
Open Access. © 2018 Vu et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

Open Math. 2018; 16: 999–1011

Open Mathematics

Research Article

Ho Vu, Donal O’Regan, and Ngo Van Hoa*

Regularization and error estimates for an
inverse heat problem under the conformable
derivative
https://doi.org/10.1515/math-2018-0084
Received August 18, 2017; accepted July 3, 2018.

Abstract: In this paper we study an inverse time problem for the nonhomogeneous heat equation under the
conformable derivative which is a severely ill-posed problem. Using the quasi-boundary value method with
two regularization parameters (one related to the error in a measurement process and the other is related to
the regularity of the solution) we regularize this problem and obtain a Hölder-type estimation error for the
whole time interval. Numerical results are presented to illustrate the accuracy and e�ciency of the method.
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1 Introduction
Partial di�erential equations (PDEs) arise in the natural sciences, and various boundary value problems for
these were widely studied including inverse and ill-posed problems (see, e.g., Tikhonov and Arsenin [1] and
Glasko [2] ). Anexample is thebackwardheat conductionproblem (BHCP) and theaim is todetect theprevious
status of a physical area from present information. The BHCP is a classical ill-posed problem that is di�cult
to solve since, in general, the solution does not always exist. Furthermore, even if the solution does exist, the
continuous dependence of the solution on the data is not guaranteed andnumerical calculations are di�cult.
The BHCP has been considered by many authors using di�erent methods [3]-[10]. In [5], Hao, Duc and Lesnic
gave an approximation for this problem using a non-local boundary value problem method, Hao and Duc in
[6] used the Tikhonov regularization method to give an approximation for this problem in a Banach space,
and Trong and Tuan in [11] used the method of integral equations to regularize the BHCP with a nonlinear
right hand side.

Fractional calculus arises in many areas in science and engineering such as aerodynamics and control
systems, signal processing, bioengineering and biomedical, viscoelasticity, �nance and plasma physics, etc.
(see [12]-[14]). For basic information and results we refer the reader to the monographs of Samko et al.
[15], Podlubny [16] and Kilbas et al. [17]. Mathematical modeling of many real world phenomena based on
de�nitions of fractional order integrals and derivatives is regarded as more appropriate than ones depending
on integer order operators, so as a result fractional di�erential equations and fractional partial di�erential
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equations are important �elds of research [18]-[21]. In the above works the de�nition of the fractional used
is either the Riemann-Liouville or the Caputo fractional derivative and most works use an integral form for
the fractional derivative. Many researchers are interested in the time-inverse problem for the heat equation
where the time-derivative is in the Caputo fractional sense. In particular, they consider the problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
α
u

∂tα − uxx = f(x, t), (x, t) ∈ (0, π) × (0, T]
u(0, t) = u(π, t) = 0, t ∈ [0, T]
u(x, T) = g(x),

(1)

where α ∈ (0, 1) is the fractional order of derivative and

∂
α

u
∂tα

= 1
Γ(1 − α)

t

∫
0

(t − s)−αus(x, s)ds.

By a time-inverse problem, we mean that, given information at a speci�c point of time, say t = T, the goal is
to recover the corresponding structure at an earlier time t < T. When α = 1, the problem (1) turns back to the
classical ill-posedproblem for thewell-knownheat equation (BCHP).Many researchers have applied di�erent
methods to regularize this problem. For example, in [9]- [10] the authors successfully applied variousmethods
to stabilize BCHP and obtainedmany results on the convergent of the regularized solution to the exact one. In
[7]-[8], the authors consider BCHPwhere the frequency domain isR. Problem (1)with 0 < α < 1was studied in
[22]-[24]where fundamental contributionsweremade for problem (1) on existence anduniqueness of solution
for this problem. In [25], the authors simpli�ed the Tikhonov regularization method to stabilize problem (1).
In [26] the authors consider problem (1) where the data is discrete.

