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Abstract: Stochastic Automata Networks (SANs) have a large amount of applications in modelling queueing
systems and communication systems. To �nd the steady state probability distribution of the SANs, it often
needs to solve linear systems which involve their generator matrices. However, some classical iterative
methods such as the Jacobi and the Gauss-Seidel are ine�cient due to the huge size of the generator
matrices. In this paper, the multipreconditioned GMRES (MPGMRES) is considered by using two or more
preconditioners simultaneously. Meanwhile, a selective version of the MPGMRES is presented to overcome
the rapid increase of the storage requirements and make it practical. Numerical results on two models of
SANs are reported to illustrate the e�ectiveness of these proposed methods.
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1 Introduction
The use of Stochastic Automata Networks (SANs) is of interest in a wide range of applications, including
modeling queueing systems [1–3], communication systems [4, 5], manufacturing systems and inventory
control [6]. The generator matrices of these SANs are block tridiagonal matrices with each block diagonal
being a sum of tensor products of matrices. To analyze the system performance of a SAN, it is required to �nd
the steady state probability distribution of the SAN. The solution can be obtained by solving a large linear
system involving its generator matrix.

ChunWen: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan,
610054, China, E-mail: wchun17@163.com
Ting-Zhu Huang: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu,
Sichuan, 610054, China, E-mail: tingzhuhuang@126.com
*Corresponding Author: Xian-Ming Gu: School of Economic Mathematics/Insitutue of Mathematics, Southwestern
University of Finance and Economics, Chengdu, Sichuan 611130, China and Johann Bernoulli Institute of Mathemat-
ics and Computer Science, University of Groningen, Nijenborgh 9, P.O. Box 407, 9700 AK Groningen, The Netherlands,
E-mail: guxianming@live.cn, x.m.gu@rug.nl
Zhao-Li Shen: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan,
610054, China and Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, Nijenborgh 9,
P.O. Box 407, 9700 AK Groningen, The Netherlands, E-mail: szlxiaoyao@163.com
Hong-Fan Zhang: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu,
Sichuan, 610054, China, E-mail: zhfbeyond@126.com
Chen Liu: Dietrich School of Arts and Sciences, University of Pittsburgh, 139 University Pl, Pittsburgh, PA 15260, USA,
E-mail: CHL254@pitt.edu

https://doi.org/10.1515/math-2018-0083


Multipreconditioned GMRES for simulating stochastic automata networks | 987

Iterative procedures are often employed to compute the steady state probability distribution of SANs,
such as the classical Jacobi, Gauss-Seidel, SOR, SSOR and TSS iterative methods [3, 6–8]. These methods
are simple and easy to implement, but they usually su�er from slow convergence and they do not appear
to be practical when the size of the generator matrix is huge [6, 9, 10]. Hence, Krylov subspace methods
which use the matrix-vector multiplications as their main arithmetic operations are developed. For instance,
the popular Arnoldi/FOM, GMRES, CGS, BiCGSTAB and QMR methods and so on [7, 11–18]. Based on a
small-dimension Krylov subspace, such iterative methods are able to e�ciently approximate the steady state
probability distribution of SANs [7, 10, 19]. However, theymay also su�er from slow convergence, even though
lots of numerical experiments indicate that they generally outperform the classical iterative methods, refer,
e.g., to [3, 7] for details.

It is well known that preconditioning techniques are necessary to improve the convergence of itera-
tive methods by modifying the eigenvalue distribution of the iteration matrix, while the solution remains
unchanged. Preconditioners based on incomplete LU factorizations are possible choices and have been
discussed in [3, 7, 20]. A SAN preconditioner (based on the Neumann) series was proposed by Stewart et al.
[10]. Numerical experiments show that the SAN preconditioner is expensive and needs more executing time.
For taking use of the tensor structure of the generatormatrix of a SAN, an approximate inverse preconditioner
for the SAN was proposed by Langville and Stewart [19]. It is called the Nearest Kronecker Product (NKP)
preconditioner. Numerical tests on some SANs have shown the e�ectiveness of the NKP preconditioner,
however it is not always appropriate for general Markov chains [21]. Taking circulant approximations of the
tensor blocks of the generator matrix, circulant preconditioners were constructed for a SAN [2, 4]. These
are simple to construct and as since circulant matrices can be easily diagonalized by using the fast Fourier
transforms [22]. However, the successful applications of these circulant preconditioners depend on whether
the tensor blocks of the generatormatrix of a SANare near-Toeplitzmatrices. In fact, di�erent preconditioners
have di�erent e�ciencies for some model problems. Which one is better and how to develop more e�cient
preconditioners, especially for very large systems, remains to be done in the future.

