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Abstract: In this paper we study an inverse time problem for the nonhomogeneous heat equation under the
conformable derivative which is a severely ill-posed problem. Using the quasi-boundary value method with
two regularization parameters (one related to the error in a measurement process and the other is related to
the regularity of the solution) we regularize this problem and obtain a Hélder-type estimation error for the
whole time interval. Numerical results are presented to illustrate the accuracy and efficiency of the method.
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1 Introduction

Partial differential equations (PDEs) arise in the natural sciences, and various boundary value problems for
these were widely studied including inverse and ill-posed problems (see, e.g., Tikhonov and Arsenin [1] and
Glasko [2] ). An example is the backward heat conduction problem (BHCP) and the aim is to detect the previous
status of a physical area from present information. The BHCP is a classical ill-posed problem that is difficult
to solve since, in general, the solution does not always exist. Furthermore, even if the solution does exist, the
continuous dependence of the solution on the data is not guaranteed and numerical calculations are difficult.
The BHCP has been considered by many authors using different methods [3]-[10]. In [5], Hao, Duc and Lesnic
gave an approximation for this problem using a non-local boundary value problem method, Hao and Duc in
[6] used the Tikhonov regularization method to give an approximation for this problem in a Banach space,
and Trong and Tuan in [11] used the method of integral equations to regularize the BHCP with a nonlinear
right hand side.

Fractional calculus arises in many areas in science and engineering such as aerodynamics and control
systems, signal processing, bioengineering and biomedical, viscoelasticity, finance and plasma physics, etc.
(see [12]-[14]). For basic information and results we refer the reader to the monographs of Samko et al.
[15], Podlubny [16] and Kilbas et al. [17]. Mathematical modeling of many real world phenomena based on
definitions of fractional order integrals and derivatives is regarded as more appropriate than ones depending
on integer order operators, so as a result fractional differential equations and fractional partial differential
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equations are important fields of research [18]-[21]. In the above works the definition of the fractional used
is either the Riemann-Liouville or the Caputo fractional derivative and most works use an integral form for
the fractional derivative. Many researchers are interested in the time-inverse problem for the heat equation
where the time-derivative is in the Caputo fractional sense. In particular, they consider the problem

2y = f(x, 1), (%, 1) €(0,7)x (0,T]
u(0,t) =u(m,t)=0, te[0,T] 4]
u(x, T) =g(x),

where « € (0, 1) is the fractional order of derivative and

o u 1 . _

o " T(-a) O/ (t-5s)“us(x, s)ds.

By a time-inverse problem, we mean that, given information at a specific point of time, say ¢ = T, the goal is
to recover the corresponding structure at an earlier time ¢ < T. When o = 1, the problem (1) turns back to the
classical ill-posed problem for the well-known heat equation (BCHP). Many researchers have applied different
methods to regularize this problem. For example, in [9]- [10] the authors successfully applied various methods
to stabilize BCHP and obtained many results on the convergent of the regularized solution to the exact one. In
[7]-[8], the authors consider BCHP where the frequency domain is R. Problem (1) with O < o < 1 was studied in
[22]-[24] where fundamental contributions were made for problem (1) on existence and uniqueness of solution
for this problem. In [25], the authors simplified the Tikhonov regularization method to stabilize problem (1).
In [26] the authors consider problem (1) where the data is discrete.

However, there are some setbacks in the approaches of the Riemann-Liouville fractional and the Caputo
fractional derivative when modeling real world phenomena (see [27] for a discussion). In [27] the authors gave
a new well-behaved simple fractional derivative called "the conformable derivative" depending just on the
basic limit definition of the derivative and this concept seems to satisfy all the requirements of the standard
derivative. For a function u : (0, co) — R the conformable derivative of order « € (0, 1) of u at ¢ > 0 is defined
by

u(t+ht'=) —u(t)
h

Dfu(t) = }ll_l')l(l) ,  Dfu(0) = tl_i)l(l)1+ Dfu(t). ()
Note that if u is differentiable, then D{*u(t) = t'~*u’(t), where u’(t) = limy_o[u(t+h)—u(t)]/h. This concept
overcomes the setbacks of the previous concept and this new theory is discussed by Atangana [28] and
Abdeljawad [29]. In addition, Anderson and Ulness in [30] provide a potential application of the conformable
derivative in quantum mechanics.

