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Abstract: This paper mainly deals with the abstract-valued Orlicz spaces of range-varying type. Using
notions of Banach space net and continuous modular net etc., we give definitions of L2 (I, Xg(,)) and
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also investigate some functionals and operators on L?°© (I, Xy .y ), giving expression for the subdifferential of
the convex functional generated by another continuous modular net. After making some investigations on the
Bochner-Sobolev spaces W"°0) (I, X,.y) and W;;f (I, Xg(.y), and the intersection space W;gf“’(') (I, Xg(y)N
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1 Introduction

In this paper we study a new type of Orlicz space, whose members are abstract-valued functions taking values
in a varying space. Orlicz space, which was introduced firstly by Orlicz [1] in 1931, is a type of semimodular
space commonly generated by a ¢ or generalized ¢ function. Typical examples of this type are Lebesgue and
Sobolev spaces with variable exponents, i.e. L (£2) and W*P®) (12) (see [2] for references). Due to the wide
applications in many fields of applied mathematics, Orlicz space received a growing interest of scholars in
the latest decades. Using the anisotropic function spaces, Antontsev-Shmarev in [3-5] studied the parabolic
equations of variable nonlinearity, including a model porus medium problem. By means of time discretization
and subdifferential calculus, Akagi etc in [6, 7] dealt with the doubly nonlinear parabolic equations involving
variable exponents. The work [8] considered the application of Orlicz space in Navier-Stokes equation, and
[9] investigated an obstacle problem with variable growth and low regularity of the data.

To deal with the evolution equations with variable exponents, a new type of functions, called
Xg(—valued functions, are needed. As the valued space varies upon the time, it is difficult to give a suitable
definition of “measurability" for these functions. By introducing the concepts of bounded topological lattice
A, regular Banach space net {X, : o € A} and order-continuous exponent § : I — A, Zhang- Li in [10]
firstly gave definition of the space LO(I » Xo(.y), which contains all the Xy .y -valued functions measurable in
a special manner. Like the measurable functions of range-fixed type, members of L°(I, Xp(.y) are all norm-
measurable. Based on the useful character, from L°(1, Xp(.)) the authors extracted two types of function
spaces: continuous type C™ (I, Xy(.y) and integral type L¥ ©) (I, Xp(.y)- After showing their completeness and
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connections between them together with some concrete examples, the authors paid attention to a semilinear
evolution equation with the nonlinearity having a time-dependent domain to illustrate the application of the
Xp(.)—valued functions.

It is worth remarking that some Banach space net can be produced by a continuous modular net {0, :
a € A}. According to whether or not being built on the continuous modular nets, Zhang-Li in [11] divided the
Xg(.)—valued function spaces of integral type into two subclasses: norm-modular ones and modular-modular
ones. A norm-modular space, like L? © (I, X4(.y), is commonly produced by the semimodular

0o(F) = [ ot 1F(O)loco)at
A

with a generalized & function ¢, while a modular-modular space is derived from a continuous modular net
{0a : a € A} with the semimodular

2o(f) = [ o(Mf())dt.
I

Here, M is a continuous operator from a topological linear space X to a closed cone V of another topological
linear space W, called a V-modular (refer to [11]).
Here we will drop the extra map M, and use merely {o. : o € A} and 6 to reconstruct the semimodular,
namely
Bour (D) = [ 2o (F(E))at.
i
This change brings much convenience to us to study the duality and reflexivity of the abstract-valued Orlicz
spaces of modular-modular type.

The main part of this paper is organized as follows: As preparations, in Section 2, we study the abstract-
valued Orlicz space generated by a single modular. Section 3 is devoted to the abstract-valued Orlicz space
generated by a series of modular. Using different measurability of the X4(.)~valued functions, we introduce
two different spaces: L%°© (I, Xy(.)) and LYo, Xo(.y), both of them are complete according to the same
norm. We show that, under some suitable situations, Lfe(') (I, Xg(.y) is separable, and its dual space can be
represented by

LYO(1, Xg(y)* = L0 (I, X5(.)).-

We also make some evaluations on the proper conditions for the equality
Lﬁe(-) (I, XO()) — LQH(.) (I, XG())

as well as the reflexivity of L¢°© (I, X4(.y).

For the sake of applications, in Section 4, we make some discussions on the functionals and operators
on the modular-modular space L%© (I, Xy(.y), including functional 5@ s, defined by another continuous
modular system {¢s : § € B} and another order-continuous map ¥ : I — B, and operators Zy.y and
0wy (.y, which are subdifferentials of ¢,, , and &, respectively. Here Zy.y plays the role of an extended
dual map, and Jypy(.y usually arises in a differential equation as the driving operator. Under some extra
assumptions, such as the weak lower-continuity of {9, } and {o}, and the strong coercivity of {o,} and
{¢s}, demicontinuity and coercivity of Zy, and the representation 65%9(_)(11)(0 = Opy(p(u(t)) are
obtained. This is an attempt to extend the convex functional and its subdifferential generated by a single
function to that generated by a series of functions (compare to [12, Ch. 2], and [7]).

After making some investigations on the Bochner-Sobolev spaces W29 (1, Xp(.y) and W;éf‘”” (I, Xg(y)s
and the intersection

W = Woed™ (I, Xo()) N L7701, Vgg.y),

including the continuous and compact embedding of W2¢¢ (I, Xp(.) into the space L#O (I, Xy(.)) along
with the estimate

]yt eocy (I.Xs()) < C(flu'| oo (LXpy) T lullzeoc) (I,Vﬂ(,)))’
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in Section 5, we study a type of second order nonlinear differential inclusion

—%699(0(11'(1‘)) +0py(ey (u(t)) > f(t,u(t)) forae. tel, (1)

with the periodic boundary condition, where the operator f : I x X — X owns a nonstandard growth

006 (f (£, 1)) < poa(ey (w) + h(t), u e Xy

for a small number » > 0 and a nonnegative function h e L*(I). By introducing the Nemytskij operator
F(u) = f(-, u), and the second order differential operator D} (- defined by

(DG us Vo = /(age(»)(u,(t))’V,(t)>9(t)dt’ u,ve W;éfe(') (I, Xg()>
I

we obtain a continuous and compact operator
(Dg() + asbw(_) )71 oF: LQS(') (I, Xe()) — LQG(') (I’ XG())’

which by Leray-Schauder’s alternative theorem contains a fixed point solving the differential inclusion (1) in
the weak sense. To illustrate these results, at the end of the paper, an anisotropic elliptic equation defined
on a cylinder I x £2 of RY*! with a Caratheodory type nonlinearity g (t, x, u) are investigated. Because of the
nonstandard growth

gt x, )] < C(1+ |uf07)

fora.e. (t,x) e I x 2 and all u ¢ R fulfilled by the nonlinearity, and the periodic boundary condition u(0, x) =
u(T, x), study of the anisotropic elliptic equation seems somewhat meaningful.

Framework of our study can be incorporated in the theory of convex analysis and function spaces with
variable exponents. Results obtained here have their meaning in the study of nonlinear evolution equations
with nonstandard growth.

As preliminaries, let us firstly make a brief review on the Orlicz space of scalar type. For the detailed
discussions please refer to [2, Ch. 2] with the references therein.

Let K be a scalar (real or complex) field, and X be a K-linear space. A convex function ¢ : X — [0, co] is
called a semimodular on X, if the following hypotheses are all satisfied:

- 0(0)=0,

- forevery u € X, the function A » po(Au) is left continuous on [0, ), and
- o(Au) = o(u) provided |\ = 1,

- o(A\u) =0forall X > 0 implies that u = 0.

If in addition, o(u) = O means u = O, then p is called a modular. Given a semimodular ¢ on X, the
corresponding subspace
Xo={ueX:o(Au) < oo forsome X >0}

endowed with the norm
Jufo = inf{A>0: o(3) < 1}

becomes a normed linear space. X, is called the semimodular space, while | - ||, is called the Luxemburg
norm. Both of them are generated by . Recall that in X, the unit ball property is holding, that is |u|, < 1 if
and only if o(u) < 1.

Scalar Orlicz space is a common semimodular space produced by the integral semimodular. Suppose
that ¢ : [0,00) — [0, o0] is a @ function, i.e., ¢ is convex, left continuous, ¢(0) = 0 and lim;.o ¢(t) = O,
lim— o0 ¢(t) = co. Suppose also (4, ) is a o—finite and complete measure space, and L°(4, ) is the linear
space containing all the measurable scalar function defined on A. Then integration

o) = [ @(F)dn
2
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defines a semimodular on L°(A, ). The corresponding semimodular space, denoted by L? (A, 1), is called
an Orlicz space. According to the Luxemburg norm L¢(A, ) is a Banach space. Moreover, g4 is a modular in
case that ¢ is positive, i.e., ¢(t) > 0 whenever X > 0. Suppose further ¢ : A x [0, oc0) — [0, o] is a generalized
& function, that is, for a.e. x € A4, ¢(x, ) is a & functions, and for all ¢ € [0, o), the function x — ¢(x, t) is
measurable on A, then for all f € L°(4, u), integration |, o ®(x,|f(x)|)dp makes sense. This defines another
semimodular and induces another semimodular space, which is the generalization of Orlicz space, called a
Musielak-Orlicz space.