In this paper, motivated by the idea of [23], our main contribution is to �nd the steady state probability
distribution of a SAN by employing a variant of GMRES where two or more preconditioners are applied si-
multaneously, and denote it as multipreconditioned GMRES (MPGMRES). Compared to the standard GMRES,
one advantage of the MPGMRES is that it is able to �nd an approximate solution over a rich search space that
has been enlarged by collecting all possible search direction generated by di�erent preconditioners at each
iteration. However, its disadvantage is that more memory requirements are required since the search space
has an exponential growth at each iteration. Fortunately, a selective version of theMPGMRES (sMPGMRES) is
considered by discarding some search directions such that the search space only has a linear growthwith the
size of problems increasing at each iteration. In fact, the idea to usemultiple preconditioners is not new, e.g.,
Bridson et al. [24] has proposed the multipreconditioned conjugate gradients (MPCG) for symmetric positive
de�nite linear systems. Even though the short-term recurrence of the standard CG does not hold in general,
the MPCG is very useful in terms of determining what the most e�ective preconditioner is by executing a
few iterations of the MPCG. On the other hand, for linear systems with a nonsymmetric coe�cient matrix, a
combined preconditioning strategy has been analyzed in [25] and shows that an optimal linear combination
of two preconditioners could obtain the good numerical performance.

The rest of this paper is organized as follows. In Section 2, a brief introduction of two models of SANs
is given. The derivation of the MPGMRE and its selective version are discussed in Section 3. In Section 4,
numerical experiments on two SANs are employed to illustrate the e�ectiveness of these methods. Finally,
some conclusions are given in Section 5.

2 Two models of SANs
To introduce certain terminologies and notations of SANs, two models will be described in this section; a
two-queue over�ow network and another one is a telecommunication system.
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2.1 A two-queue overflow network

The early research on the two-queue over�ow network can be found in [2, 26]. This network consists of
two independent queues with the number of servers and waiting spaces being si and li − si − 1(i = 1, 2)
respectively, where li is the total number of customers in the queue i. For queue i, i = 1, 2, let λi be the arrival
rate of customers, and let µi be the service rate of the servers, then the state space of the queueing system can
be represented by the elements in the following set:

S = {(i, j)∣0 ≤ i ≤ l1, 0 ≤ j ≤ l2},

where i represents the state that there are i customers in the queue 1, and j represents the state that there are
j customers in the queue 2. Thus it is a two-dimensional queueing system.

Fig. 1. The two-queue overflow network.

Generally speaking, the queueing discipline is First-come-�rst-served. When a customer arrives and �nds all
the serves are busy, the customer has two choices: one is to wait in the queue, provided that there is still a
waiting space available, another is to leave the system. But for now we allow the over�ow of customers from
queue 2 to queue 1 whenever it is full and queue 1 is not, see Fig. 1. The generator matrix can be shown to be
the following l1l2 × l1l2 matrix in the tensor product form

A = Q1 ⊗ Il2 + Il1 ⊗ Q2 + R ⊗ eTl2el2 , (1)

where

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λi −µi 0
−λi λi + µi −2µi

⋱ ⋱ ⋱
−λi λi + (si − 1)µi −siµi

−λi λi + siµi −siµi
⋱ ⋱ ⋱

−λi λi + siµi −siµi
0 −λi siµi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2)

R =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

λ2 0
−λ2 λ2

−λ2 ⋱
⋱ λ2

0 −λ2 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, (3)

and Ili is the identity matrix of size li , i = 1, 2, and el2 is the unit vector (0, . . . , 0, 1)T, see [2, 26] for instance.
Let n = l1l2, then the steady state probability distribution vector p = (p1, p2, . . . , pn)T is the solution of the
linear system Ap = 0 with constraints

n
∑
i=1

pi = 1, and pi ≥ 0,∀1 ≤ i ≤ n. (4)

According to the properties of the tensor product [9, 10, 27], the matrix R ⊗ eTl2el2 is a lower triangular
matrix which describes the over�ow of customers from the queue 2 to the queue 1, and the matrix A in (1)
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is a singular and block tridiagonal matrix. Particularly, the matrix A is irreducible, has zero column sums,
positive diagonal elements and nonpositive o�-diagonal elements. According to [28, 29], matrix A has a
one-dimensional null space with a positive null vector. Hence, the existence of the steady state probability
distribution vector p can be guaranteed.