For PDEs concerning the conformable derivative there are several studies. In [31], Hammad and Khalil
used conformable fourier series to interpret the solution for the conformable heat equation, which is a
fundamental equation in mathematical physics. In [32], Chung used the conformable fractional derivative
and integral to study fractional Newtonian mechanics, and in addition, the fractional Eule-Lagrange equation
was constructed. In [33], Eslami applied the Kudryashov method to obtain the traveling wave solutions
to the conformable fractional coupled nonlinear Schrodinger equation. In [34, 35], Cenesiz et al. studied
the conformable version of the time-fractional Burgers’ equation, the modified Burgers’s equation, the
Burgers-Korteweg-de Vries equation and the solutions of conformable derivative heat equation. Cenesiz, Kurt
and Nane in [36] studied stochastic solutions of conformable fractional Cauchy problems where the space
operators may correspond to fractional Brownian motion, or a Levy process. Motivated by the above studies,
it is natural to consider the time-inverse problem for the heat equation under the conformable derivative.
Throughout this paper, we let 2 = [0, a], T is a positive number and Df" is the conformable derivative of
order o with respect to t. We begin with the inverse problem in the conformable heat equation.
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1.1 The direct problem

Consider the following conformable heat equation

Du(x, t) —uxx(x,t) = f(x,t), (x,t) e 2x(0,T], (3)
u(x,t)=0, (x,t)eo2x(0,T], (4)
u(x,0) =uo(x), xef. (5)

Solving this equation with the given information f(x, t) and uo(x) is called the direct problem.

1.2 Theinverse problem

Consider the following conformable heat equation

Dfu(x, t) —ux(x,t) = f(x,t), (x,t)e2x(0,T], (6)
u(x,t)=0, (x,t)eoRx(0,T], @
u(x,T)=g(x), xef, (8)

where f(x, t) € C(0, T; L*(£2)) and g(x) € L*(£2). From the information given at final time ¢ = T, the goal of

the inverse problem is to recover the information u(x, t) for O < t < T. Unfortunately, the inverse problem is

usually an ill-posed problem in the sense of Hadamard. An ill-posed problem in the sense of Hadamard is the

one which violates at least one of the following conditions:

- Existence: There exists a solution of the problem.

- Uniqueness: The solution must be unique.

- Stability: The solution must depend continuously on the data, i.e., any small error in given data must
lead to a corresponding small error in the solution.

Problems which satisfy these conditions are called well-posed problems. We will show that the conformable
backward heat problem is an ill-posed problem.

First, let us make clear what a solution of the Problem (6) - (8) is. We call a function u ¢
c*'((0,a) x (0, T); L* (£2)) a solution for Problem (6) - (8) if

D¢ (u(:, £), w) = (wae (-, £), w) = (f (-, 1), w) ©)

for all functions w € L*(£2). In fact, it is enough to choose w in the orthogonal basis {sin (“x)} " and then
(9) reduces to

oo

T
un(t) = (55 ) go - [ 52 (55 (s)as,

and as a result, the solution of (6) - (8) can be represented by

u(x,t) = iun(t) sin(%rx) i ( T%[u) g - fsa—lekn(sa

ata)fn(s)ds)sin(rZTX), (10)

where ky, = (nr/a)* and

:(szag(x)sin(n;x)dx,
Fult) = f Flx, 0) sm( )dx, (11)
un(t) :czlfau(x, t)sin(%rx) dx.
0
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It is noted that the term ek"(w) tends to infinity as n tends to infinity. Hence, it causes instability in the
solution.

