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Abstract: The problem of structures learning in Bayesian networks is to discover a directed acyclic graph
that in some sense is the best representation of the given database. Score-based learning algorithm is one
of the important structure learning methods used to construct the Bayesian networks. These algorithms are
implemented by using some heuristic search strategies to maximize the score of each candidate Bayesian
network. In this paper, a bi-velocity discrete particle swarm optimization with mutation operator algorithm
is proposed to learn Bayesian networks. The mutation strategy in proposed algorithm can e�ciently prevent
premature convergence and enhance the exploration capability of the population. We test the proposed
algorithm on databases sampled from three well-known benchmark networks, and compare with other
algorithms. The experimental results demonstrate the superiority of the proposed algorithm in learning
Bayesian networks.
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1 Introduction
Bayesian networks (BNs) are probabilistic graphical models used for representing the probabilistic relation-
ships among the randomvariables in the domain and doing probabilistic inferencewith these variables. They
have been successfully used for modeling and reasoning, with applications such as pattern recognition [1, 2],
medical diagnosis [3, 4], risk analysis [5, 6], computational biology [7–9], and many others.

The issue of learning BN structures from data is receiving increasing attention. Algorithms for BN
structures learning canbegrouped into two categories. Constraint-based algorithms [10–13] construct a graph
from data by employing conditional independence tests; statistical or information theoretic measures are
used to test conditional independencce between the variables. Local structure learning algorithms, designed
by using the knowledge of the Markov blankets of the variables, can reduce the number of dependence tests
to some extent. However, these algorithms depend on the accuracy of the statistical tests, they may perform
badlywith the insu�cient or noisy data. Score-based learning algorithms [14–16] try to construct a networkby
maximizing the score function of each candidate network using some greedy search or heuristic search algo-
rithms.However, the space of all possible structures increases rapidlywith the increasingnumber of variables
[17], deterministic search method may fail to �nd optimal solution and are often trapped in local optimum.
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On the other hand, approximation or nondeterministic algorithms are often promising to solve the problemof
BN structures learning[18, 19]. To overcome the drawbacks of the score-based algorithms, swarm intelligence
algorithms have been used to learn BN structures [20]. Recently, several swarm intelligence algorithms have
been successfully applied to BN structures learning, such as ant colony optimization algorithm (ACO) [21–
23], arti�cial bee colony algorithm (ABC) [24], bacterial foraging optimization (BFO) [25] and particle swarm
optimization (PSO) [26–29].

Although, these swarm intelligence algorithms have good performance in the problem of BN structures
learning, there may exist some unavoidable drawbacks. For instance, in global optimization problems, the
challenge for PSO is that it may be trapped in the local optimum due to its poor exploration. To enhance
the exploration ability of PSO, many strategies have been proposed, so that it can be widely used in many
research and application areas with its advantages not only in easy implementation and few parameters to
adjust, but also in the ability of quick discovery of optimal solutions. BN structures learning is one of this
cases. The classical PSO is designed for continuous problems. In order to extent its applications, and apply
it in discrete space to learn BNs, several discrete PSOs for discrete optimization have been presented.

To keep the e�ciency of the classical PSO in continuous space, the fast convergence speed and global
search advantages, the bi-velocity discrete PSO was proposed and applied in the steiner tree problem in
graphs and the multicast routing problem in communication networks [30, 31]. Since a BN structure is
represented as a connectivity matrix, in which each element is 0 or 1, and the particle corresponding to the
BN structure can be represented by a binary string. Thus, we adopt the velocity and position updating rules
similar to that proposed in [30, 31]. However, in PSO each particle moves toward its past best position and the
global best position found so far, the exploitation ability is enhanced, but the number of nonzero elements
of the velocity tends to zero with the increasing iterations. In this case, if the current global best position
is not the global optimum, the particles in the swarm may be trapped in the local optima. To prevent the
algorithm frombeing trapped in a local optimumand enhance the exploration capability, amutation strategy
is introduced to conductmutation on each new particle. In this paper, an e�cient bi-velocity discrete particle
swarm optimization with mutation operator algorithm is designed to solve the problem of BN structures
learning (BVD-MPSO-BN).

2 Bayesian networks and k2metric
Bayesian networks are knowledge representation tools capable of representing independence and depen-
dence relationships among variables. A Bayesian network, on one hand, is a directed acyclic graph (DAG)
G = (X, E), where X = {X1, X2,⋯, Xn} the set of nodes, represents the random variables in a special domain.
E is the set of edges, each edge represents the directed in�uence of one node on another. On the other hand, a
Bayesian network uniquely encodes a joint probability distribution over the random variables. It decomposes
according to the structure as

P(X1, X2,⋯, Xn) =
n
∏
i=1

P(Xi ∣Pa(Xi)), (1)

where Pa(Xi) is the set of the parents of node Xi in G.
When performing the score-and-searching approach for learning BNs from data, a score metric must be

speci�ed. So far many score criteria for evaluating the learned networks have been proposed. One of the
most well-known score criterion in learning BN structures has been given by Cooper and Herskovits (1992).
The score function for a given structure G and training databaseD is

