined as usual.
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Definition 4.12 ([5]). A state BCK-meet semilattice is a pair (A, o) where A is a BCK-meet semilattices and
o : A - Ais a mapping, called state operator, such that for any x, y € A the following conditions are satisfied:
(1) x >y = limplies 0(x) - o(y) = 1;

@o(x—=y)=o(x—>y)—>y)—>a(y);

B)a(o(x) = a(y)) =o(x) > a(y);

(@) o(a(x)na(y)) =a(x) Aa(y).

Proposition 4.13. Let H be a hoop and o : H — H be an IS-map on H. Then the {—, A} subreduct of (H, o) is
a state BCK-meet semilattice.

Proof. It follows from Definition 3.1 and Definition 4.12. O

Since the class of equality algebra and the class of BCK-A-semilattice with meet are categorically equivalent,
then we have the following result.

Definition 4.14 ([27]). A state equality algebra is a pair (A, o) where A is an equality algebraand o : A — A
is a mapping, called state operator, such that for any x, y € A the following conditions are satisfied:

(1) x <y implies o(x) < o(y);

@o(x~xny)=o(x~xny)~y)~a(y);

B)o(a(x) = o(y)) =o(x) > o(y);

@) o(o(x) na(y)) =o(x) ro(y).

Proposition 4.15. Let H be a hoop and o : H — H be an IS-map on H. Then the {~, A} subreduction of (H, o)
is a state equality algebra, where x ~y = x - (X A Y).

Proof. It follows from Definition 4.14. O

5 State map filters in semihoops

In this section, we introduce state map filters of semihoops.

Definition 5.1. Let H; and H, be semihoops, o : Hy — H, be a S-map from H; to H,, F be a filter of Hy. If
o Y(o(F)) c F, we call F to be a SM-filter of (H1, H>, o).

Example 5.2. Consider the Example 3.4, one can easily check that the SM-filter of (H.,H,,o) are
{aly bly C1, 1},{11} andHl.

Example 5.3. Let H; and H, be semihoops and o be a S-map from Hy to H,. Then Ker(o) = {x € H1|o(x) = 15}
is a SM-filter of (H1, Ha, o).

Proof. LetK = Ker(c)and x,y € K. Theno(x) = 1, and o(y) = 1,. By Proposition 3.6(2) we have o (x ®1y) >
o(x) ©20(y) = 1,021, = 1,. Thismeans x ©1 y € K. Let x ¢ Kand x < y. Then 1, = o(x) < o(y) and
hence o(y) = 1,. This shows that y ¢ K. It follows that K is a filter of H;. Moreover let x ¢ ¢ 'o(K). Then
o(x) € o(K) = {1,} and hence o (x) = 1. Therefore x ¢ K. This shows that 0~ *o(K) < K, or K is a SM-filter of
(H1i,0). O

Definition 5.4. Let H be a semihoop and o be an IS-map on H.

(1) A filter F of H is called state filter of (H, o) if x € F implies o(x) € F for all x € H [31],

(2) A filter F of H is called dual state filter of (H, o) if o(x) € F implies x € F for all x € H,

(3) A filter F of H is called strong state filter of (H, o) if it is both a state filter and a dual state filter of (H, o).
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Proposition 5.5. Let H be a semihoop and o be an IS-map on H. Then each SM-filter of H is a state filter on H.

Proof. Letx € F.Then o(x) € o(F). Therefore, o(c(x)) € o(F), thatis o(x) e 6 *(o(F)) c F.Soo(x) e F. [

However, the converse of Proposition 5.5 is not true in general.

Example 5.6. Let H = {0,a, b, 1} withO < a, b < 1. Consider the operation — and ® as follows:

= T 8 Qe
S O O oo
QO O
(S I~ =R~ N S
=T Olm
= o8 ol
S QT =o
Q==
(S S N L
e e |

Then H is semihoop. Now, we define o follows: c0 = a, ca = a, ob = 1, 01 = 1. One can easily check that o is
an IS-map on H. 1t is clear that {a, 1} is a state filter of (H, o), but it is not a SM-filter of (H, o).