2.2 A telecommunication system

Here an (MMPP/M/s/s+m) network arising in telecommunication systems is considered. It is known that the
MarkovModulated PoissonProcess (MMPP) is a generalization of the Poisson process and is often regarded as
the input model of telecommunication system [4, 5]. To construct the (MMPP/M/s/s+m) network, �rst de�ne
the system parameters as follows:
(a). 1/λ, the mean arrival time of the exogenously originating calls of the main queue,
(b). 1/µ, the mean service time of each server of the main queue,
(c). s, the number of servers in the main queue,
(d). l − s − 1, the number of waiting spaces in the main queue,
(e). q, the number of over�ow,
(f). (Qj ,Λj), 1 ≤ j ≤ q, the parameters of the MMPP’s modeling over�ow parcels, where

Qj = ( σj1 −σj2
−σj1 σj2

) , Λj = (λj 0
0 0

) .

Here σj1, σj2 and λj, 1 ≤ j ≤ q, are positive MMPP parameters.

The input of the main queue comes from the superposition of several independent MMPPs, which is still an
MMPP and is parameterized by two 2q × 2q matrices (Q,Ω). Here

Q = (Q1 ⊗ I2 ⊗⋯⊗ I2) + (I2 ⊗ Q2 ⊗ I2 ⊗⋯⊗ I2) + (I2 ⊗⋯⊗ I2 ⊗ Qq)
Λ = (Λ1 ⊗ I2 ⊗⋯⊗ I2) + (I2 ⊗ Λ2 ⊗ I2 ⊗⋯⊗ I2) + (I2 ⊗⋯⊗ I2 ⊗ Λq)

andΩ = Λ + λI2q , where I2 and I2q are the 2 × 2 and 2q × 2q identity matrices, respectively.
Now the (MMPP/M/s/l) network can be regarded as a Markov process on the state space

{(i, j)∣0 ≤ i ≤ l − 1, 1 ≤ j ≤ 2q},

where the number i corresponds to the number of calls at the destination, and the number j corresponds to
the state of the Markov process with generator matrix Q. Hence, it is a two-dimensional queueing system,
and the generator matrix can be shown to be the following l2q × l2q tridiagonal block matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Q +Ω −µI 0
−Ω Q +Ω + µI −2µI

⋱ ⋱ ⋱
−Ω Q +Ω + sµI −sµI

⋱ ⋱ ⋱
−Ω Q +Ω + sµI −sµI

0 −Ω Q + sµI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

It can be rewritten as in the tensor product form,

A = Il ⊗ Q + B ⊗ I2q + R ⊗Ω, (5)

where matrices B and R has the same form as Qi and R in (2) and (3), respectively. Let n = l2q, then steady
state probability distribution vector p = (p1, p2, . . . , pn)T is the solution of the linear system Ap = 0 with the
same constraints as (4).
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Similarly, the matrix A in (5) is irreducible, has zero column sums, positive diagonal elements and
nonpositive o�-diagonal elements. According to the famous Perron-Frobenius theory, thematrix A has a one-
dimensional null space with a positive null vector [28, 29]. Hence, the steady state probability distribution
vector p exists.

Remark 2.1. To solve the linear system Ap = 0 e�ciently, it is necessary to make certain modi�cations to the
matrix A sine it is singular. One possible way to obtain the steady state probability distribution vector p is to
normalize the solution x of the following nonsingular linear system:

Ax = (A + εI)x = b, (6)

where b = (0, . . . , 0, 1)T is an n × 1 vector, I is as n × n identity matrix, and ε > 0 can be chosen as small as
possible. The matrix A is nonsingular because it is irreducible strictly diagonally dominant. The linear system
(6) can be solved by GMRES. It is clear that solving the linear system (6) may induce a small error of O(ε), but
fortunately Ching et al. have proved that the 2-norm of the error induced by the regularization tends to zero [2, 4].

3 Multipreconditioned GMRES
This section will give a brief description of the preconditioned GMRES, and then discuss the GMRES with
multiple preconditioners (MPGMRES). At last, to decrease the computing cost of the MPGMRES, a selective
version of the MPGMRES is considered.

3.1 Preconditioned GMRES

GMRES is often used to solve the non-symmetric linear system (6). Given an initial vector x0, then the
corresponding initial residual is r0 = b −Ax0, and the Krylov subspace is:

Km(A, r0) = span{r0,Ar0,A2r0, . . . ,Am−1r0}.

