
Open Access. © 2018 Norouzi and Cristea, published by De Gruyter. This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 License.

Open Math. 2018; 16: 1012–1021

Open Mathematics

Research Article

Morteza Norouzi and Irina Cristea*

Transitivity of the εm-relation on
(m-idempotent) hyperrings
https://doi.org/10.1515/math-2018-0085
Received April 17, 2018; accepted July 4, 2018.

Abstract: On a general hyperring, there is a fundamental relation, denoted γ∗, such that the quotient set
is a classical ring. In a previous paper, the authors de�ned the relation εm on general hyperrings, proving
that its transitive closure ε∗m is a strongly regular equivalence relation smaller than the γ∗-relation on some
classes of hyperrings, such that the associated quotient structure modulo ε∗m is an ordinary ring. Thus, on
such hyperrings, ε∗m is a fundamental relation. In this paper, we discuss the transitivity conditions of the
εm-relation on hyperrings and m-idempotent hyperrings.
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1 Introduction
The quotient set has played an important role in the algebraic hyperstructures theory since its beginning for at
least two reasons. The �rst one concerns themotivation of the de�nition of hypergroup, very well pointed out
by F. Marty in his pioneering paper on hypergroups from 1934. It is well known that the quotient of a group G
by an arbitrary subgroup H of G is a group if and only if H is a normal subgroup, while Marty showed that the
quotient structure G/H is always a hypergroup. More generally, as Vougiouklis proved in [1], if one factorizes
the group G by any partition S of G, then the quotient G/S is an Hv-group (i.e. a reproductive hypergroupoid
satisfying the weak associativity). Secondly, the quotient set represents the bridging element between the
classical algebraic structures and the corresponding hyperstructures, asmentioned in [2]. The �rst step in this
direction was made by Koskas [3], when he used the β-relation and its transitive closure β∗ to obtain a group
(as a quotient structure of a hypergroup modulo β∗). Later on, the study of this correspondence between
classical structures and hyperstructures with similar behaviour has been extended and new equivalence
relations have been de�ned and called fundamental relations. They are the smallest strongly regular relations
de�ned on a hyperstructure such that the quotient set is a classical structure, having similar properties. If
on a (semi)hypergroup one considers the β∗-relation, then the quotient set is a (semi)group. Besides, the
quotient set modulo the γ∗-relation, introduced by Freni [4], is a commutative (semi)group. Similarly, other
fundamental relations have been de�ned onhypergroups in order to obtain nilpotent groups [5], engel groups
[6], or solvable groups [7]. The same approach was used also for ring-like hyperstructures. It started in 1991,
when Vougiouklis [1] de�ned the γ-relation on a general hyperring R (addition and multiplications are both
hyperoperations) such that the quotient R/γ∗ is a ring. Even if they are denoted in the same way (this could
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create confusion for the new readers of the algebraic hyperstructure theory, while it is already accepted for
the researchers of this �eld), the fundamental relation de�ned by Freni [4] on semihypergroups is di�erent
by the fundamental relation γ de�ned by Vougiouklis [1] on hyperrings. Later on, the α∗-relation [8] has
been introduced to obtain a commutative ring. More recently, other fundamental relations have been de�ned
obtaining Boolean rings [9] or commutative rings with identity [10] as associated quotient structures. We end
this brief recall of the fundamental relations with those in hypermodule theory, where, for example, the θ-
fundamental relation [11] leads to commutative modules by the same method of factorization.

The authors of this note proposed in [12] a new perspective of the study of fundamental relations on
hyperstructures. The γ∗-relation de�ned on a general hyperring R is the smallest strongly regular relation
such that the quotient R/γ∗ is a ring. The paper [12] deals with the question: Under which conditions can a
fundamental relation smaller than γ be de�ned on a general hyperring, such that its transitive closer behaves
similar to γ∗? To answer to this question, the εm-relation was de�ned on a special class of (semi)hyperrings,
such that εm ⊊ γ and the quotient structure modulo ε∗m is an ordinary (semi)ring. Moreover, onm-idempotent
hyperrings it was proved that ε∗m = γ∗.

In this paper, we study the transitivity property of the εm-relation on general hyperrings. First, we
introduce the notion of m-complete parts based on the εm-relation and investigate their properties, which
help us to show that εm is transitive on m-idempotent hyper�elds.

2 Regular and fundamental relations on hyperstructures
In this section we review some basic de�nitions and properties regarding fundamental relations on general
hyperrings. For further details, the readers are referred to [2], [10, 13–15, 17].

De�nition 2.1 ([16]). An algebraic system (R,+, ⋅) is said to be a general hyperring (by short a hyperring), if
(R,+) is a hypergroup, (R, ⋅) is a semihypergroup, and ” ⋅ ” is distributive with respect to ” + ”.