Proposition 5.7. Let H be a semihoop, o be an IS-map on H and F c H. Then the following are equivalent:
(1) F is a SM-filter of H,
(2) F is a strong state filter on H.

Proof. (1)=>(2) Let F be a SM-filter of (H, o). By Proposition 5.5 we only need to prove that o(x) € F implies
x € F.Let o(x) € F. Then o(x) = o(o(x)) € o(F). Hence there is t € F such that o(x) = o(t). It follows from
(1) that x e 0~ *(0(t)) € o *(o(F)) € F. That is x ¢ F.

(2)=(1) Assume that F is a strong state filter on H. For x € ¢ ' (¢(F)), we have o (x) ¢ (F). Since F is strong
filter of H, we get x € F and hence o~ ' (¢(F)) ¢ F. O

Let H; and H; be two semihoops and o be a S-map from H; to H,. For any nonempty set X of H;, we denote
by (X), the SM-filter of (H1, o) generated by X, that is, (X), is the smallest SM-filter of (H1, o) containing X.
Let H be be a semihoop and o be an IS-map on H. For any nonempty set X of H, we denote by (X)s ((X)ps)
the state filter (the dual state filter) of (H, o) generated by X, that is, (X)s ({(X)ps) is the smallest state filter
(the dual state filter) of (H, o) containing X.
Denote (X)ps = {x e H| o(x) 2 X1 ® 6(Xx1) ® - ® Xm ® 0(Xm), X; € X}. In the following we discuss the
structures of (X)s, (X)ps and (X).

Theorem 5.8. Let H be a semihoop, o be an IS-map on H and X ¢ H. Then

(D) (X)s={xeH|x2x100(x1)®0xn©0c(xn),x; € X,meN},

(2) (X)ps is a dual state filter of (H, o) containing X, and hence (X)ps < (X)ps,
) (X)o = (X)s U (X)ps.

Proof. (1) The proof is similar to that of He et al [30].(Theorem 4.13).

(2) Let x,y € (X)ps. Then o(x) > x1 ® o(x1) ©® - ® Xn © o(xn) for some x; € X,n € Nand o(y) 2
Y1 ©0(y1) © - © Ym ® o(ym) for some y; € X,m ¢ N. Hence s(x @ y) > o(x) @ o(y) > x1 ® o(x1) ©
- OXn®a(Xn) ©Y100(Y1) @ OYm ®(Ym). S0 x©y € (X)ps. Assume x < y and x € (X)ps. Then
a(y)2o(x)2x100(x1) @ ®xn®oc(xn) for some x; € X. It follows that y € (X)ps. This shows that (X)ps
is a filter of H. Moreovetr, let o(x) € (X)ps. Then o(o(x)) > x1 ® 0(X1) ® -+ ® Xn ® o(xy) for some x; € X and
hence o(x) 2 x1 © 0(x1) ® -+ © Xn ® o(xn) for some x; € X. This shows that x € (X)ps and hence (X)ps is a
dual state filter of (H, o). Clearly X < (X)ps.

(3) Denote B = (X)s U (X)ps. Let x,y € B. If x,y € (X)s, thenx @ y € (X)s < Bby (1). If x, y € (X)ps, then
x®y € (X)ps € Bby(2).Letx € (X)sand y € (X)ps. Then o(x) € (X)s since (X)s is a state filter of (H, o) by (1).
Henceo(x) > x100(x1)®--@xn®0(xn) forsome x; e Xand o(y) > y100(y1)0--0Yym©o(ym) for somey; e X
and hence o (x@y) > o(x)00(y) 2 X100 (X1) @ OXn®c(Xn)OY100(¥1) @ OYm@0o(¥ym) for some x;, y; € X.
It follows that x ® y € (X)ps ¢ B. Combining the above arguments we get that B is closed on @. It is easy to