However, there are some setbacks in the approaches of the Riemann-Liouville fractional and the Caputo
fractional derivativewhenmodeling real world phenomena (see [27] for a discussion). In [27] the authors gave
a new well-behaved simple fractional derivative called "the conformable derivative" depending just on the
basic limit de�nition of the derivative and this concept seems to satisfy all the requirements of the standard
derivative. For a function u ∶ (0,∞) → R the conformable derivative of order α ∈ (0, 1) of u at t > 0 is de�ned
by

Dαt u(t) = lim
h→0

u(t + ht1−α) − u(t)
h

, Dαt u(0) = lim
t→0+

Dαt u(t). (2)

Note that if u is di�erentiable, thenDαt u(t) = t1−αu′(t), where u′(t) = limh→0[u(t+h)−u(t)]/h. This concept
overcomes the setbacks of the previous concept and this new theory is discussed by Atangana [28] and
Abdeljawad [29]. In addition, Anderson and Ulness in [30] provide a potential application of the conformable
derivative in quantummechanics.

For PDEs concerning the conformable derivative there are several studies. In [31], Hammad and Khalil
used conformable fourier series to interpret the solution for the conformable heat equation, which is a
fundamental equation in mathematical physics. In [32], Chung used the conformable fractional derivative
and integral to study fractionalNewtonianmechanics, and in addition, the fractional Eule-Lagrange equation
was constructed. In [33], Eslami applied the Kudryashov method to obtain the traveling wave solutions
to the conformable fractional coupled nonlinear Schrodinger equation. In [34, 35], Çenesiz et al. studied
the conformable version of the time-fractional Burgers’ equation, the modi�ed Burgers’s equation, the
Burgers-Korteweg-de Vries equation and the solutions of conformable derivative heat equation. Çenesiz, Kurt
and Nane in [36] studied stochastic solutions of conformable fractional Cauchy problems where the space
operators may correspond to fractional Brownian motion, or a Levy process. Motivated by the above studies,
it is natural to consider the time-inverse problem for the heat equation under the conformable derivative.
Throughout this paper, we let Ω = [0, a], T is a positive number and Dαt is the conformable derivative of
order α with respect to t. We begin with the inverse problem in the conformable heat equation.
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1.1 The direct problem

Consider the following conformable heat equation

Dαt u(x, t) − uxx(x, t) = f(x, t), (x, t) ∈ Ω × (0, T], (3)
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T], (4)

u(x, 0) = u0(x), x ∈ Ω. (5)

Solving this equation with the given information f(x, t) and u0(x) is called the direct problem.

1.2 The inverse problem

Consider the following conformable heat equation

Dαt u(x, t) − uxx(x, t) = f(x, t), (x, t) ∈ Ω × (0, T], (6)
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T], (7)

u(x, T) = g(x), x ∈ Ω, (8)

where f(x, t) ∈ C(0, T; L2(Ω)) and g(x) ∈ L2(Ω). From the information given at �nal time t = T, the goal of
the inverse problem is to recover the information u(x, t) for 0 ≤ t < T. Unfortunately, the inverse problem is
usually an ill-posed problem in the sense of Hadamard. An ill-posed problem in the sense of Hadamard is the
one which violates at least one of the following conditions:
– Existence: There exists a solution of the problem.
– Uniqueness: The solution must be unique.
– Stability: The solution must depend continuously on the data, i.e., any small error in given data must

lead to a corresponding small error in the solution.

Problems which satisfy these conditions are called well-posed problems. We will show that the conformable
backward heat problem is an ill-posed problem.

First, let us make clear what a solution of the Problem (6) - (8) is. We call a function u ∈
C2,1 ((0, a) × (0, T); L2 (Ω)) a solution for Problem (6) - (8) if

Dαt ⟨u(⋅, t),w⟩ − ⟨uxx(⋅, t),w⟩ = ⟨f(⋅, t),w⟩ (9)

for all functions w ∈ L2(Ω). In fact, it is enough to choose w in the orthogonal basis {sin ( nπ
a x)}∞n=1 and then

(9) reduces to

un(t) = ekn(
Tα−tα

α
)gn −

T

∫
t

sα−1ekn(
sα−tα

α
)fn(s)ds,

and as a result, the solution of (6) - (8) can be represented by

u(x, t) =
∞
∑
n=1

un(t) sin(nπ
a
x) =

∞
∑
n=1

⎛
⎜
⎝
ekn(

Tα−tα
α
)gn −

T

∫
t

sα−1ekn(
sα−tα

α
)fn(s)ds

⎞
⎟
⎠
sin(nπ

a
x), (10)

where kn = (nπ/a)2 and

gn =
2
a

a

∫
0

g(x) sin(nπ
a
x) dx,

fn(t) =
2
a

a

∫
0

f(x, t) sin(nπ
a
x) dx,

un(t) =
2
a

a

∫
0

u(x, t) sin(nπ
a
x) dx.