P(G,D) = P(G)
n
∏
i=1

qi
∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri
∏
k=1

Nijk!, (2)

where n is the number of variables, each variable Xi has ri possible values, qi is the number of parent
con�gurations of variable Xi, Nijk is the number of cases in D, where Xi takes on value k with parent
con�guration j and Nij = ∑ri

k=1 Nijk.
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By using the logarithm of the above function and assuming a uniform prior for P(G), the decomposable
k2 metric can be expressed as

f(G,D) = log(P(G,D)) =
n
∑
i=1

f(Xi , Pa(Xi)), (3)

where f(Xi , Pa(Xi)) is the k2 score of node Xi and de�ned as

f(Xi , Pa(Xi)) =
qi
∑
j=1

(log( (r1 − 1)!
(Nij+ri−1)!

) +
ri
∑
k=1

log(Nijk!)). (4)

3 Particle swarm optimization
Particle swarm optimization is a population based stochastic optimization technique, each particle in PSO
is a potential solution, the position of a particle is represented as Xi = (xi1, xi2,⋯, xiD), i = 1, 2,⋯, N, in
which D is the dimension of the search space, N is the number of particles. Each particle has a velocity
Vi = (vi1, vi2,⋯, viD). When a particle updates its position, it records its past best position pbesti =
(pbesti1, pbesti2,⋯, pbestiD) and the global best position gbest = (gbest1, gbest2,⋯, gbestD) found by
any particle in the population. In the standard PSO, the new velocity is calculated according to its previous
velocity, the distances of the current position from both its past best position and the global best position.
After a particle updates its velocity via Eq.(5), it �ies toward a new position according to Eq.(6). Each particle
compares its current �tness valuewith its ownpast best �tness value – if it is better then a particle updates the
past best position and the past best �tness value with the current position and its �tness value. The particle
also compares its �tness value with global best �tness value – if it is better then a particle updates the global
best position and the global best �tness value with the current position and its �tness value.

vij(t + 1) = ωvij(t) + c1r1ij(t)[pbestij(t) − xij(t)] + c2r2ij(t)[gbestj(t) − xij(t)], (5)

xij(t + 1) = xij(t) + vij(t + 1), (6)

whereω is the inertia weight, c1 and c2 are positive acceleration coe�cients, r1 and r2 are two independently
uniformly distributed random values in the range [0, 1], t is the number of iterations.

4 Learning BNs using the bi-velocity discrete PSO with mutation
operator

Considering the fact that the original PSO algorithm operates only in a continuous search space, some strate-
gieswere proposed to solve the problems in adiscrete search space and then applied to learnBN structures. To
keep the original PSO framework, a bi-velocity discrete particle swarm optimization was proposed, and used
for the steiner tree problem in graphs [30] and the multicast routing problem in communication networks
[31]. In this section, we intent to use the bi-velocity discrete particle swarm optimization with mutation to
solve the problem of BN structures learning.

4.1 Problem representation

The problem of BN structures learning is discrete. A BN structure can be represented by an n× n connectivity
matrix A, whose each element aij is de�ned as in Eq. (7), where n is the number of nodes. We intend to use
the bi-velocity discrete particle swarm optimization to solve the BN structures learning problem. The position
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of a particle is encoded as a binary string : a11, a12,⋯, a1n , a21,⋯, a2n ,⋯, an1,⋯, ann, similar to [32]. A BN

structure G is shown in Fig. 1, the corresponding connectivity matrix A =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 1 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, and the binary string

representing X = (0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

aij =
⎧⎪⎪⎨⎪⎪⎩

1, if i is a parent of j
0, otherwise

. (7)

Fig. 1. An example of Bayesian network

When bi-velocity discrete PSO works in BN structures learning, the position of each particle i is represented
as

Xi = (xi1, xi2,⋯, xiD), (8)

while the velocity is encoded as

Vi = (v
0
i1 v0i2 ⋯ v0ij ⋯ v0iD
v1i1 v1i2 ⋯ v1ij ⋯ v1iD

) , (9)

where D = n2, xij = 0 or 1, 0 ≤ v0ij ≤ 1, 0 ≤ v1ij ≤ 1. v0ij is the probability of xij being 0, and v1ij is the probability
of xij being 1.