Taking a measurable subset 2 ¢ RY, and a measurable exponent p : 2 - [1,00), define A = 2 with
Lebesgue measure, and ¢(x, t) = t? ) Then we obtain a generalized ¢ function, from which we can construct
an integral modular gp.) through

o0 (1) = [ FeOPDax, feL%(92),
2

and induce an important Musielak-Orlicz space, denoted by LP®) (£2), and called the Lebesgue space with
variable exponent. One knows that if p* = esssup . ,p(x) < oo, then LP() (12) is separable, and the unit ball
property turns to be . .

min{“f”i(.)’ ”f”i(.)} < Op(-) (f) < maX{HfHﬁ(.)» ”in(.)}’
where | - |,y == || - [ g,, is the Luxemburg norm. Furthermore, if additionally p~ = essinf,cop(x) > 1, then
LP©)(92) is uniformly convex (of course reflexive) with the dual space L? ) (12), where 1/p’ (x) + 1/p(x) = 1
fora.e. x € 2.

2 Orlicz space generated by a single modular

Let X be a linear space and ¢ : X — [0, co] be a semimodular, which induces a semimodular space X, with
the Luxemburg norm | - ||,. Let I be a finite or infinite interval, namely I = [0, T] for some O < T < oo or
I = [0, c0). A function f : I - X, is said to be measurable, if for every open set G ¢ X, the preimage {t ¢
I: f(t) € G} is a measurable subset of I. Moreover, f is called strongly measurable, if there is a sequence of
X,—valued simple functions convergent to f almost everywhere. Of course, a strongly measurable function
is measurable definitely, and vice versa provided X is separable (cf. [13, §1.2]). Denote by LO(I , Xo) the set of
all strongly measurable X,—valued functions defined on I. Recall that a semimodular p is lower-continuous
on the induced space X, thus for all a > 0, the set {u € X, : o(u) > a} is open in X,. Consequently, for each
f e L°(I, X,), the multifunction t — o(f(t)) is also measurable. Hence integration

2o(f) = [ o(f(e)at
I

makes sense. One can easily verify that @, is also a semimodular on L°(I, X, ) with the semimodular space
LI, X,) = {f € L°(I, X,) : @, (Nf) < oo for some X\ > 0}

and the Luxemburg norm denoted by | - ¢ (1,x,)-

Theorem 2.1. L°(I, X,) is a Banach space in case that X, is complete.

This theorem is a special case of Theorem 3.7, which is given in §3 with a proof.

Remark 2.2. Suppose that f € L (I, X,)), and the one-dimension Lebesgue measure of the set Eo = {t € I :
f(t) + 0} is finite. Then we have

@Q(Mjil) < ‘E0| < 00,
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where M > 0 is the essential supremum of ||f(t)| - Thus f € L°(1, X,,) and |f]| e(1,x,) < (M + 1) max{1, |Eol}.
Furthermore, by the estimate
lulle < o(u) +1, VueX,,

we also have
L¥(1,X,) = L°(I,X,) = L' (I, X,)

in case that I = [0, T] is bounded.

A semimodular g is said to be satisfying the A,—condition, if there exists a constant d, > 2 such that
o(2u) < dypo(u) forall u € X.

Recall that, under the A,—-condition, o turns to be a continuous modular satisfying
- uceX,ifand onlyif o(Au) < oo forall A > 0, and
- up - uinX, if and only if o(un — u) - 0.

Moreover, &, also satisfies the A,—condition with the same constant d,.

Proposition 2.3. If g satisfies the A,—condition, then the set of all simple X ,—valued functions, say S(I, X,),
isdensein L°(I, X,).

Proof. Foreach f € L%(I, X,), there is correspondingly a sequence of simple X,—valued functions {s; } such
that s (t) — f(t) and consequently syxg,(t) — f(t) in X, for a.e. t € I for the set Eo defined in Remark 2.2.
Let

Ex={tel:o(sixg, (t) -f(t) < o(f(0)},

and let o = SkxE, xE,, Which is also a simple X,—valued function. Notice that

{teI:g(npk(t)—f(t)) _’O}
=NuUn {teI: o(r(t) - f(8)) 35}

e>0K>1 k>K

2 N U N {tel: olsixe () - f(6)) <min{e, o(f(6))} }

e>0 K>1 k>K
= {tel: o(skxz, (1) -f(t)) -0},

we have o(p(t) —f(t)) > Oa.e.onIas k — oo, which combined with o(ox(t) - f(t)) < o(f(t)) fora.e. t eI,
and Lebesgue’s convergence theorem, yields @, (px — f) — 0 or equivalently ¢, — f in L?(I, X,) as k — oo.
Thus density of S(I, X,) in L?(I, X,,) has been proved. O

Remark 2.4. Since I = U2, In, where Iy = In[0,n], n = 1,2,-, we can also prove that Sc(I, X,) and
LZ(1,X,), subsets of S(I, X,) and L™ (1, X, ) respectively, containing the functions with compact supports,
are both dense in L°(I, X,).

Corollary 2.5. Under the A;—condition of ¢ and the separability assumption of X,, L°(I, X,) is a separable
space.

Remark 2.6. Given a semimodular o, recall that the dual functional o™ is also a semimodular on X}, and the
double dual ¢** is equal to ¢ on the space X, (cf. [2, §2.2] or [14, §3.2]). Moreover, for all u € X, and ¢ € X,
Young’s inequality

(& u) <o(u)+07(€)

holds. The equality also holds if and only if ¢ € do(u) or equivalently u € do* (&) if we regard X, as a closed
subspace of X,*. Here 9o is the the subdifferential operator of ¢ and 90" is that of ¢*. Recall that as the
subdifferential operators of lower-semicontinuous and convex proper functionals, 0o and do* can be viewed
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as two maximal monotone and semiclosed subsets of the product spaces X, x X, and X, x X," respectively.
As for the multivalued inverse map (d¢)~ ', we know that (00)™ " ¢ X}, x X, has the same properties as 0o
has, together with the inclusion (00)™* < 0o* holding. Furthermore, if in addition R(d0) = X3, then for all
¢ € X}, the image (d0) " (¢) is a nonempty convex and closed subset of X ,. Therefore for all ¢ € L°(I, X}), the
multifunction t — (00) *(£(t)) is graph measurable with nonempty closed image everywhere, consequently
under the additional separability assumption of X ,, we can assert that (00) " (¢(-)) has a measurable selection,
or in other words, there is a function u € L°(I, X,,) such that u(t) € (30)* (¢(t)) for a.e. t € I (see[15, §8.3] for
references).

Theorem 2.7. Suppose that o satisfies the A,-condition, X, is a separable Banach space, and R(0g) = X,.
Suppose also o* is a modular, and X}, has the Radon-Nikodym’s property w.r.t. every finite subinterval of I. Then
the dual space L°(I, X,)* is isomorphic to L (I, X3).

Proof. Foreach¢ e L? (I, X3), define a functional A, through

((eaf)) = [ F©O)t, ¥ f e L2(LX,). @)
1
By Holder’s inequality
| [ {6, F©O)dt] < 20€l ) IFlrocrx, )
I

itis easy to check that A¢ € LI, X,)*, and | A¢| < 2[€]pex (1)
o

Conversely, for each A ¢ L°(I, X,)*, we will prove the existence of a unique ¢ ¢ L¢ (1, X3) such that
A = A¢gasin (2).If A = 0, then take ¢ = 0 and there is nothing to do. If A # 0, then |||A4]||" > 0, where |||A]||*
denotes the L8(I, X,)* —norm of A. Without loss of generality, in the following discussions we may assume
that |||A]||* = 1. For each positive integer n, define an X;-valued function 7, on the set of all measurable
subsets of I, = I n [0, n] as follows:

(m(E),u) = ({A, xgu)), VueX,.

Here x is the characteristic function of E.
Suppose that {Ey} is a sequence of mutually disjoint measurable subsets of I, and u € X,. Since for all
A>0,

2o(A Y xeu) = [ ¥ xme(u)dt = o) Y B < no(w) < oo,
k=1 7 k=1 k=1

we can conclude that
> XEM = Xu= g in L1, X,), and | ) XEku”LQ(I,XQ) < nluf,-
k=1 k=1

Consequently,

(Tn(QEkM =S (A xm) = 3 (B, u),

k= k=

[y
[N

and N
|<Tn(HEk),u>l < nlll A" ull o

Therefore 7, is an X;—valued measure on I, with a bounded total variation no more than n|||A|||*. Now since
X}, has the Radon-Nikodym’s property w.r.t. every finite subinterval of I, there is a unique ¢, ¢ L'(In, X ) such
that

(A xew) = (ma(E)ow) = [ (6n(6), xpu)dt

I
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for every measurable subset E of I,. By the uniqueness of &, in the above representation, we have that
En+1(t) = &n(t) a.e.only. Let £(t) = &q(t) for ¢ € I, then we obtain a globally defined and strongly measurable
X}, —valued function satisfying
()= [(eo.fat ©
1

for the function f = uxg with a bounded measurable subset E of I and a point u € X, and consequently for
all f € S(I, X, ) with compact supports.

