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Abstract: On a general hyperring, there is a fundamental relation, denoted ~*, such that the quotient set
is a classical ring. In a previous paper, the authors defined the relation ¢, on general hyperrings, proving
that its transitive closure ¢, is a strongly regular equivalence relation smaller than the ~*-relation on some
classes of hyperrings, such that the associated quotient structure modulo ¢}, is an ordinary ring. Thus, on
such hyperrings, ¢y, is a fundamental relation. In this paper, we discuss the transitivity conditions of the
em-relation on hyperrings and m-idempotent hyperrings.
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1 Introduction

The quotient set has played an important role in the algebraic hyperstructures theory since its beginning for at
least two reasons. The first one concerns the motivation of the definition of hypergroup, very well pointed out
by F. Marty in his pioneering paper on hypergroups from 1934. It is well known that the quotient of a group G
by an arbitrary subgroup H of G is a group if and only if H is a normal subgroup, while Marty showed that the
quotient structure G/H is always a hypergroup. More generally, as Vougiouklis proved in [1], if one factorizes
the group G by any partition S of G, then the quotient G/S is an H,-group (i.e. a reproductive hypergroupoid
satisfying the weak associativity). Secondly, the quotient set represents the bridging element between the
classical algebraic structures and the corresponding hyperstructures, as mentioned in [2]. The first step in this
direction was made by Koskas [3], when he used the 3-relation and its transitive closure 3 to obtain a group
(as a quotient structure of a hypergroup modulo 3). Later on, the study of this correspondence between
classical structures and hyperstructures with similar behaviour has been extended and new equivalence
relations have been defined and called fundamental relations. They are the smallest strongly regular relations
defined on a hyperstructure such that the quotient set is a classical structure, having similar properties. If
on a (semi)hypergroup one considers the 3*-relation, then the quotient set is a (semi)group. Besides, the
quotient set modulo the ~*-relation, introduced by Freni [4], is a commutative (semi)group. Similarly, other
fundamental relations have been defined on hypergroups in order to obtain nilpotent groups [5], engel groups
[6], or solvable groups [7]. The same approach was used also for ring-like hyperstructures. It started in 1991,
when Vougiouklis [1] defined the ~-relation on a general hyperring R (addition and multiplications are both
hyperoperations) such that the quotient R/~* is a ring. Even if they are denoted in the same way (this could
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create confusion for the new readers of the algebraic hyperstructure theory, while it is already accepted for
the researchers of this field), the fundamental relation defined by Freni [4] on semihypergroups is different
by the fundamental relation ~ defined by Vougiouklis [1] on hyperrings. Later on, the o*-relation [8] has
been introduced to obtain a commutative ring. More recently, other fundamental relations have been defined
obtaining Boolean rings [9] or commutative rings with identity [10] as associated quotient structures. We end
this brief recall of the fundamental relations with those in hypermodule theory, where, for example, the 6-
fundamental relation [11] leads to commutative modules by the same method of factorization.

The authors of this note proposed in [12] a new perspective of the study of fundamental relations on
hyperstructures. The *-relation defined on a general hyperring R is the smallest strongly regular relation
such that the quotient R/~* is a ring. The paper [12] deals with the question: Under which conditions can a
fundamental relation smaller than ~ be defined on a general hyperring, such that its transitive closer behaves
similar to v*? To answer to this question, the «,,-relation was defined on a special class of (semi)hyperrings,
such that ¢,; ¢ v and the quotient structure modulo ¢y, is an ordinary (semi)ring. Moreover, on m-idempotent
hyperrings it was proved that e, = v*.

In this paper, we study the transitivity property of the e,-relation on general hyperrings. First, we
introduce the notion of m-complete parts based on the en,-relation and investigate their properties, which
help us to show that ¢, is transitive on m-idempotent hyperfields.