1072 = Y.L.Fuetal DE GRUYTER

check thatif x e Band x < y theny € B. Clearly X < B. Now we prove that B is a state filter. Let x € B.If x € (X)s,
then o(x) € (X)s since (X)s is a state filter. If x € (X)ps, then o(x) € (X)s < B. So B is a state filter. Moreover
we prove that B is a dual state filter. Let o(x) € B. If o(x) € (X)s, then x € (X)ps € B. Let o(x) € (X)ps. Then
x € (X)ps since (X)ps is a dual state filter by (2). This shows that B a dual state filter. By Proposition 5.7, B a
SM-filter. Let F be a SM-filter of (H, o) containing X and x € B.If x € (X)s, thenx > x1 ©0(Xx1) ®--0xn © 0 (xn)
for x; € X. Since X ¢ F and F is a SM-filter of (H, o), we have x; © 0(x1) ® - ® X, ® 0(xn) € F.Sox € F. If
x € (X)ps, theno(x) € (X)s by (1). If o(x) > x1 ® 0(x1) ©® - © Xn © o(xn) for x; € X. Since F is a SM-filter of
(H, o) containing X, then x1 ® 0(x1) ®---©xn ®a(xn) € F and hence o(x) € F. Note that F is also a dual state
filter, we have x € F. Combining the above arguments we get B c F. It follows that B = (X),-. O

Proposition 5.9. Let H be a semihoop, o be an IS-map and F be state filters of (H, o) and a ¢ F. Then

D (a)e ={xeH|x>(aoo(a)",n>1}u{xeH|o(x)>(aoo(a))",n>1},

@) (F,{a})o={xeH|x>fo(aoo(a))",feF,n>1}u{xeH|o(x)2fo(aoo(a))",feF,n>1},
(B)ifa < b, then (b), € (a)s,

(4){a®a)s =(a)s,

) (o(a))o = (a)o,

(6){aea(a))s =(a)s,

(7) if H is a u-semihoop, then {(a)> N (b)s = ((a® o(a)) u (b ® a(h)))o.

Proof. The proofs of (1)-(4) are obvious.

(5)Letx € (o(a))o.Thenx > (o(a)®c?(a))" = (c(a))*" = (a®o(a))*" oro(x) > (a®c(a))?" and hence
x € (a),. Conversely, let x € (a),.Thenx > (a®c(a))" oro(x) > (a®c(a))". Hence o(x) > (¢(a) @c?(a))".
It follows that o(x) € {(o(a))s. Since (o(a))s is a dual state filter we have x € (c(a))o.

(6) Since a ® o(a) < a we have (a)s ¢ (a ® o(a))s by (3). Conversely, by use of (3), (4) and (5) we have
(ae0(a))s ={o(aca(a)))s c{o(a)®@o?(a))s = (o(a) @a(a))s = (o(a))o = (a)o-

(7) Suppose that H is a L-semihoop. From a oo (a) < (a®@o(a))u(b®a(b)), we have that ((ae®o(a))u
(boo(b)))s € {(aoo(a))s = (a)s. Similarly, we can prove ((a ® o(a)) u (b ® 6(b)))s € (b)s. Thus,
((a@o(a))u(boo(b)))s c{a)sn{b)s.Conversely, let x € (a)s N (b)s. Then there exist n, m, s, t > 1, such
that x > (a @ o(a))" oro(x) > (a®@o(a))™,and x > (b ® o(b))* or o(x) > (b ® o(b))". To complete the
proof, we divide four cases as following:

(@) Letx > (a@o(a))"and x > (b o(b))*. Thenx > (a®o(a))"u(boa(b))’ > ((a®o(a))u(be
aB)))™ 2 (((aea(a))u(bea(b))) @c((aea(a))u(boa(b))))™ by Proposition 2.6(3). We deduce
thatx e ((aoo(a))u(boa(b)))s.

(b) Leto(x) > (a®o(a))" and o(x) > (b ® o(b))". Similarly to (a) we can get o(x) € ((a® o (a))u (b o
a(b)))es. Since ((a®o(a))u (b ©a(b)))s is a dual state filter we have x € ((a© o(a)) u (b © a(b)))s.