In the above de�nition, if (R,+) is a semihypergroup, then (R,+, ⋅) is called a semihyperring. A nonempty
subset I of a hyperring (R,+, ⋅) is a hyperideal, if (I,+) is a subhypergroup of (R,+) and, for all x ∈ I and
r ∈ R, we have r ⋅ x ∪ x ⋅ r ⊆ I.

We recall that a subhypergroup A of (R, ⋅) is said to be invertible on the left (on the right), if x ∈ A ⋅ y
(x ∈ y ⋅ A), then y ∈ A ⋅ x (y ∈ x ⋅ A), for all x, y ∈ R. A subhypergroup is invertible, if it is invertible on the left
and on the right. Moreover, a subhypergroup B of (R, ⋅) is called closed on the left (on the right), if x ∈ a ⋅ y
(x ∈ y ⋅ a) implies that a ∈ B, for every a ∈ R and x, y ∈ B. We say B is closed, if it is closed on the left and on
the right. It is easy to see that every invertible subhypergroup of (R, ⋅) is closed.

Let ρ be an equivalence relation on a hypergroup (H, ○). For A, B ⊆ H, AρBmeans that, for all x ∈ A there
exists y ∈ B such that xρy, and for all v ∈ B there exists u ∈ A such that uρv. Moreover, AρBmeans that for all
x ∈ A and for all y ∈ B, we have xρy. Accordingly, an equivalence relation ρ on a hypergroup (H, ○) is called
regular if aρb and cρd imply (a ○ c) ρ (b ○ d), for a, b, c, d ∈ R. Besides, ρ is called strongly regular if, under
the same conditions, we have (a ○ c) ρ (b ○ d), for a, b, c, d ∈ R.

The main role of the (strongly) regular relations on hypergroups is re�ected by the following result.

Theorem 2.2 ([17]). Consider the equivalence relation ρ on the hypergroup (H, ○) and the hyperoperation
ρ(x) ⊗ ρ(y) = {ρ(z) ∣ z ∈ ρ(x) ○ ρ(y)} on the quotient H/ρ = {ρ(x) ∣ x ∈ H}. Then ρ is regular (strongly
regular) on H if and only if (H/ρ,⊗) is a hypergroup (group).

An equivalence relation ρ is (strongly) regular on a hyperring (R,+, ⋅), if it is (strongly) regular with respect
to both hyperoperations ” + ” and ” ⋅ ”. One example of strongly regular relation on (semi)hyperrings is the
γ-relation de�ned by Vougiouklis in [1] as follows. Let (R,+, ⋅) be a (semi)hyperring and x, y ∈ R. Then xγy
if and only if {x, y} ⊆ u, where u is a �nite sum of �nite products of elements of R. In other words, xγy if
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and only if {x, y} ⊆ ∑
j∈J
(∏
i∈Ij

zi), for some �nite sets of indices J and Ij and elements zi ∈ R. Let γ∗ be the

transitive closure of γ, that is xγ∗y if and only if there exist the elements z1, . . . , zn+1 ∈ R, with z1 = x and
zn+1 = y, such that ziγzi+1, for i ∈ {1, . . . , n}. In [1] it was shown that γ∗ is the smallest strongly regular
relation on a hyperring R such that the quotient (R/γ∗,⊕,⊙) is a classical ring with the operations de�ned
as: γ∗(x)⊕γ∗(y) = γ∗(z), for all z ∈ γ∗(x)+γ∗(y) and γ∗(x)⊙γ∗(y) = γ∗(t), for all t ∈ γ∗(x) ⋅γ∗(y). Hence,
(R/γ∗,⊕,⊙) is called the fundamental ring obtained by the factorization with the γ∗-relation.

3 The εm-relation on hyperrings
In [12] the authors de�ned on (semi)hyperrings a new relation, denoted by εm, smaller than the γ-relation,
and which is not transitive in general. Thus they found some conditions for the transitivity of the εm-relation
on hyperrings. In this section we recall its de�nition and main properties.

Let (R,+, ⋅) be a semihyperring and select a constant m, such that 2 ≤ m ∈ N. Put {(x, x) ∣ x ∈ R} ⊆ εm
and for all a, b ∈ R de�ne

aεmb⇐⇒ ∃n ∈ N, ∃(z1, . . . , zn) ∈ Rn ∶ {a, b} ⊆
n
∑
i=1

zmi , (1)

where zmi = zi ⋅ zi ⋅ . . . ⋅ zi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m times

.

Now, let (R,+, ⋅) be a hyperring such that (R, ⋅) is commutative and the following implication holds:

B ⊆
n
∑
i=1

Am
i Ô⇒ ∃xi ∈ Ai (1 ≤ i ≤ n) ∶ B ⊆

n
∑
i=1

xmi , (2)

for all B, A1, . . . , An ⊆ R. Accordinglywith Theorems 3.3 and3.4 in [12], on a hyperring R satisfying condition
(2), the relation ε∗m is the smallest strongly regular equivalence relation such that the quotient set R/ε∗m is a
ring, thus it is a fundamental relation on R. Besides, we note that relation (2) is valid if and only if, for all

A1, . . . , An ⊆ R, there exists xi ∈ Ai (1 ≤ i ≤ n) such that
n
∑
i=1

Am
i ⊆

n
∑
i=1

xmi .

