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Abstract: This paper mainly deals with the abstract-valued Orlicz spaces of range-varying type. Using
notions of Banach space net and continuous modular net etc., we give de�nitions of L%θ(⋅)(I, Xθ(⋅)) and
L%θ(⋅)+ (I, Xθ(⋅)), and discuss their geometrical properties as well as the representation of L%θ(⋅)+ (I, Xθ(⋅))∗. We
also investigate some functionals and operators on L%θ(⋅)(I, Xθ(⋅)), giving expression for the subdi�erential of
the convex functional generated by another continuousmodular net. Aftermaking some investigations on the
Bochner-Sobolev spacesW1,%θ(⋅)(I, Xθ(⋅)) andW

1,%θ(⋅)
per (I, Xθ(⋅)), and the intersection spaceW1,%θ(⋅)

per (I, Xθ(⋅))∩
Lϕϑ(⋅)(I, Vϑ(⋅)), a second order di�erential inclusion together with an anisotropic nonlinear elliptic equation
with nonstandard growth are also taken into account.
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1 Introduction
In this paperwe study a new type of Orlicz space, whosemembers are abstract-valued functions taking values
in a varying space. Orlicz space, which was introduced �rstly by Orlicz [1] in 1931, is a type of semimodular
space commonly generated by a Φ or generalized Φ function. Typical examples of this type are Lebesgue and
Sobolev spaces with variable exponents, i.e. Lp(x)(Ω) andWk,p(x)(Ω) (see [2] for references). Due to thewide
applications in many �elds of applied mathematics, Orlicz space received a growing interest of scholars in
the latest decades. Using the anisotropic function spaces, Antontsev-Shmarev in [3–5] studied the parabolic
equations of variable nonlinearity, including amodel porusmediumproblem.Bymeans of timediscretization
and subdi�erential calculus, Akagi etc in [6, 7] dealt with the doubly nonlinear parabolic equations involving
variable exponents. The work [8] considered the application of Orlicz space in Navier-Stokes equation, and
[9] investigated an obstacle problem with variable growth and low regularity of the data.

To deal with the evolution equations with variable exponents, a new type of functions, called
Xθ(⋅)−valued functions, are needed. As the valued space varies upon the time, it is di�cult to give a suitable
de�nition of “measurability" for these functions. By introducing the concepts of bounded topological lattice
A, regular Banach space net {Xα ∶ α ∈ A} and order-continuous exponent θ ∶ I → A, Zhang- Li in [10]
�rstly gave de�nition of the space L0(I, Xθ(⋅)), which contains all the Xθ(⋅)−valued functions measurable in
a special manner. Like the measurable functions of range-�xed type, members of L0(I, Xθ(⋅)) are all norm-
measurable. Based on the useful character, from L0(I, Xθ(⋅)) the authors extracted two types of function
spaces: continuous type C−(I, Xθ(⋅)) and integral type Lp(⋅)(I, Xθ(⋅)). After showing their completeness and

*Corresponding Author: Qinghua Zhang: Department of Mathematics, Nantong University, 9 Seyuan Road, Nantong City
226019, Jiangsu Province, China, E-mail: zhangqh1971@126.com

https://doi.org/10.1515/math-2018-0080


Abstract-valued Orlicz spaces of range-varying type | 925

connections between them together with some concrete examples, the authors paid attention to a semilinear
evolution equation with the nonlinearity having a time-dependent domain to illustrate the application of the
Xθ(⋅)−valued functions.

It is worth remarking that some Banach space net can be produced by a continuous modular net {%α ∶
α ∈ A}. According to whether or not being built on the continuous modular nets, Zhang-Li in [11] divided the
Xθ(⋅)−valued function spaces of integral type into two subclasses: norm-modular ones andmodular-modular
ones. A norm-modular space, like Lp(⋅)(I, Xθ(⋅)), is commonly produced by the semimodular

%φ(f) = ∫
A

φ(t, ∥f(t)∥θ(t))dt

with a generalized Φ function φ, while a modular-modular space is derived from a continuous modular net
{%α ∶ α ∈ A} with the semimodular

Φ%(f) = ∫
I

%(Mf(t))dt.

Here, M is a continuous operator from a topological linear space X to a closed cone V of another topological
linear space W, called a V−modular (refer to [11]).

Here we will drop the extra map M, and use merely {%α ∶ α ∈ A} and θ to reconstruct the semimodular,
namely

Φ%θ(⋅)(f) = ∫
I

%θ(t)(f(t))dt.

This change brings much convenience to us to study the duality and re�exivity of the abstract-valued Orlicz
spaces of modular-modular type.

The main part of this paper is organized as follows: As preparations, in Section 2, we study the abstract-
valued Orlicz space generated by a single modular. Section 3 is devoted to the abstract-valued Orlicz space
generated by a series of modular. Using di�erent measurability of the Xθ(⋅)−valued functions, we introduce
two di�erent spaces: L%θ(⋅)(I, Xθ(⋅)) and L%θ(⋅)+ (I, Xθ(⋅)), both of them are complete according to the same
norm. We show that, under some suitable situations, L%θ(⋅)+ (I, Xθ(⋅)) is separable, and its dual space can be
represented by

L%θ(⋅)+ (I, Xθ(⋅))∗ = L%
∗

θ(⋅)(I, X∗θ(⋅)).

We also make some evaluations on the proper conditions for the equality

L%θ(⋅)+ (I, Xθ(⋅)) = L%θ(⋅)(I, Xθ(⋅))

as well as the re�exivity of L%θ(⋅)(I, Xθ(⋅)).
For the sake of applications, in Section 4, we make some discussions on the functionals and operators

on the modular-modular space L%θ(⋅)(I, Xθ(⋅)), including functional Φ̃ϕϑ(⋅) de�ned by another continuous
modular system {ϕβ ∶ β ∈ B} and another order-continuous map ϑ ∶ I → B, and operators Zθ(⋅) and
∂ϕϑ(⋅), which are subdi�erentials of Φ%θ(⋅) and Φ̃ϕϑ(⋅) respectively. Here Zθ(⋅) plays the role of an extended
dual map, and ∂ϕϑ(⋅) usually arises in a di�erential equation as the driving operator. Under some extra
assumptions, such as the weak lower-continuity of {%α} and {%∗α}, and the strong coercivity of {%α} and
{ϕβ}, demicontinuity and coercivity of Zθ(⋅) and the representation ∂Φ̃ϕϑ(⋅)(u)(t) = ∂ϕϑ(t)(u(t)) are
obtained. This is an attempt to extend the convex functional and its subdi�erential generated by a single
function to that generated by a series of functions (compare to [12, Ch. 2], and [7]).

After making some investigations on the Bochner-Sobolev spacesW1,%θ(⋅)(I, Xθ(⋅)) andW
1,%θ(⋅)
per (I, Xθ(⋅)),

and the intersection
W = W1,%θ(⋅)

per (I, Xθ(⋅)) ∩ Lϕϑ(⋅)(I, Vϑ(⋅)),

including the continuous and compact embedding of W1,%θ(⋅)(I, Xθ(⋅)) into the space L%θ(⋅)(I, Xθ(⋅)) along
with the estimate

∥u∥W1,%θ(⋅)(I,Xθ(⋅))
≤ C(∥u′∥L%θ(⋅)(I,Xθ(⋅)) + ∥u∥Lϕϑ(⋅)(I,Vϑ(⋅))),
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in Section 5, we study a type of second order nonlinear di�erential inclusion

− d
dt

∂%θ(t)(u′(t)) + ∂ϕϑ(t)(u(t)) ∋ f(t, u(t)) for a.e. t ∈ I, (1)

with the periodic boundary condition, where the operator f ∶ I × X → X owns a nonstandard growth

%
∗
θ(t)(f(t, u)) ≤ µ%θ(t)(u) + h(t), u ∈ Xθ(t)

for a small number µ > 0 and a nonnegative function h ∈ L1(I). By introducing the Nemytskij operator
F(u) = f(⋅, u), and the second order di�erential operator D2

θ(⋅) de�ned by

⟨⟨D2
θ(⋅)u, v⟩⟩θ(⋅) = ∫

I

⟨∂%θ(⋅)(u′(t)), v′(t)⟩θ(t)dt, u, v ∈ W
1,%θ(⋅)
per (I, Xθ(⋅)),

we obtain a continuous and compact operator

(D2
θ(⋅) + ∂Φϕϑ(⋅))

−1 ○ F ∶ L%θ(⋅)(I, Xθ(⋅)) → L%θ(⋅)(I, Xθ(⋅)),

which by Leray-Schauder’s alternative theorem contains a �xed point solving the di�erential inclusion (1) in
the weak sense. To illustrate these results, at the end of the paper, an anisotropic elliptic equation de�ned
on a cylinder I ×Ω ofRN+1

+ with a Caratheodory type nonlinearity µg(t, x, u) are investigated. Because of the
nonstandard growth

∣g(t, x, u)∣ ≤ C(1 + ∣u∣p(t,x)−1)

for a.e. (t, x) ∈ I×Ω and all u ∈ R ful�lled by the nonlinearity, and the periodic boundary condition u(0, x) =
u(T, x), study of the anisotropic elliptic equation seems somewhat meaningful.

Framework of our study can be incorporated in the theory of convex analysis and function spaces with
variable exponents. Results obtained here have their meaning in the study of nonlinear evolution equations
with nonstandard growth.

As preliminaries, let us �rstly make a brief review on the Orlicz space of scalar type. For the detailed
discussions please refer to [2, Ch. 2] with the references therein.

LetK be a scalar (real or complex) �eld, and X be aK−linear space. A convex function % ∶ X → [0,∞] is
called a semimodular on X, if the following hypotheses are all satis�ed:
– %(0) = 0,
– for every u ∈ X, the function λ↦ %(λu) is left continuous on [0,∞), and
– %(λu) = %(u) provided ∣λ∣ = 1,
– %(λu) = 0 for all λ > 0 implies that u = 0.

If in addition, %(u) = 0 means u = 0, then % is called a modular. Given a semimodular % on X, the
corresponding subspace

X% = {u ∈ X ∶ %(λu) < ∞ for some λ > 0}

endowed with the norm
∥u∥% = inf{λ > 0 ∶ %(u

λ
) ≤ 1}

becomes a normed linear space. X% is called the semimodular space, while ∥ ⋅ ∥% is called the Luxemburg
norm. Both of them are generated by %. Recall that in X% the unit ball property is holding, that is ∥u∥% ≤ 1 if
and only if %(u) ≤ 1.

Scalar Orlicz space is a common semimodular space produced by the integral semimodular. Suppose
that φ ∶ [0,∞) → [0,∞] is a Φ function, i.e., φ is convex, left continuous, φ(0) = 0 and limt→0 φ(t) = 0,
limt→∞ φ(t) = ∞. Suppose also (A, µ) is a σ−�nite and complete measure space, and L0(A, µ) is the linear
space containing all the measurable scalar function de�ned on A. Then integration

%φ(f) = ∫
Ω

φ(∣f(x)∣)dµ
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de�nes a semimodular on L0(A, µ). The corresponding semimodular space, denoted by Lφ(A, µ), is called
an Orlicz space. According to the Luxemburg norm Lφ(A, µ) is a Banach space. Moreover, %φ is a modular in
case that φ is positive, i.e., φ(t) > 0 whenever λ > 0. Suppose further φ ∶ A× [0,∞) → [0,∞] is a generalized
Φ function, that is, for a.e. x ∈ A, φ(x, ⋅) is a Φ functions, and for all t ∈ [0,∞), the function x ↦ φ(x, t) is
measurable on A, then for all f ∈ L0(A, µ), integration ∫Ω φ(x, ∣f(x)∣)dµmakes sense. This de�nes another
semimodular and induces another semimodular space, which is the generalization of Orlicz space, called a
Musielak-Orlicz space.

Taking a measurable subset Ω ⊆ RN , and a measurable exponent p ∶ Ω → [1,∞), de�ne A = Ω with
Lebesguemeasure, andφ(x, t) = tp(x). Thenwe obtain a generalizedΦ function, fromwhichwe can construct
an integral modular %p(⋅) through

%p(⋅)(f) = ∫
Ω

∣f(x)∣p(x)dx, f ∈ L0(Ω),

and induce an important Musielak-Orlicz space, denoted by Lp(⋅)(Ω), and called the Lebesgue space with
variable exponent. One knows that if p+ = esssupx∈Ωp(x) < ∞, then Lp(⋅)(Ω) is separable, and the unit ball
property turns to be

min{∥f∥p
−

p(⋅), ∥f∥
p+
p(⋅)} ≤ %p(⋅)(f) ≤ max{∥f∥p

−

p(⋅), ∥f∥
p+
p(⋅)},

where ∥ ⋅ ∥p(⋅) ∶= ∥ ⋅ ∥%p(⋅) is the Luxemburg norm. Furthermore, if additionally p− = essinfx∈Ωp(x) > 1, then
Lp(⋅)(Ω) is uniformly convex (of course re�exive) with the dual space Lp

′(⋅)(Ω), where 1/p′(x) + 1/p(x) = 1
for a.e. x ∈ Ω.

2 Orlicz space generated by a single modular
Let X be a linear space and % ∶ X → [0,∞] be a semimodular, which induces a semimodular space X% with
the Luxemburg norm ∥ ⋅ ∥%. Let I be a �nite or in�nite interval, namely I = [0, T] for some 0 < T < ∞ or
I = [0,∞). A function f ∶ I → X% is said to be measurable, if for every open set G ⊆ X, the preimage {t ∈
I ∶ f(t) ∈ G} is a measurable subset of I. Moreover, f is called strongly measurable, if there is a sequence of
X%−valued simple functions convergent to f almost everywhere. Of course, a strongly measurable function
is measurable de�nitely, and vice versa provided X is separable (cf. [13, §1.2]). Denote by L0(I, X%) the set of
all strongly measurable X%−valued functions de�ned on I. Recall that a semimodular % is lower-continuous
on the induced space X%, thus for all a > 0, the set {u ∈ X% ∶ %(u) > a} is open in X%. Consequently, for each
f ∈ L0(I, X%), the multifunction t ↦ %(f(t)) is also measurable. Hence integration

Φ%(f) = ∫
I

%(f(t))dt

makes sense. One can easily verify that Φ% is also a semimodular on L0(I, X%) with the semimodular space

L%(I, X%) = {f ∈ L0(I, X%) ∶ Φ%(λf) < ∞ for some λ > 0}

and the Luxemburg norm denoted by ∥ ⋅ ∥L%(I,X%).

Theorem 2.1. L%(I, X%) is a Banach space in case that X% is complete.

This theorem is a special case of Theorem 3.7, which is given in §3 with a proof.

Remark 2.2. Suppose that f ∈ L∞(I, X%), and the one-dimension Lebesgue measure of the set E0 = {t ∈ I ∶
f(t) ≠ 0} is �nite. Then we have

Φ%(
f

M + 1
) ≤ ∣E0∣ < ∞,
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where M ≥ 0 is the essential supremum of ∥f(t)∥%. Thus f ∈ L%(I, X%) and ∥f∥L%(I,X%) ≤ (M + 1)max{1, ∣E0∣}.
Furthermore, by the estimate

∥u∥% ≤ %(u) + 1, ∀ u ∈ X%,

we also have
L∞(I, X%) ↪ L%(I, X%) ↪ L1(I, X%)

in case that I = [0, T] is bounded.