(11)
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It is noted that the term ekn(
Tα−tα

α
) tends to in�nity as n tends to in�nity. Hence, it causes instability in the

solution.
In this paper, we will apply the quasi-boundary value method with a small modi�cation to regularize (6)

- (8). In fact, rather than using the original information, we will consider problem (6) - (8) with adjusted
information so that the adjusted problem is well-posed and approximates the original one. Consider the
following problem

Dαt uε,τ (x, t) − uε,τxx (x, t) = f ε,τ (x, t), (x, t) ∈ Ω × (0, T], (12)
uε,τ (x, t) = 0, (x, t) ∈ ∂Ω × (0, T], (13)

uε,τ (x, T) = gε,τ (x), x ∈ Ω, (14)

where

f ε,τ (x, t) =
∞
∑
n=1

e−kn
(Tα+τ)

α

εkn + e−kn
(Tα+τ)

α

fn(t) sin(nπ
a
x),

gε,τ (x) =
∞
∑
n=1

e−kn
(Tα+τ)

α

εkn + e−kn
(Tα+τ)

α

gn sin(nπ
a
x).

(15)

Lemma 1.1. Let 0 ≤ t ≤ T, τ > 0, ε ∈ D ∶= (0, (T
α + τ)
α

) and x > 0. Then, for α ∈ (0, 1) the following inequality
holds

e−
(tα+τ)

α
x

εx + e−
(Tα+τ)

α
x
≤ (αε)

tα−Tα
Tα+τ

⎛
⎝

Tα + τ
(1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

. (16)

Proof. For any ε ∈ D, x > 0, α ∈ (0, 1] and T > 0, the function

w(x) = 1
εx + e−

(Tα+τ)
α

x

maximizes at x = ln( Tα+τ
αε )/( Tα+τ

α ). Therefore,

w(x) = 1
εx + e−

(Tα+τ)
α

x
≤ w (ln(T

α + τ
αε

)/(T
α + τ
α

)) = Tα + τ
αε (1 + ln( Tα+τ

αε ))
. (17)

Then, we obtain the following estimation

e−
(tα+τ)

α
x

εx + e−
(Tα+τ)

α
x
= e−

(tα+τ)
α

x

(εx + e−
(Tα+τ)

α
x)

Tα−tα
Tα+τ (εx + e−

(Tα+τ)
α

x)
tα+τ
Tα+τ

⩽ e−
(tα+τ)

α
x

e−
(tα+τ)

α
x

1

(εx + e−
(Tα+τ)

α
x)

Tα−tα
Tα+τ

⩽ (αε)
tα−Tα
Tα+τ

⎛
⎝

Tα + τ
(1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

.

The proof is complete.

The rest of the paper is organized as follows. In Section 2, we study the well-posedness of problem (12) - (14)
and provide an error estimation between solutions of these two problems. Section 3 provides a numerical
example to illustrate the e�ciency of our method.
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2 Well-posedness of the regularized problem (12)-(14)
Theorem 2.1. Let f(x, t) ∈ C(0, T; L2(Ω)) and g(x) ∈ L2(Ω). Let τ > 0 and ε ∈ D be given. Then, (12)–(14) has
a unique solution uε,τ satisfying

uε,τ (x, t) =
∞
∑
n=1

⎛
⎜
⎝

e−kn
tα+τ
α

εkn + e−kn Tα+τ
α

gn −
e−kn

tα+τ
α

εkn + e−kn Tα+τ
α

T

∫
t

sα−1ekn(
sα−Tα

α
)fn(s)ds

⎞
⎟
⎠
sin(nπ

a
x). (18)

The solution depends continuously on g in L2(Ω).

Proof. First we prove the existence and uniqueness of a solution of the regularized problem (12) - (14).

Existence of solution. For all 0 ≤ t ≤ T, we have

uε,τ (x, t) =
∞
∑
n=1

uε,τn (t) sin(nπ
a
x),

where

uε,τn (t) = e−kn
tα+τ
α

εkn + e−kn Tα+τ
α

gn −
e−kn

tα+τ
α

εkn + e−kn Tα+τ
α

T

∫
t

sα−1ekn(
sα−Tα

α
)fn(s)ds.