Given a function f € L (I, X,,), from Corollary 2.3, we can find a sequence of X ,—valued simple functions
with compact supports, say {si}, such that s, — f in both L*°(I, X,,) and L?(I, X, ), and (3) is satisfied by
sy for all k € N. Taking limits as k — oo in both sides of (3), we can deduce that (3) is also satisfied by
f € LEO(I’ XQ)'

Remark 2.6 shows that the multivalued function t —~ (00)~*(£(t)) is measurable, and it has a strongly
measurable selection since X, is separable. Denote the selection by u, then we have u(t) € (90) ' (£(t)) €
00" (&(t)) a.e.on I. For each n € N¥, let

Ju={tely: |u(t)|x, <n}, and un(t) = u(t)x,.
Then u, € L (1, X, ) and
[ e Eydes [ ouno)de= [ (), un(O)de = (A, un) < Jun e, Q)
Jn I I

As A # 0 and ¢" is a modular, neither £(t) nor ¢*(¢(¢)) is equal to 0 a.e. on I. Thus [, o*(&(¢))dt > 0,
consequently from (4) we get

Pp(un) < un|req,x,)

for n large enough. Hence by the unit ball property, we assert that |un|z.(,x,) < 1, which in turn yields
[, 07 (&(t))dt < 1.Let n — oo, and take the fact [T\ UpZ; Ja| = O into account, we have |, 0" (£(8))dt < 1,

which leads to the conclusion ¢ € L’ (I, X,) with the estimate
I€lzer xde < 1.

Finally, using the density of L° (1, X,) in L?(I, X, ), we can conclude that (3) holds for all f € L?(I, X,).
Therefore A = A¢ asin (2) and €] pex 1%y = [[[4¢ll| = 1. Thus the proof has been completed in the case

llA¢|ll* = 1, and the general case can be dealt with by the scaling arguments. O

Remark 2.8. Here the separability assumption of X, can be replaced by the strict convexity assumption of o.
As a matter of fact, if o is strictly convex, then do is injective, or equivalently (o)™ is single-valued.

Recall that every reflexive space satisfies the Radon-Nikodym’s property with respect to every complete and
finite measure space. Furthermore if X, is reflexive, then dp* = (0p) ' and 0o = (d0*)". Putting these facts
into Theorem 2.7, we have

Corollary 2.9. Suppose that both ¢ and its dual o* satisfy the A,—condition, the semimodular space X, is
reflexive and separable. Then

LO(I,X,) = L% (I, X5), L% (I, X3)* = L8(I, X,),
and the function space L°(I, X,) is also reflexive.

Given a semimodular ¢ : X — [0, oo], we say g is uniformly convex, i.e. we mean that for every ¢ € (0, 1),
thereisa d € (0, 1), for which either

Q(u;v)gse(u)gg(V) or Q(%)S(l_@g(m;g(v) )
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holds. According to [2, §2.4], we know that every uniformly convex semimodular satisfying the A,—condition
generates a uniformly convex space. Similarly, for a semimodular g, its uniform convexity can be inherited
by the Nemytskij functional ¢,. Summing up, we have

Theorem 2.10. Under the uniform convexity assumption and the A,—condition of o, L°(1, X,) is a uniformly
convex space.

3 Orlicz space generalized by a series of semimodular

Suppose that A is a topological lattice, i.e. A is an ordered topological space, and for every order-bounded
subset of A its order supremum and order infimum exist in .A simultaneously. In this paper, A is always
assumed to be a totally order-bounded topological lattice, or BT L in abbreviation. Its order supremum and
infimum are denoted by o and o~ respectively. In a BT L A, a sequence {a;} is said to be approaching a
point s, if the two conditions oy < 3, V k € N and lim;_, ., o = 3 are both fulfilled.

Definition 3.1. Given a family of Banach spaces {X. : o € A}, we say it is a Banach space net, or BSN for

short, provided

- a<pimplies Xg — Xa.

We say {X.} is norm-continuous, if

- for every sequence { oy} approaching $, the limit of norms limy_, . |X|a, = ||X| g holds at all x € Xg.

{Xq} is called uniformly bounded, whenever

— thereis a constant C > 1 such that for all o, 8 € A with o < 3 and all x € Xg, inequality |x| < C||x|g
always holds.

And {X,} is said to be successive, if

- for any sequence {«y } approaching 8 and any point x € X, with the constraints: x € X, for all k € N and
C =supy_, o [ X[ ayx < o0, we have x € Xg and ||x| g < C.

Finally, a BSN {X.} is called regular provided it is norm-continuous, uniformly bounded and successive at the

same time.

Remark 3.2. Given a BSN {X. : a € A}, the family of dual spaces {X, : a € A}, where A takes the inverse
order > instead of <, is also a BSN, called the dual space net or DSN in symbol. Here we use the convention:
(&, X)a = (&, x)5 provided € € X;,, x € Xg and o < B. It is easy to see that, if {X.} is uniformly bounded,
then {X:,} is also uniformly bounded with the same bounds. However, whether or not {X, } inherits the norm-
continuity and successive property from {X, } is not clear.

Definition 3.3. Suppose that X is a linear space, and { ¢ : o € A} is a family of semimodulars defined on X.
We say {oa } is a continuous modular net, or CMN in abbreviation, i.e. we mean that the following hypotheses
are satisfied:

1. every o. generates a Banach space X, =: Xa,

2. there exist two positive constants C;, i = 1, 2 for which inequality

2oy () < C10a, (u) + C2, (6)

holds forallu e X and all o; € A, i = 1, 2 with a1 < a3, and
3. if {ay} approaches « in A, then
lim o, (u) = 0a(u).

The following proposition reveals the relationship between CMN and BSN . For its proof, please refer to [10].

Proposition 3.4. Given a CMN {0 : « € A}, the family of semimodular spaces {X. : o € A} is a regular
BSN.
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Remark 3.5. Similar to the scalar ones, for two indexes «; € A, i = 1, 2 with a1 < ay, we have L% (1, X4,) <
L91 (I, X, ) with the imbedding constant C = max{1, C1 + C;T} in the case I = [0, T].

Let I be an interval as in Section 2, and 7 (I) be the collection of all bounded subintervals of I. Consider the
map 6 : I - A. When we say 6 is order-continuous, we mean that for any nest of intervals {J € II(I) : k =
1,2, ---} shrinking to ¢, the limit

i, o = Jim, £, = (0

always holds, where 6; and 6; denote the order infimum and supremum of 6 on J respectively.

Remark 3.6. Here we give up the extra assumption that 6 is continuous according to the topology of A, which
was stated but not used in [11].

Define
LU(I, Xg(y) = {f € L°(I, X) : fly e L°(J, Xy ) forall J e 11(I)},

and
LI, Xg()) = {f € L2(I, Xp(y) : f(£) € Xg() forace. t e I}.

Obviously, both of them are linear spaces according to the sum and scalar multiplication of abstract-valued
functions, and L°(I, Xg(y) € L2(1, Xp(.))-

For each positive integer n, let t,x = kT/2" or t,x = k/2", Ju1 = [0, tn1], Jnkir = (Enks tnks1] and
On i = Gﬁ,k, fork = 1,2,--,2"if I = [0,T]or k = 1,2,--if I = [0, c0). Define a step function 6, through
07 (t) = 07, for t € J, x. Obviously, {65 } is decreasing (increasing) in n and converging to (t) as n — oo for
all t € I. Similar to the constant ones, for every n € N, function space L°(1, Xgﬁ(_)) is well defined, on which
D:(f) = I; 09: () (f(t))dt is a semimodular. It induces a Banach space, denoted by L0 (1, Xo:()-

There is a natural relation among the three types of function spaces mentioned above, that is

LO(I, Xg(.)) € L2(1, Xg(.)) € L°(L, Xg-(9)-
Thus for each f ¢ L° (I, Xo(.y), the function t ~ gg, (1) (f(t)) is measurable, n = 1, 2, ---. Note that
o0ty (f(t)) = nli{{}o 20,0y (f (1))

by the continuity of {¢a }, so the composite function t — g+ (f(t)) is also measurable. Let
Bouy (1) = [ eoy (FO)AL, Fe L1 Xo))-
T

we then obtain a semimodular, whose semimodular space is denoted by L% (I, Xy(.y). Obviously, every
member of L%O (I, Xg(_)) lies in LO(I, Xg(.)), hence &,,, can also be considered as a semimodular on
Lo(1, Xo(.y), correspondingly L%® (I, Xy(.)) can be regarded as the semimodular space generated from
LO(I, Xp(.y)-

Theorem 3.7. For every CMN {oa : o € A} and every order-continuous map 6 : I — A, L%°O (I, Xy(.)) is a
Banach space.

Proof. Suppose that {f}} is a cauchy sequence in L?°© (I, Xy.)). Then for every X > 0, we have
dim @, =) = 1im [ a0 (\Fi(6) - fi())dt =,
N s — 00 I
Thus there is sequence of positive integers, say {k;}, satisfying k; < ki1 foralli e N, lim;_, o, k; = o0, and

| oo @ i) - £ e < Zl whenever k, j > ki, @
I
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Especially we have

/ Qe(f)(zi(fkm(t) — fi, (t)))dt < %,

I

which in turn yields
i 1
[Eil < Kt € It 090y (2 (fier (6) = fiu())) > 1} < 55,

where E; = {t e I : ||fi., (¢) = fi, (D)o > 1/2},1=1,2, .
LetE = NZ; UiS; Ei, thenwe have m(E) = 0, and for each t € I\ E, there exists j € Nsuch that t € INU{; Ei,
or equivalently ||fy,,, (t) - fi, (t)|o(r) < 1/2' for all i > j. Consequently, for the integer I > j, we have

> Ui (0~ (Olloco < 3

This infers that series fi, (t) + X2 (fi,,, (t) — fr, (t)) is absolutely continuous in X4 ;) on the set I \ E. Then by
the completeness of Xy ), we conclude that {f;,(t)} is convergent in X4 a.e. on I, and the limit function f
belongs to L°(I, Xg(.)).