The next result provides su�cient conditions for the transitivity of the relation εm.

Theorem 3.1 ([12]). Let (R,+, ⋅) be a hyperring satisfying the relation (2) such that there exists 0 ∈ R such that

x+0 = {x} and x ⋅0 = {0} for all x ∈ R. If A1, . . . , An are hyperideals of R, then X = ⋃{
n
∑
i=1

Am
i ∣ A1, . . . , An ⊆ R}

is an equivalence class of ε∗m and εm is transitive.

Example 3.2. De�ne on R = {0, a, b} two hyperoperations as follows:

+ 0 a b
0 {0} {a} {b}
a {a} {a, b} R
b {b} R {a, b}

⋅ 0 a b
0 {0} {0} {0}
a {0} R R
b {0} R R

Then, (R,+, ⋅) is a hyperring [18].

It is easy to check that, for all A1, . . . , An ⊆ R, there exist xi ∈ Ai (1 ≤ i ≤ n), such that
n
∑
i=1

Am
i ⊆

n
∑
i=1

xmi ,

relation equivalently with (2).

We end this section emphasizing the fact that if the hyperring (R,+, ⋅) does not satisfy condition (2), then the
relation εm is not transitive, while its transitive closure ε∗m is not strongly regular on (R, ⋅) [12].
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4 Transitivity of the relation εm on m-idempotent hyper�elds
Since the conditions in Theorem 3.1 are not immediate, we aim to �nd some particular hyperrings, where the
relation εm is transitive. For doing this, we will �rst de�ne the concept of m-complete part and then we will
prove that εm is transitive on m-idempotent hyper�elds.

Themain role of the complete parts of a semihypergroup, introduced by Koskas [3] and very well recalled
by Antampou�s et al. in the survey [2], is played in �nding the β∗ class of each element. In particular, a
nonempty subset A of a semihypergroup (H, ⋅) is called a complete part of H if, for any nonzero natural
number n and any elements a1, . . . , an of H, the following implication holds:

A ∩
n
∏
i=1

ai ≠ ∅ ⇒
n
∏
i=1

ai ⊆ A.

In other words, the complete part A absorbs every hyperproduct containing at least one element of A. In
particular, for any element x ∈ A, the class β∗(x) is a complete part of H. Moreover, the intersection of all
complete parts of H containing A is called the complete closure of A in H, denoted by C(A). Besides, β∗(x) =
C(x), for any x ∈ H.

As already mentioned before, Vougiouklis [16] de�ned the relation γ on a hyperring R, proving that its
transitive closure γ∗ is the smallest strongly regular relation de�ned on R such that the quotient R/γ∗ is a
ring. Later on Mirvakili et al. [19] studied the transitivity property of this relation, introducing the notion of
complete part on hyperrings as follows: a nonempty subset M of a hyperring R is a complete part if, for any
natural number n, any i = 1, 2, . . . , n, any natural number ki and arbitrary elements zi1, . . . , ziki ∈ R, we have

M ∩
n
∑
i=1
(
ki
∏
j=1

zij) ≠ ∅ ⇒
n
∑
i=1
(
ki
∏
j=1

zij) ⊆ M.

Now we will extend these de�nitions to the case of hyperrings, aiming to prove that the class ε∗(x) of an
element x in the hyperring R is an m-complete part of R.

De�nition 4.1. We say that a nonempty subset A of a (semi)hyperring (R,+, ⋅) is an m-complete part of R if

A ∩
n
∑
i=1

zmi ≠ ∅ implies that
n
∑
i=1

zmi ⊆ A, for all n ∈ N and z1, . . . , zn ∈ R. The intersection of all m-complete parts

of R containing a nonempty subset A of R is called the m-complete closure of A and it is denoted by Cm(A).

Example 4.2. Consider the following hyperoperations on the set R = {a, b, c, d}:

+ a b c d
a {b, c} {b, d} {b, d} {b, d}
b {b, d} {b, d} {b, d} {b, d}
c {b, d} {b, d} {b, d} {b, d}
d {b, d} {b, d} {b, d} {b, d}

⋅ a b c d
a {b, d} {b, d} {b, d} {b, d}
b {b, d} {b, d} {b, d} {b, d}
c {b, d} {b, d} {b, d} {b, d}
d {b, d} {b, d} {b, d} {b, d}

Then (R,+, ⋅) is a semihyperring. For every m ≥ 2 and for all z1, . . . , zn ∈ R, we have
n
∑
i=1

zmi = {b, d}. It follows

that the subsets A1 = {b, d}, A2 = {a, b, d} and A3 = {c, b, d} are all proper m-complete parts of R, i.e.
m-complete parts of R, di�erent by R.

