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Abstract: This paper studies the prediction based on a composite target function that allows to simultaneously
predict the actual and the mean values of the unobserved regressand in the generalized linear model. The
best linear unbiased prediction (BLUP) of the target function is derived. Studies show that our BLUP has better
properties than some other predictions. Simulations confirm its better finite sample performance.
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1 Introduction

Generalized linear models have a long history in the statistical literature and have been used to analyze data
from various branches of science on account of both mathematical and practical convenience. Consider the

following generalized linear model:
y X €
- + 1
()~ () () g
where

y is the n-dimensional vector of observed data;

Yo is the m-dimensional vector of unobserved values that is to be predicted;

X and X, are n x p and m x p known matrices of explanatory variables. Let rk(A) denote the rank of matrix
A and suppose rk(X) < p;

B is the p x 1 unknown vector of regression coefficients, and

¢ and ¢ are random errors with zero mean and covariance matrix

Vv
Cov(e,eg) = (V 5 ),
0

where ¥ > 0 and X > O are known positive semi-definite matrices of arbitrary ranks.

The problem of predicting unobserved variables plays an important role in decision making and has
received much attention in recent years. For the prediction of yo in model (1), [1] obtained the best linear
unbiased predictor (BLUP) when ¥ > 0. The Bayes and minimax prediction were obtained by [2] when
random errors were normally distributed. [3] and [4] derived the linear minimax prediction under a modified
quadratic loss function. [5] considered the optimal Stein-rule prediction. [6] reviewed the existing theory of
minimum mean squared error loss predictors and made an extension based on the principle of equivariance.
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[7] investigated the admissibility of linear predictors with inequality constraints under the mean squared error
loss function. Another interested subject of prediction relates to the mean of yo, since [8] figured out that the
best predictor of yy is the conditional mean under the criterion of minimum mean squared error. In model (1),
prediction of the mean value of y, (namely = Xo/3) relates naturally to the plug-in estimators of parameter j3.
[9] proposed the simple projection predictor (SPP) of X/ by plugging in the best linear unbiased estimator
(BLUE) of 3. [10, 11] considered plugging in the prediction of 3 under the balanced loss function. The plug-in
approach spawned a large literature for the derivation of combined prediction, see [12-14].

Generally, predictions are investigated either for yo or for Eyo at a time. However, sometimes in the
fields of medicine and economics, people would like to know the actual value of y, and its mean value Eyq
simultaneously. For example, in the financial markets, some investors may want to know the actual profit
while others would be more interested in the mean profit. Therefore, in order to meet different requirements,
the market manager should acquire both the prediction of the actual profit and the prediction of the mean
profit simultaneously. Let aside investors’ demands and from the point of view of a decision maker, the
market manager needs to determine which prediction should be preferred or provides another comprehensive
combined prediction both of the actual and the mean profit based on empirical data. [15] gave other examples
of practical situations where one is required to predict both the mean and the actual values of a variable.
Under these circumstances, we consider predictions of the following target function

8 =2yo + (1 -X)Eyo, 2

where ) € [0, 1] is a non-stochastic weight scalar representing the preference to the prediction of actual and
the mean value of the studied variable. Note that, 6 = yo if A = 1 and § = Eyy if A = 0, which means predicting
d can achieve the prediction of yo and Ey, simultaneously. If 0 < A < 1, then prediction of ¢ balances the
prediction of actual and the average value of y,. Besides, the unbiased prediction of § is also the unbiased
prediction of y, or Eyo. Therefore, § is more sensitive and inclusive to be studied.

Studies on the prediction of § have been carried out in the literature from various perspective. The proper-
ties of the predictors by plugging in Stein-rule estimators have been concerned by [16—18]. [19] investigated the
Stein-rule prediction for § in linear regression model when the error covariance matrix was positive definite
yet unknown. [20] studied the admissible prediction of §. [21, 22] and [23] considered predictors for § in
linear regression models with stochastic or non-stochastic linear constraints on the regression coefficients.
The issues of simultaneous prediction in measurement error models have been addressed in [24] and [25].
[26] considered a scalar multiple of the classical prediction vector for the prediction of § and discussed the
performance properties.