Taking any A > 0 and ¢ > 0, there exists i € N such that 2' > X and 1/2' < ¢, thus using inequality (7),
Fatou’s lemma together with the lower semicontinuity of g4, we obtain

/ 00ty (A(ur(t) —u(t)))dt < lijfgglff o0ty (2 (ux(t) —ug (O))dt <, ¥ k>k,
I I

which means that u € L%© (I, Xq(.y) and uy — uin L (I, Xg(.)) as k — co. This shows the completeness of
L29O (I, Xg(,)). O

The following propositions can be proved by inequality (6), continuity of { ¢« }, Fatou’s lemma, together with
the unit ball property.

Proposition 3.8. Suppose that I is a bounded interval, then
L2956 (I, XGI(')) « L290) (I, Xe(.)) o L2570 ([, Xe;('))’
and there exists a constant C > 0 such that

MM yowrs 1, < W00 ity < O lomior i,
Proposition 3.9. A function f € L (I, X4(.)) with the property
K= liI:Lsoljp I£1 e0z r (X ) <00
liesin f € L%°© (I, Xy(.)) definitely with the estimate |f o, (1Xo) S K-
Corollary 3.10. Under the bounded assumption of I, function space L%*® (I, Xy .y ) is equivalent to

€ L(,) I,X )) s osu 29— < 0o
{f ( o )) 15118) ”fHL %I (I,Xe;) }
and

HfHLQQ(.) (I,Xg(.)) < es]l;g) Hf” < CHf”LE’B(-) (I,Xg(,))

> Qg—
J L (1.X,-)
for some constant C > 0.

Assume that {X, } generated by {0} is a dense BSN, i.e. X, is a dense subspace of X,, whenever a; <
ay. It is easy to see that, under this situation S(I, X,+) is contained in LO(I s Xo( ), consequently for every
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f € S(I, Xu+), the multifunction ¢ ~ gg¢+)(f(t)) is measurable. Moreover, by invoking Proposition 2.3 we
can prove that, if every modular g, satisfies the A,-condition, then for each J € I7(I), S(J, Xo+) hence
L% (J, X+ ) is dense in L/ (J, Xg).

Analogous to the range-invariant ones, we can define the space of strongly measurable functions with
varying ranges, that is

LY, Xg(y) = {f € L2, X) : f(t) € Xg(r) forae. tel,
and there exists a sequence {s,} of S(I, Xo+) s.t.
Isn(t) = f(t)|o¢t) > 0asn— oo forae. tel}.

Remark 3.11. In this definition, the set S(I, X,+) can be replaced by LO(I , Xa+ ), both of which are contained
in L°(1, Xo(.))- As a result, one can easily check that L, Xo(.)) is a subspace of L°(I, Xo())-

Suppose that {ga : « € A} isa CMN generating a dense BSN {X,, }. Similar to L%°) (I, Xy.) ), we can define
Lie(') (I, Xg()) through

LYO(1, Xg(y) = {f € LY, Xo()) : Doy, (M) < oo for some A > 0}

with the same Luxemburg norm. Note that in such situation, S(I, X+ ) is a linear subspace of LY’ (I, Xo(y)-

We say that the CMWN {o.} satisfies the A,—condition, if every o, satisfies the A,—condition, and the
constant C; or the related function o is independent of «. It is easy to see that under this condition, &, , is
also a A,-type modular. Hence following the same process as in Proposition 2.3, we can prove that

Proposition 3.12. Under the A,-condition of {0} and the density assumption of {X.}, each function of
L’ (I, Xg(.) can be approximated by a sequence of S(I, Xo~+) according to the norm || - || eoc (LXoy)"

Theorem 3.13. Under the same assumptions as above, L{’* (I, Xy(.y) is a Banach space.

Proof. Taken any Cauchy sequence {fy} in Lﬁ(')(l » X4(.)), by virtue of Theorem 3.7, there is a function f ¢
L2°O (I, Xg(.y) for which |fn = | eoc) (LXg(,) — 0@ — oo. For each n € N, on account of Proposition 3.12,
thereis a on € S(I, Xo+) such that |on — ful| o (LXo(y) < 1/n, which in turn yields |¢n — f| 20c) (IXe0y) O
as n — oo. Hence there is a subsequence, say {¢n} itself, satisfying on(t) — f(t) in Xg() as n — oo for a.e.
t € I. Therefore f € L{"® (I, X)) and the proof is completed. O

Remark 3.14. By reviewing the above proof, one can easily find that, under present situations, condition
LO(I, Xp() = LY(I, Xg(.y) is sufficient for L0 (I, Xg(y) = L7 (I, Xg.))-

Theorem 3.15. Besides the A,—condition of {o.} and the density assumption of {X.}, assume that X+ is
separable. Then the function space L° (I, Xg(.)) is also separable.

This theorem is a straight consequence of Proposition 3.12.
For each a € A, denote by o, the Fenchel duality of g, i.e.

Q;(g) = Sup{<€’ u)a - Qa(u)}’ €€X;

ueX,

Since o, is a semimodular, o}, is also a semimodular on X},, and the semimodular space derived by o}, is
exactly X7, itself (see [2, §2.2]). Define

oo fea(), ifEeXa,
Qa(g)_{oo, if € e X5 N X5,

then we obtain another family of semimodulars defined on X},., called the dual modular net or in symbol
DMN of {04 }. Since for each « € A, the effective domains and the induced semimodular spaces are equal,
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in the coming arguments, we will not distinguish g}, and o,, and prefer to use { o}, } instead of {3, } to denote
the DMN of {oa}.
Suppose a1 < az, then X7,, - X3,,, and for all € € X, , by (6) we have

032(5) = Sup { 5’ _Qaz(u)}
1 C,
< su sUyay — =0, (U) | + == 8
MEX(ISZ {<§ ) Clg ( )} Cl ()
1 c; 1 , C
< su yUWay = =00, (U) | + == = =—0q,(C1E) + .
uexz{(& Jou = oo )} ¢ - ot (GO

Similar to Proposition 3.4, from this property we can show that the dual space family {X, : a € A}, where A
takes the inverse order, is a uniformly bounded net. Moreover, assume that the function o — g, is sequently
continuous, in other words, if {ay } converges to « in A, then for all u € X, the limit

Jim o, () = 0a (1)

holds. Under this assumption, we can deduce that, for all sequences {&,} satisfying & > a and & - «,
inequality
0a(8) < 1i5<n sup oz, (£)

holds for all ¢ € X,., which in turn leads to the successive property of {X},}. Unfortunately, the inverse
inequality, hence continuity of {X},} can not be guaranteed under present situations. For the sake of
convenience, hereinafter, we always assume that X, < X, and the DMN {o},} is assumed to be a CMN
defined on X. We also assume that the BSN {X, } and its dual net { X, } are compatible, i.e. (¢, u)a, = (£, U)o,
provided u € Xo,, ¢ € X;l and a1 < «y. This convention has been already used in (8). All the assumptions
mentioned above will be used later without any other comments.

Theorem 3.16. Suppose that the following hypotheses are all satisfied:

- {oa} satisfies the A,—condition, and R(don) = X;, forall a € A,

- {Xa.}isadense BSN, and X+ is separable,

- forevery a € A, o}, is a modular, and

— X}, has the Radon-Nikodym’s property w.r.t. every J € IT(I).

Then the dual space LY (I, Xy())" is equivalent to L%o(1,X o(.)) in the sense of isomorphism.

Proof. Firstly for each ¢ € L® o) (I, X3 o ), define the linear functional A as follows:

((Ae, f))o / (1), f(D)anydt, V¥ feL{O (I, Xg())- )

I

Suppose that [¢] . = IfI

10 15, = 1, then by Young’s inequality we have

29¢(.
L+8( ) (I,Xo(y)

(efNoy < [ aio€O)dt+ [ oo (D)t <2,

1 I

Therefore A¢ € L{"O (I, Xq(y)*, and | 4¢ [ e000 (X . This claim also holds for arbitrary

o <2€l e
Ee L%0 (I, X;(,)) by scaling arguments.

Conversely, given a functional A € Lf"(') (I, Xg(.))*, we will find a function ¢ € L% (I, X;(_)) such that
A = A¢ in the sense of (9) with the norm equivalent to that of £. If A = 0, then we take ¢ = 0 and there is nothing
to do. If A # 0, then without loss of generality, assume that | A| 1290 (1 Xp)* = 1. Taking any J € I7(I) and any

fel® (J, Xo ), consider the zero extension of f out of ] and denote it by f. Obviously, f € LY (I, Xq(.y) and

171,200 50, < CIF 20 (10)

L ’(JX )
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for some constant C > 0 depending on |J| but independent of f, which means that the restriction of A to
L% (J, Xy; ), denoted by Al; o+, lies in L% (J, Xoy )*. So by invoking Theorem 2.7, there is a unique function

& e L% (1, X3, ) such that
(Al Doy = [ (&0 F(0)ay at

J
forall f e L (J, Xy ), and

ol iy € Oy S AL (1)
Xy
for some constant C > 0 depending only on the 1ength of J.