A semimodular % is said to be satisfying the∆2−condition, if there exists a constant d2 ≥ 2 such that

%(2u) ≤ d2%(u) for all u ∈ X.

Recall that, under the∆2−condition, % turns to be a continuous modular satisfying
– u ∈ X% if and only if %(λu) < ∞ for all λ > 0, and
– un → u in X% if and only if %(un − u) → 0.

Moreover, Φ% also satis�es the∆2−condition with the same constant d2.

Proposition 2.3. If % satis�es the∆2−condition, then the set of all simple X%−valued functions, say S(I, X%),
is dense in L%(I, X%).

Proof. For each f ∈ L%(I, X%), there is correspondingly a sequence of simple X%−valued functions {sk} such
that sk(t) → f(t) and consequently skχE0(t) → f(t) in X% for a.e. t ∈ I for the set E0 de�ned in Remark 2.2.
Let

Ek = {t ∈ I ∶ %(skχE0(t) − f(t)) ≤ %(f(t))},

and let ϕk = skχE0χEk , which is also a simple X%−valued function. Notice that

{t ∈ I ∶ %(ϕk(t) − f(t)) → 0}
= ⋂
ε>0

⋃
K≥1

⋂
k≥K

{t ∈ I ∶ %(ϕk(t) − f(t)) ≤ ε}

⊇ ⋂
ε>0

⋃
K≥1

⋂
k≥K

{t ∈ I ∶ %(skχE0(t) − f(t)) ≤ min{ε, %(f(t))}}

= {t ∈ I ∶ %(skχE0(t) − f(t)) → 0},

we have %(ϕk(t) − f(t)) → 0 a.e. on I as k →∞, which combined with %(ϕk(t) − f(t)) ≤ %(f(t)) for a.e. t ∈ I,
and Lebesgue’s convergence theorem, yields Φ%(ϕk − f) → 0 or equivalently ϕk → f in L%(I, X%) as k → ∞.
Thus density of S(I, X%) in L%(I, X%) has been proved.

Remark 2.4. Since I = ⋃∞n=1 In, where In = I ∩ [0, n], n = 1, 2,⋯, we can also prove that Sc(I, X%) and
L∞c (I, X%), subsets of S(I, X%) and L∞(I, X%) respectively, containing the functions with compact supports,
are both dense in L%(I, X%).

Corollary 2.5. Under the ∆2−condition of % and the separability assumption of X%, L%(I, X%) is a separable
space.

Remark 2.6. Given a semimodular %, recall that the dual functional %∗ is also a semimodular on X∗% , and the
double dual %∗∗ is equal to % on the space X% (cf. [2, §2.2] or [14, §3.2]). Moreover, for all u ∈ X% and ξ ∈ X∗% ,
Young’s inequality

⟨ξ, u⟩ ≤ %(u) + %∗(ξ)

holds. The equality also holds if and only if ξ ∈ ∂%(u) or equivalently u ∈ ∂%∗(ξ) if we regard X% as a closed
subspace of X∗∗% . Here ∂% is the the subdi�erential operator of % and ∂%∗ is that of %∗. Recall that as the
subdi�erential operators of lower-semicontinuous and convex proper functionals, ∂% and ∂%∗ can be viewed
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as two maximal monotone and semiclosed subsets of the product spaces X% × X∗% and X∗% × X∗∗% respectively.
As for the multivalued inverse map (∂%)−1, we know that (∂%)−1 ⊆ X∗% × X% has the same properties as ∂%
has, together with the inclusion (∂%)−1 ⊆ ∂%∗ holding. Furthermore, if in addition R(∂%) = X∗% , then for all
ξ ∈ X∗% , the image (∂%)−1(ξ) is a nonempty convex and closed subset of X%. Therefore for all ξ ∈ L0(I, X∗%), the
multifunction t ↦ (∂%)−1(ξ(t)) is graph measurable with nonempty closed image everywhere, consequently
under the additional separability assumption of X%, we can assert that (∂%)−1(ξ(⋅)) has ameasurable selection,
or in other words, there is a function u ∈ L0(I, X%) such that u(t) ∈ (∂%)−1(ξ(t)) for a.e. t ∈ I (see[15, §8.3] for
references).

Theorem 2.7. Suppose that % satis�es the ∆2−condition, X% is a separable Banach space, and R(∂%) = X∗% .
Suppose also %∗ is a modular, and X∗% has the Radon-Nikodym’s property w.r.t. every �nite subinterval of I. Then
the dual space L%(I, X%)∗ is isomorphic to L%

∗

(I, X∗%).

Proof. For each ξ ∈ L%
∗

(I, X∗%), de�ne a functional Λξ through

⟨⟨Λξ , f ⟩⟩ = ∫
I

⟨ξ(t), f(t)⟩dt, ∀ f ∈ L%(I, X%). (2)

By Hölder’s inequality
∣ ∫
I

⟨ξ(t), f(t)⟩dt∣ ≤ 2∥ξ∥L%∗(I,X∗%)∥f∥L%(I,X%),

it is easy to check that Λξ ∈ L%(I, X%)∗, and ∥Λξ∥ ≤ 2∥ξ∥L%∗(I,X∗%).
Conversely, for each Λ ∈ L%(I, X%)∗, we will prove the existence of a unique ξ ∈ L%

∗

(I, X∗%) such that
Λ = Λξ as in (2). If Λ = 0, then take ξ = 0 and there is nothing to do. If Λ ≠ 0, then ∣∣∣Λ∣∣∣∗ > 0, where ∣∣∣Λ∣∣∣∗
denotes the L%(I, X%)∗−norm of Λ. Without loss of generality, in the following discussions we may assume
that ∣∣∣Λ∣∣∣∗ = 1. For each positive integer n, de�ne an X∗%−valued function τn on the set of all measurable
subsets of In = I ∩ [0, n] as follows:

⟨τn(E), u⟩ = ⟨⟨Λ,χEu⟩⟩, ∀ u ∈ X%.

Here χE is the characteristic function of E.
Suppose that {Ek} is a sequence of mutually disjoint measurable subsets of In and u ∈ X%. Since for all

λ > 0,
Φ%(λ

∞
∑
k=1

χEku) = ∫
I

∞
∑
k=1

χEk%(λu)dt = %(λu)
∞
∑
k=1

∣Ek ∣ ≤ n%(λu) < ∞,

we can conclude that
∞
∑
k=1

χEku = χ∪∞k=1Eku in L%(I, X%), and ∥
∞
∑
k=1

χEku∥L%(I,X%) ≤ n∥u∥%.

Consequently,

⟨τn(
∞
⋃
k=1

Ek), u⟩ =
∞
∑
k=1

⟨⟨Λ,χEku⟩⟩ =
∞
∑
k=1

⟨τn(Ek), u⟩,

and
∣⟨τn(

∞
⋃
k=1

Ek), u⟩∣ ≤ n∣∣∣Λ∣∣∣∗∥u∥%.

Therefore τn is an X∗%−valued measure on In with a bounded total variation no more than n∣∣∣Λ∣∣∣∗. Now since
X∗% has the Radon-Nikodym’s propertyw.r.t. every �nite subinterval of I, there is a unique ξn ∈ L1(In , X∗%) such
that

⟨⟨Λ,χEu⟩⟩ = ⟨τn(E), u⟩ = ∫
In

⟨ξn(t),χEu⟩dt
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for every measurable subset E of In. By the uniqueness of ξn in the above representation, we have that
ξn+1(t) = ξn(t) a.e. on In. Let ξ(t) = ξn(t) for t ∈ In, thenwe obtain a globally de�ned and stronglymeasurable
X∗%−valued function satisfying

⟨⟨Λ, f ⟩⟩ = ∫
I

⟨ξ(t), f ⟩dt (3)

for the function f = uχE with a bounded measurable subset E of I and a point u ∈ X% and consequently for
all f ∈ S(I, X%) with compact supports.

Given a function f ∈ L∞c (I, X%), fromCorollary 2.3, we can �nd a sequence of X%−valued simple functions
with compact supports, say {sk}, such that sk → f in both L∞(I, X%) and L%(I, X%), and (3) is satis�ed by
sk for all k ∈ N. Taking limits as k → ∞ in both sides of (3), we can deduce that (3) is also satis�ed by
f ∈ L∞c (I, X%).

Remark 2.6 shows that the multivalued function t ↦ (∂%)−1(ξ(t)) is measurable, and it has a strongly
measurable selection since X% is separable. Denote the selection by u, then we have u(t) ∈ (∂%)−1(ξ(t)) ⊆
∂%∗(ξ(t)) a.e. on I. For each n ∈ N+, let

Jn = {t ∈ In ∶ ∥u(t)∥X% ≤ n}, and un(t) = u(t)χJn .

Then un ∈ L∞c (I, X%) and

∫
Jn

%
∗(ξ(t))dt + ∫

I

%(un(t))dt = ∫
I

⟨ξ(t), un(t)⟩dt = ⟨⟨Λ, un⟩⟩ ≤ ∥un∥L%(I,X%). (4)

As Λ ≠ 0 and %∗ is a modular, neither ξ(t) nor %∗(ξ(t)) is equal to 0 a.e. on I. Thus ∫Jn %
∗(ξ(t))dt > 0,

consequently from (4) we get
Φ%(un) < ∥un∥L%(I,X%)

for n large enough. Hence by the unit ball property, we assert that ∥un∥L%(I,X%) ≤ 1, which in turn yields
∫Jn %

∗(ξ(t))dt ≤ 1. Let n → ∞, and take the fact ∣I ∖ ⋃∞n=1 Jn ∣ = 0 into account, we have ∫I %
∗(ξ(t))dt ≤ 1,

which leads to the conclusion ξ ∈ L%
∗

(I, X∗%) with the estimate

∥ξ∥L%∗(I,X∗%)dt ≤ 1.

Finally, using the density of L∞c (I, X%) in L%(I, X%), we can conclude that (3) holds for all f ∈ L%(I, X%).
Therefore Λ = Λξ as in (2) and ∥ξ∥L%∗(I,X∗%) = ∣∣∣Λξ ∣∣∣∗ = 1. Thus the proof has been completed in the case
∣∣∣Λξ ∣∣∣∗ = 1, and the general case can be dealt with by the scaling arguments.

Remark 2.8. Here the separability assumption of X% can be replaced by the strict convexity assumption of %.
As a matter of fact, if % is strictly convex, then ∂% is injective, or equivalently (∂%)−1 is single-valued.

Recall that every re�exive space satis�es the Radon-Nikodym’s property with respect to every complete and
�nite measure space. Furthermore if X% is re�exive, then ∂%∗ = (∂%)−1 and ∂% = (∂%∗)−1. Putting these facts
into Theorem 2.7, we have

Corollary 2.9. Suppose that both % and its dual %∗ satisfy the ∆2−condition, the semimodular space X% is
re�exive and separable. Then

L%(I, X%)∗ ≅ L%
∗

(I, X∗%), L%
∗

(I, X∗%)∗ ≅ L%(I, X%),

and the function space L%(I, X%) is also re�exive.

Given a semimodular % ∶ X → [0,∞], we say % is uniformly convex, i.e. we mean that for every ε ∈ (0, 1),
there is a δ ∈ (0, 1), for which either

%(u − v
2 ) ≤ ε%(u) + %(v)2 or %(u − v

2 ) ≤ (1 − δ)%(u) + %(v)2 (5)
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holds. According to [2, §2.4], we know that every uniformly convex semimodular satisfying the∆2−condition
generates a uniformly convex space. Similarly, for a semimodular %, its uniform convexity can be inherited
by the Nemytskij functional Φ%. Summing up, we have

Theorem 2.10. Under the uniform convexity assumption and the ∆2−condition of %, L%(I, X%) is a uniformly
convex space.

3 Orlicz space generalized by a series of semimodular
Suppose that A is a topological lattice, i.e. A is an ordered topological space, and for every order-bounded
subset of A its order supremum and order in�mum exist in A simultaneously. In this paper, A is always
assumed to be a totally order-bounded topological lattice, or BT L in abbreviation. Its order supremum and
in�mum are denoted by α+ and α− respectively. In a BT L A, a sequence {αk} is said to be approaching a
point β, if the two conditions αk ≺ β, ∀ k ∈ N and limk→∞ αk = β are both ful�lled.

De�nition 3.1. Given a family of Banach spaces {Xα ∶ α ∈ A}, we say it is a Banach space net, or BSN for
short, provided
– α ≺ β implies Xβ ↪ Xα.
We say {Xα} is norm-continuous, if
– for every sequence {αk} approaching β, the limit of norms limk→∞ ∥x∥αk = ∥x∥β holds at all x ∈ Xβ .
{Xα} is called uniformly bounded, whenever
– there is a constant C ≥ 1 such that for all α, β ∈ A with α ≺ β and all x ∈ Xβ , inequality ∥x∥α ≤ C∥x∥β

always holds.
And {Xα} is said to be successive, if
– for any sequence {αk} approaching β and any point x ∈ Xα− with the constraints: x ∈ Xαk for all k ∈ N and

C = supk→∞ ∥x∥αk < ∞, we have x ∈ Xβ and ∥x∥β ≤ C.
Finally, aBSN {Xα} is called regular provided it is norm-continuous, uniformly bounded and successive at the
same time.

Remark 3.2. Given a BSN {Xα ∶ α ∈ A}, the family of dual spaces {X∗α ∶ α ∈ A}, where A takes the inverse
order ≻ instead of ≺, is also a BSN , called the dual space net orDSN in symbol. Here we use the convention:
⟨ξ, x⟩α = ⟨ξ, x⟩β provided ξ ∈ X∗α, x ∈ Xβ and α ≺ β. It is easy to see that, if {Xα} is uniformly bounded,
then {X∗α} is also uniformly bounded with the same bounds. However, whether or not {X∗α} inherits the norm-
continuity and successive property from {Xα} is not clear.

De�nition 3.3. Suppose that X is a linear space, and {%α ∶ α ∈ A} is a family of semimodulars de�ned on X.
We say {%α} is a continuous modular net, or CMN in abbreviation, i.e. we mean that the following hypotheses
are satis�ed:
1. every %α generates a Banach space X%α =∶ Xα,
2. there exist two positive constants Ci, i = 1, 2 for which inequality

%α1(u) ≤ C1%α2(u) + C2, (6)

holds for all u ∈ X and all αi ∈ A, i = 1, 2 with α1 ≺ α2, and
3. if {αk} approaches α inA, then

lim
k→∞

%αk(u) = %α(u).

The followingproposition reveals the relationship betweenCMN andBSN . For its proof, please refer to [10].

Proposition 3.4. Given a CMN {%α ∶ α ∈ A}, the family of semimodular spaces {Xα ∶ α ∈ A} is a regular
BSN .
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Remark 3.5. Similar to the scalar ones, for two indexes αi ∈ A, i = 1, 2 with α1 ≺ α2, we have L%α2 (I, Xα2) ↪
L%α1 (I, Xα1) with the imbedding constant C = max{1, C1 + C2T} in the case I = [0, T].

