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Abstract:This paper studies thepredictionbasedona composite target function that allows to simultaneously
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1 Introduction
Generalized linear models have a long history in the statistical literature and have been used to analyze data
from various branches of science on account of both mathematical and practical convenience. Consider the
following generalized linear model:

( y
y0

) = ( X
X0

)β + ( ε
ε0

) (1)

where
y is the n-dimensional vector of observed data;
y0 is the m-dimensional vector of unobserved values that is to be predicted;
X and X0 are n × p and m × p known matrices of explanatory variables. Let rk(A) denote the rank of matrix
A and suppose rk(X) ≤ p;
β is the p × 1 unknown vector of regression coe�cients, and
ε and ε0 are random errors with zero mean and covariance matrix

Cov(ε, ε′0) = (Σ V ′

V Σ0
) ,

whereΣ ≥ 0 andΣ0 ≥ 0 are known positive semi-de�nite matrices of arbitrary ranks.
The problem of predicting unobserved variables plays an important role in decision making and has

received much attention in recent years. For the prediction of y0 in model (1), [1] obtained the best linear
unbiased predictor (BLUP) when Σ > 0. The Bayes and minimax prediction were obtained by [2] when
random errors were normally distributed. [3] and [4] derived the linear minimax prediction under a modi�ed
quadratic loss function. [5] considered the optimal Stein-rule prediction. [6] reviewed the existing theory of
minimummean squared error loss predictors andmade an extension based on the principle of equivariance.
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[7] investigated the admissibility of linear predictorswith inequality constraints under themean squared error
loss function. Another interested subject of prediction relates to the mean of y0, since [8] �gured out that the
best predictor of y0 is the conditional mean under the criterion ofminimummean squared error. Inmodel (1),
prediction of the mean value of y0 (namely = X0β) relates naturally to the plug-in estimators of parameter β.
[9] proposed the simple projection predictor (SPP) of X0β by plugging in the best linear unbiased estimator
(BLUE) of β. [10, 11] considered plugging in the prediction of β under the balanced loss function. The plug-in
approach spawned a large literature for the derivation of combined prediction, see [12–14].

Generally, predictions are investigated either for y0 or for Ey0 at a time. However, sometimes in the
�elds of medicine and economics, people would like to know the actual value of y0 and its mean value Ey0
simultaneously. For example, in the �nancial markets, some investors may want to know the actual pro�t
while others would be more interested in the mean pro�t. Therefore, in order to meet di�erent requirements,
the market manager should acquire both the prediction of the actual pro�t and the prediction of the mean
pro�t simultaneously. Let aside investors’ demands and from the point of view of a decision maker, the
marketmanager needs to determinewhichprediction should bepreferred or provides another comprehensive
combined prediction both of the actual and themean pro�t based on empirical data. [15] gave other examples
of practical situations where one is required to predict both the mean and the actual values of a variable.
Under these circumstances, we consider predictions of the following target function

δ = λy0 + (1 − λ)Ey0, (2)

where λ ∈ [0, 1] is a non-stochastic weight scalar representing the preference to the prediction of actual and
the mean value of the studied variable. Note that, δ = y0 if λ = 1 and δ = Ey0 if λ = 0, which means predicting
δ can achieve the prediction of y0 and Ey0 simultaneously. If 0 < λ < 1, then prediction of δ balances the
prediction of actual and the average value of y0. Besides, the unbiased prediction of δ is also the unbiased
prediction of y0 or Ey0. Therefore, δ is more sensitive and inclusive to be studied.

Studies on the prediction of δ have been carried out in the literature from various perspective. The proper-
ties of thepredictors byplugging in Stein-rule estimators havebeen concernedby [16–18]. [19] investigated the
Stein-rule prediction for δ in linear regression model when the error covariance matrix was positive de�nite
yet unknown. [20] studied the admissible prediction of δ. [21, 22] and [23] considered predictors for δ in
linear regression models with stochastic or non-stochastic linear constraints on the regression coe�cients.
The issues of simultaneous prediction in measurement error models have been addressed in [24] and [25].
[26] considered a scalar multiple of the classical prediction vector for the prediction of δ and discussed the
performance properties.