4.2 Initial solution construction

Togenerate initial solutions,weuse amethodanalogous to the oneused in [25]. Each initial solution is derived
by �rst startingwith an empty graph dose not having any edges, and then adding the absent edges one by one
to the current graph if and only if the new graph is a directed acyclic graph and the score of the new graph is
higher than that of the previous graph. This procedure repeats until the number of added edges reaches the
prede�ned value. By using the methodmentioned above, a certain number of initial solutions are generated.
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4.3 Bi-velocity discrete PSO with mutation operator

4.3.1 Updating rules

Tokeep the concept of original PSO in a continuous search space, di�erent updating rules havebeenproposed
in bi-velocity discrete PSO, which are described in detail as follows:

(1): Velocity = Position1 − Position2: Suppose that X1 = (x11, x12,⋯, x1D) is in Position1 and X2 =
(x21, x22,⋯, x2D) is in Position2, Position1 is better than Position2, then X2 must be learn from X1. The jth
dimension of Vi is calculated according to the di�erence between x1j and x2j, if x1j is b, but x2j is not (b is 0
or 1), which means that the jth dimension of X2 is di�erent from that of X1, X2 learns from X1, so vbij = 1 and
v1−bij = 0. If x2j is equal to x1j, which indicates that it is not necessary for X2 to learn from X1 on jth dimension,
thus, v1ij = v0ij = 0.

For example, if X1 = (1, 1, 0, 0, 1, 0, 0, 0) and X2 = (1, 0, 1, 1, 0, 0, 0, 1), then, Vi = X1 − X2 =

(0 0 1 1 0 0 0 1
0 1 0 0 1 0 0 0

) .

(2): Velocity = Coe�cient × Velocity: This equation represents that the Velocity is multiplied by ω or
c× r. Because each element of the Velocity is the possibility for the position being 0 or 1, so the element that
is larger than 1 is set to 1.

For example, c × r = (1.2, 0.8, 0.3, 1.5, 0.5, 0.2, 1.3, 0.7), V = (0 0 1 1 0 0 0 1
0 1 0 0 1 0 0 0

), then, (c × r) × V =

(0 0 0.3 1.5 0 0 0 0.7
0 0.8 0 0 0.5 0 0 0

), the �nal velocity V = (0 0 0.3 1 0 0 0 0.7
0 0.8 0 0 0.5 0 0 0

) .

(3): Velocity = Veloctiy1 + Velocity2: Suppose that V1 is Veloctiy1 and V2 is Velocity2, Vi = V1 + V2,
the jth dimension vbij in velocity Vi is the greater one between vb1j and vb2j, in which b = 0 or b = 1.

For example, V1 = (0 0 0.3 1 0 0 0 0.7
0 0.8 0 0 0.5 0 0 0

) , V2 = (0.1 0 0.5 0 0 0 0 1
0 0.3 0 0.2 0.8 0 0 0.1

) ,

then, Vi = V1 + V2 = (0.1 0 0.5 1 0 0 0 1
0 0.8 0 0.2 0.8 0 0 0.1

) .

In the continuous searching space, the new position of a particle is calculated by adding the updated
velocity to the current position. However, the position and velocity may not be added directly in the discrete
searching space. In order to solve the discrete problem, a new updating method has been proposed as
Eq.(10) [31]

xij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rand(0, 1), if v0ij ≥ α, v1ij ≥ α
0, if v0ij ≥ α, v1ij < α
1, if v0ij < α, v1ij ≥ α
xij , if v0ij ≤ α, v1ij ≤ α

, (10)

in which α is a random value in [0, 1].

4.3.2 Mutation operation

When PSO is implemented, each particle moves toward its past best position and the global best position
found so far, the exploitation ability is enhanced. However, according to the velocity and particle position
updating rules, the numbers of nonzero elements in results of pbesti − Xi and gbest − Xi decrease and even
becomes equal to zero with the increasing iterations. In this case, if the current global best position is not
the global optimum, the particles in the swarm may be trapped in the local optima. To prevent premature
convergence and enhance the exploration capability, a mutation strategy is adopted to conduct mutation
on each new particle. The mutation probability depends on the problem dimension, in other words, it is
determined by the number of nodes in BN structures learning problem, because a BN structure is represented
by an n×n connectivitymatrixwhose diagonal elements are all zeros, and the position of a particle is encoded
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as a binary string according to the connectivity matrix. Thus, we de�ne the mutation probability p = 1/(n2 −
n), where n is the number of nodes. The mutation operator of a particle Xi = (xi1, xi2,⋯, xiD) is de�ned as

xij =
⎧⎪⎪⎨⎪⎪⎩

1 − xij , if rand ≤ p and j ≠ 1 + (m − 1)(n + 1)
xij , otherwise

, (11)

in which, m = 1,⋯, n.

4.4 Procedure of the proposed algorithm for BN structures learning

Based on the description above, the pseudo-code of BVD-MPSO-BN is presented in Algorithm 1. It starts with
the initial solutions generatedby themethoddescribed in section4.2. Eachparticle in the swarm is encodedas
a binary string corresponding to a directed acyclic graph and evaluated using the k2metric. During iteration,
each particle updates its velocity and position according to the updating rules presented in subsection 4.3.1.
To increase the probability of escaping from a local optimum, the mutation operator is conducted on each
new particle. Because each solution should be a direct acyclic graph, the direct cycles are removed from
the new particle if it is a invalid solution. In order to detect and remove the cycles, we �rst use the depth
�rst search algorithm to detect all back edges, and then invert or delete them. After removing the cycles, the
proposed algorithm is executed to improve the past best position of each particle and the global best position
of the population. During the main loop of the algorithm, the velocities and the positions of the particles are
iteratively updated until a stopping criterion is met.