An orthonormal basis for the Krylov subspace Km(A, r0) can be computed by the modi�ed Gram-Schmidt
orthogonalization procedure with the �rst vector being r0/∥r0∥2. This generates a useful relation:

AVm = Vm+1H̃m , (7)

where Vm ∈ Rn×m and Vm+1 ∈ Rn×(m+1) has orthonormal columns, and H̃m ∈ R(m+1)×m is an upper
Hessenberg matrix. Thus at the k-th step, an approximate solution of (6) is computed as:

xk = x0 + Vmym ∈ x0 +Km(A, r0). (8)

where ym = min
y∈Rm

∥βe1 − H̃my∥2 with β = ∥r0∥2 and e1 = (1, 0, . . . , 0)T.
The preconditioning technique is a key ingredient for the successful applications of GMRES. Let M be a

preconditioner, then for the linear system (6), the right preconditioned GMRES is considered in Algorithm 1,
refer to Ref. [7].

In line 11 of Algorithm 1, the approximate solution xm is expressed as a linear combination of the
preconditioned vectors zi = M−1vi , i = 1, 2, . . . ,m, where the preconditioner M is �xed, i.e., it does not
change from step to step. Now suppose that the preconditioner is able to change at every step:

zj = M−1j vj , j = 1, . . . ,m.

Then the approximate solution is computed by xm = x0 + Zmym, where Zm = (z1, . . . , zm). Such kind of
GMRES is called Flexible GMRES (FGMRES) since di�erent preconditioners are allowed to be used at each
iteration [30].
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Algorithm 1 The right preconditioned GMRES
1: Give an initial guess x0, and compute r0 = b −Ax0, β = ∥r0∥2, v1 = r0/β.
2: for j = 1, . . . ,m do
3: Compute w = AM−1vj.
4: for i = 1, . . . , j do
5: hi,j = (w, vi) = vTi w.
6: w = w − hi,jvi.
7: end for
8: Compute hj+1,j = ∥w∥2 and vj+1 = w/hj+1,j.
9: end for

10: Let Vm = (v1, . . . , vm), H̃m = {hij}, 1 ≤ i ≤ j + 1, 1 ≤ j ≤ m.
11: Compute ym = min

y∈Rm
∥βe1 − H̃my∥2, and xm = x0 +M−1Vmym.

12: If satis�ed stop, else set x0 = xm and go to step 1.

3.2 Multiple preconditioned GMRES

Based on the idea of using di�erent preconditioners in the FGMRES, the multipreconditioned GMRES with
two or more preconditioners being applied simultaneously was proposed by Greif et. al [23]. Assume there
are k preconditioners, i.e., M1, . . . ,Mk , k ≥ 2, then at the beginning, for the initial residual r0, we have v1 =
r0/∥r0∥2 and

Z1 = (M−11 v1, . . . ,M−1k v1) ∈ Rn×k , (9)

such that the �rst iteration is computed by x1 = x0+Z1y1, where the vector y1 ∈ Rk is chosen tominimize ∥b−
Ax1∥2. From (9), it is easy to see that using all preconditioners simultaneously has enlarged the space where
the solution is sought. Similar to Algorithm 1, the multipreconditioned GMRES algorithm (i.e., Algorithm 2)
is given as follows.

Algorithm 2Multipreconditioned GMRES (MPGMRES)
1: Give an initial guess x0, and compute r0 = b −Ax0, β = ∥r0∥2, V1 = r0/β.
2: Compute the research directions Z1 = (M−11 V1, . . . ,M−1k V1).
3: for j = 1, . . . ,m do
4: W = AZj.
5: for i = 1, . . . , j do
6: Hi,j = (W , Vi) = VT

i W.
7: W = W − ViHi,j.
8: end for
9: W = Vj+1Hj+1,j. (QR factorization)

10: Compute yj = min
y∈Rm

∥βe1 − H̃my∥2, and xj = x0 + [Z1, . . . , Zj]yj.
11: If satis�ed stop, otherwise continue;
12: Zj+1 = (M−11 Vj+1, . . . ,M−1k Vj+1).
13: end for
14: If unsatis�ed, set x0 = xm and go to step 1.

Comparing with Algorithm 1, the search space increases at each iteration, and the relation in the equation (7)
has been replaced by:

AZ̃m = Ṽm+1H̃m , (10)

where
Z̃m = (Z1, . . . , Zm), Ṽm+1 = (V1, . . . , Vm+1),
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and

H̃m =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

H1,1 H1,2 ⋯ H1,m

H2,1 H2,2 ⋯ H2,m

⋱ ⋮
Hm,m−1 Hm,m

Hm+1,m

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

inwhich thematricesVj+1 andHj+1,j (1 ≤ j ≤ m) are computedbyQR factorization in the line 8 ofAlgorithm2.
Note that matrices Zj and Vj+1 have kj columns, j = 1, . . . ,m. Thus the matrix Ṽm+1 has:

θm =
m
∑
j=0

kj = km+1 − 1
k − 1 (11)

columns, thematrix Z̃m has θm −1 = (km+1− k)/(k−1) columns, and the size of the upper hessenbergmatrix
H̃m is θm × (θm − 1).