Let I be an interval as in Section 2, andΠ(I) be the collection of all bounded subintervals of I. Consider the
map θ ∶ I → A. When we say θ is order-continuous, we mean that for any nest of intervals {Jk ∈ Π(I) ∶ k =
1, 2,⋯} shrinking to t, the limit

lim
k→∞

θ
−
Jk = lim

k→∞
θ
+
Jk = θ(t)

always holds, where θ−J and θ+J denote the order in�mum and supremum of θ on J respectively.

Remark 3.6. Here we give up the extra assumption that θ is continuous according to the topology ofA, which
was stated but not used in [11].

De�ne
L0
−(I, Xθ(⋅)) = {f ∈ L0(I, X) ∶ f ∣J ∈ L0(J, Xθ−J ) for all J ∈ Π(I)},

and
L0(I, Xθ(⋅)) = {f ∈ L0

−(I, Xθ(⋅)) ∶ f(t) ∈ Xθ(t) for a.e. t ∈ I}.

Obviously, both of them are linear spaces according to the sum and scalar multiplication of abstract-valued
functions, and L0(I, Xθ(⋅)) ⊆ L0

−(I, Xθ(⋅)).
For each positive integer n, let tn,k = kT/2n or tn,k = k/2n, Jn,1 = [0, tn,1], Jn,k+1 = (tn,k , tn,k+1] and

θ±n,k = θ±Jn,k , for k = 1, 2,⋯, 2n if I = [0, T] or k = 1, 2,⋯ if I = [0,∞). De�ne a step function θn through
θ±n (t) = θ±n,k for t ∈ Jn,k. Obviously, {θ±n } is decreasing (increasing) in n and converging to θ(t) as n → ∞ for
all t ∈ I. Similar to the constant ones, for every n ∈ N, function space L0(I, Xθ±n (⋅)) is well de�ned, on which
Φθ±n (f) = ∫I %θ±n (t)(f(t))dt is a semimodular. It induces a Banach space, denoted by L%θ±n (⋅)(I, Xθ±n (⋅)).

There is a natural relation among the three types of function spaces mentioned above, that is

L0(I, Xθ(⋅)) ⊆ L0
−(I, Xθ(⋅)) ⊆ L0(I, Xθ−n (⋅)).

Thus for each f ∈ L0
−(I, Xθ(⋅)), the function t ↦ %θn(t)(f(t)) is measurable, n = 1, 2,⋯. Note that

%θ(t)(f(t)) = lim
n→∞

%θn(t)(f(t))

by the continuity of {%α}, so the composite function t ↦ %θ(t)(f(t)) is also measurable. Let

Φ%θ(⋅)(f) = ∫
I

%θ(t)(f(t))dt, f ∈ L0
−(I, Xθ(⋅)).

we then obtain a semimodular, whose semimodular space is denoted by L%θ(⋅)(I, Xθ(⋅)). Obviously, every
member of L%θ(⋅)(I, Xθ(⋅)) lies in L0(I, Xθ(⋅)), hence Φ%θ(⋅) can also be considered as a semimodular on
L0(I, Xθ(⋅)), correspondingly L%θ(⋅)(I, Xθ(⋅)) can be regarded as the semimodular space generated from
L0(I, Xθ(⋅)).

Theorem 3.7. For every CMN {%α ∶ α ∈ A} and every order-continuous map θ ∶ I → A, L%θ(⋅)(I, Xθ(⋅)) is a
Banach space.

Proof. Suppose that {fk} is a cauchy sequence in L%θ(⋅)(I, Xθ(⋅)). Then for every λ > 0, we have

lim
k,l→∞

Φ%θ(⋅)(λ(fk − fl) = lim
k,l→∞∫

I

%θ(t)(λ(fk(t) − fl(t))dt = 0.

Thus there is sequence of positive integers, say {ki}, satisfying ki < ki+1 for all i ∈ N, limi→∞ ki = ∞, and

∫
I

%θ(t)(2i(fk(t) − fj(t)))dt <
1
2i whenever k, j ≥ ki , (7)
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Especially we have

∫
I

%θ(t)(2i(fki+1(t) − fki(t)))dt <
1
2i ,

which in turn yields

∣Ei ∣ ≤ ∣{t ∈ I ∶ %θ(t)(2i(fki+1(t) − fki(t))) > 1}∣ < 1
2i ,

where Ei = {t ∈ I ∶ ∥fki+1(t) − fki(t)∥θ(t) > 1/2i}, i = 1, 2,⋯.
Let E = ⋂∞j=1⋃∞i=j Ei, thenwehavem(E) = 0, and for each t ∈ I∖E, there exists j ∈ N such that t ∈ I∖⋃∞i=j Ei,

or equivalently ∥fki+1(t) − fki(t)∥θ(t) ≤ 1/2i for all i ≥ j. Consequently, for the integer l ≥ j, we have

∞
∑
i=l

∥fki+1(t) − fki(t)∥θ(t) ≤
1

2l−1 .

This infers that series fk1(t) +∑
∞
i=l(fki+1(t) − fki(t)) is absolutely continuous in Xθ(t) on the set I ∖ E. Then by

the completeness of Xθ(t), we conclude that {fki(t)} is convergent in Xθ(t) a.e. on I, and the limit function f
belongs to L0(I, Xθ(⋅)).

Taking any λ > 0 and ε > 0, there exists i ∈ N such that 2i > λ and 1/2i < ε, thus using inequality (7),
Fatou’s lemma together with the lower semicontinuity of %θ(t), we obtain

∫
I

%θ(t)(λ(uk(t) − u(t)))dt ≤ lim inf
j→∞ ∫

I

%θ(t)(2i(uk(t) − ukj(t)))dt < ε, ∀ k > ki ,

which means that u ∈ L%θ(⋅)(I, Xθ(⋅)) and uk → u in L%θ(⋅)(I, Xθ(⋅)) as k →∞. This shows the completeness of
L%θ(⋅)(I, Xθ(⋅)).

The following propositions can be proved by inequality (6), continuity of {%α}, Fatou’s lemma, together with
the unit ball property.

Proposition 3.8. Suppose that I is a bounded interval, then

L%θ+n (⋅)(I, Xθ+n (⋅)) ↪ L%θ(⋅)(I, Xθ(⋅)) ↪ L%θ−n (⋅)(I, Xθ−n (⋅)),

and there exists a constant C > 0 such that

C−1∥f∥L%θ−n (⋅)(I,Xθ−n (⋅))
≤ ∥f∥L%θ(⋅)(I,Xθ(⋅)) ≤ C∥f∥L%θ+n (⋅)(I,Xθ+n (⋅))

.

Proposition 3.9. A function f ∈ L0
−(I, Xθ(⋅)) with the property

K = lim sup
n→∞

∥f∥L%θ−n (⋅)(I,Xθ−n (⋅))
< ∞

lies in f ∈ L%θ(⋅)(I, Xθ(⋅)) de�nitely with the estimate ∥f∥L%θ(⋅)(I,Xθ(⋅)) ≤ K.

Corollary 3.10. Under the bounded assumption of I, function space L%θ(⋅)(I, Xθ(⋅)) is equivalent to

{f ∈ L0
−(I, Xθ(⋅)) ∶ sup

J∈Π(I)
∥f∥

L
%
θ−J (I,Xθ−J

)
< ∞}

and
∥f∥L%θ(⋅)(I,Xθ(⋅)) ≤ sup

J∈Π(I)
∥f∥

L
%
θ−J (I,Xθ−J

)
≤ C∥f∥L%θ(⋅)(I,Xθ(⋅))

for some constant C > 0.

Assume that {Xα} generated by {%α} is a dense BSN , i.e. Xα2 is a dense subspace of Xα1 whenever α1 ≺
α2. It is easy to see that, under this situation S(I, Xα+) is contained in L0(I, Xθ(⋅)), consequently for every
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f ∈ S(I, Xα+), the multifunction t ↦ %θ(t)(f(t)) is measurable. Moreover, by invoking Proposition 2.3 we
can prove that, if every modular %α satis�es the ∆2−condition, then for each J ∈ Π(I), S(J, Xα+) hence
L%α+ (J, Xα+) is dense in L

%θ+J (J, Xθ+J ).
Analogous to the range-invariant ones, we can de�ne the space of strongly measurable functions with

varying ranges, that is

L0
+(I, Xθ(⋅)) = {f ∈ L0(I, X) ∶ f(t) ∈ Xθ(t) for a.e. t ∈ I,

and there exists a sequence {sn} of S(I, Xα+) s.t.
∥sn(t) − f(t)∥θ(t) → 0 as n →∞ for a.e. t ∈ I}.

Remark 3.11. In this de�nition, the set S(I, Xα+) can be replaced by L0(I, Xα+), both of which are contained
in L0(I, Xθ(⋅)). As a result, one can easily check that L0

+(I, Xθ(⋅)) is a subspace of L0(I, Xθ(⋅)).

Suppose that {%α ∶ α ∈ A} is a CMN generating a denseBSN {Xα}. Similar to L%θ(⋅)(I, Xθ(⋅)), we can de�ne
L%θ(⋅)+ (I, Xθ(⋅)) through

L%θ(⋅)+ (I, Xθ(⋅)) = {f ∈ L0
+(I, Xθ(⋅)) ∶ Φ%θ(⋅)(λf) < ∞ for some λ > 0}

with the same Luxemburg norm. Note that in such situation, S(I, Xα+) is a linear subspace of L%θ(⋅)+ (I, Xθ(⋅)).
We say that the CMN {%α} satis�es the ∆2−condition, if every %α satis�es the ∆2−condition, and the

constant C2 or the related function σ is independent of α. It is easy to see that under this condition, Φ%θ(⋅) is
also a∆2−type modular. Hence following the same process as in Proposition 2.3, we can prove that

Proposition 3.12. Under the ∆2-condition of {%α} and the density assumption of {Xα}, each function of
L%θ(⋅)+ (I, Xθ(⋅)) can be approximated by a sequence of S(I, Xα+) according to the norm ∥ ⋅ ∥L%θ(⋅)(I,Xθ(⋅)).

Theorem 3.13. Under the same assumptions as above, L%θ(⋅)+ (I, Xθ(⋅)) is a Banach space.

Proof. Taken any Cauchy sequence {fn} in Lp(⋅)+ (I, Xθ(⋅)), by virtue of Theorem 3.7, there is a function f ∈
L%θ(⋅)(I, Xθ(⋅)) for which ∥fn − f∥L%θ(⋅)(I,Xθ(⋅)) → 0 as n → ∞. For each n ∈ N, on account of Proposition 3.12,
there is a ϕn ∈ S(I, Xα+) such that ∥ϕn − fn∥L%θ(⋅)(I,Xθ(⋅)) < 1/n, which in turn yields ∥ϕn − f∥L%θ(⋅)(I,Xθ(⋅)) → 0
as n → ∞. Hence there is a subsequence, say {ϕn} itself, satisfying ϕn(t) → f(t) in Xθ(t) as n → ∞ for a.e.
t ∈ I. Therefore f ∈ L%θ(⋅)+ (I, Xθ(⋅)) and the proof is completed.

Remark 3.14. By reviewing the above proof, one can easily �nd that, under present situations, condition
L0(I, Xθ(⋅)) = L0

+(I, Xθ(⋅)) is su�cient for L%θ(⋅)(I, Xθ(⋅)) = L%θ(⋅)+ (I, Xθ(⋅)).

Theorem 3.15. Besides the ∆2−condition of {%α} and the density assumption of {Xα}, assume that Xα+ is
separable. Then the function space L%θ(⋅)+ (I, Xθ(⋅)) is also separable.

This theorem is a straight consequence of Proposition 3.12.
For each α ∈ A, denote by %∗α the Fenchel duality of %α, i.e.

%
∗
α(ξ) = sup

u∈Xα
{⟨ξ, u⟩α − %α(u)}, ξ ∈ X∗α.

Since %α is a semimodular, %∗α is also a semimodular on X∗α, and the semimodular space derived by %∗α is
exactly X∗α itself (see [2, §2.2]). De�ne

%̃
∗
α(ξ) = { %

∗
α(ξ), if ξ ∈ X∗α,
∞, if ξ ∈ X∗α+ ∖ X∗α,

then we obtain another family of semimodulars de�ned on X∗α+ , called the dual modular net or in symbol
DMN of {%α}. Since for each α ∈ A, the e�ective domains and the induced semimodular spaces are equal,
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in the coming arguments, we will not distinguish %̃∗α and %∗α, and prefer to use {%∗α} instead of {%̃∗α} to denote
theDMN of {%α}.

Suppose α1 ≺ α2, then X∗α1 ↪ X∗α2 , and for all ξ ∈ X∗α2 , by (6) we have

%
∗
α2(ξ) = sup

u∈Xα2

{⟨ξ, u⟩α2 − %α2(u)}

≤ sup
u∈Xα2

{⟨ξ, u⟩α2 −
1
C1
%α1(u)} +

C2

C1
(8)

≤ sup
u∈Xα1

{⟨ξ, u⟩α1 −
1
C1
%α1(u)} +

C2

C1
= 1
C1
%
∗
α1(C1ξ) +

C2

C1
.

Similar to Proposition 3.4, from this property we can show that the dual space family {X∗α ∶ α ∈ A}, whereA
takes the inverse order, is a uniformly bounded net. Moreover, assume that the function α↦ %α is sequently
continuous, in other words, if {αk} converges to α inA, then for all u ∈ X, the limit

lim
k→∞

%αk(u) = %α(u)

holds. Under this assumption, we can deduce that, for all sequences {α̃k} satisfying α̃k ≻ α and α̃k → α,
inequality

%
∗
α(ξ) ≤ lim sup

k→∞
%
∗
α̃k(ξ)

holds for all ξ ∈ X∗α+ , which in turn leads to the successive property of {X∗α}. Unfortunately, the inverse
inequality, hence continuity of {X∗α} can not be guaranteed under present situations. For the sake of
convenience, hereinafter, we always assume that X∗α+ ⊆ X, and the DMN {%∗α} is assumed to be a CMN
de�ned on X.We also assume that theBSN {Xα} and its dual net {X∗α} are compatible, i.e. ⟨ξ, u⟩α2 = ⟨ξ, u⟩α1

provided u ∈ Xα2 , ξ ∈ X∗α1 and α1 ≺ α2. This convention has been already used in (8). All the assumptions
mentioned above will be used later without any other comments.

Theorem 3.16. Suppose that the following hypotheses are all satis�ed:
– {%α} satis�es the∆2−condition, andR(∂%α) = X∗α for all α ∈ A,
– {Xα} is a dense BSN , and Xα+ is separable,
– for every α ∈ A, %∗α is a modular, and
– X∗α has the Radon-Nikodym’s property w.r.t. every J ∈ Π(I).
Then the dual space L%θ(⋅)+ (I, Xθ(⋅))∗ is equivalent to L%

∗

θ(⋅)(I, X∗θ(⋅)) in the sense of isomorphism.

Proof. Firstly for each ξ ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)), de�ne the linear functional Λξ as follows:

⟨⟨Λξ , f ⟩⟩θ(⋅) = ∫
I

⟨ξ(t), f(t)⟩θ(t)dt, ∀ f ∈ L%θ(⋅)+ (I, Xθ(⋅)). (9)

Suppose that ∥ξ∥
L
%∗
θ(⋅)(I,X∗

θ(⋅)
)
= ∥f∥L%θ(⋅)

+
(I,Xθ(⋅))

= 1, then by Young’s inequality we have

⟨⟨ξ, f ⟩⟩θ(⋅) ≤ ∫
I

%
∗
θ(t)(ξ(t))dt + ∫

I

%θ(t)(f(t))dt ≤ 2.