For model (1), most former work concerned about biased prediction under X > 0 (including the special
case ¥ = I), and did not discuss the value of the weight scalar X in (2). In this paper, supposing ¥ > 0, we
studied the best linear unbiased prediction (BLUP) of § and make some comparisons to the usual BLUPs of
yo and Eyo. We also propose a method to choose the value of X in (2), which can give the way to determine
which prediction of § or yo or Eyo should be provided by finite sample data.

The rest of the paper is organized as follows. In Section 2, we derive the BLUPs of the target function (2) in
the generalized linear model, and discuss the efficiency of our BLUP comparing to the usual BLUP and SPP.
Simulation studies are provided in Section 3 to illustrate the determination of the weight scalar in our BLUP
and the performance of our proposed BLUP comparing to the other two predictors. Concluding remarks are
given in Section 4.

2 The BLUP of 6 and its efficiency

Denote £LH = {Cy | Cisan m x n matrix} as the set of all the homogeneous linear predictor of yo. Denote ,,,,,
as the best linear unbiased predictor of § in model (1). In this section, we first derive the expressions of §,,,,
in £LH, and then study its performance comparing to the BLUP of y, and the SPP of Ey,. All of the predictors
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discussed in this paper are derived under the criterion of minimum mean squared error. Some preliminaries
and basic results are given as follows:

Definition 2.1. The predictor § of § is unbiased if E§ = ES.

Definition 2.2. § is linearly predictable if there exists a linear predictor Cy in LI such that Cy is an unbiased
predictor of d.

Lemma 2.3. In model (1), § is linearly predictable if there exists a matrix C such that CX = Xo, or M(Xp) <
M(X").

Proof. From Definition 2.1 and 2.2, there exists a matrix C such that E(Cy) = E¢ for any 8, namely CX = X, or
X'C’ = X{, which is equivalent to M(Xg) € M(X"). O

If not specified otherwise, the variables we aim to predict in this paper are all linearly predictable.
Lemma 2.4 ([27]). Suppose the n x n matrix X > 0 and let X be an n x p matrix, then

£ X\ (T -T*X(X'T*X) X'T* T*X(X'T*X)"
x o) = X'TX)X'T" (X'TX) " (X'T'X)-(X'T*'X)" )’

where T = X + XX'. Especially, if & > 0, then

X\ (2T -yTXX X)X ST XX 2TX)”
x o) X'z'x)x'st -(X'27'Xx)"

Lemma 2.5. In model (1), the BLUP of yo and the SPP of Ey, are respectively

VOBLUP = XOB+ vT* (y - XE)’ and
VOSPP = XOE’

where T = X + XX  and § = (X'T*X)” X' T"y is the best linear unbiased estimator (BLUE) of (3 in model (1).
If ¥ > 0 and rk(X) = p in model (1), the BLUP of y, and the SPP of Ey, are respectively

N A 1 A
Yopor = XOﬂBLUE + VX (y - XBBLUE)’ and
}A/OSPP = XOBBLUE’

where B,,,, = (X'~ 'X)"* X'~y is the BLUE of j.

Proof. BLUPs of yo in Lemma 2.5 were derived by [1] and [28]. The SPPs of Ey, were derived by [9]. O

The BLUPs and SPPs are presented here for further comparisons.

2.1 The best linear unbiased predictor of §

Theorem 2.6. In model (1), the BLUP of 6 in LH is
SELUP = XOE+ AVTJr(,V - XE)’
where T =X + XX, 3= (X'T*X) " X'T"y.