Theorem 4.3. Let ρ be a strongly regular equivalence relation on R. Then ρ(a) is an m-complete part of R, for
all a ∈ R.

Proof. Since ρ is a strongly regular relation on R, it follows that the quotient R/ρ is a ring (with the addition

"⊕" and the multiplication "⊙"). Let a ∈ R and ρ(a)∩
n
∑
i=1

zmi ≠ ∅, for arbitrary elements z1, . . . , zn ∈ R. Hence,
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there exists y ∈
n
∑
i=1

zmi such that ρ(y) = ρ(a). Consider the strong homomorphism π ∶ R Ð→ R/ρ de�ned by

π(x) = ρ(x), for all x ∈ R, where R/ρ is a ring (a trivial hyperring). Thus,

π(
n
∑
i=1

zmi ) =
n
⊕
i=1
(ρ(zi) ⊙ . . . ⊙ ρ(zi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m times

) = ρ(y) = ρ(a),

which implies that
n
∑
i=1

zmi ⊆ ρ(a). This completes the proof.

For a nonempty subset A of a (semi)hyperring R, denote

Km
1 (A) = A

Km
n+1(A) = {x ∈ R ∣ ∃(z1, . . . , zn) ∈ Rn ; x ∈

n
∑
i=1

zmi and Km
n (A) ∩

n
∑
i=1

zmi ≠ ∅}

Km(A) = ⋃
n≥1

Km
n (A).

Moreover, for any x ∈ R and any natural number n, for simplicity we denote Km
n ({x}) = Km

n (x).

Lemma 4.4. For any nonempty subset A of a hyperring R, the set Km(A) is an m-complete part of R.

Proof. Let Km(A)∩
n
∑
i=1

zmi ≠ ∅, for arbitrary elements z1, . . . zn ∈ R. Then, there exists t ∈ N such that Km
t (A)∩

n
∑
i=1

zmi ≠ ∅, which implies that
n
∑
i=1

zmi ⊆ Km
t+1(A) ⊆ Km(A). Thus, Km(A) is anm-complete part of R, containing

A.

Theorem 4.5. Km(A) = Cm(A), for any nonempty subset A of R.

Proof. By Lemma 4.4, we have Cm(A) ⊆ Km(A). Now, letM be anm-complete part of R containing A. Clearly,
Km
1 (A) = A ⊆ M. Suppose that Km

n (A) ⊆ M. Let x ∈ Km
n+1(A). Then there exist the elements z1, . . . , zn ∈ R such

that x ∈
n
∑
i=1

zmi and ∅ ≠ Km
n (A) ∩

n
∑
i=1

zmi ⊆ M ∩
n
∑
i=1

zmi . Since M is an m-complete part, it follows that
n
∑
i=1

zmi ⊆ M

and so Km
n+1(A) ⊆ M. Hence, Km(A) ⊆ M, and thus Km(A) ⊆ Cm(A).

Example 4.6. Consider the semihyperring R in Example 4.2. One obtains that the m-complete closure of A2 is
A2 itself, for any natural number m ≥ 2. Moreover, if we consider the γ-relation on R, then we have ∑∏ zi =
{b, c} ∶= P or ∑∏ zi = {b, d} ∶= Q, for any �nite hypersums of �nite hyperproducts of elements zi ∈ R. Since
P∩Q ≠ ∅ and P ⊈ Q and Q ⊈ P, then P and Q are not complete parts of R. Besides, A2 ∩ P ≠ ∅, but P ⊈ A2. This
means that A2 is not a complete part, but only an m-complete part.

Theorem 4.7. For all nonempty subsets A of R, it holds Cm(A) = ⋃
a∈A
Cm(a).

Proof. Clearly we have the inclusion Cm(a) ⊆ Cm(A), for all a ∈ A. Hence, ⋃
a∈A
Cm(a) ⊆ Cm(A).

Conversely, we show that Km
n (A) ⊆ ⋃

a∈A
Km
n (a), by induction on ”n”. For n = 1, we have Km

1 (A) = A =

⋃
a∈A
{a} = ⋃

a∈A
Km
1 (a). Now, suppose that Km

n (A) ⊆ ⋃
a∈A

Km
n (a) and take an arbitrary x ∈ Km

n+1(A). Then, x ∈
n
∑
i=1

zmi

and ∅ ≠ Km
n (A) ∩

n
∑
i=1

zmi , for some elements z1, . . . , zn ∈ R. Thus, there exists y ∈ R such that x, y ∈
n
∑
i=1

zmi and

y ∈ Km
n (A) ⊆ ⋃

a∈A
Km
n (a). This implies that there exists a′ ∈ A such that y ∈ Km

n (a′) ∩
n
∑
i=1

zmi ≠ ∅, meaning that

x ∈ Km
n+1(a′), and thus Km

n+1(A) ⊆ ⋃
a∈A

Km
n+1(a).
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If x ∈ Cm(A), it follows that x ∈ Km(A) = ⋃
n≥1

Km
n (A) ⊆ ⋃

n≥1
( ⋃
a∈A

Km
n (a)). Then, for some a′ ∈ A and n ≥ 1,

we have x ∈ Km
n (a′) ⊆ Km(a′) = Cm(a′) ⊆ ⋃a∈A Cm(a). This completes the proof.