5 Experimental results
In this section, we use several networks to test the behaviour of BVD-MPSO-BN. These networks are available
in the softwareGeNie

1
. In addition,we compare the proposed algorithmwith other algorithms onbenchmark

networks. The experiments have been executed in a personal computer with Pentium(R) Dual-Core CPU, 2.0
GB memory, and Windows 7, all the algorithms have been implemented in the Matlab language.

5.1 Databases and parameter settings of the algorithms

In our experiments, three benchmark networks are selected, namely Alarm, Asia and Credit networks. Alarm
network developed for on-line monitoring of patients in intensive care unites [33] contains 37 nodes and 46
arcs; Asia network is useful in demonstrating basics concepts of Bayesian networks in diagnosis [34], it is
a simple graphical model and has 8 nodes and 8 arcs; Credit network for assessing credit worthiness of an
individual was developed by Gerardina Hernandez as a class homework at the University of Pittsburgh, it is
available in the GeNie software and consists of 12 nodes and 12 arcs. The databases used in our experiments
are sampled from these benchmark networks by probabilistic logic sampling. In Table 1, the databases, the
original networks, the number of cases in each database, the number of nodes in each network, the number
of arcs in each network and the k2 scores for the original networks are listed.

We compare BVD-MPSO-BN with other algorithms. BNC-PSO: structure learning Bayesian networks by
particle swarm optimization [26], when BNC-PSO is implemented, the population size is 50, inertia weight
ω decreases linearly from 0.95 to 0.4, acceleration coe�cient c1 decreases linearly from 0.82 to 0.5 and
acceleration coe�cient c2 increases linearly from 0.4 to 0.83. An arti�cial bee colony algorithm for learning
Bayesian networks (ABC-B) [24] had the following parameters: weighted coe�cients for the pheromone α = 1

1 http://dslpitt.org/genie/.
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Algorithm 1 Learning Bayesian Networks Based on Bi-Velocity Discrete PSO with Mutation Operator (BVD-
MPSO-BN)
Require:

Input: Databases
Ensure:

Output: Bayesian Network
1: Initialization:
a. Set parameters:
MaxIteration: maximum number of iterations.
Popsize: population size.
t: iteration index.

b. Generate initial population:
Generate initial population, and calculate the �tness values according to Eq.(3).

2: Set pbesti = Xi (i = 1, 2,⋯, Popsize), f(pbesti) = f(Xi), �nd gbest, namely, the best position of pbesti,
t = 0.

3: while t ≤ MaxIteration do
4: for i = 1 ∶ Popsize do
5: Update the velocity Vi according to velocity updating rules.
6: Update the position of particle Xi according to Eq.(10).
7: Mutate Xi according to Eq.(11).
8: if Xi is a direct cycle graph then
9: Remove cycles.

10: end if
11: By Eq.(3), calculate the �tness value of particle Xi.
12: if f(Xi) > f(pbesti) then
13: pbesti = Xi.
14: f(pbesti) = f(Xi).
15: if f(Xi) > f(gbest) then
16: gbest = Xi.
17: f(gbest) = f(Xi).
18: end if
19: end if
20: end for
21: t = t + 1.
22: end while
23: return gbest
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Table 1. Databases used in experiments

Database Original network Number of cases Number of nodes Number of arcs Score

Alarm-500 Alarm 500 37 46 -2542.9
Alarm-1000 Alarm 1000 37 46 -5044.1
Alarm-2000 Alarm 2000 37 46 -9739.4
Alarm-3000 Alarm 3000 37 46 -14512.9
Alarm-4000 Alarm 4000 37 46 -19160.6
Alarm-5000 Alarm 5000 37 46 -23780.5
Asia-500 Asia 500 8 8 -555.8
Asia-1000 Asia 1000 8 8 -1101.1
Asia-3000 Asia 3000 8 8 -3326.3
Credit-500 Credit 500 12 12 -2741.2
Credit-1000 Credit 1000 12 12 -5360.6
Credit-3000 Credit 3000 12 12 -15822.3

and the heuristic information β = 2, pheromone evaporation coe�cient ρ = 0.1, switching parameter for
exploitation versus exploration q0 = 0.8, maximum number of solution stagnation limit = 0.3, population
size is equal to 40. The parameters for BVD-MPSO-BNwere chosen as: the population size is 50, inertia weight
ω = 0.7283, acceleration coe�cients c1 = c2 = 1.49618.