Proof. Suppose § = Cy € LK and is unbiased, then by Lemma 2.3, CX = X,. Denote R(S; B) as the risk of §
and tr(A) as the trace of squared matrix A, we have

R(5;8) =E[(§ - 6)"(3 - 6)]
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=E[Cy - \yo - (1 = N\)XoB]'[Cy = A\yo — (1 - X\)Xof3]
=E(Cy)'(Cy) + AE(Cy)'(Cyo) — (1~ ME(Cy)'XoB ~ AE(y0)'(Cy) + A*Eyoyo
+A(1 = A)EyoXoB — (1 - ME(XoB) Cy + A(1 - \)E(X0B)'yo + (1 - \)*E(XoB) Xos3
=tr(CXC') + NtrXo — 2Mr(CV') + B'(CX - Xo)' (CX - Xo) 3.
Minimizing R(4; 3) is equivalent to solve the following optimization problem to obtain C such that

argmin [tr(CXC") + MrZo - 2Atr(CV')] = C
CX-Xo=0.

Let A be a p x m Lagrange multiplier and construct the Lagrange function as
L(C, A) = tr(CXC") + MrZo — 2Mtr(CV") + 2tr[ (CX - Xo) A].

Let 0L/0C =0and 0L/oA = 0, we have

Cx-\V+AX =0,
X'c' =X,
namely
rX\(C\ (xV 3)
xXoj\a) \xp )’
and

(5)-(e) (%)

By Lemma 2.4, we obtain C = Xo(X'T*X) " X'T* + \VT* (I - X(X'T*X)"X'T*). Let 3 = (X'T*X) X'T*y, thus
gBLUP:Cy:XOE'F)‘VTJr(y_XE)- O

Corollary 2.7. If ¥ > 0 and rk(X) = p in model (1), then the BLUP of § is

SBLUP = XOBBLUE + )‘VE_I(y - XBBLUE)’

where By, = (X' 27 X)X X7y,

Proof. If ¥ > 0 and rk(X) = p, then X’ ¥~ X is nonsingular. Since

XX X X 1
X 0‘ ] ‘0 _xsmx| T TEIXETXEO,
XX
then (X’ 0) is nonsingular. By Lemma 2.4,

s x\" (T -2TXX X)X T X (X 2T X))
X o) X'z tx)y'x' st —(X'xtx)!

With similar calculations as in the proof of Theorem 2.6, the solution of (3) gives that
C=XoX'2' X)X+ avs ' (I-X(X'27'X) ' X'z,
and therefore &, = XoB,0r + AVE (Y = XByy )- O

Theorem 2.8. For the prediction of (2) in model (1), ES,,,, = EVosr = Yospr = EVo = Xof3.

Proof. By Theorem 2.6, Ed,,,, = E[Xo5 + AVT* (y - X3)] = X0/ = Eyo. From Lemma 2.5, it is easy to prove that
EYOBLUP = Y()spp =Eyo = Xo8. O
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Remark 2.9. According to Definition 2.1 and Theorem 2.8, 6,,,,, Vo,,,» and Vos,, are all unbiased predictors of yo
orEyo.Let A = 1,5,,,, = Vos,,» is the BLUP of yo; Let A = 0, ,,,,,, = Xo/3 is the SPP of Eyo. It shows that the function
(2) can simultaneously predict the actual value of yo and its mean value. Since §,,,, = Xoz,p + (1 = A)V0spps
then b,,,, can be viewed as a tradeoff between the BLUP of yo and the SPP of Eyo. By using 6,,,, in practical
applications, forecasters can provide a more comprehensive predictor by assigning different weights in 5,,,,,.