In this paper, we will apply the quasi-boundary value method with a small modification to regularize (6)
- (8). In fact, rather than using the original information, we will consider problem (6) - (8) with adjusted
information so that the adjusted problem is well-posed and approximates the original one. Consider the
following problem

DEUET (x, t) —usy (x, t) =27 (x, ), (x,t)e2x(0,T], (12)
u="(x,t) =0, (x,t)ea2x(0,T], (13)
u”(x,T)=g""(x), xe, (14)
where
o ek nr
Friot =Y — e a0 sin(—x),
n=1¢kn + e~k a
o (15)
oo _k (T%+1)
o e " a .
g7 (x) = oy 8nsin (—x)
n=1 gky + e kn
(T*+7) - .
Lemmall. LetO<t<T,7>0,eeD:= (O, 7) and x > 0. Then, for a € (0, 1) the following inequality
«
holds .
—7(ta+7)x Q T":—tr
e« Jlay i T + 7
—gay- S(ae) T | . (16)
ex+ e Tax ((1+111(ch5r )))

Proof. ForanyeeD, x>0, a € (0,1]and T > O, the function

1
W(X) = %
eX+e  a
CI T+1 T +1

maximizes at x = In(—2")/(=;"). Therefore,

1 T + 7 T + 7 T + 7

w(x)=——— <w|lIn( )/( )| = . 17)
[CaEED) Toyr
ex+e  a ¥ ae @ aa(1+ln( ae ))
Then, we obtain the following estimation
_ %+ %+
e o ¥ e a
_@%en T o T N T
—a _(T%+7) e _(I%+7) oy
exte o (sx+e a ")T+ (5x+e a ")T+
_ @+
e « 1
= (t%+T) o Tt
et (5x re f)x) e
T“—ta
(o _qor T(x . TX+T
< (ag) ™7 | ————
To+T1
(1 +In(t- ))

The proof is complete. O

The rest of the paper is organized as follows. In Section 2, we study the well-posedness of problem (12) - (14)
and provide an error estimation between solutions of these two problems. Section 3 provides a numerical
example to illustrate the efficiency of our method.
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2 Well-posedness of the regularized problem (12)-(14)

Theorem 2.1. Letf(x,t) € C(0, T; L?(£2)) and g(x) € L*>(£2). Let r > 0 and = € D be given. Then, (12)-(14) has
a unique solution u®" satisfying

4T _k, t8tT T
n
@

o o kn e .
uE’T(X’ t) = Z _k, I+ gn - _k, I¥+T / sa 1e (
n=1 T "« r

ekn +e ckn + e

=) fn(s)ds) sin (%x) (18)
The solution depends continuously on g in L*(12).
Proof. First we prove the existence and uniqueness of a solution of the regularized problem (12) - (14).

Existence of solution. Forall 0 < ¢t < T, we have

— . (n
u="(x,t) = > uy"(t)sin (—ﬂx),
n=1 a

where
e_k" 4T —k 1“+-r T
uy” (t) = W Te 8n ~ f )fn(s)ds
ckn+e cky + ekt
It follows that
0o e "[O‘+r e_k" tY4r T e
DIUET(x, ) == 3 K L e [ 507 T ps)ds |sin (")
n=1 ckn+e "o ekn+e7 "o a
0o 7k,, T%+7 nr
Y (D)5 =) (19)
Z1 ckn + ek a
0o —k T+
€,T e nm
= Uxx (Xy f)+zﬁfn(t)sm(—x)
n=1ckn+e P a
On the other hand, we have
ET ad 7k" @ . nm
(x,T)=> ﬁgn sm(—x). (20)
n=1ckn+e """ a a

Hence, u®'" is the solution of the regularized problem (12)—(14), so the existence of a solution of the regularized
problem (12)—(14) is proved.

Uniqueness of solution. Let u®" (x, t) and v®'" (x, t) be two solutions of (12) - (14). We denote w(x, t) =
u=T(x,t) — v7(x,t). It is clear that w(x, T) = 0. We expand wn(x,t) = ¥ wn(t) sin(%rx) with the
n=1

coefficient

a
wn(t) = 2 w(x, t)sin n—ﬂx dx, n=1,2,3,....
ay a

Multiply both sides of equation (12) by sin (%Tx) and integrate by parts with respect to x, and use the

boundary condition to obtain
DEwn(t) + knwn(t) = f" (t), te(0,T), (21)

where ky, = (nr/a)* and

N N i
: (t)—aoff (x,t)sm(ax)dx.
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The condition w(x, T) = O yields w,(T) = 0. Then, the well-posedness for the fractional differential equation
(21) with the boundary condition w,(T) = 0 yields w,(t) = 0in ¢ € [0, T]. This infers that w(x, t) = 0.