Therefore Λξ ∈ L
%θ(⋅)
+ (I, Xθ(⋅))∗, and ∥Λξ∥L%θ(⋅)

+
(I,Xθ(⋅))∗

≤ 2∥ξ∥
L
%∗
θ(⋅)(I,X∗

θ(⋅)
)
. This claim also holds for arbitrary

ξ ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)) by scaling arguments.
Conversely, given a functional Λ ∈ L%θ(⋅)+ (I, Xθ(⋅))∗, we will �nd a function ξ ∈ L%

∗

θ(⋅)(I, X∗θ(⋅)) such that
Λ = Λξ in the sense of (9) with the norm equivalent to that of ξ. IfΛ = 0, thenwe take ξ = 0 and there is nothing
to do. If Λ ≠ 0, then without loss of generality, assume that ∥Λ∥L%θ(⋅)

+
(I,Xθ(⋅))∗

= 1. Taking any J ∈ Π(I) and any

f ∈ L%θ+J (J, Xθ+J ), consider the zero extension of f out of J and denote it by f̃ . Obviously, f̃ ∈ L%θ(⋅)+ (I, Xθ(⋅)) and

∥f̃∥L%θ(⋅)
+

(I,Xθ(⋅))
≤ C∥f∥

L
%
θ+J (J,Xθ+J

)
(10)
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for some constant C > 0 depending on ∣J∣ but independent of f , which means that the restriction of Λ to
Lθ

+

J (J, Xθ+J ), denoted by Λ∣J,θ+J , lies in Lθ
+

J (J, Xθ+J )
∗. So by invoking Theorem 2.7, there is a unique function

ξJ ∈ L
%∗
θ+J (I, X∗θ+J ) such that

⟨⟨Λ∣J,θ+J , f ⟩⟩θ+J = ∫
J

⟨ξJ(t), f(t)⟩θ+J dt

for all f ∈ Lθ
+

J (J, Xθ+J ), and

∥ξJ∥
L
%∗
θ+J (I,X∗

θ+J
)
≤ C∥Λ∣J,θ+J ∥L

%
θ+J (J,Xθ+J

)∗
≤ C∥Λ∥L%θ(⋅)(I,Xθ(⋅))∗ (11)

for some constant C > 0 depending only on the length of J.
Suppose that J1, J2 ∈ Π(I) satisfy J2 ⊆ J1, then L

%θ+J2 (J, Xθ+J2 ) is densely imbedded in L
%θ+J1 (J, Xθ+J1 ), hence

by the uniqueness of the representation ξJ1 , we can assert that ξJ2(t) = ξJ1(t) for a.e. t ∈ J1. De�ne ξ(t) = ξJ(t)
if t ∈ J for arbitrary J ∈ Π(I), then we obtain a well de�ned function ξ ∈ L0

−(I, X∗θ(⋅)).
In case that I = [0, T] is bounded, all the constants C in (10) and (11) can be selected independent of

J ∈ Π(I), thus via Corollary 3.10, we can derive that ξ ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)) and ∥ξ∥
L
%∗
θ(⋅)(I,X∗

θ(⋅)
)
≤ C∥Λ∥L%θ(⋅)(I,Xθ(⋅))∗

for some C > 0 independent of Λ.
For each f ∈ L%θ(⋅)+ (I, Xθ(⋅)), select a sequence {ϕk} ⊆ S(I, Xα+) converging to f according to the

L%θ(⋅)(I, Xθ(⋅))−norm. Since for every k ∈ N,

⟨⟨Λ,ϕk⟩⟩θ(⋅) = ⟨⟨Λ∣I,α+ ,ϕk⟩⟩α+ = ∫
I

⟨ξ(t),ϕk(t)⟩α+dt = ∫
I

⟨ξ(t),ϕk(t)⟩θ(t)dt,

letting k →∞, we obtain
⟨⟨Λ, f ⟩⟩θ(⋅) = ∫

I

⟨ξ(t), f(t)⟩θ(t)dt,

which shows that Λ = Λξ.
It remains to prove (9) in the case I = [0,∞). Firstly the above discussions tell us that ξ ∈ L%

∗

θ(⋅)(J, X∗θ(⋅))
for all J ∈ Π(I). Consequently ξ ∈ L0(I, X∗θ(⋅)), and the scalar function t ↦ ⟨ξ(t), f(t)⟩θ(t) is measurable on I
whenever f ∈ L%θ(⋅)(I, Xθ(⋅)).

Given a function f ∈ L%θ(⋅)(I, Xθ(⋅)), for each n ∈ N, let fn = fχ[0,n], then we obtain an approximate
sequence of f in L%θ(⋅)(I, Xθ(⋅)) satisfying

⟨⟨Λ, fn⟩⟩θ(⋅) = ⟨⟨Λ∣[0,n], fn⟩⟩θ(⋅) = ∫
[0,n]

⟨ξ(t), f(t)⟩θ(t)dt.

Let n → ∞, using the fact limn→∞⟨⟨Λ, fn⟩⟩θ(⋅) = ⟨⟨Λ, f ⟩⟩θ(⋅), we can deduce that t ↦ ⟨ξ(t), f(t)⟩θ(t) is
integrable on I, and

⟨⟨Λ, f ⟩⟩θ(⋅) = ∫
I

⟨ξ(t), f(t)⟩θ(t)dt.

ThusΛ = Λξ by the arbitrariness of f . The remaining task for us is to show ξ ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)). For this purpose,
notice that the e�ective domainD(%α) is equal to Xα and the latter is separable, so the dual modular %∗α can
be represented by

%
∗
α(η) = sup

k≥1
{⟨η, vk⟩α − %α(vk)}, ∀ η ∈ X∗α, (12)

where {vk} is a countable dense subset of Xα. By the density of {Xα}, if we take {vk} as the dense sequence
of Xα+ with v1 = 0, then (12) holds with α = θ(t) and η ∈ X∗θ(t) for all t ∈ I.

For each n ∈ N, de�ne

rn(t) = χ[0,n](t) max
1≤k≤n

{⟨ξ(t), vk⟩θ(t) − %θ(t)(vk)}.
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Obviously, {rn} is a nondecreasing sequence of nonnegative (v1 = 0) measurable functions converging to
%∗θ(t)(ξ(t)) almost everywhere. Moreover, there is a sequence of simple functions {sn} ⊆ S(I, Xα+) such that

rn(t) = ⟨ξ(t), sn(t)⟩θ(t) − %θ(t)(sn(t)).

Due to the facts S(I, Xα+) ⊆ L%θ(⋅)(I, Xθ(⋅)) and ∥Λ∥L%θ(⋅)(I,Xθ(⋅))∗ = 1, we have

1 ≥ Φ∗%θ(⋅)(Λ) ≥ ⟨⟨Λ, sn⟩⟩ − Φ%θ(⋅)(sn)

= ∫
I

{⟨ξ(t), sn(t)⟩θ(t) − %θ(t)(sn(t))}dt,

where Φ∗%θ(⋅) is the dual modular of Φ%θ(⋅) . Taking limit of the second line as n →∞, we obtain

Φ%∗
θ(⋅)

(ξ) = ∫
I

%
∗
θ(t)(ξ(t))dt ≤ 1.

Therefore ξ ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)) and ∥ξ∥
L
%∗
θ(⋅)(I,X∗

θ(⋅)
)
≤ 1.

Finally by means of scaling transformation, we can obtain the desired estimate

∥ξ∥
L
%∗
θ(⋅)(I,X∗

θ(⋅)
)
≤ ∥Λ∥L%θ(⋅)(I,Xθ(⋅))∗ .

Thus we have completed the proof.

Remark 3.17. There is a by-product produced from the above proof, that is under all the hypotheses of Theorem
3.16, we have Φ%∗

θ(⋅)
(ξ) = Φ∗%θ(⋅)(Λξ) for all ξ ∈ L%

∗

θ(⋅)(I, X∗θ(⋅)). This is a natural extension of that of the scalar
case.

Corollary 3.18. In addition to the assumptions of the above theorem, assume that L0(I, Xθ(⋅)) = L0
+(I, Xθ(⋅)),

then
L%θ(⋅)(I, Xθ(⋅))∗ ≅ L%

∗

θ(⋅)(I, X∗θ(⋅)). (13)

Theorem 3.19. Suppose the following conditions are all satis�ed.
– both {%α} and {%∗α} satisfy the∆2−condition,
– {Xα} and {X∗α} are two dense BSN s,
– Xα+ and X∗α− are both separable, and
– for every α ∈ A, Xα is re�exive,
– L0(I, Xθ(⋅)) = L0

+(I, Xθ(⋅)), and L0(I, X∗θ(⋅)) = L0
+(I, X∗θ(⋅)).

Then L%θ(⋅)(I, Xθ(⋅)) is a re�exive space.

Given a CMN {%α}, assume that it is uniformly convex, in other words, every %α is uniformly convex, and
for each ε ∈ (0, 1), the corresponding number δ ∈ (0, 1) appearing in (5) is independent of α.

Theorem 3.20. Under the uniform convexity assumption and the ∆2−condition of {%α}, the function space
L%θ(⋅)(I, Xθ(⋅)) is uniformly convex.

Remark 3.21. Putting all the hypotheses in Theorem 3.19, 3.20 together, we obtain not only the uniform
convexity of L%θ(⋅)(I, Xθ(⋅)), but the representation (13) as well.

Example 3.22. Let Ω ⊆ RN be a bounded domain, and let P(Ω) be the set of all measurable functions taking
values in [1,∞], and

Pb(Ω) = {p ∈ P(Ω) ∶ 1 ≤ p− ≤ p+ < ∞},
where notations p+ and p− denote the essential supremum and in�mum of p on Ω respectively. For any p ∈
Pb(Ω), functional

%p(f) = ∫
Ω

1
p(x) ∣f(x)∣

p(x)dx
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is a continuous modular on the linear space X = L0(Ω), which induces a separable Banach space Xp ∶=
Lp(x)(Ω). Evidently %p satis�es the ∆2−condition with the function ω(t) = tp

+

. If in addition p− > 1, then
%p is uniformly convex, its dual modular %∗p equals %p′ , and the dual space Lp(x)(Ω)∗ is equivalent to Lp

′(x)(Ω).
Here p′(x) is the conjugate exponent of p(x), that is 1/p(x) + 1/p′(x) = 1 for a.e. x ∈ Ω. It is also easy to see
that, Lp2(x)(Ω) is a dense subspace of Lp1(x)(Ω) provided p1(x) ≤ p2(x) a.e. onΩ.

Fix two numbers p and p̄ in [1,∞) with p ≤ p̄, let

Ab = {p ∈ Pb(Ω) ∶ p(x) ∈ [p, p̄] for a.e. x ∈ Ω}.

Then equipped with the order: p ≺ q by p(x) ≤ q(x) a.e. on Ω, and the topology determined by: pn → p inAb
if and only if pn(x) → p(x) a.e. on Ω,Ab becomes a BT L. Meanwhile, {%p ∶ p ∈ Ab} is a CMN de�ned on X
satisfying the ∆2−condition with the common function ω(t) = tp̄, and {Xp ∶ p ∈ Ab} is a dense regular BSN
generated by {%p} (cf. [11]).

Assume that I = [0, T], and Q = I × Ω is a cylinder. Recall that, each u ∈ L0(Q) has an X−realization Pu
in L0(I, X) satisfying Pu(t)(x) = u(t, x) for a.e. x ∈ Ω and a.e. t ∈ I, and conversely, each u ∈ L0(I, X) has
a scalar realization ũ in L0(Ω) satisfying ũ(t, x) = u(t)(x) for a.e. (t, x) ∈ Q. Moreover, for all q ∈ (1,∞),
the projection P ∶ Lq(Q) → Lq(I, Lq(Ω)) is a linear isometrical isomorphism with the inverse P−1u = ũ. If
q ∈ Pb(Ω) is a variable exponent, then P ∶ Lq(⋅)(Q) → Lq

−

(I, Lq(⋅)(Ω)) is also continuous (refer to [7]). In the
following discussion we will omit the notation P and simply use a single letter u to represent a scalar function
and its X−realization, or an X−valued function and its scalar realization without any other remarks, if there is
no confusion arising.

Suppose that p ∈ Pb(Q) is a Caratheodory type function satisfying
1. p(t, ⋅) is measurable onΩ for every t ∈ I, and
2. p(⋅, x) is continuous on I for a.e. x ∈ Ω.

Let p = p−Q, p̄ = p+Q, and de�ne θ(t) = p(t, ⋅) =∶ p(t), then we obtain an order-continuous exponent θ ∶ I → Ab
with

θ
+
J = sup{p(t, x) ∶ t ∈ J}, θ−J = inf{p(t, x) ∶ t ∈ J}

for all J ∈ Π(I), and Xθ(t) = Lp(t,x)(Ω), X∗θ(t) = Lp
′(t,x)(Ω) for all t ∈ I. [11] reveals that

L0(I; Lp(⋅,x)(Ω)) = L0
+(I; Lp(⋅,x)(Ω)).

Thus, L%p(⋅)(I; Lp(⋅,x)(Ω)) = L%p(⋅)+ (I; Lp(⋅,x)(Ω)) is a separable Banach space. Furthermore, if p > 1, then

L0(I; Lp
′(⋅,x)(Ω)) = L0

+(I; Lp
′(⋅,x)(Ω)),

and all the assumptions arising in Theorem 3.19, 3.20 are ful�lled, thus by Remark 3.21, we get the uniform
convexity, hence the re�exivity of L%p(⋅)(I; Lp(⋅,x)(Ω)), together with the expression

L%p(⋅)(I; Lp(⋅,x)(Ω))∗ ≅ L%p′(⋅)(I; Lp
′(⋅,x)(Ω)).

It is worth mentioning that for the same exponent p(⋅, ⋅), projection P is also an isometrical isomorphism
from Lp(t,x)(Q) onto L%p(⋅)(I; Lp(⋅,x)(Ω)) (see [11] for references). This is a natural extension of the property of
P from the case of constant exponents to the case of variable ones.

4 Functionals and Operators On L%θ(⋅)(I,Xθ(⋅))
In this section we will study some functionals and operators on the function space L%θ(⋅)(I, Xθ(⋅)), including
the subdi�erential of Φ%θ(⋅) , whose representation will be taken into account. For this purpose, we need the
coercive assumption on %α, %∗α, as well as Φ%θ(⋅) and Φ%∗θ(⋅) . Coercivity, which says

%(u)
∥u∥X

→∞ as ∥u∥X →∞,
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is an important property of a lower semicontinuous (or lsc for short) and proper convex function % de�ned on
a Banach space X. Using the coercive property of %, we can obtain the boundedness of a sequence in X under
some situations. For example, if there is a sequence {un} ⊆ X satisfying

%(un)
∥un∥X

≤ K for some K > 0,

then there is a constant C > 0 depending only on K such that ∥un∥X ≤ C for all n ∈ N.
It is easy to check that if %α is a coercive modular, then its dual %∗α satis�es Dom(%∗α) = X∗α. As a matter

of fact, taking any ξ ∈ X∗α, by the coercivity of %α, there is a constantM > 0 for which %α(u) ≥ (∥ξ∥∗α +1)∥u∥α
provided ∥u∥α ≥ M. Consequently,

%
∗
α(ξ) = sup

∥u∥α≤M
{⟨ξ, u⟩α − %α(u)} ≤ M∥ξ∥∗α < ∞.