As for the choice of ), usually the weight scalar should be given before predicting. Since )\ represents the
weight to the prediction of yo and is not a parameter, then there is no “true" but suitable value of it. One
method to select ) is by forecasters’ subjective preferences. For example, if the prediction of yo and Ey, are
treated equally, then A = 0.5. Another method to determine X is by using observed data of (y, X) in model
(1). In this paper we recommend to use the leave-one-out cross-validation technique. In order to determine ),
we take §,,,, as the predictor of yo by Theorem 2.8 since the true 3 in Eyo = X0/ is unknown. Define 5(_]») ()
to be the predictor of y; when the jth case of (y, X) in (1) is deleted. Denote T = {};]0 < X\; < 1,i=1,2,---}.
The predicted residual sum of squares is defined as

V() = Sy - Sy (I

j=1

For each ); € T, compute Y1, [y; - 3(_jy(Ai)]%. The choice of X is the one that minimizes CV()) over T.
Simulations in Section 3 indicate the leave-one-out cross-validation technique for the selection of ) is feasible.
Forecasters can determine which one of §,,,,, ¥o,,,, and Yos,, is more “suitable" to be afforded through the
selection of \ by observed data.

2.2 Efficiency of §

BLUP

According to Theorem 2.8, 5,,,,, Vo,,,» and Vo, are all unbiased predictors of y, or Eyo. From the point of view
of the linearity and unbiasedness of the prediction, we mainly discuss the performance of §,,,, comparing to
Yos0r and Yo, in what follows.

Theorem 2.10. For model (1),
COV((SBLUP) < COV(VOBLUP)’

and the equality holds if and only if (1 - \X*)VT*[I - T*X(X'T*X)" X']T*V' = 0.
Proof. Denote &y = A\VT* (y — X3) as the predictor of £y, we have

Cov (8,55 ) =Cov(Xof + A\%0),
Cov (Vg ) =Cov(Xof +20).
Since ¥ =T - XX and X'[I - T*X(X'T*X)"X'] = 0, then
Cov(Xof, 20) =Xo(X'T*X) X'T*S[I - T"X(X'T*X) X' ]T* V'

=Xo(X'T'X) X' T (T-XX"I-T'X(X'T"X) X'|T"V

=0.
Therefore, Cov($,,,,) — Cov(Yoy,,) = (1 — A*)Cov(gH) < 0, and

CoV(dyu0r) < COV(Fopun )

and the equality holds if and only if (1 - A*)Cov(%o) = (1 - A)VT*[I - T*X(X'T*X) X']T*V' = 0. O

Corollary 2.11. If ¥ > 0 and rk(X) = p in model (1), then
COV(SBLUP) < COV()A/OBLUP ) s
and the equality holds if and only if (1 - NX) VI I - 2 X(X' 7' X)X ]V = 0.
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Proof. Corollary 2.11 is easily proved by Lemma 2.4 and Theorem 2.10. O

Remark 2.12. Theorem 2.10 and Corollary 2.11 show that §,,,, is better than Yo,,,, under the criterion of
covariance.

Theorem 2.13. For model (1), if DT*V'Xo(X'T*X)"X'T* + T*X(X'T*X)"X4VT*D > O, where D = I —
X(X'T*X)"X'T*, then
E(VOSPP - Xoﬂ),(VOSPP - XOB) < E(SBLUP - Xoﬂ),(SBLUP - XOB) < E(VOBLUP - XOB),(VOBLUP - XOﬁ)
Proof. Denote
C1=Xo(X'T"X) X'T" + \VTT[I-X(X'T'X)"'X'T"],
Cr=Xo(X'T"X) X'T" + VI [I - X(X'T"X)"'X'T"],
then Sgwp = C1y and Yo,,,, = C2y. By the unbiasedness, C1X = X and C,X = X,. Therefore,
E(SBLUP - Xoﬂ),(SELUP - Xoﬂ) - E(?OBLUP - XOB),(YOBLUP - XOB)
=(XB3)'(C1C1 - C5C2)XB +tr(C1XCy — C22C5). (4)
Note that D is a symmetric idempotent matrix and
C12Cy =C(T - XX")C;
=Xo(X'T*X)"Xo + NX2VT*DV’ - XoXy,
C25C5 =C(T - XX')C)
=Xo(X'T*X)" X4 + VT* DV’ - XoXy,
then we have
C12C) - C25Cy=—-(1- *)VT'DV' <0, and
tr(C12C} - C22C)) < 0. (5)
Besides,
CiCy - C5C,
=A-1)[ DT V'Xo(X'T*X) X'T" + T"X(X'T*X) " XoVT' D]
+ (M -1)DT'V'VT'D
<A-D[DT V' Xo(X'T*X) X'T" + T"X(X'T*X) X, VT D]
<0. (6)