(c)Letx > (a®o(a))" and o(x) > (b ® o(b))". Then ¢(x) > (c(a) ® o(a))" > (a ® s(a))*" and
o(x) 2 (boo(b)).Thuso(x) > (aeac(a))u(boo(b)) > ((aco(a))u(boa(h)))*™ > (((aes(a))u
(boo(b)))eo((aea(a))u(bea(b))))*™. It follows that o(x) € ((a ® o(a)) u (b ® o(b))),. Since
((aco(a))u(boa(b)))sisadual state filter we have x € ((a ® o(a)) u (b © a(b)))s-

(d) Leto(x) > (a@o(a))™and x > (b ® o(b))°*. Similarly to the case (c) we can get x € ((a ® o(a)) u

(boo(b)))o.
Combining the above arguments we can prove (a)s N (b)s S ((a ® o(a)) u (b ® o(b)))s. Therefore
(a)o N (b)s = ((@a@a(a))u(boo(b)))s. O

Definition 5.10. Let H; and H, be two semihoops and o be a S-map from H; to H,. A proper SM-filter F of
(H1, H;, o) is called a prime SM-filter of (H1, Ha, o), if for all SM-filters F1, F, of (H1, o) such that F1nF, ¢ F,
thenFicForF, cF.

Let H, and H; be two semihoops and ¢ be a S-map from H; to H,. We denote by PSMF[H] the set of all prime
SM-filters of (H;, o).
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Example 5.11. Consider the Example 3.4, one can check that F = {a1, b1, c1, 11} is a prime SM-filter of (H1, o).

Theorem 5.12. Let H be a L-semihoop, o be an IS-map and F be a proper SM-filter of (H, o). Then the following
are equivalent:

(1) F is a prime SM-filter of (H, o),

Qif(xecx)uyoc(y)))ec((xea(x))u(yoa(y))) € Fforsomex,y c H,thenx e Fory ¢ F.

Proof. (1) = (2) Let (xoa(x))u(yoa(y))) oac((xoa(x))u(y®ao(y))) € F for some x,y € H. Then
(X)oe N (Yo ={(x0a(x))u(y®c(y)))s € F.Since F is a prime SM-filter of (H, o), then (x), € For (y), € F.
Therefore, x e Fory ¢ F.

(2) = (1) Suppose that F1, F, ¢ SMF[L] such that F; n F, € Fand F; ¢ F and F;, ¢ F. Then there exist
x € Fiandy € F, such that x, y ¢ F. Since F1, F, are SM-filter of (H, o), thenx® o(x) e Fiand y ® o(y) € F».
Fromx@o(x),yo00(y) < (x@o(x))u(yoo(y)), weobtain (x®o(x))u(y®ao(y)) € F1 nF, ¢ F and hence
(xeoc(x)u(yoo)))eo((xea(x))u(ye®a(y))) € F1nF, c F. By (2), we get that x € F or y € F, which
is a contradiction. Therefore, F is a prime SM-filter of (H, o). O

Definition 5.13. Let H, and H, be two semihoops and o be a S-map from H, to H,. A proper SM-filter of
(Ha1, H, 0) is called a maximal SM-filter if it not strictly contained in any proper SM-filter of (H1, Ha, o).

Example 5.14. Let H; and H, be two semihoops and o be a S-map from H; to H, in Example 3.4. One can easily
check that F = {a1, b1, ¢1, 11} is a maximal SM-filter of (H1, Ha, o).

Proposition 5.15. Let H be a bounded Li-semihoop, o be an IS-map and F be a proper SM-filter of (H, o). Then
the following are equivalent:

(1) F is a maximal SM-filter of (H, o),

(2) for any a ¢ F, there is an integer n > 1 such that (o(a)")* € F.

Proof. (1) = (2) Suppose that F is a maximal SM-filter of (H, o), and let a ¢ F. Then (F, a), = H, which
implies O € (F, a),. Then there is f € F and an integer n > 1 such that 0 = f ® (a ® o(a))". So we have
0=0(0) > o(f) ® o(a)*. Therefore, o(f) > (¢(a)*")*. Thus, (¢(a)*")* € F.