Let Pm−1 = Pm−1(X1, . . . , Xk) be the space of all possible polynomials of matrices in k variables of at
most degree m − 1, then at the j-th step of the MPGMRES, the approximate solution can be represented by:

xj = x0 +
k
∑
i=1
ω
i
j(M−11 A, . . . ,M−1k A)M−1i r0, (12)

where ωi
j ∈ Pm−1(X1, . . . , Xk), see [23] for details. Furthermore, from (12), the corresponding residual can be

computed as:

rj = r0 +
k
∑
i=1
ω
i
j(AM−11 , . . . ,AM−1k )AM−1i r0

=
k
∑
i=1

(τi + ωi
j(AM−11 , . . . ,AM−1k AM−1i ))r0

=
k
∑
i=1
β
i
j+1(AM−11 , . . . ,AM−1k )r0, (13)

where β ij+1 ∈ Pm(X1, . . . , Xk), and τi satis�es

k
∑
i=1
β
i
j+1(0, . . . , 0) =

k
∑
i=1
τi = 1,

and
∂j+1β ij+1
∂X j+1

s
= 0, 1 ≤ i, s ≤ k, i ≠ s,

which implies that, in the matrix polynomial β ij+1, only the i-th variable may have the highest degree j, the
degrees of all other variables are less than or equal to j − 1. From (13), the following result is established.

Theorem 3.1. Let r0 be the initial residual of the linear system (6), and rj be the residual at the j-th step of the
MPGMRES with k preconditioners M1, . . . ,Mk. Then it has:

∥rj∥
∥r0∥

≤ min
β ij+1 ∈ Pm(X1, . . . , Xk), 1 ≤ i ≤ k

∑k
i=1 β

i
j+1(0, . . . , 0) = 1,

∂j+1β i
j+1

∂Xj+1
s

= 0, i ≠ s

∥
k
∑
i=1
β
i
j+1(AM−11 , . . . ,AM−1k )∥. (14)

Therefore, it is important to �nd an optimal combination of all the di�erent preconditioners as they are used
simultaneously at each iteration [23–25]. This problem still requires further research.
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3.3 Selective MPGMRES and computing cost

The idea of the MPGMRES is to enlarge the Krylov subspace over which the GMRES minimizes the residual
normby using two ormore preconditioners simultaneously at each iteration. From (14), it can be seen that the
reason why the search space is so rich is that it not only has the polynomials of higher order of the variables
Xi, but it also hasmanymixed terms [23]. For instance, when k = 2, the entire space of thematrix polynomials
is

P2(X1, X2) = span{I, X1, X2, X1X2, X2X1, X2
1, X2

2}. (15)

It is natural to think of reducing the dimension of the entire space. Specially, for the case whenA = M1 +M2,
the following result has been proved [23].

Theorem 3.2. If the variables X1, X2 satisfy the condition that X1X2 = X2X1 = X1 + X2, then

Pk(X1, X2) = Pk(X1) + Pk(X2), k = 1, 2.

Themixed termshavebeeneliminated,which indicates that thedimensionof the entire search spacehasbeen
reduced successfully. Hence, it is a possible choice to construct an approximate search space by discarding
some search directions at each iteration. The computing cost of the MPGMRES will then be decreased.

Several di�erent strategies can be applied to obtain the approximate search space at each iteration, see
[23, 31]. In this paper, a one simple method shown in [23], where line 11 of Algorithm 2 has been replaced by

Zj+1 = (M1V1
j+1,M2V2

j+1, . . . ,MkVk
j+1),

i.e., the preconditioner M1 is used in the �rst column of Vj+1, M2 is used in the second column of Vj+1, and
so on. This is called selective MPGMRES (sMPGMRES). Correspondingly, the column of the matrix Zj , j =
1, . . . ,m, remains k rather than kj. For comparisons, at the j-th iteration, the computing cost of theMPGMRES
and sMPGMRES is listed as follows [23].

Table 1. Comparisons of computing cost.

matrix-vector products inner products
MPGMRES kj k2j+1+k2j+kj+1−3kj

2(k−1)
sMPGMRES k (j − 1

2 )k
2
+

3
2 k

From Table 1, it can be seen that the computing cost of the MPGMRES has an exponential growth, while that
of the sMPGMRES only grows linearly.