It follows that

Dαt uε,τ (x, t) = −
∞
∑
n=1

kn
⎛
⎜
⎝

e−kn
tα+τ
α

εkn + e−kn Tα+τ
α

gn −
e−kn

tα+τ
α

εkn + e−kn Tα+τ
α

T

∫
t

sα−1ekn(
sα−Tα

α
)fn(s)ds

⎞
⎟
⎠
sin(nπ

a
x)

+
∞
∑
n=1

e−kn
Tα+τ

α

εkn + e−kn Tα+τ
α

fn(t) sin(nπ
a
x)

= uε,τxx (x, t) +
∞
∑
n=1

e−kn
Tα+τ

α

εkn + e−kn Tα+τ
α

fn(t) sin(nπ
a
x) .

(19)

On the other hand, we have

uε,τ (x, T) =
∞
∑
n=1

e−kn
Tα+τ

α

εkn + e−kn Tα+τ
α

gn sin(nπ
a
x). (20)

Hence, uε,τ is the solutionof the regularizedproblem (12)–(14), so the existenceof a solutionof the regularized
problem (12)–(14) is proved.

Uniqueness of solution. Let uε,τ (x, t) and vε,τ (x, t) be two solutions of (12) - (14). We denote w(x, t) =
uε,τ (x, t) − vε,τ (x, t). It is clear that w(x, T) = 0. We expand wn(x, t) =

∞
∑
n=1

wn(t) sin(nπ
a
x) with the

coe�cient

wn(t) =
2
a

a

∫
0

w(x, t) sin(nπ
a
x) dx, n = 1, 2, 3, ....

Multiply both sides of equation (12) by sin(nπ
a
x) and integrate by parts with respect to x, and use the

boundary condition to obtain

Dαt wn(t) + knwn(t) = f ε,τn (t), t ∈ (0, T), (21)

where kn = (nπ/a)2 and

f ε,τn (t) = 2
a

a

∫
0

f ε,τ (x, t) sin(nπ
a
x) dx.
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The condition w(x, T) = 0 yields wn(T) = 0. Then, the well-posedness for the fractional di�erential equation
(21) with the boundary condition wn(T) = 0 yields wn(t) ≡ 0 in t ∈ [0, T]. This infers that w(x, t) ≡ 0.

Stability of solution. The solution of the problem (12)–(14) depends continuously on g. In fact, let uε,τ

and vε,τ be two solutions of (12)–(14) corresponding to the �nal data gε,τ and hε,τ , and uε,τ and vε,τ are
represented by

uε,τ (x, t) =
∞
∑
n=1

⎛
⎜
⎝

e−kn
tα+τ
α

εkn + e−kn Tα+τ
α

gn −
e−kn

tα+τ
α

εkn + e−kn Tα+τ
α

T

∫
t

sα−1ekn(
sα−Tα

α
)fn(s)ds

⎞
⎟
⎠
sin(nπ

a
x), (22)

vε,τ (x, t) =
∞
∑
n=1

⎛
⎜
⎝

e−kn
tα+τ
α

εkn + e−kn Tα+τ
α

hn −
e−kn

tα+τ
α

εkn + e−kn Tα+τ
α

T

∫
t

sα−1ekn(
sα−Tα

α
)fn(s)ds

⎞
⎟
⎠
sin(nπ

a
x), (23)

where

gn =
2
a

a

∫
0

gε,τ (x) sin(nπ
a
x) dx, hn =

2
a

a

∫
0

hε,τ (x) sin(nπ
a
x) dx.

Direct computation leads us to

∣uε,τ (x, t) − vε,τ (x, t)∣ =
RRRRRRRRRRRR

∞
∑
n=1

e−kn
tα+τ
α

εkn + e−kn Tα+τ
α

(gn − hn) sin(nπ
a
x)

RRRRRRRRRRRR
.

Applying Lemma 1.1 directly, we get

∥uε,τ (., t) − vε,τ (., t)∥2 = a
2

∞
∑
n=1

RRRRRRRRRRRR

e−kn
tα+τ
α

εkn + e−kn Tα+τ
α

(gn − hn)
RRRRRRRRRRRR

2

⩽ a
2
⎛
⎜
⎝
(αε)

tα−Tα
Tα+τ

⎛
⎝

Tα + τ
(1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ ⎞

⎟
⎠

2
∞
∑
n=1

∣(gn − hn)∣2

=
⎛
⎜
⎝
(αε)

tα−Tα
Tα+τ

⎛
⎝

Tα + τ
(1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ ⎞

⎟
⎠

2

∥gε,τ − hε,τ∥2.