For model (1), most former work concerned about biased prediction under Σ > 0 (including the special
case Σ = I), and did not discuss the value of the weight scalar λ in (2). In this paper, supposing Σ ≥ 0, we
studied the best linear unbiased prediction (BLUP) of δ and make some comparisons to the usual BLUPs of
y0 and Ey0. We also propose a method to choose the value of λ in (2), which can give the way to determine
which prediction of δ or y0 or Ey0 should be provided by �nite sample data.

The rest of the paper is organized as follows. In Section 2, we derive the BLUPs of the target function (2) in
the generalized linear model, and discuss the e�ciency of our BLUP comparing to the usual BLUP and SPP.
Simulation studies are provided in Section 3 to illustrate the determination of the weight scalar in our BLUP
and the performance of our proposed BLUP comparing to the other two predictors. Concluding remarks are
given in Section 4.

2 The BLUP of δ and its e�ciency
DenoteLH = {Cy ∣ C is anm×n matrix} as the set of all the homogeneous linear predictor of y0. Denote δ̂BLUP
as the best linear unbiased predictor of δ in model (1). In this section, we �rst derive the expressions of δ̂BLUP
in LH, and then study its performance comparing to the BLUP of y0 and the SPP of Ey0. All of the predictors
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discussed in this paper are derived under the criterion of minimum mean squared error. Some preliminaries
and basic results are given as follows:

De�nition 2.1. The predictor δ̂ of δ is unbiased if Eδ̂ = Eδ.

De�nition 2.2. δ is linearly predictable if there exists a linear predictor Cy in LH such that Cy is an unbiased
predictor of d.

Lemma 2.3. In model (1), δ is linearly predictable if there exists a matrix C such that CX = X0, or M(X′0) ⊆
M(X′).

Proof. From De�nition 2.1 and 2.2, there exists a matrix C such that E(Cy) = Eδ for any β, namely CX = X0 or
X′C′ = X′0, which is equivalent toM(X′0) ⊆M(X′).

If not speci�ed otherwise, the variables we aim to predict in this paper are all linearly predictable.

Lemma 2.4 ([27]). Suppose the n × n matrixΣ ≥ 0 and let X be an n × p matrix, then

(Σ X
X′ 0

)
−

= (T
+ − T+X(X′T+X)−X′T+ T+X(X′T+X)−

(X′T+X)−X′T+ (X′T+X)−(X′T+X) − (X′T+X)−) ,

where T = Σ + XX′. Especially, ifΣ > 0, then

(Σ X
X′ 0

)
−

= (Σ
−1 −Σ−1X(X′Σ−1X)−X′Σ−1 Σ−1X(X′Σ−1X)−

(X′Σ−1X)−X′Σ−1 −(X′Σ−1X)− ) .

Lemma 2.5. In model (1), the BLUP of y0 and the SPP of Ey0 are respectively

ỹ0BLUP = X0β̃ + VT+(y − Xβ̃), and
ỹ0SPP = X0β̃,

where T = Σ + XX′ and β̃ = (X′T+X)−X′T+y is the best linear unbiased estimator (BLUE) of β in model (1).
IfΣ > 0 and rk(X) = p in model (1), the BLUP of y0 and the SPP of Ey0 are respectively

ŷ0BLUP = X0β̂BLUE + VΣ
−1(y − Xβ̂BLUE), and

ŷ0SPP = X0β̂BLUE ,

where β̂BLUE = (X′Σ−1X)−1X′Σ−1y is the BLUE of β.

Proof. BLUPs of y0 in Lemma 2.5 were derived by [1] and [28]. The SPPs of Ey0 were derived by [9].

The BLUPs and SPPs are presented here for further comparisons.

2.1 The best linear unbiased predictor of δ

Theorem 2.6. In model (1), the BLUP of δ in LH is

δ̂BLUP = X0β̃ + λVT+(y − Xβ̃),

where T = Σ + XX′, β̃ = (X′T+X)−X′T+y.

Proof. Suppose δ̂ = Cy ∈ LH and is unbiased, then by Lemma 2.3, CX = X0. Denote R(δ̂;β) as the risk of δ̂
and tr(A) as the trace of squared matrix A, we have

R(δ̂;β) =E[(δ̂ − δ)′(δ̂ − δ)]
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=E[Cy − λy0 − (1 − λ)X0β]′[Cy − λy0 − (1 − λ)X0β]
=E(Cy)′(Cy) + λE(Cy)′(Cy0) − (1 − λ)E(Cy)′X0β − λE(y0)′(Cy) + λ2Ey′0y0
+ λ(1 − λ)Ey′0X0β − (1 − λ)E(X0β)′Cy + λ(1 − λ)E(X0β)′y0 + (1 − λ)2E(X0β)′X0β

=tr(CΣC′) + λ2trΣ0 − 2λtr(CV ′) + β′(CX − X0)′(CX − X0)β.