In the following we will give an equivalent description of the relation ε∗m on hyperrings, using the notion of
m-complete part. First we will prove some properties of the m-complete parts.

Lemma 4.8. Km
n (Km

2 (x)) = Km
n+1(x), for all x ∈ R and n ≥ 2.

Proof. We prove it by induction on ”n”. For n = 2, we have

Km
2 (Km

2 (x)) = {x ∈ R ∣ ∃(z1, . . . , zn) ∈ Rn ; x ∈
n
∑
i=1

zmi and Km
1 (Km

2 (x)) ∩
n
∑
i=1

zmi ≠ ∅}

= {x ∈ R ∣ ∃(z1, . . . , zn) ∈ Rn ; x ∈
n
∑
i=1

zmi and Km
2 (x) ∩

n
∑
i=1

zmi ≠ ∅}

= Km
3 (x).

Now, suppose that Km
n−1(Km

2 (x)) = Km
n (x) and take an arbitrary element y ∈ Km

n (Km
2 (x)). Then there exist

z1, . . . , zn ∈ R such that y ∈
n
∑
i=1

zmi and∅ ≠ Km
n−1(Km

2 (x))∩
n
∑
i=1

zmi . Thus,∅ ≠ Km
n (x)∩

n
∑
i=1

zmi , and so y ∈ Km
n+1(x).

Hence, Km
n (Km

2 (x)) ⊆ Km
n+1(x). Similarly, we have Km

n+1(x) ⊆ Km
n (Km

2 (x)), that completes the proof.

Lemma 4.9. For all n ≥ 2 and x, y ∈ R, x ∈ Km
n (y) if and only if y ∈ Km

n (x).

Proof. We prove the result by induction on ”n”. Let n = 2. Then x ∈ Km
2 (y) if and only if, for z1, . . . , zn ∈ R, we

have x ∈
n
∑
i=1

zmi and ∅ ≠ {y} ∩
n
∑
i=1

zmi , meaning that, for z1, . . . , zn ∈ R, y ∈
n
∑
i=1

zmi and ∅ ≠ {x} ∩
n
∑
i=1

zmi . This is

equivalent with y ∈ Km
2 (x). Suppose now that x ∈ Km

n−1(y) if and only if y ∈ Km
n−1(x) and take x ∈ Km

n (y); then

there exist z, z1, . . . , zn ∈ R such that x ∈
n
∑
i=1

zmi , z ∈ Km
n−1(y) and z ∈

n
∑
i=1

zmi . Hence, by induction procedure,

y ∈ Km
n−1(z) and z ∈ Km

2 (x), which implies that y ∈ Km
n−1(Km

2 (x)) = Km
n (x) by Lemma 4.8. Similarly, y ∈ Km

n (x)
implies that x ∈ Km

n (y).

De�ne on a hyperring R the relation θ as follows: xθy if and only if x ∈ Km(y), for all x, y ∈ R.

Corollary 4.10. The relation θ is an equivalence on R.

Proof. For all x ∈ R, we have x ∈ Km
1 (x) ⊆ Km(x). Hence, θ is re�exive. Now, let x ∈ Km(y), for x, y ∈ R. By

Theorem 4.5, there exists n ≥ 1 such that x ∈ Km
n (y), which implies that y ∈ Km

n (x), by Lemma 4.9. Then,
y ∈ Km

n (x) ⊆ Km(x). Similarly, the converse is valid. Thus, θ is symmetric. Moreover, let xθy and yθz for
x, y, z ∈ R. Hence, x ∈ Cm(y) and y ∈ Cm(z). Let A be an m-complete part of R containing z. Since y ∈ Cm(z)
and Cm(z) ⊆ A, it follows that y ∈ A. Hence, Cm(y) ⊆ A and thus x ∈ A. Therefore, x ∈ ⋂

z∈A
A = Cm(z) = Km(z)

and so xθz.

Theorem 4.11. For all x ∈ R, ε∗m(x) = θ(x).