(24)

Therefore,

∥uε,τ (⋅, t) − vε,τ (., t)∥ ⩽ (αε)
tα−Tα
Tα+τ

⎛
⎝

Tα + τ
(1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

∥gε,τ − hε,τ∥ . (25)

The proof is complete.

We have shown that the regularization problem (12)–(14) is a well-posed problem in the sense of Hadamard.
Now, the main goal of the coming theorem is to provide an error estimation between the regularization
solution and the exact solution.

Theorem 2.2. Let g, f , uε,τ as in Theorem 2.1 and assume that problem (6)–(8) has a solution u ∈ C2,1((0, a)×

(0, T); L2(Ω)) and

¿
ÁÁÀ ∞
∑
n=1

(
T
∫
0
knsα−1 fn(s)

e−kn
sα
α
ds)

2

< ∞, where kn = (nπ/a)2. Suppose that the problem (6)–(8)

has uniquely a solution u such that ∥u(⋅, 0)∥ < ∞. Then the following estimate holds for all 0 < t ≤ T,

∥u(⋅, t) − uε,τ (⋅, t)∥ ⩽ C1ε
tα+τ
Tα+τ

⎛
⎝

Tα + τ
α (1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

, (26)

where

C1 =

¿
ÁÁÁÁÀa

∞
∑
n=1

k2n
⎛
⎜
⎝
∣un(0)∣2 +

⎛
⎜
⎝

T

∫
0

sα−1fn(s)
e−kn sα

α

ds
⎞
⎟
⎠

2
⎞
⎟
⎠
,

and uε,τ is the unique solution of problem (12)–(14).
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Proof. The exact solution satis�es

u(x, t) =
∞
∑
n=1

⎛
⎜
⎝
ekn

Tα−tα
α gn − ekn

Tα−tα
α

T

∫
t

(sα−1ekn
sα−Tα

α fn(s)) ds
⎞
⎟
⎠
sin(nπ

a
x). (27)

On the other hand, in terms of un(0), we have

u(x, T) =
∞
∑
n=1

⎛
⎜
⎝
un(0)e−kn

Tα
α +

T

∫
0

(sα−1e−kn
Tα−sα

α fn(s)) ds
⎞
⎟
⎠
sin(nπ

a
x), (28)

where

un(0) =
2
a
⟨u(x, 0), sin nπ

a
x⟩ = 2

a

a

∫
0

u(x, 0) sin(nπ
a
x) dx.

It follows that

gn = un(0)e−kn
Tα
α +

T

∫
0

(sα−1e−kn
Tα−sα

α fn(s)) ds. (29)

Combining (18) and (27), we get

∣un(t) − uε,τn (t)∣ =
RRRRRRRRRRRRRR

εkne−kn
tα
α

e−kn Tα
α (εkn + e−kn Tα+τ

α )
gn −

εkne−kn
tα
α

e−kn Tα
α (εkn + e−kn Tα+τ

α )

T

∫
t

sα−1ekn(
sα−Tα

α
)fn(s)ds

RRRRRRRRRRRRRR

=
RRRRRRRRRRRRR

εkne−kn
tα
α

εkn + e−kn Tα+τ
α

un(0) +
εkne−kn

tα
α

εkn + e−kn Tα+τ
α

t

∫
0

sα−1ekn
sα
α fn(s)ds

RRRRRRRRRRRRR

⩽ ε
tα+τ
Tα+τ

⎛
⎝

Tα + τ
α (1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

kn ∣un(0)∣

+ ε
tα+τ
Tα+τ

⎛
⎝

Tα + τ
α (1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

kn
T

∫
0

( s
α−1fn(s)
e−kn sα

α

) ds.