Minimizing R(δ̂;β) is equivalent to solve the following optimization problem to obtain C such that

⎧⎪⎪⎨⎪⎪⎩

argmin [tr(CΣC′) + λtrΣ0 − 2λtr(CV ′)] = C
CX − X0 = 0.

Let Λ be a p ×m Lagrange multiplier and construct the Lagrange function as

L(C,Λ) = tr(CΣC′) + λtrΣ0 − 2λtr(CV ′) + 2tr[(CX − X0)Λ].

Let ∂L/∂C = 0 and ∂L/∂Λ = 0, we have

⎧⎪⎪⎨⎪⎪⎩

CΣ − λV + Λ′X′ = 0,
X′C′ = X′0,

namely

(Σ X
X′ 0

)(C
′

Λ
) = (λV

′

X′0
) , (3)

and

(C
′

Λ
) = (Σ X

X′ 0
)
−

(λV
′

X′0
) .

By Lemma 2.4, we obtain C = X0(X′T+X)−X′T+ + λVT+(I − X(X′T+X)−X′T+). Let β̃ = (X′T+X)−X′T+y, thus
δ̃BLUP = Cy = X0β̃ + λVT+(y − Xβ̃).

Corollary 2.7. IfΣ > 0 and rk(X) = p in model (1), then the BLUP of δ is

δ̂BLUP = X0β̂BLUE + λVΣ
−1(y − Xβ̂BLUE),

where β̂BLUE = (X′Σ−1X)−1X′Σ−1y.

Proof. IfΣ > 0 and rk(X) = p, then X′Σ−1X is nonsingular. Since

∣Σ X
X′ 0

∣ = ∣Σ X
0 −X′Σ−1X

∣ = −∣Σ∣∣X′Σ−1X∣ ≠ 0,

then (Σ X
X′ 0

) is nonsingular. By Lemma 2.4,

(Σ X
X′ 0

)
−1

= (Σ
−1 −Σ−1X(X′Σ−1X)−1X′Σ−1 Σ−1X(X′Σ−1X)−1

(X′Σ−1X)−1X′Σ−1 −(X′Σ−1X)−1 ) .

With similar calculations as in the proof of Theorem 2.6, the solution of (3) gives that

C = X0(X′Σ−1X)−1X′Σ−1 + λVΣ−1(I − X(X′Σ−1X)−1X′Σ−1),

and therefore δ̂BLUP = X0β̂BLUE + λVΣ−1(y − Xβ̂BLUE).

Theorem 2.8. For the prediction of (2) in model (1), Eδ̂BLUP = Eỹ0BLUP = ỹ0SPP = Ey0 = X0β.

Proof. By Theorem 2.6, Eδ̂BLUP = E[X0β̃ +λVT+(y−Xβ̃)] = X0β = Ey0. From Lemma 2.5, it is easy to prove that
Eỹ0BLUP = ỹ0SPP = Ey0 = X0β.
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Remark 2.9. According to De�nition 2.1 and Theorem 2.8, δ̂BLUP , ỹ0BLUP and ỹ0SPP are all unbiased predictors of y0
or Ey0. Letλ = 1, δ̂BLUP = ỹ0BLUP is the BLUP of y0; Letλ = 0, δ̂BLUP = X0β̃ is the SPP of Ey0. It shows that the function
(2) can simultaneously predict the actual value of y0 and its mean value. Since δ̂BLUP = λỹ0BLUP + (1 − λ)ỹ0SPP ,
then δ̂BLUP can be viewed as a tradeo� between the BLUP of y0 and the SPP of Ey0. By using δ̂BLUP in practical
applications, forecasters can provide a more comprehensive predictor by assigning di�erent weights in δ̂BLUP .