In general, coercivity of Φ%θ(⋅) could not be derived from the coercive assumption of all the %αs naturally.
Under some special conditions, however, all of %α,α ∈ A andΦ%θ(⋅) are coercive simultaneously. The following
assumption, which is called strong coercivity of {%α}, is a desired one.

%α(
u

γ−1(s)) ≤
%α(u)
s

for all u ∈ X, s > 0 and α ∈ A, (14)

where γ ∶ [1,∞) → [1,∞) is strictly increasing function satisfying

lim
s→∞

γ(s)
s

= ∞. (15)

By (15), there is a constant K ≥ 1 such that γ−1(s) ≤ s whenever s ≥ K. Now taking any α ∈ A and u ∈ Xα with
∥u∥α ≥ 2K, and using (14), we can deduce that

%α(u)
∥u∥α

≥ 1
2%α(

u
γ−1(∥u∥α/2)) ≥

1
2

∥u∥α/2
γ−1(∥u∥α/2)%α(

u
∥u∥α/2) ≥ 1

2
∥u∥α/2

γ−1(∥u∥α/2) ,

which combined with (15) yields the coercivity of %α.
Furthermore, for any u ∈ L%θ(⋅)(I, Xθ(⋅)) with ∥u∥L%θ(⋅)(I,Xθ(⋅)) ≥ 1, we have that

∫
I

%θ(t)(
u(t)

γ−1(Φ%θ(⋅)(u))
)dt ≤ 1

Φ%θ(⋅)(u)
∫
I

%θ(t)(u(t))dt = 1,

which means ∥u∥L%θ(⋅)(I,Xθ(⋅)) ≤ γ
−1(Φ%θ(⋅)(u)). Consequently,

lim
∥u∥

L
%θ(⋅)

(I,Xθ(⋅))
→∞

Φ%θ(⋅)(u)
∥u∥L%θ(⋅)(I,Xθ(⋅))

≥ lim
Φ%θ(⋅)(u)→∞

Φ%θ(⋅)(u)
γ−1(Φ%θ(⋅)(u))

= ∞,

which shows the coercivity of Φ%θ(⋅) .
In the following arguments, we also need the strict convexity of %∗α for all α ∈ A, and the weak lower-

semicontinuity of {%α} and {%∗α}, which says
– For any sequence {αk} approaching β in A and any sequence {uk} ⊆ Xβ converging weakly to u in Xβ ,

{ξk} converging star-weakly to ξ in X∗β , we have

%β(u) ≤ lim inf
k→∞

%αk(uk) and %
∗
β(ξ) ≤ lim inf

k→∞
%
∗
αk(ξk). (16)

For the sake of convenience, all the hypotheses listed in Theorem 3.19, 3.20 are denoted by H(A) as a whole.
Furthermore, assumptions of strong coercivity of %α and %∗α, andweak lower-semicontinuity of {%α} and {%∗α}
are put together, denoted by H(B)

′

, which jointly with the strict convexity assumption of %α and %∗α for all
α ∈ A are denoted by H(B). Without any other speci�c comments, in further discussion we always assume
that H(A) and H(B) are both veri�ed for the given CMN {%α} and itsDMN {%∗α}.



940 | Q. Zhang

Consider the subdi�erential operator ∂%α. Similar to Remark (2.8), we can check that ∂%α is single-valued
provided %∗α is strict convex. Furthermore, by the coercivity of %α, we can also �nd that ∂%α ∶ Xα → X∗α is a
demicontinuous, monotone and coercive operator, whose range is the whole space X∗α. Since

⟨∂%α(u), u⟩α = %α(u) + %∗α(∂%α(u))

for all u ∈ Xα, %α(u) can be regarded as the extension of the traditional dual map where not modulars but
norms of X% and X∗α are involved.

Lemma 4.1. For all u ∈ L∞(I, Xα), the compound operator t ↦ ∂%α(u(t)) lies in L∞(I, X∗α). Moreover, if
u ∈ L%α(I, Xα), then ∂%α(u(⋅)) ∈ L%

∗

α(I, X∗α).

Proof. By the demicontinuity of ∂%α, one can easily see that the function ξ(t) = ∂%α(u(t)) is strongly
measurable. Furthermore by Remark 2.6, we have

%
∗
α(ξ(t)) + %α(u(t)) = ⟨ξ(t), u(t)⟩α ≤ ∥ξ(t)∥∗α∥u(t)∥α,

which together with the coercivity of %∗α, yields the boundedness of %∗α(ξ(t)) uniformly for a.e. t ∈ I, hence
the inclusion ξ ∈ L∞(I, X∗%α).

Suppose that u ∈ L%α(I, X%α), and {sk} ⊆ S(I, X%α) converges to u in L%α(I, Xα). Fromabove arguments,
we know that for every k ∈ N, the X∗α−valued simple function ξk(t) = ∂%α(sk(t)) lies in L∞(I, X∗α),
consequently it lies L%

∗

α(I, X∗%α), and

%
∗
α(ξk(t)) + %α(sk(t)) = ⟨ξk(t), sk(t)⟩α a.e. on I. (17)

Taking integrations on both sides and using generalized Hölder’s inequality, we have

Φ%∗α(ξk) + Φ%α(sk) = ∫
I

⟨ξk), sk(t)⟩αdt ≤ 2∥ξk∥L%∗α(I,X∗α)
∥sk∥L%α(I,Xα).

Then by the coercivity of Φ%∗α and the boundedness of {ξk} in L%α(I, Xα), we get the boundedness of {ξk}
in L%

∗

α(I, X∗α). Therefore there is a subsequence, say {ξk} itself, convergent to some ξ̃ weakly in L%
∗

α(I, X∗α).
Suppose that {vi} is a countable dense subset of Xα, then for every two positive integers i, n, we have

lim
k→∞∫

In

⟨ξk(t) − ξ̃(t), vi⟩αdt = 0.

It follows that the scalar function hk(t) = ⟨ξk(t) − ξ̃(t), vi⟩α is convergent to 0 in measure on In. As a result,
{hk} has a subsequence convergent to 0 a.e. on In. Then by means of the diagonalizing method, we can �nd
another subsequence, denoted still by {hk} such that limk→∞ hk(t) = 0 for a.e. t ∈ I, which combined with
the boundedness of {ξk(t)} derived from (17) and the density of {vi} in Xα, results in the weak convergence
of ξk(t) to ξ̃(t) in X∗α as k → ∞ for a.e. t ∈ I. Now taking limits in (17), and using continuity of %α and weak
lower-continuity of %∗α, we obtain

%
∗
α(ξ̃(t)) + %α(u(t)) ≤ lim inf

k→∞
%
∗
α(ξk(t)) + lim

k→∞
%α(sk(t))

≤ lim inf
n→∞

(%∗α(ξk(t)) + %α(u(t)))

≤ lim
k→∞

⟨ξk(t), sk(t)⟩α = ⟨ξ̃(t), u(t)⟩α,

which in turn tields ξ̃(t) = ∂%α(u(t)) for a.e. t ∈ I. Thus the lemmahas been proved since ξ̃ ∈ L%
∗

α(I, X∗%α).

In studying the subdi�erential of the Nemytzkij functional of a series of modulars, we always assume that
I = [0, T].

Proposition 4.2. For each u ∈ L%θ(⋅)(I, Xθ(⋅)), the X∗θ(⋅)−valued function ∂%θ(t)(u(t)) belongs to
L%

∗

θ(⋅)(I, X∗θ(⋅)).
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Proof. For every 2n-mean partition of I, de�ne the step function θ−n (t) as in the preceding section, and let
ξn(t) = ∂%θ−n (t)(u(t)) for a.e. t ∈ I. From Lemma 4.1, we can derive that ξn lies in L%θ−n (⋅)(I, X∗θ−n (⋅)), hence it lies
in L%θ(⋅)(I, X∗θ(⋅)). Much similar to the proof of Lemma 4.1, and using the strong coercivity of {%∗α}, density of

{%α}, separability of Xα+ together with the relations L%θ(⋅)(I, Xθ(⋅)) = L%θ(⋅)+ (I, Xθ(⋅)) and L%
∗

θ−n (⋅)(I, X∗θ−n (⋅)) ↪
L%

∗

θ(⋅)(I, X∗θ(⋅)), we can deduce that

%
∗
θ−n (t)(ξn(t)) + %θ−n (t)(u(t)) = ⟨ξn(t), u(t)⟩θ−n (t) a.e. on I, (18)

{ξn} is bounded in L%
∗

θ−n (⋅)(I, X∗θ−n (⋅)) and consequently in L%
∗

θ(⋅)(I, X∗θ(⋅)). Thus by passing to a subsequence,
we can assume that {ξn} converges weakly to some ξ in L%

∗

θ(⋅)(I, X∗θ(⋅)), and ξn(t) ⇀ ξ(t) in X∗θ(t) as n → ∞
a.e. on I. Now taking limits in (18), and using (16), we obtain

%
∗
θ(t)(ξ(t)) + %θ(t)(u(t)) ≤ lim inf

n→∞
%
∗
θ−n (t)(ξn(t)) + lim

n→∞
%θ−n (t)(u(t))

≤ lim
n→∞

⟨ξn(t), u(t)⟩θ−n (t) = ⟨ξ(t), u(t)⟩θ(t)

for a.e. t ∈ T. Therefore ξ(t) = ∂%θ(t)(u(t)) almost everywhere and the proposition has been proved.

Remark 4.3. In terms of Lemma 4.1 and Remark 3.17, we can claim that for every u ∈ L%α(I, X%α), the
subdi�erential ∂Φ%α(u) equals ∂%α(u(⋅)). Moreover, if we drop the strict convexity assumption of %∗α, then we
have the classical representation:

∂Φ%α(u) = {ξ ∈ L%
∗

α(I, X∗α) ∶ ξ(t) ∈ ∂%α(u(t)) for a.e. t ∈ I}.

Similarly, under the conditions of Proposition 4.2, we have ∂Φ%θ(⋅)(u) = ∂%θ(⋅)(u(⋅)) for all u ∈ L%θ(⋅)(I, Xθ(⋅)),
and

∂Φ%θ(⋅)(u) = {ξ ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)) ∶ ξ(t) ∈ ∂%θ(t)(u(t)) for a.e. t ∈ I},

if the strict convexity assumptions of %∗α for all α ∈ A are moved.

The following theorem is a natural corollary of Proposition 4.2 and Remark 4.3.

Theorem 4.4. Under hypotheses H(A) and H(B), the operator Zθ(⋅) de�ned through Zθ(⋅)(u) = ∂%θ(⋅)(u(⋅))
is demicontinuous, coercive and bounded, together with

⟨⟨Zθ(⋅)(u), u⟩⟩θ(⋅) = Φ%θ(⋅)(u) + Φ%∗θ(⋅)(u)

for all u ∈ L%θ(⋅)(I, Xθ(⋅). In a word, Zθ(⋅) ∶ L%θ(⋅)(I, Xθ(⋅)) → L%
∗

θ(⋅)(I, X∗θ(⋅)) is a generalized dual map.

Remark 4.5. Due to the facts that D(Φθ(⋅)) = L%θ(⋅)(I, Xθ(⋅)) and ∂Φθ(⋅) = Zθ(⋅) is single-valued, functional
Φθ(⋅) is Gâteaux di�erential, and its Gâteaux di�erential Φ′θ(⋅) equals Zθ(⋅).

Suppose thatB is anotherBT L, {ϕβ ∶ β ∈ B} is anotherCMN on Y ⊆ X and {Vβ ∶ β ∈ B} is the corresponding
BSN generated by {ϕβ}. We say {ϕβ} is stronger than {%α}, we mean that
– Vβ is imbedded continuously and densely in Xα, and the dual product ⟨ξ, u⟩ has the same value in both

V∗β × Vβ and X∗α × Xα for all u ∈ Vβ and ξ ∈ X∗α, and all α ∈ A, β ∈ B.

Under this assumption, for all C > 0,

EC = {u ∈ Xα ∶ ϕβ(u) ≤ C}

is a bounded and weakly closed subset of Vβ . Hence by the inclusion Vβ ↪ Xα, we have

Lemma 4.6. If Vβ is re�exive, then ϕβ is also a lower semicontinuous and convex function on Xα.
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Corollary 4.7. Under the re�exivity assumption of Vβ , for every u ∈ L0(I, Xα), the multifunction t ↦ ϕβ(u(t))
is measurable.

Suppose that ϑ ∶ I → B is also an order-continuous map, then based on the above results and the continuity
of {ϕβ}, we can check that

Proposition 4.8. Assume that for every β ∈ B, themodular space Vβ is re�exive. Then for each u ∈ L0(I, Xθ(⋅)),
functions {ϕϑ−n (⋅)(u(⋅))}

∞
n=1 are all measurable, hence as the limit function, ϕϑ(⋅)(u(⋅)) is also measurable.

Now we can de�ne the Nemytzkij functional of {ϕϑ(t) ∶ t ∈ I} through

Φϕϑ(⋅)(u) = ∫
I

ϕϑ(t)(u(t))dt, u ∈ L0(I, Xθ(⋅)).

Lemma 4.9. Suppose that ϕβ satis�es the ∆2−condition, and Vβ is a re�exive and separable space. Then a
function u ∈ L0(I, Xα) is also a member of Lϕβ(I, Vβ) provided Φϕβ(u) < ∞.

Proof. By the condition Φϕβ(u) < ∞, it su�ces to show the inclusion u ∈ L0(I, Vβ). Taking any r > 0 and
u0 ∈ Vβ , denote by

BVβ(u0, r) = {u ∈ Vβ ∶ ∥u − u0∥Vβ < r},

and
Bϕβ(u0, r) = {u ∈ Vβ ∶ ϕβ(u − u0) < r}.

By the unit ball property, we know that BVβ(u0, r) ⊆ Bϕβ(u0, r) provided 0 < r < 1. Moreover, for each r > 0,
by the ∆2−condtion of ϕβ , there is a δ > 0 such that Bϕβ(u0, δ) ⊆ BVβ(u0, r) (cf. [2, P. 43]). Thus for any
subset E of Vβ , one can check that

E = ⋂
n≥1
⋃
u∈E

Bϕβ(u,
1
n
).

Take an arbitrary nonempty closed subset F of Vβ . By the separability of Vβ , F has a countable dense subset
{vk} making

F = ⋂
n≥1
⋃
k≥1

Bϕβ(vk ,
1
n
),

which results in
{t ∈ I ∶ u(t) ∈ F} = ⋂

n≥1
⋃
k≥1

{t ∈ I ∶ ϕβ(u(t) − vk) <
1
n
} =∶ ⋂

n≥1
⋃
k≥1

Ek,n .