(2) = (1) Let a satisfy the condition. Since (o(a)")* ® (a @ o(a))" < (c(a)")” ® (¢(a))" = 0 and
(c(a)")* € F, we obtain O € (F, a),, that is, (F, a), = H. Therefore, F is a maximal SM-filter of (H, ). O

Proposition 5.16. Let H; and H, be two bounded semihoops and o be a S-map from H; to H,.
(1) If F, is filter of o (H1), then o~ (F;) is a SM-filter of (Hy, Hy, o).
(2) If o is an IS-map on H and F is a maximal filter of cH, then o~ (F) is a maximal SM-filter of H.

Proof. (1) Suppose that F is a filter of o(H;). If x,y € o !(F3), then o(x), o(y) € F,. It follows that o:(x) ®
o(y) € F2.Since o(x0y) > o(x) ®c(y) and o (x ®y) € o(H; ), we have o (x ®y) € F,, thatis, x 0y € 0 *(F>).
Let x,y € H; such that x € o~ !(F,) and x < y. Then o(x) < o(y). Since o(x) € Fand o(y) € o(H;), we can
obtain that o(y) € F,, thatis, y € o *(F2). Thus, o~ !(F,) is a filter of H;. Note that o(¢~*(x) = x for any
x € Hy. Hence o~ (o(07 (F)) = o~ *(F). Thus o~ *(F) is a SM-filter of H;.

(2) Now, suppose that F is a maximal filter of o(H). Let a ¢ o '(F), thus o(a) ¢ F. By the maximality of
F, there is an integer n > 1 such that (¢(a)")* € F ¢ o(H). Since o((c(a)")*) = (c(a)*)* € F, we have
(o(a)")* € o7 (F). Therefore, 0! (F) is a maximal SM-filter of H. O

Proposition 5.17. Let H be a bounded semihoop and o be an IS-map on H preserving ©.
(1) IfF is a SM-filter of (H, o), then o (F) is a SM-filter of (c(H), o).
(2) If F is a maximal SM-filter of (H, o), then o (F) is a maximal SM-filter of (¢ (H), o).

Proof. (1) Let o(x),o(y) € o(F), then x,y € ¢ *o(F) ¢ F. Since F is a filter, thus x © y € F and hence
o(x)®a(y) = c(x®y) € o(F). Let 0(x),0(y) € o(H) such that o(x) € o(F) and o(x) < o(y). Since
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o(x) € o(F) we have x € o 'o(F) ¢ F. So x ¢ F. By Proposition 5.7 we have o(x) € F. Since o(x) < o(y)
we get o(y) € F. Using Proposition 5.7 again we obtain y € F, and so o(y) € o(F). Thus, o(F) is a filter of
o(H). Now let x € o(F). Then x = o(t) for some ¢ ¢ F and hence o(x) = ¢*(t) = o(t) = x € o(F). It follows
that o(F) is a state filter of (H, o). Let x € o(H) and o(x) € o(F). Then x = o(t) for some t ¢ H. Hence
x =o(t) = o?(t) = o(co(t)) = o(x) € o(F). This means that o(F) is a dual state filter of (¢(H), o). Therefore
o(H) is a strong state filter of (¢ (H), o). By Proposition 5.7 we have that o (F) is a SM-filter of (¢(H), o).

(2) Now, let F be maximal and o(a) ¢ o(F). Then a ¢ F, and there is an integer n > 1 such that (o(a)")* € F
and hence o((c(a)")*) = (o(a)")* € o(F). Since o(a(a)?) > (co(a))" = (o(a))"?, we have (o(a)")” >
a((a(a)")*). Hence (c(a)")* € o(F). Therefore, o(F) is a maximal SM-filter of (¢(H), o). O

Corollary 5.18. Let H be a bounded semihoop and o be an IS-map on H.
(1) If F is a (maximal) filter of o(H), then o~ *(F) is a strong state (maximal)filter of (H, o).
(2) If o is preserving ® and F is a strong state (maximal) filter of (H, o), then o(F) is a strong state (maximal)

filter of (c(H), o).

Proof. (1) It follows from Proposition 5.7 and 5.16.
(2) It follows from Proposition 5.7 and 5.17. O

Now, we introduce two kinds of semihoops and give some characterizations of them.

Definition 5.19. Let H be a semihoop and o : H — H be an IS-map on H. If (H, o) has exactly one maximal
SM-filter , we call (H, o) to be state local.