As for the choice of λ, usually the weight scalar should be given before predicting. Since λ represents the
weight to the prediction of y0 and is not a parameter, then there is no “true" but suitable value of it. One
method to select λ is by forecasters’ subjective preferences. For example, if the prediction of y0 and Ey0 are
treated equally, then λ = 0.5. Another method to determine λ is by using observed data of (y, X) in model
(1). In this paper we recommend to use the leave-one-out cross-validation technique. In order to determine λ,
we take δ̂BLUP as the predictor of y0 by Theorem 2.8 since the true β in Ey0 = X0β is unknown. De�ne δ̂(−j)(λ)
to be the predictor of yj when the jth case of (y, X) in (1) is deleted. Denote T = {λi ∣0 ≤ λi ≤ 1, i = 1, 2,⋯}.
The predicted residual sum of squares is de�ned as

CV(λ) =
n
∑
j=1

[yj − δ̂(−j)(λ)]2.

For each λi ∈ T, compute ∑n
j=1[yj − δ̂(−j)(λi)]2. The choice of λ is the one that minimizes CV(λ) over T.

Simulations in Section 3 indicate the leave-one-out cross-validation technique for the selection of λ is feasible.
Forecasters can determine which one of δ̂BLUP , ỹ0BLUP and ỹ0SPP is more “suitable" to be a�orded through the
selection of λ by observed data.

2.2 E�ciency of δ̂BLUP

According to Theorem 2.8, δ̂BLUP , ỹ0BLUP and ỹ0SPP are all unbiased predictors of y0 or Ey0. From the point of view
of the linearity and unbiasedness of the prediction, we mainly discuss the performance of δ̂BLUP comparing to
ỹ0BLUP and ỹ0SPP in what follows.

Theorem 2.10. For model (1),
Cov(δ̂BLUP) ≤ Cov(ỹ0BLUP),

and the equality holds if and only if (1 − λ2)VT+[I − T+X(X′T+X)−X′]T+V ′ = 0.

Proof. Denote ε̃0 = λVT+(y − Xβ̃) as the predictor of ε0, we have

Cov(δ̂BLUP) =Cov(X0β̃ + λε̃0),
Cov(ỹ0BLUP) =Cov(X0β̃ + ε̃0).

SinceΣ = T − XX′ and X′[I − T+X(X′T+X)−X′] = 0, then

Cov(X0β̃, ε̃0) =X0(X′T+X)−X′T+Σ[I − T+X(X′T+X)−X′]T+V ′

=X0(X′T+X)−X′T+(T − XX′)[I − T+X(X′T+X)−X′]T+V ′

=0.

Therefore, Cov(δ̂BLUP) − Cov(ỹ0BLUP) = (1 − λ2)Cov(ε̃0) ≤ 0, and

Cov(δ̂BLUP) ≤ Cov(ỹ0BLUP),

and the equality holds if and only if (1 − λ2)Cov(ε̃0) = (1 − λ2)VT+[I − T+X(X′T+X)−X′]T+V ′ = 0.

Corollary 2.11. IfΣ > 0 and rk(X) = p in model (1), then

Cov(δ̂BLUP) ≤ Cov(ŷ0BLUP),

and the equality holds if and only if (1 − λ2)VΣ−1[I −Σ−1X(X′Σ−1X)−1X′]Σ−1V ′ = 0.
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Proof. Corollary 2.11 is easily proved by Lemma 2.4 and Theorem 2.10.

Remark 2.12. Theorem 2.10 and Corollary 2.11 show that δ̂BLUP is better than ỹ0BLUP under the criterion of
covariance.

Theorem 2.13. For model (1), if DT+V ′X0(X′T+X)−X′T+ + T+X(X′T+X)−X′0VT+D ≥ 0, where D = I −
X(X′T+X)−X′T+, then

E(ỹ0SPP − X0β)′(ỹ0SPP − X0β) ≤ E(δ̂BLUP − X0β)′(δ̂BLUP − X0β) ≤ E(ỹ0BLUP − X0β)′(ỹ0BLUP − X0β).

Proof. Denote

C1 = X0(X′T+X)−X′T+ + λVT+[I − X(X′T+X)−1X′T+],
C2 = X0(X′T+X)−X′T+ + VT+[I − X(X′T+X)−1X′T+],

then δ̂BLUP = C1y and ỹ0BLUP = C2y. By the unbiasedness, C1X = X0 and C2X = X0. Therefore,

E(δ̂BLUP − X0β)′(δ̂BLUP − X0β) − E(ỹ0BLUP − X0β)′(ỹ0BLUP − X0β)
=(Xβ)′(C′1C1 − C′2C2)Xβ + tr(C1ΣC′1 − C2ΣC′2). (4)