Substituting (5) and (6) into (4), we have

E(gBLUP _XOB),(SBLUP - Xoﬁ) < E(YOBLUP - Xoﬂ),(?oswp - XOB)

Let A = 0in (2), then ¥y, = Xo/3 = arg mlﬁnj E(Jo - X0B)' (o — XoB) by Theorem 2.6. It is obvious that
Yo€

E(yospp - XO/B),(VOSPP - XO/B) < E(SBLUP _XO/B),(SBLUP - XOB) U

By Lemma 2.4 and Theorem 2.13, we have

Corollary 2.14. In
model (1), if ¥ > 0, 1k(X) = p and DX ' V'Xo (X' 27 X) X' + 7' X(X' 271 X)'X{VE~'D > 0, where
D=1-X(X'27'X)"'X'x7, then

E(yOSPP - XOB),()A/OSPP - XOﬁ) < E(SBLUP - XOB),(SBLUP - Xoﬂ) < E(yOBLUP - XOB),(j/OBLUP - XOB)
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Remark 2.15. Theorem 2.13 and Corollary 2.14 show that §,,,, is better than Vo,,,, under the squared loss
function as the predictor of Eyo.

Theorem 2.16. For model (1),
E(VOBLUP - yO)I(YOBLUP - )/0) < E(SBLUP - yO)I(SBLUP - yO) < E(VOSPP - yO)’(VOSPP - yO)'

Proof. Denote
Ci=Xo(X'T'X) X'T" + \VT'[I-X(X'T*X) X'T"],
Co=Xo(X'T'X) X'T "+ VT [I - X(X'T"X) X'T"],
C; =Xo(X'T'X) X'T",

then b,,,, = C1Y » Yoy = C2y and Yo, = Xof = C3y. By Lemma 2.3, C1X = Xo, C2X = X and C3X = Xo. Since

E(C,‘y - yo),(Ciy - yo) = tl’CiECl{ - 2t1’(CiV,) +trXo,

E(Ciy - y0)'(Ciy = yo) —E(Cjy - y0)"(Cjy - yo)
=tr(C;¥Ci - C;XCj) - 2tr(Ci - C;)V',1<i,j<3, and 0< A <1,

we have
E(C1y - ¥0)'(C1y - yo) —E(C2y - y0) (C2y - yo) = (A - 1)*ttVT* DV’ > 0,
E(C1y - y0)'(C1y - ¥0) —E(C3y - y0)' (C3y = ¥o) = [(A - 1)* = 1]aVT* DV’ <0,
which give that

E(yOBLUP - yO)I(YOBLUP - yo) < E(SBLUP - yO)I(SBLUP - yo) < E(?OSPP - yO)I(VOSPP - )/0)- O
By Lemma 2.4 and Theorem 2.16, we have
Corollary 2.17. Inmodel (1), if ¥ > 0 and rk(X) = p, then

E(yOBLUP - yo)’(yOBLUP - yO) < E(SBLUP - yO)I(SBLUP - yO) < E(yospp - yo)’(j}OSPP - yO)'

Remark 2.18. Theorem2.16 and Corollary 2.17 show that 8, , is better than¥,, under the squared loss function
as the predictor of yo.