(30)

From the inequality (a + b)2 ≤ 2(a2 + b2), we have

∣un(t) − uε,τn (t)∣2 ≤ 2
⎛
⎜
⎝
ε

tα+τ
Tα+τ

⎛
⎝

Tα + τ
α (1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

kn
⎞
⎟
⎠

2
⎛
⎜
⎝
∣un(0)∣2 +

⎛
⎜
⎝

T

∫
0

( s
α−1fn(s)
e−kn sα

α

) ds
⎞
⎟
⎠

2
⎞
⎟
⎠
. (31)

From (31) and Parseval’s identity ∥u(⋅, t) − uε,τ (⋅, t)∥2 = a
2

∞
∑
n=1

∣un(t) − uε,τn (t)∣2, we get

∥un(⋅, t) − uε,τ (⋅, t)∥2 ⩽ C21
⎛
⎜
⎝
ε

tα+τ
Tα+τ

⎛
⎝

Tα + τ
α (1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ ⎞

⎟
⎠

2

, (32)

where

C1 =

¿
ÁÁÁÁÀa

∞
∑
n=1

k2n
⎛
⎜
⎝
∣un(0)∣2 +

⎛
⎜
⎝

T

∫
0

sα−1fn(s)
e−kn sα

α

ds
⎞
⎟
⎠

2
⎞
⎟
⎠
. (33)

This completes the proof of Theorem 2.2.

Theorem 2.3. (Error estimates in case of non-exact data) Let f , g as in Theorem 2.1. Let τ ≥ 0 and ε ∈ D be
given. Assume u is the unique solution of problem (6)–(8) corresponding to the exact data g. Suppose that gε,τ

is measured data such that
∥g − gε,τ∥ ≤ ε.
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Then there exists an approximate solution Uε,τ , which links to the noisy data gε,τ , satisfying

∥Uε,τ (⋅, t) − u(⋅, t)∥ ⩽ (α
tα−Tα
Tα+τ + C1) ε

tα+τ
Tα+τ

⎛
⎝

Tα + τ
α (1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

, ∀t ∈ (0, T). (34)

Proof. Let Uε,τ be the solution of the regularized problem (12)–(14) corresponding to data gε,τ and let uε,τ

be the solution of the problem (12)–(14) corresponding to the data g. Let u(x, t) be the exact solution, and in
view of the triangle inequality, one has

∥Uε,τ (x, t) − u(x, t)∥ ≤ ∥Uε,τ (x, t) − uε,τ (x, t)∥ + ∥u(x, t) − uε,τ (x, t)∥ .

Combining the results from Theorem 2.1 (see the proof) and Theorem 2.2, for every t ∈ [0, T], we get

∥Uε,τ (x, t) − u(x, t)∥ ≤ (αε)
tα−Tα
Tα+τ

⎛
⎝

Tα + τ
(1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

∥gε,τ − g∥ + C1ε
tα+τ
Tα+τ

⎛
⎝

Tα + τ
α (1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

≤ (α
tα−Tα
Tα+τ + C1) ε

tα+τ
Tα+τ

⎛
⎝

Tα + τ
α (1 + ln( Tα+τ

αε ))
⎞
⎠

Tα−tα
Tα+τ

.

The proof is complete.

3 Numerical illustration
In this section, we illustrate the theoretical results in Section 2 through an example. Consider the space
domainΩ = [0, a] in association with the �nal time T, and our problem is

Dαt u(x, t) − uxx(x, t) = (1 + (π
a
)
2
) e

tα
α sin(π

a
x) , (x, t) ∈ [0, a] × (0, T], (35)

u(0, t) = u(a, t) = 0, t ∈ (0, T], (36)
u(x, T) = g(x), x ∈ [0, a], (37)

where g(x) = e
Tα
α sin (πa x) . Under the above assumptions, the exact solution of the problem is

uex(x, t) = e
tα
α sin(π

a
x) . (38)

Now, due to the error in the measuring process, the measured data is perturbed by a "noise" with level ε, i.e

gnoise(x) = eT
α/α sin(π

a
x) +

P0
∑
p=1

εcp sin(pπ
a
x),

where P0 is a natural number and cp is a �nite sequence of randomnormal numberswithmean0andvariance
A2. It follows that the error in the measurement process is bounded by ε, ∥gnoise − g∥ ≤ Rε where R is some
positive number. The error between the measured data and the exact data will tend to 0 as ε tends to 0.
Regarding (18), the regularized solution corresponding to the measured data takes the following form

uε,τ (x, t) = e−k1
tα+τ
α

εk1 + e−k1 Tα+τ
α

⎡⎢⎢⎢⎢⎣
eT

α/α − (1 + (π
a
)
2
)

T

∫
t

sα−1ek1(
sα−Tα

α
)e

sα
α ds

⎤⎥⎥⎥⎥⎦
sin(π

a
x)

+
P0
∑
p=1

cp
εe−kp

tα+τ
α

εkp + e−kp Tα+τ
α

sin(pπ
a
x).