2 Regular and fundamental relations on hyperstructures

In this section we review some basic definitions and properties regarding fundamental relations on general
hyperrings. For further details, the readers are referred to [2], [10, 13-15, 17].

Definition 2.1 ([16]). An algebraic system (R, +, -) is said to be a general hyperring (by short a hyperring), if
(R, +) is a hypergroup, (R, -) is a semihypergroup, and ” - ” is distributive with respect to ” + .

In the above definition, if (R, +) is a semihypergroup, then (R, +, -) is called a semihyperring. A nonempty
subset I of a hyperring (R, +, -) is a hyperideal, if (I, +) is a subhypergroup of (R, +) and, for all x € I and
reR,wehaver-xux-rcl.

We recall that a subhypergroup A of (R, -) is said to be invertible on the left (on the right), if x ¢ A -y
(xey-A),theny e A-x(yex-A),forall x,y € R. A subhypergroup is invertible, if it is invertible on the left
and on the right. Moreover, a subhypergroup B of (R, -) is called closed on the left (on the right), if x € a -y
(x € y - a) implies that a € B, for every a € R and x, y € B. We say B is closed, if it is closed on the left and on
the right. It is easy to see that every invertible subhypergroup of (R, -) is closed.

Let p be an equivalence relation on a hypergroup (H, o). For A, B ¢ H, ApB means that, for all x € A there
exists y € B such that xpy, and for all v € B there exists u € A such that upv. Moreover, ApB means that for all
x € A and for all y € B, we have xpy. Accordingly, an equivalence relation p on a hypergroup (H, o) is called
regular if apb and cpd imply (aoc) p(bod), fora, b, c, d € R. Besides, p is called strongly regular if, under
the same conditions, we have (aoc¢)p (bod), fora,b,c,d eR.

The main role of the (strongly) regular relations on hypergroups is reflected by the following result.

Theorem 2.2 ([17]). Consider the equivalence relation p on the hypergroup (H, o) and the hyperoperation

p(x) ® p(y) = {p(2) | z € p(x) o p(y)} on the quotient H/p = {p(x) | x € H}. Then p is regular (strongly
regular) on H if and only if (H/p, ®) is a hypergroup (group).

An equivalence relation p is (strongly) regular on a hyperring (R, +, -), if it is (strongly) regular with respect
to both hyperoperations ” + ” and ” - ”. One example of strongly regular relation on (semi)hyperrings is the
~-relation defined by Vougiouklis in [1] as follows. Let (R, +, -) be a (semi)hyperring and x, y € R. Then x~yy
if and only if {x,y} ¢ u, where u is a finite sum of finite products of elements of R. In other words, xvy if



1014 =— M. Norouzi, I. Cristea DE GRUYTER

and only if {x,y} c > ( Hzi), for some finite sets of indices J and I; and elements z; € R. Let v* be the
jel el

transitive closure of ~, that is xy*y if and only if there exist the elements z1, ..., zn:1 € R, with z; = x and

Zn+1 = Y, such that z;yziq, fori € {1,...,n}. In [1] it was shown that ~* is the smallest strongly regular

relation on a hyperring R such that the quotient (R/~v", @, @) is a classical ring with the operations defined

as: v (x)@ov*(y) =77 (2),forallz e y* (x) +v* (y) and v* (x) @~* (y) = v*(¢t), forall t € v*(x)-v*(y). Hence,

(R/~*, @, ®) is called the fundamental ring obtained by the factorization with the ~*-relation.

3 The ¢,,-relation on hyperrings

In [12] the authors defined on (semi)hyperrings a new relation, denoted by &,,, smaller than the ~-relation,
and which is not transitive in general. Thus they found some conditions for the transitivity of the ¢,,-relation
on hyperrings. In this section we recall its definition and main properties.