5.2 Metrics of the performance

To measure the performance of proposed algorithm, we evaluate the learned results in terms of the k2 score
and the structural di�erence (i.e., the di�erences between the learned structure and the original network).
The detailed descriptions of the metrics are de�ned as below:
● HKS: the highest k2 score resulting from all trials carried out.
● LKS: the lowest k2 score resulting from all trials.
● AKS: the average k2 score (including the mean and the standard deviation) resulting from all trials.
●AEA: the average number of edges accidentally added over all trials, it contains themean and the standard

deviation.
●AED: the averagenumber of edges accidentally deletedover all trials, it contains themeanand the standard

deviation.
●AEI: the averagenumber of edges accidentally invertedover all trials, it contains themeanand the standard

deviation.
● LSD: the largest structural di�erence resulting from all trials.
● SSD: the smallest structural di�erence resulting from all trials.
● ASD: the average structural di�erence (including the mean and the standard deviation) resulting from all

trials.
●AIt: the average number of iterations needed to �nd an optimal solution over all trials, it contains themean

and the standard deviation.
● AET: the average execution time over all trials.

5.3 Experimental analysis

5.3.1 Learning BNs using bi-velocity discrete PSO with mutation operator

To study the performance of BVD-MPSO-BN algorithm for Bayesian networks learning, we use it to recover the
structures fromdatabases sampled from the given benchmark networks. k2 score and structural di�erence as
the basic metrics of the performance are adopted to evaluate the learned networks. We test the BVD-MPSO-
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Table 2. The k2 score, number of iterations and running time of BVD-MPSO-BN on di�erent networks

Database HKS LKS AKS AIt AET

Alarm-500 -2527.9 -2554.9 -2536.6±10.1 275.6±71.7 210
Alarm-1000 -5032.2 -5054.9 -5038.4±7.1 157.8±34.5 108.3
Alarm-2000 -9721.8 -9727.2 -9723.1±1.8 201±34.4 187.8
Alarm-3000 -14510.2 -14515.0 -14511.3±1.5 182.1±57.7 192.3
Alarm-4000 -19149.9 -19154.2 -19151.4±1.6 213.2±37.7 248.9
Alarm-5000 -23769.1 -23773.2 -23770.9±1.9 208.4±43.2 243.8
Asia-500 -555.2 -555.2 -555.2±0.0 15.3±10.8 13
Asia-1000 -1100.8 -1101.4 -1100.8±0.2 13.4±10.8 11.8
Asia-3000 -3325.9 -3326.3 -3326.0±0.2 9.5±5.7 11.0
Credit-500 -2707.3 -2716.5 -2709.9±3.9 14.1±6.0 18
Credit-1000 -5333.9 -5338.7 -5335.9±2.2 14±9.6 19.2
Credit-3000 -15806.2 -15808.4 -15806.4±0.7 14.6±5.6 28.1

Table 3. The structural di�erence of BVD-MPSO-BN on di�erent networks

Database LSD SSD ASD AEA AED AEI

Alarm-500 14 7 12.6±2.8 7.4±1.6(5) 2.8±0.9(2) 2.4±1.7 (0)
Alarm-1000 14 6 8.5±2.5 4.6±1.4 (2) 2.5±0.5 (2) 1.4±1.2 (0)
Alarm-2000 9 4 6±1.4 2.6±0.7 (1) 2±0 (2) 1.4±1.1 (0)
Alarm-3000 9 2 5.9±1.9 3.2±1.1 (1) 1±0 (1) 1.4±1.0 (0)
Alarm-4000 7 2 3.6±1.7 1.7±0.7 (1) 1±0 (1) 0.9±1.1 (0)
Alarm-5000 5 3 4.5±0.7 2.3±0.5 (2) 1±0 (1) 1±1.2 (0)
Asia-500 4 3 3.5±0.5 2.5±0.5(2) 1±0(1) 0±0 (0)
Asia-1000 4 1 1.9±0.9 0.1±0.3 (0) 1.1±0.3 (1) 0.7±0.5 (0)
Asia-3000 2 0 1.1±0.6 0±0 (0) 0.9±0.3 (0) 0.2±0.4 (0)
Credit-500 2 1 1.8±0.4 0±0 (0) 1±0 (1) 0.8±0.4 (0)
Credit-1000 2 1 1.6±0.5 0±0 (0) 1±0 (1) 0.6±0.5 (0)
Credit-3000 2 1 1.1±0.3 0±0 (0) 0±0 (0) 1.1±0.3 (0)

BN algorithm by using the Alarm network with the sample size n = 500, 1000, 2000, 3000, 4000, 5000,
the Asia network with the sample size n = 500, 1000, 3000 and the Credit network with the sample size
n = 500, 1000, 3000. Table 2 reports the experimental results in terms of k2 score, the number of iterations
and the execution time. Table 3 shows the experimental results based on the structural di�erence between
the learned network and the original network. Each statistic in Table 2 and Table 3 is the average and standard
deviation values over ten independent runs of BVD-MPSO-BN algorithm. We mark the best values in bold.