3 Simulation studies

In this section, we conduct simulations to illustrate the selection of X in dy,,,, and the finite sample perfor-
mance of our simultaneous prediction comparing to yo,,,, and yog,,-
The data are generated from the following model:

(;/o) i ())((O)m(;), (;0) ~N(0, %), @)

50 2 -+ 2
2 50 2
where ¥ = .5_ o
2 2 -.50

We assume y is the observation with sample size n = 200 and yj is to be predicted with sample size m = 1.
In Section 3.1 we only need the sample data of y to determine ), while in Section 3.2 we use all the sample
data of y and y, for comparison with various ). Elements in corresponding matrices X and X, are generated
from the Uniform distribution [1.1, 30.7].



1044 =— C.Bai,H.Li DE GRUYTER

3.1 Selection of \in d

BLUP

We set 3 to be the one-dimensional parameter with the true value 0.8. The number of simulated realizations
for choosing X is 1000. In each simulation, let A vary from 0 to 1 with step size 0.001. We use the leave-one-out
cross-validation technique (see Section 2.1) to determine ). Let \* be the selected value of )\, then

200

A" =argmin CV(\) =argmin ) [y; - 3_j(/\)]2, 0<A<1.

j=1
Simulations show that the relationship between CV(X) and X is varying. Three of the simulations are
presented to illustrate the relation between X and log CV()) in Figure 1. Subfigure (a) tells that A = 1 and
Vo Should be provided when predicting; (b) tells that A = 0 and o, should be preferred; (c) tells that
A =0.315 and §,,,, should be provided when predicting. The relationship between CV()) and X also tells us
that there are three kinds of A* in our simulations. Table 1 shows that among 1000 simulations, 267 of them
give that \ = 0, 332 of them determine X\ = 1 and 401 of them give that O < X < 1. Simulation performance
shows that the leave-one-out cross-validation technique for the selection of ) is feasible and give the way to
solve the question “ which one of 8,,,,, 705, and Jo,, is preferred from the observations .

Fig. 1. Relationships between X and log[CV(\)] in three simulations (a),(b) and (c) and the corresponding selection of A

(@) (b) (©

=0 1*=0.315

1
>

*
L

1
L

2.228
2.21365

!

22121 22122 22123 22124 22125

o o & & & 8 |
§ B T T T T T T T T T T T T ° T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
A A A
Table 1. Frequency of occurrences of three kinds of A* in 1000 simulations
A*=0 Af=1 0<A*<1
267 332 401
Frequency —— — —_—
1000 1000 1000

3.2 Finite sample performance of the predictors

Letn = 200, m = 1, p = 3 and the true 8 = (1,0.8,0.2)"in (7). A in SELU,, varies on a grid from 0.1 to 0.9. For
each ), the number of simulations is 1000. In each simulation, we make some comparisons about 8,,,,,, 705,
and Jo,,,. Regarding 4,,,, — Y0, Y0500 — Yo and yo,, — Yo, the sample means (sms), the standard deviations
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(stds) and the mean squares (mss) of which are obtained in Table 2. Also, regarding SBLUP = X0, Yogr — X0
and Yo, — X003, the sms, the stds and the mss of which are presented in Table 3.
From Table 2 and Table 3, we make the following observations:

(1) As for the prediction precision, no matter what \ is set to be, the sample means (sms) of these prediction
error of $o,,,m» Oy @and o, are all small. Comparisons of sms can not tell which one of the three
predictors is better, yet the standard deviations (stds) and the mean squares (mss) of 3,,,, — yo are less
than that of yo,, — yo.

(2) No matter what X is set to be, the sample means (sms) of yo,,,, — Xo03, SBLUP - X0 and o, — Xof are
all small. Comparisons of sms can not determine which predictor is better, yet the standard deviations
(stds) and the mean squares (mss) of 3,,,, — Xo/3 are less than that of J,,,, — Xo/3.

The above facts imply that for any X € (0, 1), 8,,,»» V05,5, and Jo,, are all unbiased predictions of yo and Eyo.
6,10 is more efficient than Xof,,,, when predicting the actual value, and is more efficient than yo,,,, when
predicting the mean value. Simulation performances verify the results in Section 2.2.