Stability of solution. The solution of the problem (12)-(14) depends continuously on g. In fact, let u*"
and v>7 be two solutions of (12)—(14) corresponding to the final data g=" and h*7, and u®” and v='7 are

represented by
0o e_k" 47 {C‘M- T n
u="(x, )= e &n - f )fn(s)ds sm(—x) (22)
n=1\ckn +e """ & ckn +e7kn ; a
oo o T ot T T o
CUEDY crhn - e [ 7 ps)as |sin(x). @)
n=1\ekn +e "= ekn+e " e a
where

a a
=2 [ (x0)sin (™ -2 (oo (E )
aofg (x)sm( ax)dx, hn—aofh (x) sin aX dx.

Direct computation leads us to

*kn Y47

Z::W( n—hn)sin(ngﬂ-x) .

[us"(x, t) = v (x, )| =

Applying Lemma 1.1 directly, we get
2

_kt+T

e (&)

(0 =0 = 5 i

o\ 2

a o1 T + 7 e e B 2
gz((as) ((14—11’1(72;7—))) ) ngll(gn h")‘ (24)

a2

(e g = h=T)
- (1+In(£21)) § ’

E,T E,T [l Ta T T e
[T (o t) = Vo ()] < (ae) T ((“m(;f))) | - n=T]. (25)
Qe

The proof is complete. O

Therefore,

We have shown that the regularization problem (12)-(14) is a well-posed problem in the sense of Hadamard.
Now, the main goal of the coming theorem is to provide an error estimation between the regularization
solution and the exact solution.

Theorem 2.2. Letg, f, u®" asin Theorem 2.1 and assume that problem (6)—(8) has a solution u € Cz’l((O, a) x
2

(0, T); L*(12)) and\’ 5 ([ kns*1 f"(s) ds) < oo, where kn = (nw/a)?. Suppose that the problem (6)—(8)

n_ e
has uniquely a solution u such that |u(-, O) | < oo. Then the following estimate holds for allO < t < T,

TO o

e f?;i T + 7 e
Ju(, ) —u=7(, t)]| < CreT (a(l+ln(ﬂ;?))) , (26)

where

2
¢ - ailc%(un(0)|2+(f kf’iff)ds) )
n=1 e

0
and u®" is the unique solution of problem (12)-(14).
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Proof. The exact solution satisfies

T
u(x,t)=> (ek"T = s f( a1 gkn <= fn(s))ds sm(%x) (27)
n=1 ¢
On the other hand, in terms of u,(0), we have
T(X
u(x, Ty =3 (un(O)ek"a +/( a1k 7fn(s))ds sm(;x) 28)
= 0
where .
un(0) = (u(x 0), sm%x) zofu(x,o)sin('zrx) dx.
It follows that :
gn = un(0)e ™ +f( (s)) 29)
0
Combining (18) and (27), we get
kne ks ckne s 2 )
T EKn @ n @ a-1 k
un(t) —uy” ()| = - < 8n — — —— fs fn(s)ds
u <0 ek T(sk +e kT ) Tkt (skn+e‘k" )7 '
- Yl% 7knt;¥ t S(Y
= qun(o) waso‘_lek”Tfn(s)ds
ckn + e kn ekn+e7 s 2
Tt (30)

L Ta+7_ T 41
e | —m8M ———— kn |un (0
(a<1+ln<zzf>)) ()