Let (R, +, -) be a semihyperring and select a constant m, such that 2 < m € N. Put {(x,x) | x € R} S em
and for all a, b € R define

n
aemb < IneN,3(z1,...,zn) eR": {a,b} c > z{", 6]
i=1
where z" = z; - z; - ... - z;.
| S ——
m times

Now, let (R, +, ) be a hyperring such that (R, -) is commutative and the following implication holds:

n n
Bc Yy Al' =—3x;eA; (1<i<n):Bcy xi', @
i=1 i=1
forall B, Ai,...,An € R. Accordingly with Theorems 3.3 and 3.4 in [12], on a hyperring R satisfying condition
(2), the relation ¢, is the smallest strongly regular equivalence relation such that the quotient set R/ey, is a
ring, thus it is a fundamental relation on R. Besides, we note that relation (2) is valid if and only if, for all
n n
Ai,...,An R, there exists x; € A; (1 <i<n)suchthat ) A" c > xj".
i=1

i=1 i=
The next result provides sufficient conditions for the transitivity of the relation ep,.

Theorem 3.1 ([12]). Let (R, +, -) be a hyperring satisfying the relation (2) such that there exists O € R such that
n
x+0={x}andx-0={0} forallx e R.IfA1, ..., An are hyperideals of R, then X = U{ZA?" | A1,...,An SR}
i=1
is an equivalence class of ey, and sy, is transitive.

Example 3.2. DefineonR = {0, a, b} two hyperoperations as follows:

+‘ 0 a b ‘ 0O a b
0/{0} {a} {b} 0|{o} {0} {0}
al{a} {a,b} R al{0} R R

bl{b} R {a,b}  b|{O} R R

Then, (R, +, -) is a hyperring [18].
n
It is easy to check that, for all A1, ...,An C R, there exist x; € A; (1 < i < n), such that ZA:" c Zx{",

n
i=1 i=1
relation equivalently with (2).

We end this section emphasizing the fact that if the hyperring (R, +, -) does not satisfy condition (2), then the
relation e, is not transitive, while its transitive closure &, is not strongly regular on (R, -) [12].
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4 Transitivity of the relation £, on m-idempotent hyperfields

Since the conditions in Theorem 3.1 are not immediate, we aim to find some particular hyperrings, where the
relation e, is transitive. For doing this, we will first define the concept of m-complete part and then we will
prove that ey, is transitive on m-idempotent hyperfields.

The main role of the complete parts of a semihypergroup, introduced by Koskas [3] and very well recalled
by Antampoufis et al. in the survey [2], is played in finding the 8* class of each element. In particular, a
nonempty subset A of a semihypergroup (H, ) is called a complete part of H if, for any nonzero natural
number n and any elements as, ..., an of H, the following implication holds:

n n
AmHa,-;t@:Ha,-gA.
i=1 i=1
In other words, the complete part A absorbs every hyperproduct containing at least one element of A. In
particular, for any element x € A, the class 5*(x) is a complete part of H. Moreover, the intersection of all
complete parts of H containing A is called the complete closure of A in H, denoted by C(A). Besides, 3% (x) =
C(x), forany x € H.

As already mentioned before, Vougiouklis [16] defined the relation  on a hyperring R, proving that its
transitive closure v is the smallest strongly regular relation defined on R such that the quotient R/y" is a
ring. Later on Mirvakili et al. [19] studied the transitivity property of this relation, introducing the notion of
complete part on hyperrings as follows: a nonempty subset M of a hyperring R is a complete part if, for any
natural number n,anyi =1, 2, ..., n, any natural number k; and arbitrary elements z;1, . . . , zj, € R, we have

n ki n ki
My ([Tzy) =2 =3 ([]zy) c M.
iz1 j=1 iz1 j=1
Now we will extend these definitions to the case of hyperrings, aiming to prove that the class £*(x) of an
element x in the hyperring R is an m-complete part of R.

Deﬁnltlon 4.1. We say that a nonempty subset A of a (semi)hyperring (R, +, -) is an m-complete part of R if

An Zz, + @ implies that Zzl cA, forallneNandz,...,zn € R. The intersection of all m-complete parts
i=1 i=1
of R containing a nonempty subset A of R is called the m-complete closure of A and it is denoted by Cm(A).