As shown in Table 2, the di�erence betweenHKS and LKS is small on databases Alarm-2000, Alarm-3000,
Alarm-4000 and Alarm-5000, except for Alarm-500 and Alarm-1000, which do not have enough samples to
correctly learn Alarm networks. The algorithm also returns the small standard deviation, which indicates
that the BVD-MPSO-BN algorithm is stable for the network with enough samples. For Asia network, the
di�erences between HKS and LKS are smaller than 0.6 on database Asia-1000 and 0.4 on database Asia-3000,
the algorithm returns the same k2 score on database Asia-500. In addition, the di�erence between AKS and
the score of the original network is smaller than 0.6, whichmeans that the score of the Asia network obtained
by BVD-MPSO-BN algorithm is very close to that of the original network. For Credit network, the proposed
algorithm obtains small standard deviation value and the di�erence between HKS and LKS, which indicates
that the BVD-MPSO-BN algorithm also performs well in Credit network.

From the view of the structural di�erence, as shown in Table 3, the average and standard values in terms
of ASD, AEA, AED and AEI are relatively small on databases sampled from Alarm, Asia and Credit networks.
For Alarm network, the values of SSD on databases Alarm-3000 and Alarm-4000 are equal to two, which
means that only two times of legitimate operations needed to change the learned network to the original one
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at the best case. The standard deviation values of AED are equal to zeros on databases Alarm-2000, Alarm-
3000, Alarm-4000 andAlarm-5000, whichmeans that the proposed algorithm learns the Alarm networkwith
one or two edges accidentally deleted over ten runs. The average structural di�erence on database Alarm-500
is larger than 12, which means that the algorithm has poor performance on small databases. For Asia and
Credit networks, the average and standard deviation values of AEA approach to zeros, and they are equal to
zeros on databases Asia-3000, Credit-500, Credit-1000 and Credit-3000, which means that there are no edges
accidentally added when the proposed algorithm learns the Asia network with sample size 3000 and the
Credit network with sample size 500, 1000 and 3000. In the best case, the values of AEI are equal to zeros
on databases generated from the benchmark networks, that is, there is no accidentally inverted edges in the
best case.

The results related to the Alarm, Asia and Credit networks demonstrate that the proposed algorithm is
stable for the largenetworks andable to �nd structures very close to the original structures for small networks.
The performance of the proposed algorithm improves with the increasing sample size.

5.3.2 Learning BNs using di�erent algorithms

Next, we compare BVD-MPSO-BN algorithm with BNC-PSO and ABC-B algorithms. The experimental results
are presented in Table 4, Table 5 and Table 6. Each entry is the average and standard deviation values over
ten independent runs of the di�erent algorithms. The performance of the algorithms is evaluated based on
the accuracy in terms of AKS, AEA, AED, AEI and AIt. The best values for di�erentmetrics aremarked in bold.

Table 4 shows the experimental results of three di�erent algorithms on databases sampled from Alarm
network. From the perspective of k2 score, BVD-MPSO-BN achieves the best values of AKS on databases
Alarm-3000 andAlarm-5000. Although, BVD-MPSO-BN obtains the higher k2 score on databases Alarm-1000
compared with BNC-PSO, the standard deviation is larger than that obtained by BNC-PSO. ABC-B algorithm
returns the best k2 score on small database Alarm-500. From the view of structural di�erence, the ASD values
of BVD-MPSO-BNondatabasesAlarm-1000andAlarm-3000are the smallest among those of three algorithms.
The ASD values returned by ABC-B algorithm on databases Alarm-500 and Alarm-5000 are smaller than
that returned by other algorithms. Although ABC-B achieves the smallest average value of ASD on database
Alarm-5000, the standard deviation is larger than that of BVD-MPSO-BN. It is obvious that BNC-PSO obtains
networks with more incorrect edges compared with original networks on database Alarm-500. The values of
AEA returned by ABC-B on di�erent databases sample from Alarm network are the best among those of three
algorithms. BVD-MPSO-BN achieves the smallest values of AED on database Alarm-500 and Alarm-1000, the
AED values of BNC-PSO and ABC-B on databases Alarm-3000 and Alarm-5000 are the same as that of BVD-
MPSO-BN, and they are equal to ones, which means that each of three algorithms learns the BN structures
with one edge accidentally deleted on each trial carried out. BVD-MPSO-BN obtains the best values of AEI on
databases Alarm-1000, Alarm-500 and Alarm-5000. From the view of the number of iterations, ABC-B often
needs less number of iterations compared with BVD-MPSO-BN on databases Alarm-500, Alarm-3000 and
Alarm-5000.