Suppose that J1, J, € IT(I) satisfy J, < J1, then L% , Xg+ ) is densely imbedded in L% {J, X9+ ), hence
by the uniqueness of the representation &;, , we can assert that &, (0 =¢, (t) fora.e. t € J;. Define ¢ (t) &(t)
if t ¢ J for arbitrary J € I7(I), then we obtain a well defined function ¢ e L% (I, X50)-

In case that I = [0, T] is bounded, all the constants C in (10) and (11) can be selected independent of
J € IT(I), thus via Corollary 3.10, we can derive that ¢ e L% (I, Xj(,) and ||§HL %0 1.x3,,) < CllA] Leocs (1,5 )+
for some C > 0 independent of A.

For each f € L’ (I, Xp(,), select a sequence {px} S S(I,Xa+) converging to f according to the
L#°O (I, Xg(.y)—norm. Since for every k € N,

(e = (Alars oo = [ (6O O)ade = [ (D). oot

I 1

letting k — oo, we obtain
(A oy = [ (EO.F Ot
i

which shows that 4 = A¢.

It remains to prove (9) in the case I = [0, o). Firstly the above discussions tell us that ¢ € L? 60 U, X; (.))
for all J e I1(I). Consequently ¢ e L°(1I, X;(,) ), and the scalar function t — (£(t), f(t))g(r) is measurable on I
whenever f € L?O (I, Xg(.y).

Given a function f e L%© (I, Xy.)), for each n € N, let fu = fx[o,n]> then we obtain an approximate
sequence of f in L2°© (I, Xj .y ) satisfying

(A fadoy = (Ao Filocy = [ (6O SOt

(0,n]

Let n — oo, using the fact limpco ({4, fn))oc)y = ({4, f))e¢), we can deduce that t — (£(t), f(t))g(r) is
integrable on I, and
(A Doy = / E(8), f())o(ndt.
1

Thus A = A¢ by the arbitrariness of f. The remaining task for us is to show ¢ € L? 60) (I, X g(_) ). For this purpose,
notice that the effective domain D(p. ) is equal to X,, and the latter is separable, so the dual modular o}, can
be represented by

92(77) :skup{<7],Vk>a_Qa(Vk)}, VTIEXZU (12)

>1

where {v,} is a countable dense subset of X,. By the density of {X,, }, if we take {v;} as the dense sequence
of X+ with v; = 0, then (12) holds with a = (t) and 7 ¢ X;(t) foralltel.
For each n ¢ N, define

rn(t) = x[o,n] (£) max {(€(®), vidocey — 00¢ey (Vi) }-
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Obviously, {r,} is a nondecreasing sequence of nonnegative (vi = 0) measurable functions converging to
09ty (£(t)) almost everywhere. Moreover, there is a sequence of simple functions {sn} ¢ S(I, Xo+) such that

rn(t) = (€(t), sn())oce) = 0o(e) (Sn(1)).
Due to the facts S(I, Xo+) € L#O (I, Xg(.y) and || A eq(, (LXgey)* = L We have
1> @Z’em (A) 2 <(A’ Sn)) - 4599(-) (Sn)
= [ {460, 51000 - 0o (su(e) et
1

where &,

06(, 18 the dual modular of &,,, . Taking limit of the second line as n — oo, we obtain

%;(,)(5):fgg(t)(ﬁ(t))dts 1.
I

)<
Finally by means of scaling transformation, we can obtain the desired estimate

Therefore ¢ € L%0 (I, Xp(.y) and HgHLQ;(.) (X <1
2o 0)

H5||Leg(_> (1x3,.) < N Alpeso (1,55
Thus we have completed the proof. O

Remark 3.17. Thereis a by-product produced from the above proof, that is under all the hypotheses of Theorem
3.16, we have Pos | (&) = Py, (Ag) for all € € L0 (I, Xgy). This is a natural extension of that of the scalar
case.

Corollary 3.18. In addition to the assumptions of the above theorem, assume that L°(I, Xo¢y) = L1, Xo¢))»
then
L2°O (I, Xg(.))* = LQG(‘)(I, X;(_)). (13)

Theorem 3.19. Suppose the following conditions are all satisfied.
—  both {pn} and {p},} satisfy the A,—condition,

- {Xo}and {X}} are two dense BSN's,

- X4+ and X}~ are both separable, and

— forevery a € A, X, is reflexive,

- LI, Xp(y) = LY(I, Xg(.)), and LO(1, X5 y) = LS.(I, X5.)-
Then L?°© (I, Xy(.y) is a reflexive space.

Given a CMN {oa}, assume that it is uniformly convex, in other words, every g, is uniformly convex, and
for each € € (0, 1), the corresponding number § € (0, 1) appearing in (5) is independent of «.

Theorem 3.20. Under the uniform convexity assumption and the A,—-condition of {0}, the function space
L% (1, Xg(.y) is uniformly convex.

Remark 3.21. Putting all the hypotheses in Theorem 3.19, 3.20 together, we obtain not only the uniform
convexity of L°©) (I, Xy(.y), but the representation (13) as well.

Example 3.22. Let 2 ¢ RY be a bounded domain, and let P(2) be the set of all measurable functions taking
values in [1, oo], and

Pp(2)={peP(2):1<p <p" <oo},
where notations p* and p~ denote the essential supremum and infimum of p on 2 respectively. For any p ¢
Pp(£2), functional

_ 1 )
op(f) = nf S Fr®ax
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is a continuous modular on the linear space X = L°(£2), which induces a separable Banach space X, :=
LPX (). Evidently o, satisfies the A,—condition with the function w(t) = t* . If in addition p~ > 1, then
op is uniformly convex, its dual modular o, equals oy, and the dual space L” ™) (2)* is equivalent to LP ') (02).
Here p'(x) is the conjugate exponent of p(x), that is 1/p(x) + 1/p’(x) = 1 for a.e. x € 2. It is also easy to see
that, LP>™) (12) is a dense subspace of LP*™) (12) provided p1(x) < p»(X) a.e. on (2.

Fix two numbers p and p in [1, co) with p < p, let

Ap = {p € Pp(2) : p(x) € [p, p] for a.e. x € 2}.

Then equipped with the order: p < q by p(x) < q(x) a.e. on §2, and the topology determined by: pn — p in Ay
if and only if pn(x) — p(x) a.e. on 2, A, becomes a BT L. Meanwhile, {gp : p € Ay} is a CMN defined on X
satisfying the A,—condition with the common function w(t) = t*, and {X, : p € Ay} is a dense regular BSN
generated by {op} (cf. [11]).

Assume that I = [0, T], and Q = I x {2 is a cylinder. Recall that, each u € LO(Q) has an X-realization Pu
in L°(I, X) satisfying Pu(t)(x) = u(t, x) for a.e. x € 2 and a.e. t € I, and conversely, each u € L°(I, X) has
a scalar realization it in L°(£2) satisfying @1(t, x) = u(t)(x) for a.e. (t,x) € Q. Moreover, for all q € (1, c0),
the projection P : LY(Q) — L(I,L9(R)) is a linear isometrical isomorphism with the inverse P"'u = ii. If
q € Pyp(R) is a variable exponent, then P : L0 (Q) — L7 (I, L1 (1)) is also continuous (refer to [7]). In the
following discussion we will omit the notation P and simply use a single letter u to represent a scalar function
and its X—realization, or an X—valued function and its scalar realization without any other remarks, if there is
no confusion arising.

Suppose that p € P,(Q) is a Caratheodory type function satisfying

1. p(t,-) is measurable on 2 for every t € I, and
2. p(-, x) is continuous on I for a.e. x € 2.
Letp = pgy, P = ph, and define 6(t) = p(t,-) =: p(t), then we obtain an order-continuous exponent 6 : I - A,
with
0f =sup{p(t,x):te]}, 0f =inf{p(t,x):te]}

for all ] € I1(I), and Xy = L (£2), X} ) = L7 N () for all t € I. [11] reveals that
LI L7 (@) = LY L7 (2).

Thus, L%© (I; PO (2)) = LY (I; P9 (02)) is a separable Banach space. Furthermore, if p > 1, then
Lo 1700(2)) = LU LY 0 (92)),

and all the assumptions arising in Theorem 3.19, 3.20 are fulfilled, thus by Remark 3.21, we get the uniform
convexity, hence the reflexivity of L% (I; LPC¥) (2)), together with the expression

L'QP(') (I; Lp(’x)(.Q))* o LQP!(.) (I; Lp’(-,X)(Q))'

It is worth mentioning that for the same exponent p(-, -), projection P is also an isometrical isomorphism
from LP(¥ (Q) onto L& (I; LPCX (02)) (see [11] for references). This is a natural extension of the property of
P from the case of constant exponents to the case of variable ones.

4 Functionals and Operators On L%¢) (I, Xy.))

In this section we will study some functionals and operators on the function space L?°© (I, Xy(.y), including
the subdifferential of &, ,, whose representation will be taken into account. For this purpose, we need the
coercive assumption on ga, 05, as well as @, , and sﬁgg(‘). Coercivity, which says

o(u)

o, e as fufx = o,
lullx
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is an important property of a lower semicontinuous (or Isc for short) and proper convex function ¢ defined on
a Banach space X. Using the coercive property of o, we can obtain the boundedness of a sequence in X under
some situations. For example, if there is a sequence {u,} < X satisfying

o(un)
un | x

< K for some K > 0,

then there is a constant C > 0 depending only on K such that ||us|x < C forall n € N.