Example 4.2. Consider the following hyperoperations on the set R = {a, b, ¢, d}:

+‘ a b c d . ‘ a b c d

a|{b,c} {b,d} {b,d} {b,d} al{b,d} {b,d} {b,d} {b,d}
b|{b,d} {b,d} {b,d} {b,d} b|{b,d} {b,d} {b,d} {b,d}
c|{b,d} {b,d} {b,d} {b,d} c|{b,d} {b,d} {b,d} {b,d}
d|{b,d} {b,d} {b,d} {b,d} d|{b,d} {b,d} {b,d} {b,d}

n

Then (R, +, -) is a semihyperring. For every m > 2 and for all z1, . . ., zn € R, we have Zzlm = {b, d}. It follows
i=1

that the subsets A1 = {b,d}, A> = {a,b,d} and As = {c, b, d} are all proper m-complete parts of R, i.e.

m-complete parts of R, different by R.

Theorem 4.3. Let p be a strongly regular equivalence relation on R. Then p(a) is an m-complete part of R, for
alla € R.

Proof. Since p is a strongly regular relation on R, it follows that the quotient R/p is a ring (with the addition

n
"@" and the multiplication "®"). Let a € Rand p(a)n Zz{" + o, for arbitrary elements z4, ..., z, € R. Hence,
i=1
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n
there exists y € _ z;" such that p(y) = p(a). Consider the strong homomorphism 7 : R —> R/p defined by

i=1
m(x) = p(x), for all x € R, where R/p is a ring (a trivial hyperring). Thus,

7T(Zzl) G?(p(zl)® -0 p(21)) = p(y) = p(a),

n
which implies that )" 2" ¢ p(a). This completes the proof. O
i=1

For a nonempty subset A of a (semi)hyperring R, denote
K{'(A)=A

n n
Kpqi(A) = {xeR | 3(z1,...,20) €R"; x € 2" and Ky (A)n Y.z qt@}

i=1 i=1

K"(4) = | Ki'(A).

nx>1

Moreover, for any x € R and any natural number n, for simplicity we denote K} ({x}) = Ky’ (x).

Lemma 4.4. For any nonempty subset A of a hyperring R, the set K™ (A) is an m-complete part of R.

n
Proof. LetK™(A)n Z zi" #+ @, for arbitrary elements z1, . .. zn € R. Then, there exists t € N such that K" (4) n
i-1

n
i' # @, which implies that )" 2" < K{11(A) < K" (A). Thus, K™ (A) is an m-complete part of R, containing
i=1

=
N

»I

O
Theorem 4.5. K™ (A) = Cn(A), for any nonempty subset A of R.

Proof. By Lemma 4.4, we have Cr (A) € K™(A). Now, let M be an m-complete part of R containing A. Clearly,
T(A) = A c M. Suppose that Ky (A) c M. Letx € KJ', 1 (A). Then there exist the elements z1, . . zn € Rsuch

that x ¢ Zzl and @ + Kp'(A) n Zz, cMn Zzl Since M is an m-complete part, it follows that Zz, cM
i=1 i=1
and so Ky%.; (A) € M. Hence, K’”(A) cM, and thus K™(A) cCm(A). O

Example 4.6. Consider the semihyperring R in Example 4.2. One obtains that the m-complete closure of A, is
A, itself, for any natural number m > 2. Moreover, if we consider the ~-relation on R, then we have Y [] z; =
{b,c} :=Por>Ilz; = {b,d} := Q, for any finite hypersums of finite hyperproducts of elements z; € R. Since
PnQ+g@andP ¢ Qand Q ¢ P, then P and Q are not complete parts of R. Besides, A, NP + &, but P ¢ A,. This
means that A, is not a complete part, but only an m-complete part.