From the experimental results on Asia network with sample size n = 500, 1000, 3000 in Table 5, we
observe that the BVD-MPSO-BN and BNC-PSO algorithms achieve the same well k2 score and structural
di�erence on databases Asia-500 and Asia-1000, they learn the BNs from database Asia-3000 with no
edges accidentally added over ten executions. In comparison to the use of ABC-B algorithm, BVD-MPSO-BN
algorithm can obtain higher k2 score, while the ASD values returned by ABC-B algorithm on databases Asia-
500 andAsia-1000 are the smallest among three algorithms. There is no accidentally inverted edges generated
by BVD-MPSO-BN and BNC-PSO algorithms on database Asia-500. However, the average number of iterations
of BVD-MPSO-BN algorithm is the smallest among three algorithms on databases Asia-1000 and Asia-3000.

The experimental results of three algorithms on the Credit network are presented in Table 6. For k2 score,
BVD-MPSO-BN algorithm does not perform well on databases Credit-500 and Credit-1000, but still obtains
relatively good result on databases Credit-3000. From the view of the structure di�erence, we observe that
BVD-MPSO-BN obtains the best ASD results on databases Credit-500 and Credit-1000. BVD-MPSO-BN and
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Table 4. The experimental results of three algorithms on Alarm network

Database Algorithm AKS ASD AEA AED AEI AIt

Alarm-500
BVD-MPSO-BN -2536.6±10.1 12.6±2.8 7.4±1.6 2.8±0.9 2.4±1.7 276.5±71.7
BNC-PSO -2548.6±10.0 21±2.6 12±2.3 4±0.9 5±1.6 308.2±64.6
ABC-B -2532.7±4.4 10.1±1.6 4.7±0.8 3.3±0.8 2.1±0.7 272±25.6

Alarm-1000
BVD-MPSO-BN -5038.4±7.1 8.5±2.5 4.6±1.4 2.5±0.5 1.4±1.3 157.8±34.5
BNC-PSO -5040.0±2.7 10.4±2.2 5.6±1.0 2.7±0.5 2.1±1.7 276±45.7
ABC-B -5043.6±8.1 9.1±3.2 3.4±1.5 3.2±0.6 2.5±1.7 176.8±37.5

Alarm-3000
BVD-MPSO-BN -14511.3±1.5 5.6±1.9 3.2±1.1 1±0 1.4±1.0 182.1±57.7
BNC-PSO -14516.2±5.3 8.2±1.9 4.5±1.1 1±0 2.7±1.1 272±55.3
ABC-B -14516.5±7.5 6.0±1.9 2.0±0.9 1±0 3.0±1.3 162.4±49.6

Alarm-5000
BVD-MPSO-BN -23770.9±1.9 4.5±0.7 2.3±0.5 1±0 1.2±0.6 208.4±43.2
BNC-PSO -23770.9±6.5 4.5±2.6 2.3±1.2 1±0 1.2±1.7 208.4±59.4
ABC-B -23771.2±5.3 3.7±2.5 2.0±1.4 1±0 1.3±1.6 153.9±42.7

Table 5. The experimental results of three algorithms on Asia network

Database Algorithm AKS ASD AEA AED AEI AIt

Asia-500
BVD-MPSO-BN -555.2±0.0 3.5±0.5 2.5±0.5 1±0 0±0 15.3±10.7
BNC-PSO -555.2±0.0 3.3±0.5 2.3±0.5 1±0 0±0 18.1±6.6
ABC-B -555.3±0.5 3.1±0.5 1.3±0.5 1±0 0.8±0.4 8.7±2.6

Asia-1000
BVD-MPSO-BN -1100.8±0.2 1.9±0.8 0.1±0.3 1.1±0.3 0.7±0.5 13.4±10.9
BNC-PSO -1100.8±0.2 1.9±0.8 0.1±0.3 1.1±0.3 0.7±0.5 17.3±11.4
ABC-B -1100.9±0.3 1.4±0.8 0.2±0.4 1.2±0.4 0±0 24.1±19.5

Asia-3000
BVD-MPSO-BN -3325.9±0.1 1.1±0.5 0±0 0.9±0.3 0.2±0.4 9.5±5.7
BNC-PSO -3325.9±0 1.2±0.4 0±0 1±0 0.2±0.4 13.5±9.9
ABC-B -3326.0±0.5 1.3±0.9 0.2±0.6 1.1±0.3 0±0 25.7±13.6

BNC-PSO get the same AEA results and BVD-MPSO-BN obtains the best AED results on three databases. ABC-
B obtains the best AEI results on databases Credit-1000 and Credit-5000, and BVD-MPSO-BN obtains the best
AEI result on database Credit-500. The average number of iteration of BVD-MPSO-BN is smaller or at least not
larger than that of the other two algorithms.