Evidently, for each k ∈ N, function t ↦ u(t) − vk belongs to L0(I, Xα), so the set Ek,n is measurable for all
n ∈ N. Consequently as the intersection and union of countable measurable sets, {t ∈ I ∶ u(t) ∈ F} is also
measurable, which leads to the measurability of u as a Vβ−valued function. Since Vβ is separable, we have
that u ∈ L0(I, Vβ), and the proof has been completed.

Proposition 4.10. Suppose that the every ϕβ satis�es the∆2−condition, and every Vβ is re�exive and separa-
ble. Then for all functions u ∈ L0(I, Xθ(⋅)) ful�lling Φϕϑ(⋅)(u) < ∞, we have u ∈ L0(I, Vϑ(⋅)).

This proposition can be proved with the aid of the interim spaces L0(I, Vϑ−n (⋅)) (n = 1, 2,⋯).
Proposition 4.10 shows that Φϕϑ(⋅) is also a modular de�ned on the linear space L0(I, Xθ(⋅)), and the

semimodular space derived byΦϕϑ(⋅) is exactly Lϕϑ(⋅)(I, Vϑ(⋅)), a separable Banach space. Moreover, suppose
that {ϕβ} satis�es H(A) and H(B)

′

with the supremum β+ of B instead of α+, then Lϕϑ(⋅)(I, Vϑ(⋅)) is
uniformly convex with the dual

Lϕϑ(⋅)(I, Vϑ(⋅))∗ ≅ Lϕ
∗

ϑ(⋅)(I, V∗ϑ(⋅)).

Moreover, similar to Remark 4.3, the restriction of Φϕϑ(⋅) on Lϕϑ(⋅)(I, Vϑ(⋅)), denoted by Φ̃ϕϑ(⋅) , is convex and
locally Lipschitz everywhere. Its subdi�erential operator has the form

∂Φ̃ϕϑ(⋅)(u) = {ξ ∈ Lϕ
∗

ϑ(⋅)(I, V∗ϑ(⋅)) ∶ ξ(t) ∈ ∂ϕϑ(t)(u(t)) a.e. on I}
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for all u ∈ Lϕϑ(⋅)(I, Vϑ(⋅)).

Example 4.11. Let us pay attention to the Sobolev space of variable exponent type

W1,q(x)(Ω) = {u ∈ W1,1(Ω) ∶ u, Diu ∈ Lq(x)(Ω), i = 1, 2,⋯, N},

where q ∈ Pb(Ω)with the notationPb(Ω) introduced in Example 3.22, and Diu = ∂u/∂xi denotes the i−th weak
derivative of u. Recall that endowed with the norm

∥u∥W1,q(x)(Ω) = inf {λ > 0 ∶ %q(
u
λ
) +

N
∑
i=1
%q(

Diu
λ

)},

or equivalently
∥u∥Lq(x)(Ω) + ∥∇u∥Lq(x)(Ω),

W1,q(x)(Ω) turns to be a separable Banach space. It is uniformly convex, and of course, re�exive provided
q− > 1.

Assume that ∂Ω ∈ C1 and q ∈ C(Ω) is a log-Hölder continuous exponent, or q ∈ Pωlog(Ω) in symbol, which
means that

∣q(x) − q(y)∣ ≤ ω(∣x − y∣), for ∣x − y∣ < 1, (19)

where ω ∶ [0,∞) → [0,∞) is a nondecreasing function ful�lling ω(0) = 0 and

Cω = sup
r>0

ω(r) log 1
r
< ∞. (20)

Under this situation, C∞(Ω) is dense in W1,q(⋅)(Ω), and W1,q(x)
0 (Ω) can be de�ned as the complement of

C∞0 (Ω) in W1,q(x)(Ω). By this de�nition, W1,q(⋅)
0 (Ω) = W1,1

0 (Ω) ∩W1,q(x)(Ω), and Poincaré’s inequality

∥u∥Lq(x)(Ω) ≤ C∥∇u∥Lq(x)(Ω), ∀ u ∈ W1,q(⋅)
0 (Ω)

remains true. Therefore W1,q(⋅)
0 (Ω) is topologically equivalent to the homogeneous Sobolev space D1,q(⋅)

0 (Ω)
(see [2, Ch. 8, 9] for relative discussions), and it canbe regardedasa semimodular spacederived fromX = L0(Ω)
by the modular

ϕq(u) = {∑
N
i=1 %q(Diu), if u ∈ W1,1

0 (Ω),
∞, if u ∈ L0(Ω)/W1,1

0 (Ω).

Take Ab as in Example 3.22 and �x ω ful�lling (20). Then as an ordered topological subspace of Ab, the
intersection Bω = Ab ∩ Pωlog(Ω) is also a BT L, on which {ϕq ∶ q ∈ Bω} is a CMN , and {W1,q(x)

0 (Ω) ∶ q ∈ Bω}
is the corresponding regular BSN .

For any q ∈ Pωlog(Ω) with q− > 1, if we take W1,q(⋅)
0 (Ω) and D1,q(⋅)

0 (Ω) as the same space, then every
member of the dual space W1,q(⋅)

0 (Ω)∗ =∶ W−1,q′(⋅)(Ω) has a representation in Lq
′(⋅)(Ω)N , i.e. for each ξ ∈

W−1,q′(⋅)(Ω), there is an F = (f1,⋯, fN) ∈ Lq
′(⋅)(Ω)N such that ξ = −∑N

i=1 Di fi inD′(Ω), or equivalently,

⟨ξ, u⟩ =
N
∑
i=1
∫
Ω

fi(x)Diu(x)dx

for all u ∈ W1,q(⋅)
0 (Ω) (see [2], §12.3). Thus for the BT L Bω with q > 1, we can �x a basis {εk} of

W−1,q′(Ω), whose representations {Gk} are also �xed in Lq
′

(Ω)N . Based on this selection, for any q ∈ A0,
due to the density of W−1,q′(Ω) in W−1,q′(⋅)(Ω), every element ξ ∈ W−1,q′(⋅)(Ω) has a unique representation
in Lq

′(⋅)(Ω)N . Conversely, every vector function of Lq
′(⋅)(Ω)N represents a unique member of W−1,q′(⋅)(Ω).

Naturally, W−1,q′(⋅)(Ω) can be viewed as a semimodular space deduced by the modular

ψq′(ξ) =
N
∑
i=1
%q′(fi),



944 | Q. Zhang

where F = (f1,⋯, fN) ∈ Lq
′(⋅)(Ω)N is the representation of ξ determined by {Gk}. Notice that, for all u ∈

W1,q(⋅)
0 (Ω) and ξ = −∑N

i=1 Di fi ∈ W−1,q′(⋅)(Ω), we have

⟨ξ, u⟩ =
N
∑
i=1
∫
Ω

fi(x)Diu(x)dx ≤ ϕq(u) + ψq′(ξ),

and equality holds if and only if fi ∈ ∂%q(Dui) or equivalently Dui ∈ ∂%q′(fi) for all i ∈ {1, 2,⋯, N}. In this
sense, ψq′ can be viewed as the dual modular of ϕq, and {ψq′ ∶ q ∈ Bω} can be regarded as the DMN of
{ϕq ∶ q ∈ Bω}. By the continuity of {%q′}, one can easily check that {ψq′} is also a CMN , and correspondingly
{V∗q = W−1,q′(⋅)(Ω) ∶ q ∈ Bω} is a regular BSN , which is theDSN of {Vq = W1,q(⋅)

0 (Ω) ∶ q ∈ Bω}.
If we set ϑ(t) = q(t, ⋅), we then obtain another order-continuous exponent ϑ ∶ I → Bω . The authors in [11]

revealed that for a continuous exponent q(t, x) satisfying (19) uniformly for all t ∈ I with a �xed ω verifying (20)
and 1 < q ≤ q̄ < ∞,

L0(I;W1,q(x,⋅)
0 (Ω)) = L0

+(I;W1,q(x,⋅)
0 (Ω))

and
L0(I;W−1,q′(x,⋅)(Ω)) = L0

+(I;W−1,q′(x,⋅)(Ω)).

Thus by invoking Corollary 3.18 and Theorem 3.19 again, we get the re�exivity of Lϕq(⋅)(I;W1,q(x,⋅)
0 (Ω)), and the

representation
Lϕq(⋅)(I;W1,q(x,⋅)

0 (Ω))∗ ≅ Lψq′(⋅)(I;W−1,q′(x,⋅)(Ω)).

Remark 4.12. Given an exponent p ∈ P(Ω) with 1 < p− < p+ < ∞, it is easy to check that

%p(
u

t1/p− ) ≤
%p(u)
t

.

Hence, %p satis�es the strongly coercive property (14) with γ(t) = tp
−

verifying (15). Furthermore, under the
assumptions 1 < p < p̄ < ∞ and 1 < q < q̄ < N together with

p(t, x) ≤ Nq(t, x)
N − q(t, x) =∶ q∗(t, x),

{ϕq ∶ q ∈ Bω} is stronger than {%p ∶ p ∈ Ab}, and all the modular nets {%p}, {%p′}, {ϕq} and {ψq′} satisfy
the strong coercivity with γ(t) = tp , tp̄

′

, tq and tq̄
′

respectively. Thus taking the strict convexity of Lp
′(x)(Ω) and

W−1,q′(x)(Ω) into account, we can assert that hypotheses H(A) and H(B) are ful�lled by both {%p ∶ p ∈ Ab}
and {ϕq ∶ q ∈ Bω}. Therefore in our setting,

Zθ(⋅)(u)(t) = ∣u∣p(t,x)−2u = ∂%p(t)(u)

de�nes a bounded, coercive and demicontinuous operator

Zθ(⋅) ∶ L%p(⋅)(I; Lq(⋅,x)(Ω)) → L%p′(⋅)(I; Lp
′(⋅,x)(Ω))

as in Theorem 4.4, and
∂Φ̃ϕϑ(⋅)(u)(t) = ∂ϕϑ(t)(u(t)) = −div(∣∇u∣q(t,x)−2∇u)

de�nes the subdi�erential of Φ̃ϕϑ(⋅) at u ∈ Lψq(⋅)(I;W1,q(⋅,x)
0 (Ω)).

Remark 4.13. Replace q by a vector exponent q = (q1, q2,⋯, qN) in Example 4.11, and de�ne the anisotropic
space

W1,q(x)
0 (Ω) = {u ∈ W1,1

0 (Ω) ∶ Diu ∈ Lqi(x)(Ω)}.

Here qi ∈ Pωlog with a common ω, and qi(x) ∈ [q, q̄] ⊆ (1,∞) for all x ∈ Ω, i = 1, 2,⋯, N. Similar to the isotropic
ones, W1,q(x)

0 (Ω) can be viewed as a semimodular space derived by

ϕq(u) = {∑
N
i=1 %qi(Diu), if u ∈ W1,1

0 (Ω),
∞, if u ∈ L0(Ω)/W1,1

0 (Ω),
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and its dual space, denoted by W−1,q′(x)(Ω), can also be represented by the product space ∏N
i=1 Lq

′

i(x)(Ω).
Therefore following the same discussions as in Example 4.11, we can conclude that {ϕq ∶ q ∈ BNω}, where BNω
is equipped with the product topology and the order: q ≺ r if and only if qi ≺ ri for all i = 1, 2,⋯, N, is a
CMN ful�lling hypotheses H(A) and H(B), and stronger than {%p ∶ p ∈ Ab}. {W1,q(x)

0 (Ω) ∶ q ∈ BNω} is a
BSN derived by {ϕq}, its DSN {W−1,q′(x)(Ω)} is generated by {%q′} with a basis �xed in W−1,q′(x)(Ω) and
its representation �xed in∏N

i=1 Lqi
′

(Ω), where q = (q1, q2,⋯, qN), and

%q′(F) =
N
∑
i=1
%q′i (fi), F = (f1, f2,⋯, fN) ∈ L0(Ω)N .

Therefore, for a continuous vector exponent q ∶ I × Ω → [q, q̄]N with every component qi satisfying (19)
uniformly for t ∈ I, the modular-modular space Lϕq(⋅)(I,W1,q(⋅,x)

0 (Ω)) deduced from L0(I, Lp(⋅,x)(Ω)) by the
modular

Φϕq(⋅)(u) = ∫
I

ϕq(t)(u(t))dt

is a separable and uniformly convex space with the dual

Lϕq(⋅)(I,W1,q(⋅,x)
0 (Ω))∗ ≅ Lϕq′(⋅)(I,W−1,q′(⋅,x)(Ω)).

Moreover, the restriction functional Φ̃ϕq(⋅) is convex and locally
Lipschitz everywhere on Lϕq(⋅)(I,W1,q(⋅,x)

0 (Ω)), its subdi�erential ∂Φ̃ϕq(⋅) at u ∈ Lϕq(⋅)(I,W1,q(⋅,x)
0 (Ω)) has

the expression

∂Φ̃ϕq(⋅)(u) = ∂ϕq(t)(u(t)) = −
N
∑
i=1

Di(∣Diu∣qi(t,x)−2Diu),

or equivalently,

⟨⟨∂Φ̃ϕq(⋅)(u), v⟩⟩ϑ(⋅) =
N
∑
i=1
∫
I
∫
Ω

∣Diu(t, x)∣qi(t,x)−2Diu(t, x)Div(t, x)dxdt

for all v ∈ Lϕq(⋅)(I,W1,q(⋅,x)
0 (Ω)).

5 Bochner-Sobolev spaces of modular-modular type and
applications in doubly nonlinear di�erential equations

We begin with the Bochner-Sobolev space of range-�xed type, that is

W1,%α(I, Xα) = {u ∈ L%α(I, Xα) ∶ u′ ∈ L%α(I, Xα)},

where u′ denotes the derivative of u in the sense of distribution, i.e. for all ξ ∈ X∗α and all γ ∈ C∞0 (I), equality

∫
I

⟨u′(t), γ(t)ξ⟩αdt = −∫
I

⟨u(t), γ′(t)ξ⟩αdt

holds. It is easy to check that, endowed with the norm

∥u∥W1,%α(I,Xα) = ∥u∥L%α(I,Xα) + ∥u′∥L%α(I,Xα),

which is equivalent to
inf {λ > 0 ∶ Φ%α(u/λ) + Φ%α(u

′/λ) ≤ 1},

W1,%α(I, Xα) turns to be a Banach space.
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Theorem 5.1. Function space W1,%α(I, Xα) can be embedded into the space of continuous functions C(I, Xα).
If in addition Vβ is embedded into Xα compactly, then W1,%α(I, Xα) ∩ Lϕβ(I, Vβ) is embedded compactly into
L%α(I, Xα).

Proof. Firstly, from the inequality
∥u∥Xα ≤ %α(u) + 1, ∀ u ∈ Xα,

we can deduce that L%α(I, Xα) ↪ L1(I, Xα). Similarly, we have W1,%α(I, Xα) ↪ W1,1(I, Xα) and
Lϕβ(I, Vβ) ↪ L1(I, Vβ). The �rst conclusion comes since the embedding W1,1(I, Xα)) ↪ C(I, Xα) holds.