It is easy to check that if o, is a coercive modular, then its dual g}, satisfies Dom(g},) = X,. As a matter
of fact, taking any ¢ € X}, by the coercivity of o., there is a constant M > 0 for which oo (1) > (J¢]|5 + 1) [u]a
provided ||u|~ > M. Consequently,

0a(8) = sup {{& u)a —0a(u)} < M[E]5 < co.
[ulla<M
In general, coercivity of &,, , could not be derived from the coercive assumption of all the gns naturally.
Under some special conditions, however, all of o, @ € Aand @, ., are coercive simultaneously. The following
assumption, which is called strong coercivity of { ¢« }, is a desired one.

u 2a(u)
o < forall u € X, , 1
9(7*1(5))< o forallue s>0andae A (14)

where v: [1, 00) — [1, o) is strictly increasing function satisfying

lim@:oo

S— o0 S

(15)

By (15), there is a constant K > 1 such that 7’1 (s) < swhenever s > K. Now taking any a € A and u € X, with
[u] e > 2K, and using (14), we can deduce that

ea(u) 1 u ) 1 |ula/2

7>*Qa( > = Qa( u )>1 HuHa/z
lula =27 v (Jula/2) "~ 297 (Jula/2) ™ ulla/2” ™ 247 ([ula/2)”

which combined with (15) yields the coercivity of g.
Furthermore, for any u € L%°© (I, Xp(.y) with || eo(, (ILXgey) 2 L We have that

u(t) 1 _
fga(t)(’w)dtgw,fge(t)(u(t))dt_l’

I

which means HuHLQS(.)(I,Xe(‘)) < y‘l(rpge(_) (u)). Consequently,

lim ége(v) (Ll) 11m gzs.Qe(l) (u) - oo
=z - ’
llull oo, A lullLeoc) (LXpy)  Peoy oo 7_1(¢Qe(.)(u))

which shows the coercivity of &, .
In the following arguments, we also need the strict convexity of o}, for all o € A, and the weak lower-
semicontinuity of {0, } and {o }, which says
- For any sequence {oy } approaching § in A and any sequence {u;} ¢ Xz converging weakly to u in Xg,
{&x} converging star-weakly to ¢ in X};, we have

0p() <liminf oo, (w) and  o(¢) < liminf g%, (- (16)

For the sake of convenience, all the hypotheses listed in Theorem 3.19, 3.20 are denoted by H(A) as a whole.
Furthermore, assumptions of strong coercivity of o, and o}, and weak lower-semicontinuity of { o, } and { ¢}, }
are put together, denoted by H (B)’, which jointly with the strict convexity assumption of g, and g, for all
a € A are denoted by H(B). Without any other specific comments, in further discussion we always assume
that H(A) and H(B) are both verified for the given CMN {¢,} and its DMN {o}}.
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Consider the subdifferential operator do.. Similar to Remark (2.8), we can check that 0, is single-valued
provided g}, is strict convex. Furthermore, by the coercivity of oo, we can also find that dpn : Xo — X}, is a
demicontinuous, monotone and coercive operator, whose range is the whole space X,. Since

(00a(u), u)a = 0a(u) + 00 (00a (1))
forall u € Xa, oo (u) can be regarded as the extension of the traditional dual map where not modulars but

norms of X, and X, are involved.

Lemma 4.1. For all u € L= (1, X,), the compound operator t — 9o (u(t)) lies in L*(I, X},). Moreover, if
ue L2 (I,Xy), then doa (u(-)) € L% (I, X%).

Proof. By the demicontinuity of d¢., one can easily see that the function £(t) = 0pa(u(t)) is strongly
measurable. Furthermore by Remark 2.6, we have

2a(£(8)) + ea(u(t)) = (£(6), u(D))a < [E(O) o [u(t) o

which together with the coercivity of o}, yields the boundedness of o}, (£(t)) uniformly for a.e. t € I, hence
the inclusion ¢ € L™ (I, X3 ).

Suppose thatu € L (I, X, ), and {sx} € S(I, X,,, ) converges to u in L%~ (I, X, ). From above arguments,
we know that for every k € N, the X}, —valued simple function &(t) = doa(sk(t)) lies in L*(I, X},),
consequently it lies L% (I, X3, ), and

00 (& (1)) + 0a(sk(1)) = (€4 (8), sk(t)) a.e.on I. a7
Taking integrations on both sides and using generalized Holder’s inequality, we have
Do (k) + Do, (Sk) = f(Ek), Sk(8))adt <2 &k oz, (LX%) Iskllzea (1,x.)-
i

Then by the coercivity of #,. and the boundedness of {¢;} in L% (I, X ), we get the boundedness of {&}
in L% (I, X},). Therefore there is a subsequence, say {&} itself, convergent to some ¢ weakly in Lo% (I, X3).
Suppose that {v;} is a countable dense subset of X, then for every two positive integers i, n, we have

lim [ (€(6) - &(6), vi)adt = .
I,

It follows that the scalar function hy(t) = (¢(t) — £(t), Vi)« is convergent to O in measure on I.. As a result,
{hx} has a subsequence convergent to O a.e. on I,. Then by means of the diagonalizing method, we can find
another subsequence, denoted still by {h;} such that lim,_, ., hx(t) = O for a.e. t € I, which combined with
the boundedness of {£,(t)} derived from (17) and the density of {v;} in X, results in the weak convergence
of &(t) to £(t) in X}, as k — oo for a.e. t € I. Now taking limits in (17), and using continuity of ¢, and weak
lower-continuity of o, we obtain
0a (€(1)) + oa(u(t)) < liminf oz, (&(t)) + lim oa(sk(1))
< liminf (o5 (&(t)) + ea(u(t)))

< lim (& (), sk(0))a = (£(6), u(D))a,

which in turn tields £(t) = dga (u(t)) for a.e. t € I. Thus the lemma has been proved since & ¢ L% (I1,X,). O

In studying the subdifferential of the Nemytzkij functional of a series of modulars, we always assume that
I=[0,T].

Proposition 4.2. For each u e L% (I,Xp)), the Xy -valued function 9oy (u(t)) belongs to
L0 (I, X5.)-
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Proof. For every 2"-mean partition of I, define the step function 6, (t) as in the preceding section, and let
&n(t) = 00g-(r)(u(t)) fora.e. t € I. From Lemma 4.1, we can derive that &, lies in L0 (1, X5-(,), henceitlies
in L0 (I, X;(,) ). Much similar to the proof of Lemma 4.1, and using the strong coercivity of { o}, }, density of

{0a}, separability of X+ together with the relations L%° (I, Xy(.)) = LYO1, Xy(,) and L%:0 (I, X;;(‘)) o
Lo (I, Xj(.))» we can deduce that

20~ (1) (&n(6)) + 200y (U()) = (€n(0), u(t))g; (1) a-€. 0N 1, (18)

{&} is bounded in L%:0 (I, Xp- () and consequently in L%0 (I, X5(.))- Thus by passing to a subsequence,

we can assume that {&,} converges weakly to some ¢ in L%0 (I, X5()» and &n(t) — £(¢) in Xg(y @sn — oo
a.e. on I. Now taking limits in (18), and using (16), we obtain

20(t) (6(0)) + 200y (u(t)) < liminf o) (€x(t)) + lim e (u(t))
< r}i{g(fn(t), u(t))o-ey = (£(6), u(®))ar)
for a.e. t € T. Therefore £(t) = dog(r) (u(t)) almost everywhere and the proposition has been proved. O

Remark 4.3. In terms of Lemma 4.1 and Remark 3.17, we can claim that for every u € L°~(I,X,,), the
subdifferential 0®,,, (u) equals do (u(-)). Moreover, if we drop the strict convexity assumption of o, then we
have the classical representation:

0, (u) = {€ € L% (I, X) : £(t) € doa(u(t)) forae. t e I}.

Similarly, under the conditions of Proposition 4.2, we have 0%, , (u) = 00g(.)(u(-)) for all u € L?° (I, Xg(.)),
and
0B gy, (u) = {€ € LU0 (I, Xp ) : £(t) € dog(ry (u(t)) forae. t e I},

if the strict convexity assumptions of o}, for all o € A are moved.
The following theorem is a natural corollary of Proposition 4.2 and Remark 4.3.

Theorem 4.4. Under hypotheses H(A) and H(B), the operator Zy,., defined through Zg(.,(u) = dog(.y(u(-))
is demicontinuous, coercive and bounded, together with

((Zogy (), o) = Pou, (W) + By (1)
forallu e L0 (I, Xq(.y. Inaword, Zg.y : L*°© (I, Xg(.)) - L%0 (I, X4(.y) is a generalized dual map.

Remark 4.5. Due to the facts that D(Pg(.y) = L2 (I, Xg(.y) and 0Py(.y = Zg(.y is single-valued, functional
Py is Gdteaux differential, and its Gdteaux differential 4”9(.) equals Zg ..

Suppose that Bisanother BT L, {¢g : 3 € B} isanother CMN onY ¢ Xand {Vj3 : 8 € B} is the corresponding

BSN generated by {,3}. We say {,3} is stronger than { o, }, we mean that

- Vgisimbedded continuously and densely in X, and the dual product (¢, u) has the same value in both
V5 x Vgand X x Xo forallu e Vg and € € X, andalla e A, f € B.

Under this assumption, for all C > 0,
Ec={ueXq:pp(u)<C}
is a bounded and weakly closed subset of V. Hence by the inclusion Vg — X, we have

Lemma 4.6. If V3 is reflexive, then pg is also a lower semicontinuous and convex function on X.
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Corollary 4.7. Under the reflexivity assumption of V , for every u € L°(I, X.,), the multifunction t — ¢ s(u(t))
is measurable.