Theorem 5.20. Let H be a semihoop and o be an IS-map on H. Then the following are equivalent:
(1) (H, o) is state local;
(2) o(H) is local.

Proof. (1) = (2) Let F be the only maximal SM-filter of (H, o). We prove that o(F) is the only maximal filter
of o(H). First, o(F) is a proper filter of o(H). In fact, if o(F) = o(H), then 0 € o(F), which implies O ¢ F,
a contradiction. Now, let G be a filter of o (H), G # o(H) and let x € G. It follows from Corollary 5.18(1) that
o (G) is a SM-filter of (H, o). Thus ¢ *(G) is a proper SM-filter of (H, o). Moreover, if o~ *(G) = H, then
0 € 07'(G), 500 € G, a contradiction. It follows that ¢~ *(G) ¢ F. if x = 0(x) € G, then x € 0~ (G), it follows
thatx € F.Butx = o(x),s0x € o(H).Thus G ¢ o(F).Hence o(G) is the only maximal filter of o (H). Therefore,
o(H) is local.

(2) = (1) Suppose that G is the only maximal filter of o(H). By Corollary 5.18(1), we have that 0~ (G) is
a maximal SM-filter of (H, o). We will prove that o~ (G) is the only maximal SM-filter of (H, o). Let G be a
SM-filter of (H, o), F + L. Then o(F) is a propet filter of o(H), so o(F) € G. Let x € F then o(x) € o(F) ¢ G.
Thus, x € 0~ (G). It follows that F ¢ 0~ (G). Therefore, (H, o) is state local. O

Definition 5.21. Let H a be semihoop and o : H — H be an IS-map on H. If (H, o) has two SM-filters {1} and
H, we call (H, o) to be simple.

Theorem 5.22. Let H a be semihoop and o : H — H be an IS-map on H such that o preserving ® . Then the
following are equivalent:

(1) (H, o) is simple;

(2) o(H) is simple and Ker(o) = {1}.

Proof. (1) = (2) Let Fbe a filter of o(H) and F # {1}. It follows from Corollary 5.18(1) that o ' F is a SM-fiter
of (H, o). Since (H, o) is state simple, we have that o *(F) = {1} or o !(F) = H. Notice that F ¢ ¢ 'F (if
x € F, then ox = x, that is, x € o~ 'F, we obtain that c™*F # {1}. Thus, o 'F = H. Then 0 ¢ ¢ 'F, that is,
0 = 00 € F. So we obtain that F = o H. Therefore, o H is simple.

By Example 5.3 we have Ker () is a SM-filter of (H, o) and Ker(o) # H. It follows that Ker(c) = {1}.
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(2) = (1) Let F be a SM-filter of (H, o) and F # {1}. By Corollary 5.18(2), we obtain that o F is a filter of
oH. Since oH is simple, we obtain that oF = {1} or ¢F = ox. Since Ker(s) = {1}, we have F # {1}. Thus,
oF = ox. Then 0 € oF, that is, O € F. It follows that F = H. Therefore (H, o) is state simple. O

6 Conclusion

We observed that the states and state operators on MV-algebras, BL-algebras and BCK-algebras, are maps from
an algebra X to [0, 1] and X to X, respectively. From the viewpoint of universal algebras, it is meaningful to
study a state map from an algebra X to anther algebra Y. Indeed, if Y = [0, 1], a state can be seen as a state map
from X to [0, 1], and if X = Y, a state operator can also be seen as a state map from X — X. Based on this idea,
we introduce a notion of state maps on semihoops by extending the codomain of a state (or internal state) to
a more general algebraic structure, that is, from a semihoop H; to an arbitrary semihoop H,. We give a type
of special state map from a semihoop H to H, called internal state map (or IS-map), which is a generalization
of internal states (or state operators) on some types of semihoops. We try to give a unified model of states
and internal states on some important logic algebras. By the arguments in the paper we can see that state
maps on an semihoops are generalization of internal states on BL-algebras, MV-algebras, equality algebras
and BCK-algebras. In the next work, it is worthy to portray some types of logic algebras and corresponding
logics by use of state maps.
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