Note that D is a symmetric idempotent matrix and

C1ΣC′1 =C1(T − XX′)C′1
=X0(X′T+X)−X′0 + λ2VT+DV ′ − X0X′0,

C2ΣC′2 =C2(T − XX′)C′2
=X0(X′T+X)−X′0 + VT+DV ′ − X0X′0,

then we have

C1ΣC′1 − C2ΣC′2 = −(1 − λ2)VT+DV ′ ≤ 0, and
tr(C1ΣC′1 − C2ΣC′2) ≤ 0. (5)

Besides,

C′1C1 − C′2C2
=(λ − 1)[DT+V ′X0(X′T+X)−X′T+ + T+X(X′T+X)−X′0VT+D]
+ (λ2 − 1)DT+V ′VT+D

≤(λ − 1)[DT+V ′X0(X′T+X)−X′T+ + T+X(X′T+X)−X′0VT+D]
≤0. (6)

Substituting (5) and (6) into (4), we have

E(δ̂BLUP − X0β)′(δ̂BLUP − X0β) ≤ E(ỹ0BLUP − X0β)′(ỹ0BLUP − X0β).

Let λ = 0 in (2), then ỹ0SPP = X0β̃ = arg min
ŷ0∈LI

E(ŷ0 − X0β)′(ŷ0 − X0β) by Theorem 2.6. It is obvious that

E(ỹ0SPP − X0β)′(ỹ0SPP − X0β) ≤ E(δ̂BLUP − X0β)′(δ̂BLUP − X0β).

By Lemma 2.4 and Theorem 2.13, we have

Corollary 2.14. In
model (1), if Σ > 0, rk(X) = p and DΣ−1V ′X0(X′Σ−1X)−1X′Σ−1 + Σ−1X(X′Σ−1X)−1X′0VΣ−1D ≥ 0, where
D = I − X(X′Σ−1X)−1X′Σ−1, then

E(ŷ0SPP − X0β)′(ŷ0SPP − X0β) ≤ E(δ̂BLUP − X0β)′(δ̂BLUP − X0β) ≤ E(ŷ0BLUP − X0β)′(ŷ0BLUP − X0β).
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Remark 2.15. Theorem 2.13 and Corollary 2.14 show that δ̂BLUP is better than ỹ0BLUP under the squared loss
function as the predictor of Ey0.

Theorem 2.16. For model (1),

E(ỹ0BLUP − y0)
′(ỹ0BLUP − y0) ≤ E(δ̂BLUP − y0)

′(δ̂BLUP − y0) ≤ E(ỹ0SPP − y0)
′(ỹ0SPP − y0).

Proof. Denote

C1 = X0(X′T+X)−X′T+ + λVT+[I − X(X′T+X)−X′T+],
C2 = X0(X′T+X)−X′T+ + VT+[I − X(X′T+X)−X′T+],
C3 = X0(X′T+X)−X′T+,

then δ̂BLUP = C1y , ỹ0BLUP = C2y and ỹ0SPP = X0β̃ = C3y. By Lemma 2.3, C1X = X0, C2X = X0 and C3X = X0. Since

E(Ciy − y0)′(Ciy − y0) = trCiΣC′i − 2tr(CiV ′) + trΣ0,
E(Ciy − y0)′(Ciy − y0) − E(Cjy − y0)′(Cjy − y0)
=tr(CiΣC′i − CjΣC′j) − 2tr(Ci − Cj)V ′, 1 ≤ i, j ≤ 3, and 0 ≤ λ ≤ 1,

we have

E(C1y − y0)′(C1y − y0) − E(C2y − y0)′(C2y − y0) = (λ − 1)2trVT+DV ′ ≥ 0,
E(C1y − y0)′(C1y − y0) − E(C3y − y0)′(C3y − y0) = [(λ − 1)2 − 1]trVT+DV ′ ≤ 0,

which give that

E(ỹ0BLUP − y0)
′(ỹ0BLUP − y0) ≤ E(δ̂BLUP − y0)

′(δ̂BLUP − y0) ≤ E(ỹ0SPP − y0)
′(ỹ0SPP − y0).

By Lemma 2.4 and Theorem 2.16, we have

Corollary 2.17. In model (1), ifΣ > 0 and rk(X) = p, then

E(ŷ0BLUP − y0)
′(ŷ0BLUP − y0) ≤ E(δ̂BLUP − y0)

′(δ̂BLUP − y0) ≤ E(ŷ0SPP − y0)
′(ŷ0SPP − y0).