Suppose that 9 : I — B is also an order-continuous map, then based on the above results and the continuity
of {y}, we can check that

Proposition 4.8. Assume that for every (3 € B, the modular space V 5 is reflexive. Then for each u € L° (I, Xg()»
functions {¢y-()(u(-))}n21 are all measurable, hence as the limit function, .y (u(-)) is also measurable.

Now we can define the Nemytzkij functional of {¢y ) : t € I} through

Peuo ()= [ Co@O)dt, ueL’(LXy)).
I

Lemma 4.9. Suppose that pg satisfies the A,—condition, and Vg is a reflexive and separable space. Then a
functionu € L°(I, X,) is also a member of L¥? (1, V) provided Dy (U) < oo,

Proof. By the condition @,,(u) < oo, it suffices to show the inclusion u € L°(1, V). Taking any r > 0 and
uo € Vg, denote by
BVB(uo, r)={ueVg:|u- uoHVﬁ <r},
and
By, (uo, 1) ={ueVg:pg(u—uo) <r}.
By the unit ball property, we know that By, (uo, 1) € By (o, r) provided O < r < 1. Moreover, for each r > 0,
by the A,-condtion of ¢g, there isa § > 0 such that By, (10, 5) S By, (uo, r) (cf. [2, P. 43]). Thus for any
subset E of V3, one can check that
- 1
E= N\ UBp, (. )-
n>1 uekE
Take an arbitrary nonempty closed subset F of V. By the separability of V3, F has a countable dense subset
{vi} making
1
F=UB (v 2),
n>1k>1

which results in

{teI:u(t)eF}:ﬂU{te]:cpﬁ(u(t)—vk)<%}::ﬂUEk,n.

nx1k>1 nx1k>1

Evidently, for each k ¢ N, function ¢ ~ u(t) — v; belongs to L°(I, X, ), so the set Ej , is measurable for all
n € N. Consequently as the intersection and union of countable measurable sets, {t € I : u(t) € F} is also
measurable, which leads to the measurability of u as a Vg—-valued function. Since V3 is separable, we have
that u € LO(I , V), and the proof has been completed. O

Proposition 4.10. Suppose that the every oz satisfies the A,—condition, and every V3 is reflexive and separa-
ble. Then for all functions u € L°(I, Xy(.)) fulfilling @, (u) < oo, we have u € L°(I, Vy.)).

This proposition can be proved with the aid of the interim spaces L°(I, Vo-y) (n=1,2, ).

Proposition 4.10 shows that &, , is also a modular defined on the linear space Lo(1, Xs(), and the
semimodular space derived by @, ., is exactly L¥”) (I, Vy(.)), a separable Banach space. Moreover, suppose
that {¢g} satisfies H(A) and H(B)' with the supremum 3% of B instead of o, then L¥?O (I, Vy(,) is
uniformly convex with the dual

LE7O(I, Vgey)* = LP9O (1, V().

Moreover, similar to Remark 4.3, the restriction of @, o on L#?O(1, 278 ), denoted by 3599 5039 is convex and
locally Lipschitz everywhere. Its subdifferential operator has the form

0y, (u) = {€ e L¥O(I, Vi) €() € 0y (u(t)) ae.on I}
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forall u e L¥?0 (I, V@(.)).
Example 4.11. Let us pay attention to the Sobolev space of variable exponent type
W1 (0) = {ue W(2): u, DueL'(Q), i=1,2,-,N},

where q € Py, (£2) with the notation Py (§2) introduced in Example 3.22, and D;u = du/dx; denotes the i—th weak
derivative of u. Recall that endowed with the norm

N .
[t wroer (o) =inf{A>0: Qq(%) +2-aa( 3 )}
i=1
or equivalently

[l oo (@) + VU] e (25

Wl’q(x)((l) turns to be a separable Banach space. It is uniformly convex, and of course, reflexive provided
q >1.

Assume that 02 € C' and q € C(12) is a log-Hélder continuous exponent, or q € Plog(£2) in symbol, which
means that

lg0) =gl <w(lx-yl), forlx-y|<1, (19)
where w : [0, c0) — [0, o0) is a nondecreasing function fulfilling w(0) = 0 and

C. =supw(r) log 1 < oo, (20)
r>0

Under this situation, C*(12) is dense in W) (), and Wé’q(x)((l) can be defined as the complement of
CE () in WX (). By this definition, Wy 17 (2) = Wl (2) n W% (), and Poincaré’s inequality

1,9(-
Ul paco 2y < ClIVUll a2y, Y u € Wy q( )(_(2)

remains true. Therefore Wé"I(') (02) is topologically equivalent to the homogeneous Sobolev space Dé’q(') (£2)
(see [2, Ch. 8, 9] for relative discussions), and it can be regarded as a semimodular space derived from X = L° (£2)
by the modular
Y1 0g(Diu), if u e Wy (2),
pq(u) = { Y 1,1
oo, if ue L(Q)\Wh'(2).

Take A, as in Example 3.22 and fix w fulfilling (20). Then as an ordered topological subspace of A, the
intersection B., = A, N Pjog(£2) is also a BT L, on which {¢q : q € B, } isa CMN, and (W™ (2): qeBu}
is the corresponding regular BSN'.

For any q € P, (£2) with g~ > 1, if we take Wé’q(')(ﬂ) and Dé’q(')((z) as the same space, then every
member of the dual space Wé’q(')(fz)* = W‘l’q'(‘)(Q) has a representation in Lq'(')(Q)N, i.e. for each ¢ €
W90 (Q), thereisan F = (f1, - fv) € LY O (2)Y such that ¢ = - YN, Dif; in D' (1), or equivalently,

fo,(x)D u(x)dx

11_0

for all u e Wé’q(')((z) (see [2], §12.3). Thus for the BT L B., with ¢ > 1, we can fix a basis {ex} of
W‘l’il(Q), whose representations {Gy} are also fixed in LQI(Q)N . Based on this selection, for any q € Ao,
due to the density of W9 (2) in W70 (), every element ¢ ¢ W9 )(2) has a unique representation
in LYO(2)N. Conversely, every vector function of LY )(2)N represents a unique member of W9 ) (02).
Naturally, w570 (£2) can be viewed as a semimodular space deduced by the modular

N
1/)61’(5) = ZQq’(fi),

i=1
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where F = (f1,-,fn) € Lq'(‘)(Q)N is the representation of ¢ determined by {Gy}. Notice that, for all u «
Wé’q(') (2)and ¢ = - YN, Dif e W7V (), we have

N
(€ u) =Y [ FOODu()x < pq(w) + by (),
i=13
and equality holds if and only if f; € 004(Du;) or equivalently Du; € 004 (fi) for alli € {1,2,--, N}. In this
sense, g can be viewed as the dual modular of 4, and {v¢ : q € B} can be regarded as the DMN of
{¢q : q € B, }. By the continuity of { o4 }, one can easily check that {14 } is also a CMN/, and correspondingly
{vg = W10 () : g e B} is aregular BSN, which is the DSN of {V, = Wé,q(-) (2):q¢€B,}.

If we set 9(t) = q(t, -), we then obtain another order-continuous exponent ¥ : I — B,,. The authors in [11]
revealed that for a continuous exponent q(t, x) satisfying (19) uniformly for all t € I with a fixed w verifying (20)
and1<q<g< oo,

L (I Wy (2)) = L1 W™ (2)

and
LYW 1) (2)) = LU W) ().

Thus by invoking Corollary 3.18 and Theorem 3.19 again, we get the reflexivity of L¥+0 (I; Wé’q(x") (£2)), and the
representation
L#O (I Wy 1 (2))" =2 L0 (w409 (@),

Remark 4.12. Given an exponent p € P(2) with1 <p~ < p* < oo, it is easy to check that

u )S Qp(u).

Qp(tl/p— t

Hence, g, satisfies the strongly coercive property (14) with ~(t) = t' verifying (15). Furthermore, under the
assumptions 1 <p <p < oo and 1 < q < g < N together with

Nq(t, x)

N-q(tn ~ 900

p(t,x) <

{¢q : q € B} is stronger than {gp : p € Ap}, and all the modular nets {op}, {0p'}, {oq} and {¢q'} satisfy
the strong coercivity with v(t) = t2, t', t2 and t7 respectively. Thus taking the strict convexity of L ) (2) and
W54 () into account, we can assert that hypotheses H(A) and H(B) are fulfilled by both {g, : p € Ay}
and {pq : q € B.,}. Therefore in our setting,

Zoy (W) (£) = uf 2 u = dgy(r) ()
defines a bounded, coercive and demicontinuous operator
Zo(y : LZO (LI (02)) » L0 (L9 (02))

as in Theorem 4.4, and
0B, (W) (t) = 09 (ey (u(t)) = ~div(|vu"“V?vu)

defines the subdifferential of &,,,,, at u e LY (I; Wy " (2)).