Given a bounded subset F ofW1,%α(I, Xα)∩ Lϕβ(I, Vβ), it is also bounded inW1,1(I, Xα))∩ L1(I, Vβ)).
Assume that

Φ%α(u
′) + Φ%α(u) + Φϕβ(u) ≤ C

for some C > 0 independent of u ∈ F. Then for any u ∈ F and 0 < h < min{1, T/2} and t, t + h ∈ I, we have

%α(u(t + h) − u(t)) ≤
t+h

∫
t

%α(u′(τ))dτ ,

consequently

T−h

∫
0

%α(u(t + h) − u(t))dt ≤
T−h

∫
0

t+h

∫
t

%α(u′(τ))dτdt (21)

= (
h

∫
0

τ

∫
0

+
T−h

∫
h

τ

∫
τ−h

+
T

∫
T−h

T−h

∫
τ−h

)%α(u′(τ))dtdτ

=
h

∫
0

τ%α(u′(τ))dτ +
T−h

∫
h

h%α(u′(τ))dτ +
T

∫
T−h

(T − τ)%α(u′(τ))dτ

≤ h∫
I

%α(u′(τ))dτ ≤ Ch.

Taking any r ∈ (0, T), consider the average operator Mr on L%α(I, Xα) de�ned by

Mru(t) =
1
r

t+r

∫
t

u(τ)dτ , t ∈ [0, T − r].

Obviously, for all u ∈ Lϕβ(I, Vβ), Mru ∈ C([0, T − r], Vβ) with the estimate

ϕβ(Mru(t)) ≤
1
r

t+r

∫
t

ϕβ(u(τ))dτ , t ∈ [0, T − r].

Moreover, due to the boundedness of F in W1,%α(I, Xα) and the estimate (21), precompactness of the set
Fr = {Mru ∶ u ∈ F} in C([0, T − r], Xα) can be reached (refer to [16, 17]).

In addition, from (21), one can deduce that

T−h

∫
0

%α(Mru(t) − u(t))dt =
T−h

∫
0

%α(
1
r

r

∫
0

(u(t + τ) − u(t))dτ)dt

≤ 1
r

T−h

∫
0

r

∫
0

%α(u(t + τ) − u(t))dτdt

≤ 1
r

r

∫
0

T−τ

∫
0

%α(u(t + τ) − u(t))dtdτ
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≤ Ch

provided 0 < r ≤ h, which means that Mru → u in L%α([0, T − h], Xα) as r → 0 uniformly for u ∈ F. This
fact, combined with the precompactness of Fr in C([0, T − r], Xα) for every �xed r ∈ (0, h], leads to the
precompactness of F in L%α1

([0, T − h], Xα). The �nal conclusion comes if wemake the same discussions on
the set F̃ = {ũ(t) = u(T − t) ∶ u ∈ F} (see [16]).

Using the facts L%α(I, Xα) ↪ L1(I, Xα) and W1,%α(I, Xα) ↪ C(I, Xα), we can also deduce that

Corollary 5.2. Under hypotheses of the above theorem, W1,%α(I, Xα) ∩ Lϕβ(I, Vβ) can be embedded com-
pactly into Lp(I, Xα) for any 1 ≤ p < ∞, hence Lp(⋅)(I, Xα) for all p ∈ Pb(I, Xα).

Given two CMN s {%α ∶∈ A} and {ϕβ ∶ β ∈ B} satisfying H(A) + H(B) and H(A) + H(B)′ respectively, and
the latter stronger than the former, introduce the Bochner-Sobolev space of range-varying type

W1,%θ(⋅)(I, Xθ(⋅)) = {u ∈ W1,%α− (I, Xα−) ∶ u, u′ ∈ L%θ(⋅)(I, Xθ(⋅))}.

Similarly, equipped with the norm

∥u∥W1,%θ(⋅)(I,Xθ(⋅))
= ∥u∥L%θ(⋅)(I,Xθ(⋅)) + ∥u′∥L%θ(⋅)(I,Xθ(⋅)),

which is equivalent to
inf {λ > 0 ∶ Φ%θ(⋅)(u/λ) + Φ%θ(⋅)(u

′/λ) ≤ 1},

W1,%θ(⋅)(I, Xθ(⋅)) becomes a Banach space.

Theorem 5.3. Besides the assumptions upon {%α} and {ϕβ} as above, assume that there are scalar functions
p̃i , q̃i , δ ∈ C(I) (i = 1, 2) such that 1 ≤ p̃1(t) ≤ p̃2(t) < ∞, 1 ≤ q̃1(t) ≤ q̃2(t) < ∞, δ(t) ∈ (0, 1), and
p̃2(t)δ(t) < q̃2(t) for all t ∈ I. Suppose also
– Vϑ− ↪↪ Xα+ and there is a constant C > 0 such that
– (Xα− , Vϑ(t))δ(t) ↪ Xθ(t) uniformly for t ∈ I, in other words,

∥u∥θ(t) ≤ C∥u∥1−δ(t)
α− ∥u∥δ(t)

ϑ(t) for all u ∈ Vϑ(t), (22)

where notation (Xα− , Vϑ(t))δ(t) represents the real or complex interpolation space between Xα− and Vϑ(t)
with the index δ(t);

– for all t ∈ I,
%θ(t)(u) ≤ Cmax{∥u∥p̃1(t)

θ(t) , ∥u∥p̃2(t)
θ(t) } u ∈ Xθ(t), (23)

and
min{∥u∥q̃1(t)

ϑ(t) , ∥u∥
q̃2(t)
ϑ(t) } ≤ Cϕϑ(t)(u), u ∈ Vϑ(t).

Then space W1,%θ(⋅)(I, Xθ(⋅)) ∩ Lϕϑ(⋅)(I, Vϑ(⋅)) is embedded into L%θ(⋅)(I, Xθ(⋅)) compactly.

Proof. Firstly, by (23) and Remark 4.8 in [11], we have that

Lp̃2(⋅)(I, Xθ(⋅)) ↪ L%θ(⋅)(I, Xθ(⋅)).

Thus from Theorem 5.1 and its corollary, it su�ces to show that a sequence {uk} bounded in Lϕϑ(⋅)(I, Vϑ(⋅))
and convergent in Lp(⋅)(I, Xα−) for all p ∈ Pb(I, Xα) is convergent in Lp̃2(⋅)(I, Xθ(⋅)) de�nitely.Without loss of
generality, assume that the limit of {uk} is 0. Take K > 1 so close to 1 that p̃2(t)δ(t)K ≤ q̃2(t) and p̃2(t)(1 −
δ(t))K′ ≥ 1 (1/K + 1/K′ = 1) for all t ∈ I, then by (22), we have

∫
I

∥uk(t)∥p̃2(t)
θ(t) dt (24)

≤ C∫
I

∥uk(t)∥p̃2(t)(1−δ(t))
α− ∥uk(t)∥p̃2(t)δ(t)

ϑ(t) dt
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≤ C(∫
I

∥uk(t)∥p̃2(t)(1−δ(t))K′
α− dt)1/K′(∫

I

∥uk(t)∥p̃2(t)δ(t)K
ϑ(t) dt)1/K

≤ C(∫
I

∥uk(t)∥p̃2(t)(1−δ(t))K′
α− dt)1/K′

⋅[T1/K + ( ∫
{∥uk(t)∥ϑ(t)>1}

∥uk(t)∥p̃2(t)δ(t)K
ϑ(t) dt)1/K]

≤ C(∫
I

∥uk(t)∥p̃2(t)(1−δ(t))K′
α− dt)1/K′[T1/K + (∫

I

ϕϑ(t)(uk(t))dt)
1/K],

which leads to the desired conclusion.

Remark 5.4. Under all the hypotheses of Theorem 5.3 with the compact embedding of Vϑ− into Xα+ replaced
by the following condition

∥u∥Xα ≤ C∥u∥Vβ (25)

uniformly for α ∈ A and β ∈ B, we have

∥u′∥L1(I,Xα−) ≤ C∥u′∥L%θ(⋅)(I,Xθ(⋅)), ∥u∥L1(I,Xα−) ≤ C∥u∥Lϕϑ(⋅)(I,Vϑ(⋅))

for all u ∈ W1,%θ(⋅)(I, Xθ(⋅)) ∩ Lϕϑ(⋅)(I, Vϑ(⋅)), thus under the condition

∥u′∥L%θ(⋅)(I,Xθ(⋅)) + ∥u∥Lϕϑ(⋅)(I,Vϑ(⋅)) ≤ 1,

estimates (24) turn to be

∫
I

∥u(t)∥p̃2(t)
θ(t) dt ≤ CT1/K′ max{(max

t∈I
∥u(t)∥α−)p̃

+

2 (1−δ−), (max
t∈I

∥u(t)∥α−)p̃
−

2 (1−δ+)}

⋅(∫
I

∥u(t)∥p̃2(t)δ(t)K
ϑ(t) dt)1/K

≤ CT1/K′ max{∥u∥p̃
+

2 (1−δ−)
W1,1(I,Xα−)

, ∥u∥p̃
−

2 (1−δ+)
W1,1(I,Xα−)

}

⋅[T1/K + ( ∫
{∥uk(t)∥Vϑ(t)>1}

∥uk(t)∥p̃2(t)δ(t)K
Vϑ(t) dt)1/K]

≤ CT1/K′(∥u′∥L%θ(⋅)(I,Xθ(⋅)) + ∥u∥Lϕϑ(⋅)(I,Vϑ(⋅)))
p̃−2 (1−δ+)

⋅[T1/K + (∫
I

ϕϑ(t)(u(t))dt)
1/K] ≤ C,

which in turn produces ∥u∥Lp̃2(t)(I,Xθ(t)) ≤ C, and consequently ∥u∥L%θ(⋅)(I,Xθ(⋅)) ≤ C since Lp̃2(⋅)(I, Xθ(⋅)) ↪
L%θ(⋅)(I, Xθ(⋅)). Then by means of scaling transformation, we get

∥u∥W1,%θ(⋅)(I,Xθ(⋅))
≤ C(∥u′∥L%θ(⋅)(I,Xθ(⋅)) + ∥u∥Lϕϑ(⋅)(I,Vϑ(⋅))). (26)

This is an important inequality for later use.

In spite of the estimate (26), we do not expect the control of the modular Φ%θ(⋅)(u) by the sum Φ%θ(⋅)(u′) +
Φ̃ϕϑ(⋅)(u). Conversely, we have

Proposition 5.5. For every r ≥ 0, there is an εr > 0 such that for all 0 ≤ ε ≤ εr, the a priori estimate

Φ%θ(⋅)(u
′) + Φ̃ϕϑ(⋅)(u) ≤ εrΦ%θ(⋅)(u) + r

de�nes a bounded subset of W1,%θ(⋅)(I, Xθ(⋅)).
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Proof. We proceed by contradiction. Assume that there is a sequence {uk} in W1,%θ(⋅)(I, Xθ(⋅)) verifying

Φ%θ(⋅)(u
′
k) + Φ̃ϕϑ(⋅)(uk) ≤

1
k
Φ%θ(⋅)(uk) + r,

but Φ%θ(⋅)(uk) ≥ k. Let vk = uk/Φ%θ(⋅)(uk). Then we have

Φ%θ(⋅)(v
′
k) + Φ̃ϕϑ(⋅)(vk) ≤

Φ%θ(⋅)(u′k) + Φ̃ϕϑ(⋅)(uk)
Φ%θ(⋅)(uk)

≤ 1 + r
k

.

Therefore Φ%θ(⋅)(v′k) + Φ̃ϕϑ(⋅)(vk) → 0, and consequently vk → 0 in W1,%θ(⋅)(I, Xθ(⋅)) as k → ∞. Thus
limk→∞ Φ%θ(⋅)(vk) = 0, which contradicts to fact that Φ%θ(⋅)(vk) ≥ 1/2 for all k ∈ N.

Remark 5.6. As a preparation for later arguments, following the same process as above, we can prove that for
every C > 0, there exist two small numbers δ0 > 0 and µ0 > 0 such that all the functions satisfying the a priori
estimate

Φ%θ(⋅)(u
′) + Φ̃ϕϑ(⋅)(u) ≤ (δ + µσ(δ−1))Φ%θ(⋅)(u) + Cσ(δ−1)

comprise a bounded subset of L%θ(⋅)(I, Xθ(⋅)) as long as 0 < δ ≤ δ0 and 0 < µ ≤ µ0.

De�ne two function spaces with periodic boundary condition, one is

W1,%α
per (I, Xα) = {u ∈ W1,%α(I, Xα) ∶ u(0) = u(T)},

the other is
W1,%θ(⋅)

per (I, Xθ(⋅)) = W1,%θ(⋅)(I, Xθ(⋅)) ∩W1,%α−
per (I, Xα−)

under the condition θ(0) = θ(T). Evidently, the two spaces are closed subspaces of W1,%α(I, Xα) and
W1,%θ(⋅)(I, Xθ(⋅)) respectively.

Let us make some investigations on the operator D2
θ(⋅) ∶ W

1,%θ(⋅)
per (I, Xθ(⋅)) → W1,%θ(⋅)

per (I, Xθ(⋅))∗ de�ned
through

⟨⟨D2
θ(⋅)(u), v⟩⟩ = ∫

I

⟨∂%θ(t)(u′(t)), v′(t)⟩θ(t)dt, u, v ∈ W1,%α(I, Xα). (27)

By the de�nition, it is easy to check that D2
θ(⋅) is a single-valued, monotone and demicontinuous operator,

hence it is maximal monotone. In addition, taking v(t) = γ(t)w in (27) with γ ∈ C∞0 (I) and w ∈ Xα+ , we have

⟨⟨D2
θ(⋅)(u), v⟩⟩ = ∫

I

⟨∂%θ(t)(u′(t)), γ′(t)w⟩α+dt

= −∫
I

⟨ d
dt

∂%θ(t)(u′(t)), γ(t)w⟩α+dt

= −∫
I

⟨ d
dt

∂%θ(t)(u′(t)), γ(t)w⟩θ(t)dt,

which means that D2
θ(⋅) is a second order nonlinear di�erential operator, i.e.

D2
θ(⋅)(u) = −

d
dt

∂%θ(⋅)(u′(⋅))

in the sense of distribution.
Let Ψ̃(u) = Φ%θ(⋅)(u′) at u ∈ W1,%θ(⋅)

per (I, Xθ(⋅)), we obtain a continuous and convex functional. A direct
calculation shows that Ψ̃ is Gâteaux di�erentiable everywherewith the Gâteaux di�erential Ψ̃ ′(u) = D2

θ(⋅)(u).
Thus the subdi�erential operator ∂Ψ̃ is single-valued, and ∂Ψ̃(u) = D2

θ(⋅)(u) for all u ∈ W1,%θ(⋅)
per (I, Xθ(⋅)).