Remark 2.18. Theorem2.16andCorollary 2.17 show that δ̂BLUP is better than ỹ0SPP under the squared loss function
as the predictor of y0.

3 Simulation studies
In this section, we conduct simulations to illustrate the selection of λ in δ̂0BLUP and the �nite sample perfor-
mance of our simultaneous prediction comparing to ŷ0BLUP and ŷ0SPP .

The data are generated from the following model:

( y
y0

) = ( X
X0

)β + ( ε
ε0

) , ( ε
ε0

) ∼ N(0,Σ), (7)

where Σ =
⎛
⎜⎜⎜⎜
⎝

50 2 ⋯ 2
2 50 ⋯ 2
⋮ ⋮ ⋱ ⋮
2 2 ⋯ 50

⎞
⎟⎟⎟⎟
⎠
.

We assume y is the observationwith sample size n = 200 and y0 is to be predictedwith sample sizem = 1.
In Section 3.1 we only need the sample data of y to determine λ, while in Section 3.2 we use all the sample
data of y and y0 for comparison with various λ. Elements in corresponding matrices X and X0 are generated
from the Uniform distribution [1.1, 30.7].
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3.1 Selection of λ in δ̂BLUP

We set β to be the one-dimensional parameter with the true value 0.8. The number of simulated realizations
for choosing λ is 1000. In each simulation, let λ vary from 0 to 1 with step size 0.001. We use the leave-one-out
cross-validation technique (see Section 2.1) to determine λ. Let λ∗ be the selected value of λ, then

λ
∗ = argmin CV(λ) = argmin

200
∑
j=1

[yj − δ̂−j(λ)]2, 0 ≤ λ ≤ 1.

Simulations show that the relationship between CV(λ) and λ is varying. Three of the simulations are
presented to illustrate the relation between λ and log CV(λ) in Figure 1. Sub�gure (a) tells that λ = 1 and
ŷ0BLUP should be provided when predicting; (b) tells that λ = 0 and ŷ0SPP should be preferred; (c) tells that
λ = 0.315 and δ̂BLUP should be provided when predicting. The relationship between CV(λ) and λ also tells us
that there are three kinds of λ∗ in our simulations. Table 1 shows that among 1000 simulations, 267 of them
give that λ = 0, 332 of them determine λ = 1 and 401 of them give that 0 < λ < 1. Simulation performance
shows that the leave-one-out cross-validation technique for the selection of λ is feasible and give the way to
solve the question “ which one of δ̂BLUP , ŷ0BLUP and ŷ0SPP is preferred from the observations ”.

Fig. 1. Relationships between λ and log[CV(λ)] in three simulations (a),(b) and (c) and the corresponding selection of λ

Table 1. Frequency of occurrences of three kinds of λ∗ in 1000 simulations

λ∗ = 0 λ∗ = 1 0 < λ∗ < 1

Frequency
267
1000

332
1000

401
1000

3.2 Finite sample performance of the predictors

Let n = 200, m = 1, p = 3 and the true β = (1, 0.8, 0.2)′ in (7). λ in δ̂BLUP varies on a grid from 0.1 to 0.9. For
each λ, the number of simulations is 1000. In each simulation, wemake some comparisons about δ̂BLUP , ŷ0BLUP
and ŷ0SPP . Regarding δ̂BLUP − y0, ŷ0BLUP − y0 and ŷ0SPP − y0, the sample means (sms), the standard deviations
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(stds) and the mean squares (mss) of which are obtained in Table 2. Also, regarding δ̂BLUP − X0β, ŷ0BLUP − X0β

and ŷ0SPP − X0β, the sms, the stds and themss of which are presented in Table 3.
From Table 2 and Table 3, we make the following observations:

(1) As for the prediction precision, no matter what λ is set to be, the sample means (sms) of these prediction
error of ŷ0BLUP , δ̂BLUP and ŷ0SPP are all small. Comparisons of sms can not tell which one of the three
predictors is better, yet the standard deviations (stds) and the mean squares (mss) of δ̂BLUP − y0 are less
than that of ŷ0SPP − y0.

(2) No matter what λ is set to be, the sample means (sms) of ŷ0BLUP − X0β, δ̂BLUP − X0β and ŷ0SPP − X0β are
all small. Comparisons of sms can not determine which predictor is better, yet the standard deviations
(stds) and the mean squares (mss) of δ̂BLUP − X0β are less than that of ŷ0BLUP − X0β.