Theorem 4.7. For all nonempty subsets A of R, it holds Crn(4) = | Cm(a).

acA

Proof. Clearly we have the inclusion Cm(a) < Cm(A), for all a € A. Hence, | Cm(a) € Cm(A).
aeA
Conversely, we show that K;'(A) < | Ky (a), by induction on ”n”. For n = 1, we have K'(A) = A =

acA

n
(U{a} = | K7'(a).Now, suppose that K;'(A) ¢ | Ky (a) and take an arbitrary x € Ky,; (A). Then, x € } z{"

acA acA acA i=1

n n
and @ = Ky (A)n Y. z", for some elements z1, ..., zn € R. Thus, there exists y € R such that x,y € }" z{" and
i=1 i=1

n
y € K7(A) ¢ |J Ky (a). This implies that there exists a” ¢ A such thaty € Ky'(a’) n )’ zi" # @, meaning that
acA i=1
x eKp,1(a"),and thus K3, 1 (A) < | Kn'1(a).
acA
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If x € Cm(A), it follows that x € K™ (A) = U Ky (A) <Y ( U K’"(a)). Then, for some a’ e Aand n > 1,
n>1 "acA
we have x e K)'(a’) c K™(a") = Cm(a’) c UagA Cm(a) This completes the proof. O
In the following we will give an equivalent description of the relation «;,, on hyperrings, using the notion of
m-complete part. First we will prove some properties of the m-complete parts.
Lemma 4.8. K;' (K5 (x)) = Kp1(x), forallx e Rand n > 2.

Proof. We prove it by induction on ”n”. For n = 2, we have

n n
K5'(K3 (X)) = {x € R|3(z1,...,20) € R"; x € Y. 2 and K{ (K5'(x)) n Y 21" # &}

i=1 i=1

:{xeR|3(zl,.. ,Zn) € R" ,erz, andKz(x)mZz, i@}
i=1

= K5'(x).
Now, suppose that Kj_; (K5 (x)) = Ky'(x) and take an arbltrary element y € K'"(K2 (x)). Then there exist
Zi,...,2n € Rsuchthaty e 221 and @ # K, (K" (x))nZz, Thus, @ + K’"(x)mZz, ,andsoy € Kii,; (x).

i=1 =1 i=1
Hence, Ky (K5'(x)) € K}, 1 (x). Similarly, we have K,,H(x) c K7 (K5 (x)), that completes the proof. O

Lemma 4.9. Foralln >2 andx,y € R, x € Ky (y) ifand only if y € Ky (x).

Proof. We prove the result by induction on”n”.Letn = 2. Then x € KJ'(y) if and onlyif, for z1,...,zn € R, we
have x ¢ Zzl and @ = {y} n Zzl , meaning that, for z1,...,zn € R, y € Zzl and @ = {x}n Zzl This is
equlvalent w1th y € K3'(x). Suppose now that x € Kt 1 (y) if and only if y € K "1(x) and take x € K”‘(y) then

there exist z,z1,...,2n € R such that x ¢ Zz, ,ze Ky i(y)and z € Zzl . Hence, by induction procedure,
i=1 i=1

y € Ki'1(z) and z € K5'(x), which implies that y € K;' ; (K5 (x)) = K5 (x) by Lemma 4.8. Similarly, y € Ky (x)

implies that x € Ky (y). O

Define on a hyperring R the relation @ as follows: xy if and only if x e K™ (y), forall x, y € R.
Corollary 4.10. The relation 0 is an equivalence on R.