T ¢
oL, Te% T +T ()¢ 1
ot _Ter )T [( =L s,
a(1+ln(%)) e kns

0

From the inequality (a + b)* < 2(a”® + b*), we have

it 2 2
N S T + 7 T 2 “fa(s)
Un(t) —uy” (t)]” <2 e+ (QT) kn [un(0)|” + f ( = . (3
| : | a(1+In(£21)) J ~kn
From (31) and Parseval’s identity |u(-, t) — u=" (-, t)|* = g § lun(t) — u5" (t)?, we get
n=1
oy 2
JunCet) —u () e (R L)) 62
a(1+In(E2T))
where
2
Ci=|a> K| |un(0)] + f f'igs)ds . (33)
n=1 0 —kn
This completes the proof of Theorem 2.2. O

Theorem 2.3. (Error estimates in case of non-exact data) Let f, g as in Theorem 2.1. Let 7 > 0 and ¢ € D be
given. Assume u is the unique solution of problem (6)—(8) corresponding to the exact data g. Suppose that g="
is measured data such that

lg-&""| <.
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Then there exists an approximate solution U*'", which links to the noisy data g*'7, satisfying
i

« T +1
L er ) , Vte(0,T). (4)

a(l +1n(%))

Y47

H Us7 (-, t) - u(., t)” < (a% + Cl) £Tor (

Proof. Let U®" be the solution of the regularized problem (12)-(14) corresponding to data g='" and let u®"
be the solution of the problem (12)-(14) corresponding to the data g. Let u(x, t) be the exact solution, and in
view of the triangle inequality, one has

057 (6 6) 0] < U7 0, 6) 1™ (6, 0] + a0~ w7 (6,0

Combining the results from Theorem 2.1 (see the proof) and Theorem 2.2, for every t € [0, T], we get

T % Tt

o o 1o T +1 o o TS +1
U™ (6, 6) — u(x, 6)] < (ae) 757 | T ST N L L S
57760 6 ~utx O] 5 (ee)” ((1+1n(TZZT)) | -8l + Cre? a(1+In(Tty)

T

( el i C ) e T + 1 e
< | oa ™™+ + 1 e+ ———M —— .
a(1+In(E2T))

The proof is complete. O

3 Numerical illustration

In this section, we illustrate the theoretical results in Section 2 through an example. Consider the space
domain {2 = [0, a] in association with the final time T, and our problem is

2\ .
Diu(x, t) — ux(x, t) = (1 + (g) )ea sin (gx), (x,t) €[0,a] x (0, T], (35)
u(o,t) =u(a,t)=0, te(0,T], (36)
u(x,T)=g(x), xel[0,a], (37

where g(x) = e% sin (%x) . Under the above assumptions, the exact solution of the problem is
u®(x,t) = e's sin (gx) . (38)

Now, due to the error in the measuring process, the measured data is perturbed by a "noise" with level ¢, i.e

2" (x) = e™"/*sin (zx) + % ecp sin (IE ),
a =] a
where Py is a natural number and ¢y is a finite sequence of random normal numbers with mean 0 and variance
A”. It follows that the error in the measurement process is bounded by ¢, [g" - g| < Re where R is some
positive number. The error between the measured data and the exact data will tend to O as ¢ tends to O.
Regarding (18), the regularized solution corresponding to the measured data takes the following form

a
—ky T

«@ {3 2 T X _TCx «@
UE’T(X,f):eiraw e’ /a—(1+(7r) )/s“_lekl( e’ ds sin(zx)
ak1+e_k1 a ¢ a

a4

« T
Py eefk”[ o . (pm
+ Z CPW sin 7 .

p=1 ckp+e o

(39)

Leta =5, Py = 1000, A® = 100. Consider the following situation:
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Situation 1. In this situation, the regularization parameter ¢ will be discussed. Fix o = 0.3, 7 = 0.5. Consider
e1 =101, e, = 1073, £3 = 107°. We have the following figures:

Fig. 1. The exact solution with o = 0.3 (a) and regularized solution with ¢; = 107! (b)

THE EXACT SOLUTION THE REGULAZED SOLUTION

(@) uex (b) ucr

Fig. 2. The regularized solution with e; = 1073 (a) and with e3 = 107 (b)

THE REGULAZED SOLUTION THE REGULAZED SOLUTION

ue

(a) u®2 (b) uss3

For each point of time we evaluate the "Relative error" between the exact solution and the regularized solution
which is defined by

[u=" () —u (0

[uex(., )] '
The relative error is a better representation of the difference between the exact and the approximate solution.
When the value of the exact solution is large, the difference between the exact and the approximate solution
does not tell us much information about the accuracy of the approximation. In this case, the relative error is a
better measurement. Figure 3 shows errors for a comparison between the exact solution and the regularized
solution at the initial time to = 0 and 7 = 1 with various values of €. In Table 1, we have the error table at time
time t. = 0.1.