Consider the extension of Ψ̃ onto L%θ(⋅)(I, Xθ(⋅))

Ψ(u) =
⎧⎪⎪⎨⎪⎪⎩

∞, if u ∈ L%θ(⋅)(I, Xθ(⋅)) ∖W1,%θ(⋅)
per (I, Xθ(⋅))

Ψ̃(u), if u ∈ W1,%θ(⋅)
per (I, Xθ(⋅)).
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It is also easy to verify that Ψ is a semicontinuous and convex proper functional, whose subdi�erential
operator has the domain

D(∂Ψ) = {u ∈ W1,%θ(⋅)(I, Xθ(⋅)) ∶ there is an ξ ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)) such that

∫
I

⟨ξ(t), v(t)⟩θ(t)dt = ∫
I

⟨Zθ(⋅)(u′)(t), v′(t)⟩θ(t)dt (28)

for all v ∈ W1,%θ(⋅)
per (I, Xθ(⋅))},

together with ∂Ψ(u) = D2
θ(⋅)(u) = ξ in W1,%θ(⋅)

per (I, Xθ(⋅))∗ for the function ξ ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)) satisfying (28)
and all u ∈ D(∂Ψ). In this sense, we can say that ∂Ψ ⊆ D2

θ(⋅).
Taking the intersection

W = W1,%θ(⋅)
per (I, Xθ(⋅)) ∩ Lϕϑ(⋅)(I, Vϑ(⋅))

as the work space, where the norm ∥ ⋅ ∥W takes the value ∥u∥
W

1,%θ(⋅)
per (I,Xθ(⋅))

+ ∥u∥Lϕϑ(⋅)(I,Vϑ(⋅)), and consider
the sum

Φ̃(u) = Ψ̃(u′) + Φ̃ϕϑ(⋅)(u)
as the potential functional. Evidently, Φ̃(u) is a continuous modular onW with the e�ective domainD(Φ̃) =
W, its subdi�erential operator

∂Φ̃ = D2
θ(⋅) + ∂Φ̃ϕϑ(⋅)

is a maximal monotone subset of W1,%θ(⋅)
per (I, Xθ(⋅)) ×W1,%θ(⋅)

per (I, Xθ(⋅))∗. Moreover, by (26) and the coercivity
of Φ%θ(⋅) , Φϕϑ(⋅) , we have

⟨⟨∂Φ̃(u), u⟩⟩
∥u∥W

≥ C
Ψ̃(u′) + Φ̃ϕϑ(⋅)(u)

∥u′∥L%θ(⋅)(I,Xθ(⋅)) + ∥u∥Lϕϑ(⋅)(I,Vϑ(⋅))
→∞ as ∥u∥W →∞,

which yields the coercivity, hence surjectivity of ∂Φ̃. Furthermore, suppose that for every β ∈ B, ϕβ is strictly
convex, then Φ̃ϕϑ(⋅) hence Φ̃ is also strictly convex, which in turn leads to the injectivity of ∂Φ̃. Summing up,
we conclude that

Theorem 5.7. Suppose all the hypotheses mentioned above are satis�ed, then for every f ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)) ⊆
W∗, there is a unique u ∈ W and a corresponding selection ξ ∈ ∂Φ̃ϕϑ(⋅)(u) such that

D2
θ(⋅)(u) + ξ = f inW∗. (29)

In other words, for every f ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)), second order di�erential inclusion

− d
dt

∂%θ(t)(u′(t)) + ∂ϕϑ(t)(u(t)) ∋ f(t) a.e. on I (30)

with periodic boundary values admits a unique weak solution u in the sense

∫
I

⟨∂%θ(⋅)(u′(t)), v′(t)⟩θ(t)dt + ∫
I

⟨ξ(t), v(t)⟩ϑ(t)dt = ∫
I

⟨f(t), v(t)⟩θ(t)dt

for all v ∈ W .

The above theorem shows that the sum operator D2
θ(⋅) + ∂Φϕϑ(⋅) is both injective and surjective, its inverse

(D2
θ(⋅) + ∂Φϕϑ(⋅))−1 is existing and single-valued. Moreover, in light of Proposition 5.5, together with the

compact imbeddingW ↪↪ L%θ(⋅)(I, Xθ(⋅)), we can prove that

Theorem 5.8. If all the hypotheses of Theorem 5.3 together with (25) are satis�ed, then the inverse operator

(D2
θ(⋅) + ∂Φ̃ϕϑ(⋅))

−1 ∶ L%
∗

θ(⋅)(I, X∗θ(⋅)) → L%θ(⋅)(I, Xθ(⋅))

is both boundedand strongly continuous in the sense that for any sequence {fk} convergent to f in L%
∗

θ(⋅)(I, X∗θ(⋅))
weakly, the corresponding sequence {(D2

θ(⋅) + ∂Φ̃ϕϑ(⋅))−1fk} converges to (D2
θ(⋅) + ∂Φ̃ϕϑ(⋅))−1f in L%θ(⋅)(I, Xθ(⋅))

strongly.
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Let us consider the operator f ∶ I × X → X. Assume that
– for any J ∈ Π(I) and u ∈ Xθ+J , t ↦ f(t, u) lies in L0(I, X∗θ+J ),
– for every t ∈ I, f(t, ⋅) ∶ Xθ(t) → X∗θ(t) is demicontinuous, and
– there is an µ > 0 and a nonnegative integrable function h for which inequality

%
∗
θ(t)(f(t, u)) ≤ µ%θ(t)(u) + h(t) (31)

holds for all u ∈ Xθ(t).

Taken any u ∈ L0(I, Xθ(⋅)), denote by F(u) = f(t, u). It is easy to see that under the �rst assumption upon
f , if u ∈ S(I, Xα+), then F(u) ∈ L0

−(I, X∗θ(⋅)), and by (31), it comes F(u) ∈ L%
∗

θ(⋅)(I, X∗θ(⋅)). Consequently, from
the density of S(I, Xα+) in L%θ(⋅)(I, Xθ(⋅)) and the demicontinuity assumption upon f , we can derive that
F(u) ∈ L%

∗

θ(⋅)(I, X∗θ(⋅)) provided u ∈ L%θ(⋅)(I, Xθ(⋅)). Moreover, we have

Proposition 5.9. F is a bounded and demicontinuous operator from L%θ(⋅)(I, Xθ(⋅)) to L%
∗

θ(⋅)(I, X∗θ(⋅)).

Proof. Boundedness of F comes from (31) immediately. For the weak continuity, suppose that {un} is a
sequence of L%θ(⋅)(I, Xθ(⋅)) converging to u strongly, that is

∫
I

%θ(t)(un(t) − u(t))dt → 0 as n →∞.

Thus there is a subsequence, say {un} itself satisfying

lim
n→∞

%θ(t)(un(t) − u(t)) = 0 a.e. on I.

From the boundedness of {un} in L%θ(⋅)(I, Xθ(⋅)) and (31), we get the boundedness of {F(un)} in
L%

∗

θ(⋅)(I, X∗θ(⋅)). Consequently, there is a subsequence, without loss of generality, assuming also {un} itself,
and a function ξ ∈ L%

∗

θ(⋅)(I, X∗θ(⋅)), such that F(un) → ξ weakly, or equivalently

lim
n→∞∫

I

⟨f(t, un(t)) − ξ(t), v(t)⟩θ(t)dt = 0

for all v ∈ L%θ(⋅)(I, Xθ(⋅)), which in turn yields

lim
n→∞∫

E

⟨f(t, un(t)) − ξ(t), v⟩θ(t)dt = 0 (32)

for all measurable subsets E of I and all elements v of Xα+ sinceS(I, Xα+) is dense in L%θ(⋅)(I, Xθ(⋅)) by H(A).
On the other hand, since

lim
n→∞

⟨f(t, un(t)), v⟩θ(t) = ⟨f(t, u(t)), v⟩θ(t)

a.e. on I, for each ε > 0, by Egorov’s theorem, there is a measurable set Eε ⊆ I with ∣I ∖ Eε∣ < ε verifying

⟨f(t, un(t)), v⟩θ(t) → ⟨f(t, u(t)), v⟩θ(t) uniformly on Eε

as n →∞, consequently for any subset E of Eε, we have

lim
n→∞∫

E

⟨f(t, un(t)) − f(t, u(t)), v⟩θ(t)dt = 0. (33)

Putting (32) and (33) together with the same subset E, we obtain

∫
E

⟨f(t, u(t)) − ξ(t), v⟩θ(t)dt = 0,
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which implies
⟨f(t, u(t)) − ξ(t), v⟩θ(t) = 0 (34)

a.e. on Eε and eventually a.e. on I by the arbitrariness of E and ε respectively.
Suppose that {vk} is a dense and countable subset of Xα+ , then there is a subset E0 of I with zero

complement on which (34) holds with v replaced by vk for all k ∈ N. Finally, using the density of Xα+ in
Xθ(t), we deduce that f(t, u(t)) = ξ(t) in X∗θ(t) on E0. Therefore F(u) = ξ and F(un) ⇀ F(u) in L%

∗

θ(⋅)(I, X∗θ(⋅))
as n →∞. Thus the proof has been completed.

Putting Theorem 5.8 and Proposition 5.9 together, we can easily see that the composite operator

F ∶= (D2
θ(⋅) + ∂Φ̃ϕϑ(⋅))

−1 ○ F ∶ L%θ(⋅)(I, Xθ(⋅)) → L%θ(⋅)(I, Xθ(⋅))

is both continuous and compact. Moreover, we have

Theorem 5.10. Under all the assumptions mentioned above, there is an µ0 > 0 such that as long as 0 ≤ µ ≤ µ0,
F has a �xed point in L%θ(⋅)(I, Xθ(⋅)), or in other words, second order di�erential inclusion

− d
dt

∂%θ(t)(u′(t)) + ∂ϕϑ(t)(u(t)) ∋ f(t, u(t)) a.e. on I (35)

has a weak solution inW .

Proof. Consider the set
S = {u ∈ W ∶ u = λF(u) for some 0 < λ < 1}.

Evidently, every member of S is a weak solution of the inclusion

− d
dt

∂%θ(t)(λ−1u′(t)) + ∂ϕϑ(t)(λ−1u(t)) ∋ f(t, u(t)) a.e. on I.

By multiplying both sides of the above inclusion by λ−1u′(t), and integrate on I, then using the assumption
(31), we can deduce that

Φ%θ(⋅)(λ
−1u′) + Φ̃ϕϑ(⋅)(λ

−1u) ≤ ⟨⟨F(u), λ−1u⟩⟩θ(⋅)
≤ Φ%∗

θ(⋅)
(δ−1F(u)) + Φ%θ(⋅)(δλ

−1u)

≤ σ(δ−1)[µΦ%θ(⋅)(λ
−1u) + ∥h∥L1(I)] + δΦ%θ(⋅)(λ

−1u)
= (δ + µσ(δ−1))Φ%θ(⋅)(λ

−1u) + ∥h∥L1(I).

By taking δ0 > 0 and µ0 > 0 as in Remark 5.6 and letting 0 < δ ≤ δ0, 0 ≤ µ ≤ µ0, we can claim that
{λ−1u ∶ u ∈ S} is bounded in L%θ(⋅)(I, Xθ(⋅)). Therefore, there is a constant C > 0 independent of λ such that
∥u∥L%θ(⋅)(I,Xθ(⋅)) ≤ C for all u ∈ S. Finally by invoking Leray-Schauder’s alternative theorem for the compact
and strongly continuous operators (refer to [18, Ch. 13] or [19]), we can assert the existence of the �xed point
of F .

Remark 5.11. From the demicontinuity of F and the compactness of the inverse (D2
θ(⋅)+∂Φϕϑ(⋅))−1, we can also

check that solution set of (35) is a nonempty and compact subset ofW .

Remark 5.12. In our setting, periodic boundary condition can be replaced by the following one:

u(T) = Ku(0),

where K ∶ Xθ(0) → Xθ(T) is a bounded linear operator with other conditions unchanged.
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At the end of this paper, let us choose an anisotropic elliptic partial di�erential equation of second order to
illustrate our results,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Dt(∣Dtu∣p(x,t)−2Dtu) −∑N
i=1 Di(∣Diu∣

qi(x,t)−2Diu)
= µg(t, x, u), (t, x) ∈ I ×Ω,

u(0, x) = u(T, x), x ∈ Ω,
u(t, x) = 0, (t, x) ∈ I × ∂Ω.

(36)

Here Dt denotes the partial di�erential derivative with respect to t, p and qi are doubly variable exponents
introduced in Example 3.22 and Remark 4.13 respectively.

Suppose that g ∶ I × Ω × R → R is a Caratheodory function with a nonstandard growth, i.e. for a.e.
(t, x) ∈ I ×Ω, u ↦ g(t, x, u) is continuous, and for all u ∈ R, (t, x) ↦ g(t, x, u) is measurable, together with

∣g(t, x, u)∣ ≤ C(1 + ∣u∣p(t,x)−1) (37)

holding for a.e. (t, x) ∈ I ×Ω and all u ∈ R.
Let f(t, u)(x) = g(t, x, u(t, x)). Since L0(I, L0(Ω)) is equivalent to L0(Q), one can easily check that

f(t, u) lies in L0(I, L0(Ω)) provided u does. Moreover, combining (37) with the continuity of g(t, x, u) with
respect to u, we can�nd that f(t, u) ∈ L0(I, Lp̄

∗

(Ω)) for all u ∈ L0(I, Lp̄(Ω)), and f(t, u) isweakly continuous
from Lp(t,x)(Ω) to Lp

′(t,x)(Ω) for a.e. t ∈ I, together with (31) veri�ed.
Suppose that p(t, x) and qi(t, x) (i = 1, 2,⋯, N) are variable exponents as in Example 3.22 and Remark

4.13 ful�lling
inf
x∈Ω

(q∗i (t, x) − p(t, x)) > 0, i = 1, 2,⋯, N . (38)

Using the notations andde�nitions in Examples 3.22, 4.11 andRemark 4.13, fromequation (36), we then derive
an abstract evolution equation (35) on the space

W = W1,%p(⋅)
per (I, Lp(⋅,x)(Ω)) ∩ L%q(⋅)(I,W1,q(⋅,x)

0 (Ω)).

From all the assumptions of Example 3.22 and Remark 4.13 together with (38), one can easily verify all the
conditions listed in Theorem 5.3 as well as (25). Thus in terms of Theorem 5.10, equation (35) has a solution u
inW, whose scalar version, still denoted by u, solves (36) in the sense of distribution, i.e.

∫
Q

(∣Dtu∣p(x,t)−2Dtu)Dtvdxdt +
N
∑
i=1
∫
Q

(∣Diu∣qi(x,t)−2Diu)Divdxdt = ∫
Q

f(t, u)v(t, x)dxdt

for all v ∈ C1
per(I, C∞(Ω)). In conclusion, under all the conditions upon h, p and qi (i = 1, 2,⋯, N) including

(38), there is a µ0 > 0 such that for all 0 ≤ µ ≤ µ0, Equation (36) has a weak solution.

Remark 5.13. Unlike the traditional one, here we do not need u(t, x) = 0 on the whole boundary ∂Q and do
not require the whole log-Hölder continuity of p and qi (i = 1, 2,⋯, N). Hence Poincaré’s inequality

∥u∥Lp(t,x)(Q) ≤ C∥∇u∥Lq(t,x)(Q)

could not be applied even if p(t, x) ≤ qi(t, x) for all i ∈ {1, 2,⋯, N}. By these reasons, here we give up
W1,p(t,x)

0 (Q) as the work space, instead, an anisotropic space W1,%p(⋅)
per (I, Lp(⋅,x)(Ω)) ∩ L%q(⋅)(I,W1,q(⋅,x)

0 (Ω))
is taken into account, while the elliptic equation (36) turns to be an abstract second order evolution equation.
To our best knowledge, this way to deal with the anisotropic elliptic equations with nonstandard growth is new,
and di�erent to that applied in available literature.
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