Proof. If xεmy, then x ∈
n
∑
i=1

zmi and ∅ ≠ {y} ∩
n
∑
i=1

zmi , for some elements z1, . . . , zn ∈ R. Hence, x ∈ Km
2 (y) ⊆

Km(y). Thus, εm ⊆ θ and ε∗m ⊆ θ∗ = θ.
Conversely, let xθy, that is, x ∈ Km(y), which implies that x ∈ Km

n+1(y), for n ∈ N. Then, there exist

x1, z1, . . . , zn ∈ R such that x ∈
n
∑
i=1

zmi , x1 ∈ Km
n (y) and x1 ∈

n
∑
i=1

zmi . Hence, {x, x1} ⊆
n
∑
i=1

zmi and so xεmx1.

Similarly, since x1 ∈ Km
n (y), there exists x2 ∈ Km

n−1(y) such that x1εmx2. By continuing this process, we can
obtain x3 ∈ Km

n−2(y), . . . , xn−1 ∈ Km
2 (y) and xn ∈ Km

1 (y) = {y} such that xεmx2εmx3 . . . εmxn−1εmxn = y. Hence,
xε∗my and so θ ⊆ ε∗m. Therefore the proof is completed.
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Now, we recall that a hyperring (R,+, ⋅) is said to be a hyper�eld, if (R, ⋅) is a hypergroup. Moreover, a strong
homomorphism from a hyperring (R,+, ⋅) to a hyperring (S,⊕,⊙) is a map f ∶ R Ð→ S such that f(x + y) =
f(x) ⊕ f(y) and f(x ⋅ y) = f(x) ⊙ f(y), for all x, y ∈ R. Considering the εm relation on R, it can be seen that
the map ϕm ∶ R Ð→ R/ε∗m is a strong homomorphism.

In the following we will consider R a hyper�eld satisfying relation (2) (this is a crucial assumption in the
proofs of the next results) such that R/ε∗m has a unit element denoted by 1R/ε∗m . Set ω

m
R = ϕ−1m (1R/ε∗m) = {x ∈

R ∣ ϕm(x) = 1R/ε∗m}. We will state some properties of the m-complete parts of hyper�elds satisfying relation
(2).

Theorem 4.12. If (R,+, ⋅) is a hyper�eld and A ⊆ R, then ϕ−1m (ϕm(A)) = A ⋅ ωm
R .

Proof. Let x ∈ ϕ−1m (ϕm(A)). Then there exists y ∈ A such that ϕm(x) = ϕm(y). Since (R, ⋅) is a hypergroup, it
follows that there exists t ∈ R such that x ∈ y ⋅ t , which implies that ϕm(x) = ϕm(y)⊙ϕm(t). Since (R/ε∗m ,⊙)
is a group and ϕm(x) = ϕm(y), it results ϕm(t) = 1R/ε∗m . Thus, t ∈ ϕ

−1
m (1R/ε∗m) = ω

m
R , and so x ∈ y ⋅ t ⊆ A ⋅ ωm

R .
Then ϕ−1m (ϕm(A)) ⊆ A ⋅ ωm

R .
Conversely, let x ∈ A ⋅ ωm

R . Then x ∈ a ⋅ y, for some a ∈ A and y ∈ ωm
R , that is ϕm(y) = 1R/ε∗m . Hence

ϕm(x) = ϕm(a ⋅ y) = ϕm(a) ⊙ ϕm(y) = ϕm(a) ⊙ 1R/ε∗m = ϕm(a) ∈ ϕm(A), and so x ∈ ϕ−1m (ϕm(A)). This
completes the proof.

Theorem 4.13. If (R,+, ⋅) is a hyper�eld and A ⊆ R, then Cm(A) = A ⋅ ωm
R .

Proof. It is easy to see that ϕ−1m (ϕm(A)) = {x ∈ R ∣ ∃a ∈ A ∶ ϕm(x) = ϕm(a)}. Also, we have ϕm(x) = ϕm(a) if
and only if ε∗m(x) = ε∗m(a), equivalently with θ(x) = θ(a), meaning that x ∈ Km(a) = Cm(a), by Theorem 4.11.
Hence, x ∈ Cm(A) if and only if x ∈ ϕ−1m (ϕm(A)), thus x ∈ A ⋅ωm

R , by Theorem 4.7 and Theorem 4.12. Therefore,
Cm(A) = A ⋅ ωm

R .

Corollary 4.14. Let R be a hyper�eld. A is an m-complete part of R if and only if A = A ⋅ ωm
R .

Proof. If A is an m-complete part, then Cm(A) = A. Hence, A = Cm(A) = A ⋅ ωm
R , by Theorem 4.13. Conversely,

if A = A ⋅ ωm
R , then A = Cm(A) by Theorem 4.13, and so A is an m-complete part of R.

By Theorem 4.12, we have ωm
R ⋅ ωm

R = ϕ−1m (ϕm(ωm
R )) = ωm

R . Hence, ωm
R is an m-complete part of the hyper�eld

(R,+, ⋅), by Corollary 4.14.