Proof. For all x € R, we have x € K7'(x) ¢ K™ (x). Hence, 0 is reflexive. Now, let x € K™ (y), for x,y € R. By
Theorem 4.5, there exists n > 1 such that x € K} (y), which implies that y € K} (x), by Lemma 4.9. Then,
y € Ky (x) € K™(x). Similarly, the converse is valid. Thus, ¢ is symmetric. Moreover, let xdy and yédz for
X,y,z € R.Hence, x € Cn(y) and y € Cm(2). Let A be an m-complete part of R containing z. Since y € Cn(2)
and Cn(z) < A, it follows that y € A. Hence, Cm(y) € A and thus x € A. Therefore, x € () A = Cn(2) = K" (2)

zeA
and so x0z. O

Theorem 4.11. For all x € R, e, (x) = 0(x).

Proof. If xemy, then x € ZH:Z{" and @ = {y} n zn:z{", for some elements z1, ..., 2z, € R. Hence, x € K3'(y) ¢
K™(y). Thus, em € 0 andls:,*il co*=0. -

Conversely, let x0y, that is, x e K™(y), which implies that x € KJ.1(y), for n € N. Then, there exist
X1,Z1,.-.52n € R such that x sz ,x1 € KR(y) and x1 € Zzl . Hence, {x,x1} ¢ Zn:z,f" and SO Xxemx1.
Similarly, since x1 € Ky (y), theré éx1sts x2 € Kt 1 (y) such th:;t 1xleme By continuing lttils process, we can

obtain x3 € Kt 5 (¥), ..., xn—1 € K5 (y) and x, € KT'(y) = {y} such that XxemX2&emX3 . . . EmXn—16mXn = y. Hence,
Xemy and so 0 € ey,. Therefore the proof is completed. O
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Now, we recall that a hyperring (R, +, -) is said to be a hyperfield, if (R, -) is a hypergroup. Moreover, a strong
homomorphism from a hyperring (R, +, -) to a hyperring (S, ®, ®) isamap f : R — Ssuch that f(x +y) =
fx)e f(y)and f(x-y) = f(x) © f(y), for all x, y € R. Considering the ¢, relation on R, it can be seen that
the map pm : R — R/ep, is a strong homomorphism.

In the following we will consider R a hyperfield satisfying relation (2) (this is a crucial assumption in the
proofs of the next results) such that R/e;, has a unit element denoted by 15 Jex - Set Wil = ot (1g /6:") ={xe
R | pm(x) = 13 Jex }+. We will state some properties of the m-complete parts of hyperfields satisfying relation

).
Theorem 4.12. If (R, +, -) is a hyperfield and A c R, then oy, (om(A)) = A - wi.

Proof. Let x € o (om(A)). Then there exists y € A such that ¢m(x) = om(y). Since (R, -) is a hypergroup, it
follows that there exists t € R such that x € y - t, which implies that ¢m(x) = pm(y) ® ¢m(t). Since (R/ep, ®)
is a group and ypm(x) = om(y), it results pm(t) = 1g/e:. Thus, t € Lp,_nl(lg/%) =wp,andsoxey-tcA-wg.
Then ¢y, (om(4)) € A - wi'.

Conversely, let x € A -wg. Then x € a -y, for some a € A and y € wg, that is pn(y) = 1g/e: - Hence
em(X) = om(a-y) = om(a) © em(¥) = ¢m(a) © 1gje;, = om(a) € pm(A), and s0 X € oy (¢m(A)). This
completes the proof. O

Theorem 4.13. If (R, +,-) is a hyperfield and A € R, then Cn(A) = A - WR.

Proof. Itis easy to see that ¢y, (om(A)) = {x e R|Jac A: om(x) = om(a)}. Also, we have pm(X) = om(a) if
and only if e, (x) = ey (a), equivalently with 8(x) = 6(a), meaning that x € K™ (a) = Cm(a), by Theorem 4.11.
Hence, x € Cm(A) if and only if x € ¢y, (om(A)), thus x € A-w¥', by Theorem 4.7 and Theorem 4.12. Therefore,
Cn(A) =AWl O

Corollary 4.14. Let R be a hyperfield. A is an m-complete part of R ifand only if A = A - W§.