RE(z, t) = (40)

Remark 3.1. From Figure 1, Figure 2, Figure 3, Figure 4 and Table 1, it is clear that as the mearsuring error  gets
smaller, the regularized solution gets closer and closer to the exact one. It is also noted that in this situation, the
noise parameter cp varies from -249.689 to 242.4461.
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Fig. 3. At time to = 0 and T = 1: Exact solution with o = 0.9 (black) and Regularized solution with e; = 107! (blue), e3 = 1073

(green), e5 = 107 (red)

10

THE ExACT SOLUTION AMD THE REGULAZED SOLUTIOMN AT t=0,1=1

-10

=20

-30

-40

-50 Exact Sol
Reg. sol. == 1071
B0 - Reg. sol. == 1073
Reg. sol. = 107+
70 " . " L " L
o 05 1 15 2 25 3 3.5 4 4.5 5
Table 1. The error and Relative error at time ¢, = 0.1.
e |[u(.,0.1) - u™(.,0.1)] RE(,0.1)
€1 = 107t 2004.6002763324 40.0920055266479
€)= 107%| 93.6668715963709 1.87333743192742
€3 = 10| 11.7191083956268 0.234382167912537
€4 = 107*| 0.333770043724429 | 0.0666754008744885
€5 = 107°| 0.0558155468882481 [0.00111631093776496

Situation 2. In this situation, the focusing parameter is 7. Let o« = 0.1 and fix ¢ = 10~>. Consider the series of
7:71 = 0.3, = 0.5, 3 = 1. We have Figure 6 to illustrate our theoretical results. It is also noted that in this
situation, the noise parameter cp varies from -220.5152 to 352.6678.

Fig. 4. The exact solution with a = 0.1 (a) and regularized solution with e; = 107 (b)

THE EXACT SOLUTION

THE REGULAZED SOLUTION

Remark 3.2. Figure 6 agrees with the theoretical result: the regularized solution with a higher value of T is
closer to the exact one. The parameter T is very useful if we want to get a more accurate approximation if the
measuring process cannot be improved or if the cost of measuring better is very expensive. In this case, with the
appearance of T, the error can be improved without any extra cost on measuring (as we can see in Figure 6).



DE GRUYTER Regularization and error estimates for an inverse heat problem = 1009

Fig. 5. The regularized solution with 5 = 1073 (a) and with e3 = 107> (b)

THE REGULAZED SOLUTION THE REGULAZED SOLUTION

ue

r
DL O = MW B

(a) u®2 (b) us3

Fig. 6. Case o = 0.5, Attime t = 0 and e; = 1073: Exact solution (black) and Regularized solution with 71 = 0 (blue), 7, = 0.3
(green), 73 = 1 (red)

Exact sol. and Reg. sol. at t=0 with different ©
100 T T

Exact Sal
Reg Sol =0
Feg Sol ©==0.3
Reg Sol =1

/\’\M,/\M. L
LR A TE

&0 - a

a0 L L L . . . . . .
a . . . . .

4 Conclusion

In this paper, we have stated and discussed the quasi-boundary value regularization method for the inverse
problem in the heat equation under the conformable derivative. In addition, we have also established an
error estimate between exact and regularized solutions. These estimates are supported by several numerical
examples. The estimate is a Holder-type estimate (¢"/7) for all values of t in the interval (0, T]. However, at
the initial time t = 0, the error estimate is of logarithm type only. In the future, we hope to improve the error
estimate as well as to consider the nonlinear case of f.
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