Moreover, notice that, for two subsets A and B of the hyper�eld R such that one of them is anm-complete
part of R (assume that A is so), we have (A ⋅ B) ⋅ ωm

R = (A ⋅ ωm
R ) ⋅ B = A ⋅ B, by Corollary 4.14. Hence, A ⋅ B is an

m-complete part of R, by Corollary 4.14.

Theorem 4.15. Let (R,+, ⋅) be a hyper�eld. Then every m-complete part subhypergroup of (R, ⋅) is invertible.
Moreover, it is closed.

Proof. Let A be anm-complete part of R such that (A, ⋅) is a subhypergroup of (R, ⋅). Take x ∈ A ⋅y for x, y ∈ R.
Thus, x ∈ a ⋅ y, for a ∈ A, which implies that ϕm(x) = ϕm(a) ⊙ ϕm(y). Since ϕm(A) is a subgroup of R/ε∗m,
we have ϕm(y) = ϕm(a)−1 ⊙ ϕm(x) ∈ ϕm(A) ⊙ ϕm(x) = ϕm(A ⋅ x). Besides, A ⋅ x is an m-complete part of R,
hence y ∈ ϕ−1m (ϕm(A ⋅ x)) = Cm(A ⋅ x) = A ⋅ x. Then, A is invertible on the left. Similarly, we can show that A
is invertible on the right. Therefore, A is invertible, and by consequence it is also closed.

Theorem 4.16. Let (R,+, ⋅) be a hyper�eld and SCm(R) be the set of all m-complete parts of R which are
subhypergroups of (R, ⋅). Then, ωm

R = ⋂
A∈SCm (R)

A.

Proof. We know that ωm
R is an m-complete part of R. Let x ∈ ωm

R . For all t, y ∈ ωm
R , we have ϕm(x) = 1R/ε∗m =

ϕm(t) ⊙ ϕm(y) = ϕm(t ⋅ y). Hence, x ∈ ϕ−1m (ϕm(t ⋅ ωm)) = Cm(t ⋅ ωm
R ) = t ⋅ ωm

R , and so ωm
R ⊆ t ⋅ ωm

R for all t ∈ ωm
R .
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Clearly, t ⋅ ωm
R ⊆ ωm

R . Then ωm
R = t ⋅ ωm

R , for all t ∈ ωm
R , which implies that ωm

R is a subhypergroup of (R, ⋅).
Thus, ⋂

A∈SCm (R)
A ⊆ ωm

R . Now, let A ∈ SCm(R). By Corollary 4.14, A = A ⋅ωm
R . Hence, for every x ∈ ωm

R , there exist

a, b ∈ A such that a ∈ b ⋅ x, and so a ∈ A ⋅ x. By Theorem 4.15, A is invertible, and therefore x ∈ A ⋅ a ⊆ A. Then
ωm
R ⊆ A, and thus ωm

R ⊆ ⋂
A∈SCm (R)

A. Hence, the proof is complete.

We recall that a hyperring (R,+, ⋅) is said to be m-idempotent ([12]) if there exists a constant m, 2 ≤ m ∈ N,
such that x ∈ xm, for all x ∈ R.

Example 4.17. [12] Consider the Krasner hyperring R = {0, a, b}with the hyperaddition and themultiplication
de�ned as follows [20]:

+ 0 a b
0 {0} {a} {b}
a {a} {a, b} R
b {b} R {a, b}

⋅ 0 a b
0 0 0 0
a 0 b a
b 0 a b

(1) For every odd number m ∈ N, we have 0m = 0, am = a and bm = b. Hence, R is m-idempotent, for all odd
natural numbers m.

(2) Besides, since a2 = a ⋅ a = b, it follows that R is not an 2-idempotent hyperring. Similarly, one proves that,
for all even numbers m ∈ N, the hyperring R is not m-idempotent.

Example 4.18. The hyperring de�ned in Example 3.2 is an m-idempotent hyperring (satisfying relation (2)), for
all m, 2 ≤ m ∈ N [12].

Example 4.19. De�ne on the set R = {0, 1} two hyperoperations as follows:

⊞ 0 1
0 {0} R
1 R {1}

⊡ 0 1
0 {0} {0}
1 {0} R

Then, (R,⊞,⊡) is an m-idempotent hyperring satisfying relation (2), for all m, 2 ≤m ∈ N.

Example 4.20. Similarly, take the same support set R = {0, 1} and de�ne on R the two hyperoperations as
follows:

⊕ 0 1
0 {0} R
1 R R

⊙ 0 1
0 {0} R
1 {0} R

The hyperring (R,⊕,⊙) is m-idempotent, for all m, 2 ≤ m ∈ N, and satis�es relation (2).

Now we give an example of m-idempotent hyper�eld.