(39)

Let a = 5, P0 = 1000, A2 = 100. Consider the following situation:
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Situation 1. In this situation, the regularization parameter εwill be discussed. Fix α = 0.3, τ = 0.5. Consider
ε1 = 10−1, ε2 = 10−3, ε3 = 10−5. We have the following �gures:

Fig. 1. The exact solution with α = 0.3 (a) and regularized solution with ε1 = 10−1 (b)

(a) uex (b) uε1

Fig. 2. The regularized solution with ε2 = 10−3 (a) and with ε3 = 10−5 (b)

(a) uε2 (b) uε3

For eachpoint of timewe evaluate the "Relative error" between the exact solution and the regularized solution
which is de�ned by

RE(ε, t) = ∥uε,τ (., t) − uex(., t)∥
∥uex(., t)∥ . (40)

The relative error is a better representation of the di�erence between the exact and the approximate solution.
When the value of the exact solution is large, the di�erence between the exact and the approximate solution
does not tell usmuch information about the accuracy of the approximation. In this case, the relative error is a
better measurement. Figure 3 shows errors for a comparison between the exact solution and the regularized
solution at the initial time t0 = 0 and τ = 1 with various values of ε. In Table 1, we have the error table at time
time t∗ = 0.1.

Remark 3.1. From Figure 1, Figure 2, Figure 3, Figure 4 and Table 1, it is clear that as the mearsuring error ε gets
smaller, the regularized solution gets closer and closer to the exact one. It is also noted that in this situation, the
noise parameter cp varies from -249.689 to 242.4461.
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Fig. 3. At time t0 = 0 and τ = 1: Exact solution with α = 0.9 (black) and Regularized solution with ε1 = 10−1 (blue), ε3 = 10−3
(green), ε5 = 10−5 (red)

Table 1. The error and Relative error at time t∗ = 0.1.

ε ∥uε(., 0.1) − uex(., 0.1)∥ RE(ε, 0.1)
ε1 = 10−1 2004.6002763324 40.0920055266479
ε2 = 10−2 93.6668715963709 1.87333743192742
ε3 = 10−3 11.7191083956268 0.234382167912537
ε4 = 10−4 0.333770043724429 0.0666754008744885
ε5 = 10−5 0.0558155468882481 0.00111631093776496

Situation 2. In this situation, the focusing parameter is τ . Let α = 0.1 and �x ε = 10−3. Consider the series of
τ : τ1 = 0.3, τ2 = 0.5, τ3 = 1. We have Figure 6 to illustrate our theoretical results. It is also noted that in this
situation, the noise parameter cp varies from -220.5152 to 352.6678.

Fig. 4. The exact solution with α = 0.1 (a) and regularized solution with ε1 = 10−1 (b)

(a) uex (b) uε1

Remark 3.2. Figure 6 agrees with the theoretical result: the regularized solution with a higher value of τ is
closer to the exact one. The parameter τ is very useful if we want to get a more accurate approximation if the
measuring process cannot be improved or if the cost of measuring better is very expensive. In this case, with the
appearance of τ , the error can be improved without any extra cost on measuring (as we can see in Figure 6).
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Fig. 5. The regularized solution with ε2 = 10−3 (a) and with ε3 = 10−5 (b)

(a) uε2 (b) uε3

Fig. 6. Case α = 0.5, At time t = 0 and ε1 = 10−3: Exact solution (black) and Regularized solution with τ1 = 0 (blue), τ2 = 0.3
(green), τ3 = 1 (red)

4 Conclusion
In this paper, we have stated and discussed the quasi-boundary value regularization method for the inverse
problem in the heat equation under the conformable derivative. In addition, we have also established an
error estimate between exact and regularized solutions. These estimates are supported by several numerical
examples. The estimate is a Hölder-type estimate (εt/T) for all values of t in the interval (0, T]. However, at
the initial time t = 0, the error estimate is of logarithm type only. In the future, we hope to improve the error
estimate as well as to consider the nonlinear case of f .
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