4 Numerical experiments
In this section, Algorithms 1-2 are tested and the variant (sMPGMRES) introduced in this paper on twomodels
of SANs. One example is fromqueueing systems, the other from telecommunication systems. In particular, we
compare the numerical performance of the MPGMRES, sMPGMRES, standard right preconditioned GMRES
and unpreconditioned GMRES (with restart being 10) in terms of the total computing time and iteration
steps. For convenience, GMRES(M) is used to denote the right preconditioned GMRES method with the
preconditionerM in this section. Convergence histories are shown in �gures with the number of iterations on
the horizontal axis, and Relres (de�ned as log10 of the relative residual 2-norms, i.e., log10(∥rj∥2/∥r0∥2)) on
the vertical axis. All experiments are carried out with a serial MATLAB implementation of the code, in which
parts of the MATLAB code are from https://github.com/tyronerees/krylov_solvers/tree/master/mpgmres.

Throughout our numerical experiments, the stopping criteria is set as ∥rj∥2/∥r0∥2 ≤ 10−6, where rj is
the current residual and r0 is the initial residual. The initial vector for all methods is chosen to be x0 =

https://github.com/tyronerees/krylov_solvers/tree/master/mpgmres
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(0, . . . , 0, 1)T. The parameter ε in the equation (6) is given as ε = 0.5, other numbers can also be used if
they can make the coe�cient matrixA be nonsingular.

Example 4.1. The two-queue over�ow network [2, 26]. This test problem was introduced in Section 2.1. The
corresponding matrices can be found in the equations (1), (2) and (3). Here set λ1 = µ1 = s1 = 1, and λ2 = µ2 =
s2 = 2. The size of the matrixA is n = l1l2. To �nd the steady state probability distribution, di�erent ways can
be applied to construct di�erent preconditioners in order to solve the linear system (6).

Case one: Consider the incomplete LU factorization with “droptol = 0.001” for the coe�cient matrixA, i.e.,
A = LU + E, where L is an unit lower triangular matrix and U is an upper triangular matrix. Hence the matrices
L and U are used as two preconditioners for the GMRES. Numerical results for this case are shown in Table 2.

Table 2. The number of iterations and computing time in seconds (in brackets) for Example 4.1 when L and U are used as
preconditioners. The last column Ratio is de�ned as (computing time of sMPGMRES)/(computing time of GMRES).

l1 l2 MPGMRES sMPGMRES GMRES Ratio
128 64 7 (8.8789) 13 (0.0619) 72 (0.0872) 0.71
128 128 7 (24.1441) 12 (0.1136) 71 (0.1353) 0.84
256 256 7 (106.1802) 12 (0.5188) 71 (0.7215) 0.72
512 256 7 (328.3111) 13 (1.9379) 71 (2.6381) 0.73
512 512 7 (634.2202) 12 (3.5193) 71 (6.7186) 0.52

Table 2 shows that the iteration counts of the MPGMRES and sMPGMRES with two preconditioners L and U
being used simultaneously are less than those of the unpreconditioned GMRES. In particular, MPGMRES gives
the best iteration steps, even though its computing time is the worst. However, it can be seen that the computing
time of the sMPGMRES is superior to that of the unpreconditioned GMRES. The last column in Table 2 further
con�rms the fast convergence of the sMPGMRES. For instance, when l1 = 512, l2 = 512, the computing time
needed by the sMPGMRES is almost only half of that needed by the unpreconditioned GMRES. Moreover, Fig. 2
(left) plots their convergent histories when l1 = 128 and l2 = 128.

Fig. 2. Convergent histories of the MPGMRES, sMPGMRES and unpreconditioned GMRES for Example 4.1 when l1 = 128 and
l2 = 128 (left). Convergence histories of the sMPGMRES, GMRES(T) and GMRES(J) for Example 4.1 when l1 = 512 and l2 = 512
(right).

Case two: Let D and T be the diagonal and tridiagonal matrices of the matrix A, respectively. Then, corre-
spondingly, the matrices J (equals to D) and T are considered as the Jacobi preconditioner and the tridiagonal
preconditioner for the GMRES. Numerical results for this case are listed in Table 3.
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Table 3. The number of iterations and computing time in seconds (in brackets) for Example 4.1 when J and T are used as
preconditioners. Ratio1 and Ratio2 are de�ned as (computing time of sMPGMRES)/(computing time of GMRES(T)) and
(computing time of sMPGMRES)/(computing time of GMRES(J)), respectively.