Table 2. Finite sample performance about forecast precision of yo, ., 05,5 (With different X) and o,

A=0.1 A=0.2 A=03 A=04 A=0.5 A=0.6 A=0.7 A=0.8 A=0.9

Yogiyp~Yo -0.2596 0.1509 -0.1056 0.3124 0.4998 -0.0703 0.1251 0.2432 0.2150

sm by.p-Yo 0.2524 0.1790 -0.0662 0.3314 0.4911 -0.0783 0.1292 0.2358 0.2152
Vogpp=Yo  0.2516 0.1861 -0.0494 0.3341 0.4825 -0.0904 0.1389 0.2060 0.2172

Yogup-Yo 7.2516 7.1930 6.9865 6.8545 6.9253 6.9844 6.8622 6.9193 6.9606
std Syp-ve 7.2758 7.2239 7.0448 6.8462 6.9624 6.9791 6.8682 6.9277 6.9640
Jospp-Yo  7.2843 7.2433 7.0890 6.8656 7.0298 7.0051 6.9230 7.0053 7.0463

Vogryp~¥o 52.601 51.711 48.773 47.035 48.162 48.738 47.058 47.888 48.448

ms é,.,-vo 52.948 52.163 49.584 46.933 48.668 48.665 47.141 48.000 48.496
Vogpp~Yo  53.072 52.447 50.206 47.207 49.601 49.030 47.899 49.068 49.648

4 Conclusion

In this paper, we study the prediction based on a composite target function that allows to simultaneously
predict the actual and the mean values of the unobserved regressand in the generalized linear model. The
BLUP of the target function is derived when the model error covariance is positive semi-definite. The BLUP is
also the unbiased prediction of the actual and the mean values of the the unobserved regressand. We propose
the leave-one-out cross-validation technique to determine the value of the weight scalar in our prediction,
which can help to provide a suitable prediction. For the efficiency of the proposed BLUP, studies show that
it is better than the usual BLUP under the criterion of covariance and dominates it as a prediction of the
mean value of the regressand. Besides, the proposed BLUP is better than the SPP as a prediction of the actual
value of the regressand. Simulation studies illustrate the selection of the weight scalar in the proposed BLUP
and show that it has better finite sample performance. Further researches on simultaneous prediction are in
progress.
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Table 3. Finite sample performance about goodness fit of the model of jo,, ,, stp (with different \) and yog,,

A=01 A=0.2 A=03 A=04 A=05 A=0.6 A=0.7 A=0.8 A=0.9

Yo yp—X0B 0.0249 -0.0190 -0.0742 -0.0077 -0.0256 -0.0257 0.0047 -0.0543 -0.0340

sm &,,.,,-Xo8 0.0177 0.0091 -0.0349 0.0113 -0.0343 -0.0337 0.0089 -0.0618 -0.0338
Yogpp—XoB  0.0169 0.0162 -0.0180 0.0240 -0.0429 0.0457 0.0186 -0.0915 -0.0318

Vopyp~X0B 1.6389 1.6769 1.6415 1.6124 1.6121 1.6640 1.6401 1.5242 1.6445

std 6;,,,-Xo8 1.3389 1.3831 1.3844 1.3774 1.3914 1.5010 1.5048 1.4389 1.5966
Vogpp—X0B8  1.3334 1.3629 1.3626 1.3308 1.3039 1.3983 1.3547 1.2949 1.3700

Sogup-XoB 2.6841 2.8097 2.6974 2.5973 2.5968 2.7668 2.6872 2.3239 2.7028
ms Sy,-Xo8 17910 1.9112 1.9159 1.8955 1.9352 2.2518 2.2621 2.0721 2.5477
Jospp—XoB  1.7765 1.8558 1.8551 1.7697 1.7002 1.9554 1.8336 1.6835 1.8761
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