Table 6. The experimental results of three algorithms on Credit network

Database Algorithm AKS ASD AEA AED AEI AIt

Credit-500
BVD-MPSO-BN -2709.9±3.9 1.8±0.4 0±0 1±0 0.8±0.4 14.1±6.0
BNC-PSO -2708.2±2.7 1.9±0.3 0±0 1±0 0.9±0.3 17.4±6.0
ABC-B -2705.32±0 3±0 0±0 1±0 2±0 14.6±1.3

Credit-1000
BVD-MPSO-BN -5335.9±2.2 1.6±0.5 0±0 1±0 0.6±0.5 14.0±9.6
BNC-PSO -5335.8±2.1 2.0±0.7 0±0 1±0 1±0.7 23.5±16.4
ABC-B -5354.9±10.7 2.0±0.6 0.1±0.3 1.9±0.6 0±0 25.9±10.1

Credit-3000
BVD-MPSO-BN -15806.4±0.7 1.1±0.3 0±0 0±0 1.1±0.3 14.6±5.6
BNC-PSO -15813.0±5.7 1.1±0.7 0±0 0.5±0.5 0.6±0.7 26.0±11.0
ABC-B -15815.7±0 1.0±0 0±0 1±0 0±0 14.6±3.2
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To test the time performance of the proposed algorithm, we evaluate three algorithms on Alarm network
with sample size n = 1000, 3000, 5000, Asia network with sample size n = 1000, 3000 and Credit
network with sample size n = 1000, 3000. Fig.(2) shows the average running time of three algorithms on
di�erent networks. It is obvious that the searching time of the proposed algorithm is the smallest among
three algorithms. For BNC-PSO algorithm, the reason is that BVD-MPSO-BN keeps the advantage of fast
convergence of classical PSO, while BNC-PSO was proposed by combining PSO with Genetic Algorithm. For
ABC-B algorithm, during each iteration, each employed bee �nds a new solution in its neighborhood by
testing and comparing the k2 scores of four operators (addition, deletion, reversion and move). In addition,
each onlooker determines a new solution by performing two knowledge-guided operators or four simple
operators and comparing their k2 scores, so it is time consuming to compute the k2 score. Although the
number of iterations of ABC-B is often less than that of BVD-MPSO-BN, ABC-B takes much time to reach the
near-optimal solutions. Meanwhile, we analyze the changing of time requirement as the changing of sample
size. Fig.(3) shows the average results of BVD-MPSO-BN in comparison to ABC-B and BNC-PSO algorithms on
databases sampled from Alarm network. Three algorithms generally take much time on learning BNs from
large databases. It is obvious that the execution time of the proposed algorithm increases slowly with the
increase of the sample size, whereas ABC-B and BNC-PSO algorithms are sensitive to the sample capacity.
The overall results demonstrate that BVD-MPSO-BN algorithm is superior to ABC-B and BNC-PSO algorithms
in terms of execution time.

Fig. 2. Time performance on three di�erent networks.

Fig. 4 shows the convergence characteristics of three heuristic algorithms on database Alarm-5000. It is
obvious that the �nal solutions of three algorithms are close to each other. However, the proposed algorithm
converges to the optimal solutions faster than both BNC-PSO and ABC-B algorithms. BNC-PSO performs
better than ABC-B at the beginning because particles in PSO learn from better and best solutions so that the
population quickly converges to the optimal solution. Once the particles are close to the best solution, the
convergence speed becomes slower. However, with the help of mutation operator, the particles in proposed
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algorithm are easy to jump out of the likely local optima, and hence the fast convergence speed could be
remained through the whole evolutionary progress.

Fig. 3. Time performance of three algorithms on Alarm network. Fig. 4. The score convergence of three algorithms on Alarm-
5000.

Based on the observations above, we conclude that BVD-MPSO-BN can guarantee to learn good-quality
networks. BVD-MPSO-BN not only keeps the powerful searching capability in �nding the optimal solution,
but also prevents the particles in swarm from trapping in the local optima.

6 Conclusion
In this paper, we propose a novel score-based algorithm for BNs learning. PSO is a swarm intelligence
globalized search algorithm with the advantages of simple computation and rapid convergence capability.
However, with the increasing of the number of iterations, the quality of the solution can not be improved, and
the algorithm converges to the local optima. In other words, it is easy for PSO to su�er from the premature
convergence. To overcome the drawback of the PSO and learn BN structures from data, bi-velocity discrete
PSO with mutation algorithm has been proposed. We make a proper balance between exploration and
exploitation ability of the proposed algorithm. The experimental results on the databases generated from the
benchmark networks demonstrate the e�ectiveness of our method. Comparing with the BNC-PSO algorithm
for BNs learning, the advantage of our algorithm not only lies in its less computation time but also lies in its
less error rate between the learned structure and theoriginal network. In the comparison to theuseof theABC-
B algorithm, when the number of samples available for structure learning is large, the proposed algorithm
performs well and has the better average accurate. The experimental results illustrate the superiority of the
proposed algorithm in learning BNs from the data. In this paper, the databases are completely observed,
however, there may exist missing data or data with hidden variables in practice. Extending swarm-based
algorithms to learn BN structureswith incomplete data is our futurework. In addition, the performance of the
proposed algorithm decreases with the decreasing sample size. Thus, future work will consider the method
for structure learning on small databases.
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