l1 l2 sMPGMRES GMRE(T) GMRE(J) Ratio1 Ratio2
128 64 20 (0.1256) 26 (0.0581) 68 (0.0738) 2.16 1.70
128 128 20 (0.2043) 26 (0.1102) 67 (0.1146) 1.85 1.78
256 256 20 (0.5576) 26 (0.5593) 67 (0.6435) 1.00 0.87
512 256 20 (0.9771) 26 (1.5498) 68 (2.7222) 0.63 0.35
512 512 20 (1.9698) 26 (3.7703) 67 (6.6672) 0.52 0.30

From Table 3, it can see that the number of iterations required by the sMPGMRES is the best. In terms of the
computing time, it is clear to �nd that the sMPGMRES is superior to the GMRES(T) and GMRES(J) when the size
of this test problem becomes larger. While the sMPGMRES needs more computing time than the GMRES(T) and
GMRES(J) when the size of this test problem is small. The last two columns of Table 3 illustrate the performance
of the sMPGMRES with the size of the test problem increasing. Hence, it shows that, by discarding some search
direction at each iteration, using di�erent preconditioners for the GMRES simultaneously can be more e�ective
than using a single preconditioner at each step. Fig. 2 (right) shows their convergent curves when l1 = 512 and
l2 = 512.

Example 4.2. The telecommunication system [4, 5]. This example has been introduced in Section 2.2. The
corresponding matrices can be found in the equations (2), (3) and (5). Here we set λ = µ = s = 2, q = 4,
σj2 = 1/3 and λj = 1/q, j = 1, . . . , q. The size of the coe�cient matrixA is n = l2q. For �nding the steady state
probability distribution, similar ways to Example 4.1 have been used to construct di�erent preconditioners.

Case one: Using the same incomplete LU factorization as given above for the coe�cient matrixA generated
by (6). Then again, the matrices L and U are used as two preconditioners for the GMRES. The corresponding
numerical results for this case are presented in Table 4.

Table 4. The number of iterations and computing time in seconds (in brackets) for Example 4.2, when L and U are used as
preconditioners.

l MPGMRES sMPGMRES GMRES(L) GMRES(U)
512 5 (0.5675) 10 (0.0677) 33 (0.0545) 15 (0.0308)
1024 5 (1.9263) 10 (0.1765) 33 (0.1366) 15 (0.0752)
2048 5 (2.0571) 10 (0.2922) 33 (0.7859) 15 (0.2084)
4096 5 (2.2701) 10 (0.4457) 33 (3.3516) 15 (0.3071)
8192 5 (2.5883) 10 (0.6451) 33 (9.0279) 15 (0.7694)
16384 5 (3.2082) 10 (0.9496) 33 (19.7403) 15 (1.5723)

As seen from Table 4, in the sense of iteration counts, the MPGMRES and sMPGMRES with two preconditioners
being applied simultaneously are superior to the GMRES with single preconditioner. And in terms of the
computing time, the MPGMRES and sMPGMRES cost more than the GMRES(L) and GMRES(U) when the size
of this test problem is small. The reason may be that the dimension of the Krylov subspaces has an increase
when two preconditioners are used simultaneously. However, when the size of the test problem increases, it is
not di�cult to see that the sMPGMRES has given the best results, e.g., when l = 16384, the computing time
of the GMRES(L) and GMRES(U) have been reduced by 95% and 40%, respectively. Fig. 3 (left) shows their
convergent histories when l = 8192. Note that the computing time of the sMPGMRES is always less than that of
the MPGMRES, which indicates that appropriately discarding some search direction from MPGMRES can lead
to fast convergence, even though the iteration steps have a little increase. Therefore, the GMRES with multiple
preconditioners is a competitive and robust choice for the large test problem.
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Fig. 3. Convergent histories of the MPGMRES, sMPGMRES, GMRES(L) and GMRES(U) for Example 4.2 when l = 8192 (left).
Convergent histories of the MPGMRES, sMPGMRES, GMRES(G) and GMRES(J) for Example 4.2 when l = 8192 (right).

Case two: Let us split the coe�cient matrix A as A = D − E − F, where D is the diagonal of A, −E and −F
are the strict lower triangular and strict upper triangular ofA, respectively. There is also the Gauss-Seidel (GS)
preconditoner G = D − F and the Jacobi preconditioner J (equals to D). Numerical results for this case are
supplied in Table 5.