Proof. If A is an m-complete part, then Cn(A) = A. Hence, A = Cm(A) = A - wg, by Theorem 4.13. Conversely,
ifA=A-wg,then A = Cn(A) by Theorem 4.13, and so A is an m-complete part of R. O

By Theorem 4.12, we have wi' - wit = omt (om(wh')) = wiy. Hence, wi is an m-complete part of the hyperfield
(R, +,-), by Corollary 4.14.

Moreover, notice that, for two subsets A and B of the hyperfield R such that one of them is an m-complete
part of R (assume that A is so), we have (A - B) -wf = (A-wg ) - B = A- B, by Corollary 4.14. Hence, A - B is an
m-complete part of R, by Corollary 4.14.

Theorem 4.15. Let (R, +, ) be a hyperfield. Then every m-complete part subhypergroup of (R, -) is invertible.
Moreover, it is closed.

Proof. Let A be an m-complete part of R such that (4, -) is a subhypergroup of (R, ). Take x € A-y for x, y € R.
Thus, x € a -y, for a € A, which implies that pm(x) = om(a) © pm(y). Since pm(A) is a subgroup of R/ep,,
we have om(¥) = om(a)™ © em(x) € om(A) ® em(X) = em(A - x). Besides, A - x is an m-complete part of R,
hencey € op' (om(A-x)) = Cm(A - x) = A - x. Then, A is invertible on the left. Similarly, we can show that A
is invertible on the right. Therefore, A is invertible, and by consequence it is also closed. O

Theorem 4.16. Let (R, +,-) be a hyperfield and Sc, (R) be the set of all m-complete parts of R which are

subhypergroups of (R, -). Then,wg' = (| A.
AeSc,, (R)

Proof. We know that wg' is an m-complete part of R. Let x € wg'. Forall ¢,y € wy', we have om(x) = 1g/c: =
om(t) © om(y) = em(t-y). Hence, x € op’ (om(t-wm)) = Cn(t-wht) = t-wh, and sowl € t-wh forall t € wi.
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Clearly, t - wf < wg.Then wf = t-wg, for all t € wy', which implies that wg' is a subhypergroup of (R, -).
Thus, () Acwg.Now,letA eSc,(R).ByCorollary4.14, A = A-wpg . Hence, for every x € wg, there exist

AeSe,, (R)
a,beAsuchthata e b-x,and so a € A - x. By Theorem 4.15, A is invertible, and therefore x ¢ A-a ¢ A. Then
wp €A,andthuswg © (1) A.Hence, the proof is complete. O

AeSc,, (R)

We recall that a hyperring (R, +, -) is said to be m-idempotent ([12]) if there exists a constant m, 2 < m € N,
such that x € x™, for all x € R.

Example 4.17. [12] Consider the Krasner hyperring R = {0, a, b} with the hyperaddition and the multiplication
defined as follows [20]:

+‘ 0 a b -‘Oab
0/{o} {a} {b} 0000
al{a} {a,b} R al0ba

b|{b} R {a,b}  bloab

(1) For every odd number m € N, we have 0™ = 0, a™ = a and b™ = b. Hence, R is m-idempotent, for all odd
natural numbers m.

(2) Besides, since a’ = a-a = b, it follows that R is not an 2-idempotent hyperring. Similarly, one proves that,
for all even numbers m € N, the hyperring R is not m-idempotent.

Example 4.18. The hyperring defined in Example 3.2 is an m-idempotent hyperring (satisfying relation (2)), for
allm,2 <meN[12].

Example 4.19. Define on the set R = {0, 1} two hyperoperations as follows:

B0 1 @l o 1
0|{0} R o[{o} {0}
1| R {1} 1/{0} R

Then, (R, m, @) is an m-idempotent hyperring satisfying relation (2), for allm, 2 <m € N.