The above facts imply that for any λ ∈ (0, 1), δ̂BLUP , ŷ0BLUP and ŷ0SPP are all unbiased predictions of y0 and Ey0.
δ̂BLUP is more e�cient than X0β̂BLUE when predicting the actual value, and is more e�cient than ŷ0BLUP when
predicting the mean value. Simulation performances verify the results in Section 2.2.

Table 2. Finite sample performance about forecast precision of ŷ0BLUP , δ̂BLUP (with di�erent λ) and ŷ0SPP

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

sm
ŷ0BLUP −y0 -0.2596 0.1509 -0.1056 0.3124 0.4998 -0.0703 0.1251 0.2432 0.2150
δ̂BLUP −y0 0.2524 0.1790 -0.0662 0.3314 0.4911 -0.0783 0.1292 0.2358 0.2152
ŷ0SPP −y0 0.2516 0.1861 -0.0494 0.3341 0.4825 -0.0904 0.1389 0.2060 0.2172

std
ŷ0BLUP −y0 7.2516 7.1930 6.9865 6.8545 6.9253 6.9844 6.8622 6.9193 6.9606
δ̂BLUP −y0 7.2758 7.2239 7.0448 6.8462 6.9624 6.9791 6.8682 6.9277 6.9640
ŷ0SPP −y0 7.2843 7.2433 7.0890 6.8656 7.0298 7.0051 6.9230 7.0053 7.0463

ms
ŷ0BLUP −y0 52.601 51.711 48.773 47.035 48.162 48.738 47.058 47.888 48.448
δ̂BLUP −y0 52.948 52.163 49.584 46.933 48.668 48.665 47.141 48.000 48.496
ŷ0SPP −y0 53.072 52.447 50.206 47.207 49.601 49.030 47.899 49.068 49.648

4 Conclusion
In this paper, we study the prediction based on a composite target function that allows to simultaneously
predict the actual and the mean values of the unobserved regressand in the generalized linear model. The
BLUP of the target function is derived when the model error covariance is positive semi-de�nite. The BLUP is
also the unbiased prediction of the actual and themean values of the the unobserved regressand.We propose
the leave-one-out cross-validation technique to determine the value of the weight scalar in our prediction,
which can help to provide a suitable prediction. For the e�ciency of the proposed BLUP, studies show that
it is better than the usual BLUP under the criterion of covariance and dominates it as a prediction of the
mean value of the regressand. Besides, the proposed BLUP is better than the SPP as a prediction of the actual
value of the regressand. Simulation studies illustrate the selection of the weight scalar in the proposed BLUP
and show that it has better �nite sample performance. Further researches on simultaneous prediction are in
progress.
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Table 3. Finite sample performance about goodness �t of the model of ŷ0BLUP , δ̂BLUP (with di�erent λ) and ŷ0SPP

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

sm
ŷ0BLUP −X0β 0.0249 -0.0190 -0.0742 -0.0077 -0.0256 -0.0257 0.0047 -0.0543 -0.0340
δ̂BLUP −X0β 0.0177 0.0091 -0.0349 0.0113 -0.0343 -0.0337 0.0089 -0.0618 -0.0338
ŷ0SPP −X0β 0.0169 0.0162 -0.0180 0.0240 -0.0429 0.0457 0.0186 -0.0915 -0.0318

std
ŷ0BLUP −X0β 1.6389 1.6769 1.6415 1.6124 1.6121 1.6640 1.6401 1.5242 1.6445
δ̂BLUP −X0β 1.3389 1.3831 1.3844 1.3774 1.3914 1.5010 1.5048 1.4389 1.5966
ŷ0SPP −X0β 1.3334 1.3629 1.3626 1.3308 1.3039 1.3983 1.3547 1.2949 1.3700

ms
ŷ0BLUP −X0β 2.6841 2.8097 2.6974 2.5973 2.5968 2.7668 2.6872 2.3239 2.7028
δ̂BLUP −X0β 1.7910 1.9112 1.9159 1.8955 1.9352 2.2518 2.2621 2.0721 2.5477
ŷ0SPP −X0β 1.7765 1.8558 1.8551 1.7697 1.7002 1.9554 1.8336 1.6835 1.8761
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