Table 5. The number of iterations and computing time in seconds (in brackets) for Example 4.2, when G and J are used as
preconditioners.

l MPGMRES sMPGMRES GMRES(G) GMRES(J)
512 5 (1.0332) 11 (0.2172) 16 (0.0588) 44 (0.0502)
1024 5 (1.6542) 11 (0.3605) 16 (0.1154) 44 (0.0897)
2048 5 (1.7015) 11 (0.3905) 16 (0.1994) 44 (0.2741)
4096 5 (1.8292) 11 (0.4545) 16 (0.4262) 44 (0.5751)
8192 5 (2.1279) 11 (0.6181) 16 (0.8906) 44 (2.1283)
16384 5 (2.7101) 11 (0.9103) 16 (2.0081) 44 (4.7786)

Again, from Table 5, it is shown that the iteration counts of the MPGMRES and sMPGMRES are less than those
of the GMRES(G) and GMRES(J). With the increase of the size of this test problem, the computing time of the
MPGMRES and sMPGMRES are superior to that of the GMRES(J), although the computing time of theMPGMRES
is inferior to that of the GMRES(G). In particular, the sMPGMRES shows the best results, e.g., when l = 16384,
the computing time of the GMRES(G) and GMRES(J) are reduced by 55% and 81%, respectively. Furthermore,
Fig. 3 (right) plots their convergent histories when l = 8192, with G and J being two preconditioners.

Case three: Three preconditioners are applied to the GMRES. Observe the equation (5), it can be seen that
the matrix A consists of three parts. According to the properties of the tensor product [9, 10, 27], the last part
of the matrix A, i.e., R ⊗Ω, is a lower triangular matrix. Since the last diagonal element of the matrix R is zero
as shown in the form of (3), the tensor product R ⊗Ω is a singular matrix. To modify its singularity, let the last
diagonal element of R be equal to λ, and denote the newmatrix as R̃. Then let M3 = R̃⊗Ω. It is nonsingular. On
the other hand, using the tensor construct of the matrix A given in (5), we let M1 and M2 be the lower triangular
matrices of the tensor product Il ⊗ Q and B ⊗ I2q , respectively. Then three preconditioners M1,M2 and M3 for
the linear system (6) are considered for the GMRES. Numerical results for this case are provided in Table 6.
As seen from Table 6, it �nds that the MPGMRES has shown the best iteration steps. In addition, the number of
iterations of the sMPGMRES is also less than those of the GMRES(M1), GMRES(M2) and GMRES(M3). From the
last column of Table 6, it also observes that the preconditioner M3 is not e�ective since its iteration counts have
a large change and the computing time has a dramatic increase with the size of this test problem increasing.
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Table 6. The number of iterations and computing time in seconds (in brackets) for Example 4.2, when M1 ,M2 and M3 are used
as preconditioners.

l MPGMRES sMPGMRES GMRES(M1) GMRE(M2) GMRES(M3)
512 20 (3.6583) 23 (0.1967) 38 (0.0451) 37 (0.0916) 194 (0.2613)
1024 20 (4.4979) 23 (0.2336) 38 (0.0919) 37 (0.2168) 336 (0.7794)
2048 20 (5.9025) 23 (2.3188) 38 (0.2335) 37 (0.3816) 595 (4.0581)
4096 20 (8.2599) 23 (0.4523) 38 (0.4792) 37 (0.6017) 1025 (14.2911)
8192 20 (11.6451) 23 (0.9709) 38 (1.7371) 37 (1.7914) 2080 (104.7501)
16384 20 (15.7614) 23 (1.8284) 38 (4.2532) 37 (4.2274) 4120 (493.6202)

However, the preconditioner M3 does not a�ect the stability of the MPGMRES and sMPGMRES, i.e., their
iteration steps have no changes and their computing time are acceptable. In particular, for large test problem,
the sMPGMRES gives the best computing time, e.g., when l = 16384, the computing time of the GMRES(M1),
GMRES(M2) andGMRES(M3) are reducedby57%,57%and99%, respectively. Hence, the acceptable e�ciency
of the GMRES with multiple preconditioners is illustrated again.

5 Conclusions
In the current study, the main contribution is to consider the MPGMRES for computing the steady state
probability distribution of SANs. The idea of the MPGMRES is to enlarge the Krylov subspace over which the
GMRES minimizes the residual norm by using two or more preconditioners simultaneously at each iteration.
Since the dimension of the search spacehas an exponential growth at each iteration, a practical sMPGMRES is
given by discarding some search directions at each iteration, such that the dimension of the search space only
has a linear growth with the problem size. Numerical experiments on two models of SANs have illustrated
that the MPGMRES is more e�ective than the GMRES with a single preconditioner in reducing the number of
iterations. Moreover, for large test problems, the computing time of the sMPGMRES is the best.

Here it is worth noting that only the MPGMRES has been tested on two models of SANs. In fact, there are
several other models of SANs, e.g., manufacturing systems [6, 32], node mobility in wireless networks [33]
and FTS projects [34]. Hence, it would be interesting to extend method to these models in the future.
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