Example 4.21. De�ne on R = {0, 1} two hyperoperations as follows:

+ 0 1
0 {0} R
1 R {1}

⋅ 0 1
0 {0} R
1 R {1}

Then, (R,+, ⋅) is an m-idempotent hyper�eld satisfying relation (2).

Now, for all a ∈ R, put X(a) = ⋃{
n
∑
i=1

Am
i ∣ a ∈

n
∑
i=1

Am
i }, where A1, . . . , An ⊆ R.

Theorem 4.22. Let R be an m-idempotent hyper�eld. Then X(a) is an m-complete part of R, for all a ∈ R.
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Proof. Suppose that a ∈ R and
n
∑
i=1

zmi ∩ X(a) ≠ ∅, for some z1, . . . , zn ∈ R. Then there exists z ∈ R such that

z ∈
n
∑
i=1

zmi and z ∈ A, where A =
n
∑
i=1

Am
i , for A1, . . . , An ⊆ R. Since (R, ⋅) is a hypergroup, there exist w, b ∈ R

such that zn ∈ w ⋅ a and a ∈ z ⋅ b. Also, for all 1 ≤ i ≤ n − 1 we have zi ∈ zi ⋅ R. Hence,

n
∑
i=1

zmi ⊆
n−1
∑
i=1

zmi + (w ⋅ a)m ⊆ (z1 ⋅ R)m + . . . + (zn−1 ⋅ R)m + (w ⋅ A ⋅ b)m ,

since z ∈ A. Moreover, R is m-idempotent and we have b ∈ bm, thus

a ∈ z ⋅ b ⊆ (
n
∑
i=1

zmi ) ⋅ b ⊆ zm1 ⋅ bm + . . . + zmn−1 ⋅ bm + (w ⋅ a ⋅ b)m

⊆ (z1 ⋅ R)m + . . . + (zn−1 ⋅ R)m + (w ⋅ A ⋅ b)m .

Therefore, (z1 ⋅R)m+ . . .+(zn−1 ⋅R)m+(w ⋅A ⋅b)m ⊆ X(a) and so
n
∑
i=1

zmi ⊆ X(a). Then,X(a) is anm-complete

part of R.

Theorem 4.23. Let R be an m-idempotent hyper�eld. Then X(a) = ωm
R , for every a ∈ ωm

R .

Proof. It is not di�cult to see that a ⋅ ωm
R = ωm

R , for all a ∈ ωm
R . Hence, ωm

R = a ⋅ ωm
R = Cm(a) ⊆ X(a), by

Theorem 4.13 and Theorem 4.22. Now, let a ∈ ωm
R and x ∈ X(a). Then there exists A =

n
∑
i=1

Am
i ⊆ X(a) such that

x ∈ A. Since a ∈ A, then {x, a} ⊆ A. Since R satis�es relation (2), there exist xi ∈ Ai, for 1 ≤ i ≤ n, such that

{x, a} ⊆
n
∑
i=1

xmi and so ε∗m(x) = ε∗m(a). Then ϕm(x) = ϕm(a). Hence, x ∈ ϕ−1m (ϕm(a)) = a ⋅ωm
R = ωm

R . Therefore,

the proof is complete.

Theorem 4.24. The relation εm is transitive on m-idempotent hyper�elds.

Proof. Let R be anm-idempotent hyper�eld and xε∗my, for x, y ∈ R. Hence, x ∈ ϕ−1m (ϕm(y)) = y ⋅ωm
R . Similarly,

we have y ∈ x ⋅ ωm
R which implies that {x, y} ⊆ x ⋅ ωm

R . Then, there exist t, z ∈ ωm
R such that x ∈ x ⋅ t and

y ∈ x ⋅ z. By Theorem 4.23, z ∈ ωm
R = X(t) and thus {t, z} ⊆ A =

n
∑
i=1

Am
i for A ⊆ X(t). Since R is m-idempotent,

{x, y} ⊆ x ⋅ A ⊆
n
∑
i=1
(x ⋅ Ai)m. So, there exist zi ∈ x ⋅ Ai for every 1 ≤ i ≤ n such that {x, y} ⊆

n
∑
i=1

xmi . Therefore,

xεmy and so ε∗m = εm.

5 Conclusions
The fundamental relation γ∗ de�ned by Vougiouklis [16] on a general hyperring R is the smallest equivalence
relation on R such that the quotient structure R/γ∗ is a ring. If we consider a special type of hyperrings,
i.e. those satisfying relation (2), we can de�ne another fundamental relation on R, ε∗m-relation [12], smaller
than γ∗, while on m-idempotent hyperrings satisfying relation (2), we have ε∗m = γ∗ [12]. In general, εm is not
transitive. This paper provides a detailed study on the transitivity property of εm. Using m-complete parts of
a hyperring, we have proved that εm is transitive on m-idempotent hyper�elds satisfying relation (2).
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