Example 4.20. Similarly, take the same support set R = {0, 1} and define on R the two hyperoperations as
follows:

®/01 o01

0[{0} R 0[{0} R

1| R R 1[{0} R

The hyperring (R, &, ©) is m-idempotent, for all m, 2 < m € N, and satisfies relation (2).
Now we give an example of m-idempotent hyperfield.

Example 4.21. Define on R = {0, 1} two hyperoperations as follows:

+[0 1 o 1
ol{o} R o[{0} R
1R {1} 1| R {1}

Then, (R, +, -) is an m-idempotent hyperfield satisfying relation (2).

n n
Now, forall a € R, put X(a) = U{>_ A" |ae > A{'}, where A1, ..., An CR.
i=1 i=1

Theorem 4.22. Let R be an m-idempotent hyperfield. Then X' (a) is an m-complete part of R, for all a < R.
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n
Proof. Suppose that a € R and Z ZtnXx (a) # @, for some z1, ..., zy € R. Then there exists z € R such that
i=1

n n

ze Zz{" and z € A, where A = ZAT, for Ai1,...,An c R. Since (R, -) is a hypergroup, there exist w, b € R
i=1 i=1

suchthatz, ew-aandaez-b.Also, forall 1 <i<n-1wehave z; € z; - R. Hence,

n-1
feSzts(w-a)"c(z1-R)"+...+(zn-1-R)" +(Ww-A-b)",

op

Il
(o
Il
[

y4

since z € A. Moreover, R is m-idempotent and we have b € b™, thus

n
aez-bc (Y z") bzl -b"+...+zy4-b" +(w-a-b)"
i-1

c(zi-R)"+...+(zn-1-R)" + (w-4-b)™.

n

Therefore, (z1-R)™+...+(zn-1-R)™ +(w-A-b)™ c X(a)andso ) z' ¢ X(a). Then, X (a) is an m-complete
i=1

part of R. O

Theorem 4.23. Let R be an m-idempotent hyperfield. Then X (a) = wg, for every a € wg.

Proof. 1t is not difficult to see that a - wf = wf, for all a € wf. Hence, wy = a - wf = Cm(a) € X(a), by
n

Theorem 4.13 and Theorem 4.22. Now, let a € wy and x € X'(a). Then there exists A = " Aj" ¢ X (a) such that
i=1
x € A.Since a € A, then {x, a} c A. Since R satisfies relation (2), there exist x; € A;, for 1 <i < n, such that

n

{x,a} ¢ > x"andso ey, (x) = ey, (a). Then pm(x) = pm(a). Hence, x € gn' (¢m(a)) = a-wf = wi. Therefore,
i=1

the proof is complete. O

Theorem 4.24. The relation e, is transitive on m-idempotent hyperfields.

Proof. Let R be an m-idempotent hyperfield and xe,y, for x, y € R. Hence, x € o' (om(y)) = y-wp. Similarly,
we have y € x - wg' which implies that {x,y} < x - wf. Then, there exist t,z ¢ wg such that x € x - t and
n
y € x-z. By Theorem 4.23, z € wy' = X(t) and thus {t,z} ¢ A = )" A}" for A c X (t). Since R is m-idempotent,
i=1
n n
{x,y} cx-Ac > (x-A;)". So, there exist z; € x - A; for every 1 < i < nsuch that {x,y} ¢ > x{". Therefore,
i=1 i1
Xemy and so ey, = em. O

5 Conclusions

The fundamental relation v* defined by Vougiouklis [16] on a general hyperring R is the smallest equivalence
relation on R such that the quotient structure R/~* is a ring. If we consider a special type of hyperrings,
i.e. those satisfying relation (2), we can define another fundamental relation on R, e,,-relation [12], smaller
than v*, while on m-idempotent hyperrings satisfying relation (2), we have ¢y, = v* [12]. In general, e, is not
transitive. This paper provides a detailed study on the transitivity property of . Using m-complete parts of
a hyperring, we have proved that ¢y, is transitive on m-idempotent hyperfields satisfying relation (2).
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