Remark 4.13. Replace q by a vector exponent q = (q1, q2, -+, qn) in Example 4.11, and define the anisotropic
space

WO (2) = {ue Wy (2) : Diu e LY (2)}.
Here q; € P,“;,’g with a common w, and q;(x) € [g, glc(1,00)forallx e 2,i=1,2,-,N.Similar to the isotropic
ones, Wé’q(x) (£2) can be viewed as a semimodular space derived by

Z?Ll 0g;(Diu), ifu e Wéyl(ﬁ),

Sﬁq(u):{oo’ if uel’(2)\Wy'(2),
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and its dual space, denoted by wLd ) (£2), can also be represented by the product space [, L% (£2).
Therefore following the same discussions as in Example 4.11, we can conclude that {¢q : q € BY }, where BY
is equipped with the product topology and the order: q < r if and only if q; < r; foralli = 1,2,---,N, is a
CMN fulfilling hypotheses H(A) and H(B), and stronger than {op : p € Ap}. {W(l)’q(x)((z) :qeBNlisa
BSN derived by {¢q}, its DSN {W~ 19X () is generated by {oq } with a basis fixed in W9 ) (02) and
its representation fixed in [T, LY (£2), whereq = (91,92, s qn), and

N
Qq’(F) = Zqu’(fl), F= (fl!fZ""ny) € LO(Q)N'
i=1

Therefore, for a continuous vector exponent q : I x 2 - [q, q]” with every component g; satisfying (19)

uniformly for ¢t € I, the modular-modular space L9 (I, Wé’q("x) (2)) deduced from L°(I, L) (2)) by the
modular

Boaiy (W) = [ oo (u()dt
1
is a separable and uniformly convex space with the dual
LPa0 (I, Wé,q(-,x) (Q))* ~ [P0 (I, W_l’q,("x) (Q))

Moreover, the restriction functional 5%(,) is convex and locally
Lipschitz everywhere on L#0 (I, W9 (2)), its subdifferential 0d,, ., at u e L#0 (I, W9 (2)) has
the expression

N
0By, (U) = dpq(ey (u(t)) = = 3 Dy(|Du| "2 Dyu),
i=1

or equivalently,

= > (6x)-2
(0, 0, Moy = Y- [ [ IDu(t, )"0 Du(t, x)Divit, x)dxat
=17 §

for all v e L0 (I, W 900 (02)).

5 Bochner-Sobolev spaces of modular-modular type and
applications in doubly nonlinear differential equations

We begin with the Bochner-Sobolev space of range-fixed type, that is
Whee (I, Xa) = {ue L% (I, Xa) 1 u' € L% (I, Xa)},

where u’ denotes the derivative of u in the sense of distribution, i.e. for all ¢ € X, and all v € C5° (1), equality

[ W ©.9(O8adt =~ [ (u(0).7/ (Oe)adt

1 1
holds. It is easy to check that, endowed with the norm
[uf wr.ea (ILXa) = [ul zeoa ILx.) t Hu,HL@u (ILXa)»

which is equivalent to
inf{\>0:d,, (u/X)+d,, (u'/X) <1},

W*¢= (I, X,,) turns to be a Banach space.
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Theorem 5.1. Function space W2 (I, X,,) can be embedded into the space of continuous functions C(I, X,).
Ifin addition V 5 is embedded into X, compactly, then W% (I, Xo) n L?? (I, V) is embedded compactly into
Lo (I, Xa).

Proof. Firstly, from the inequality
lulx, < oa(u)+1, Y ueXaq,

we can deduce that L% (I,X,) < L'(I,X,). Similarly, we have W"¢ (I, X,) < W"'(I,X,) and
L¥%(1, V) = L*(I, V). The first conclusion comes since the embedding W' (I, Xa)) = C(I, Xa) holds.
Given a bounded subset F of W' (I, Xo) nL¥? (I, V;3), it is also bounded in W"' (I, Xo)) nL' (1, Vp)).
Assume that
By, (U) + g, (U) + Py, (u) < €

for some C > 0 independent of u € F. Then forany u € Fand 0 < h < min{1, T/2} and t, t + h € I, we have

t+h

oa(u(t+h) —u(t) < f oo (W' (7))dr,

~

consequently

h T-ht+h

ga(u(t+h)—u(t))dtsf[ga(u'(f))drdt 1)
0 t

7

T T—h

(f [+

0 h h
T—

roa(u (T))dTJr/hga(u (T))dT+f(T o (U (7))dr

T-h

h

T T-
+f [)ga(u'(T))dth
h

T-ht1-

\: °
é‘\ﬂ

T

O‘\
= o

I/\

h [ oo/ (r))dr < Ch.
1
Taking any r € (0, T), consider the average operator M, on L? (I, X,,) defined by
1 t+r
Mou(t) = ;/u(T)dT, te[0,T-1].
t

Obviously, for all u € L¥# (I, Vg), Myu € C([0, T —r], V;3) with the estimate

t+r

esMu(t) <7 [ es(u(r)dr, te[0,T-1].

t

Moreover, due to the boundedness of F in W2« (I, Xo) and the estimate (21), precompactness of the set
Fr={Myu:ueF}in C([0, T -r], Xo) can be reached (refer to [16, 17]).
In addition, from (21), one can deduce that

~

—h
oo (Myu(t) - u(t))dt

—h

0 f(u(t+r) —u(t))dr)dt

o\‘
O\"*}

T-h r
g%[/ga(u(t+7)—u(t))d7dt
0 0
r T-71
1
<= oa(u(t+7)—u(t))dtdr
2
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<Ch

provided O < r < h, which means that M;u — uin L,_([0, T - h], X.) as r — O uniformly for u € F. This
fact, combined with the precompactness of F, in C([0, T — r], X.) for every fixed r € (0, h], leads to the
precompactness of Fin L,, ([0, T - h], Xa). The final conclusion comes if we make the same discussions on
the set F = {1i(t) = u(T - t) : u € F} (see [16]). O

Using the facts L2 (I, Xo) = L*(I, X, ) and W2 (I, X,,) — C(I, X)), we can also deduce that

Corollary 5.2. Under hypotheses of the above theorem, W'~ (I, Xo) n L¥? (I, V) can be embedded com-
pactly into L (I, X,,) forany 1 < p < oo, hence L”(')(I, Xo) forallp € Py(I, Xo).

Given two CMN's {oa :€ A} and {3 : B € B} satisfying H(A) + H(B) and H(A) + H(B)' respectively, and
the latter stronger than the former, introduce the Bochner-Sobolev space of range-varying type

WO (I, Xp(y) = {ue WH (I, Xa-) 1 u,u’ € L0 (I, Xg() }-
Similarly, equipped with the norm

lull yreocy (ILXo(y) lull eocy (LXoy) T [u'lleocy (LXo(y)?

which is equivalent to
inf {A>0: 0., (u/X) + Dy, (u'/X) <1},

W20 (I, Xg(.y) becomes a Banach space.

Theorem 5.3. Besides the assumptions upon {0~} and {¢g} as above, assume that there are scalar functions
Di,Gi,0 € C(I) (i = 1,2) such that 1 < p1(t) < Pa(t) < o0, 1 < Ga1(t) < G2(t) < o0, 6(¢t) € (0,1), and
D2(t)6(t) < @2(t) forall t € 1. Suppose also

- Vy- > X+ and there is a constant C > 0 such that

= (Xa-, Vyy)s(r) = Xocr) uniformly for t € I, in other words,

1-5(t)

a-

8(6) forallu e Vy, 22

Juloge < Clul o

Jul

where notation (Xo-, Vy(r))s5(t) represents the real or complex interpolation space between X - and Vy ;)
with the index 6(t);
— foralltel,

o0ty () < Cmax {5, [u55} u € Xg ), (23)
and

g1 (t) 32 (t)
oo » 145 } < Copey(u), ue V.

min {||u|
Then space W"20 (I, Xo(y) N L¥?O (I, Vy(.y) is embedded into L%°© (I, Xy.)) compactly.
Proof. Firstly, by (23) and Remark 4.8 in [11], we have that
LpZ(.) (I, Xg(.)) > LQQ(‘) (I, Xg(.)).

Thus from Theorem 5.1 and its corollary, it suffices to show that a sequence {u; } bounded in L¥?O (I, Viy(.y)
and convergent in L) (I, X,,- ) forall p € P, (I, X is convergent in L?2O) (1, Xo(.y) definitely. Without loss of
generality, assume that the limit of {u;} is 0. Take K > 1 so close to 1 that p,(t)6(t)K < g»(t) and p,(t)(1 -
§())K' 21 (1/K +1/K’ = 1) for all t € I, then by (22), we have

[ w15 at (24)
1

b2 -0 P, (t)d
< C [ (01220 (1) 5O
1
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p -5(t))K’ 1/K’ 5 (O6(DK 1/K
< O [ Tue( 2O ar) ([ > O )
I I
< ([ lup(t)| 200K gy <
I

K P S(t)K 1/K
LER G N O A R
{lu(®)llo6>1}

< ([ lw@ PO O aey LT ([ oo ue()de) "],
I I

which leads to the desired conclusion. O

Remark 5.4. Under all the hypotheses of Theorem 5.3 with the compact embedding of Vy- into X+ replaced
by the following condition
lulx. < Clulv, (25)

uniformly for a € A and 8 € B, we have
”u,HLl(I,XM) < C||u,HL99<-)(1,x9(,,)’ Hu”Ll(I,X(f) < Cllufpese (LVa(y)
forallu e WH200 (I, Xg(.y) n L??0 (I, Vy(.y), thus under the condition

14200 (1,500 + 142200 (1) < 1o
estimates (24) turn to be

= K pH(1-6 p-(1-5"
[ @ at < T max {(max Ju(t) lo- Y7, (max fu(6)] o))
I

o(t)
5,(t)6 1/K
([ T O%ar)
I

< T max {Julflon) ) IS )

wi(Lx,-)? I lweax,
1/K p2(t)5(H)K 5.\1/K
M [ @0 an

(e (OTvy, >1)

1/K’ By (1-67)
< T (Ju'] eocs (LXoey) * [UlLeo0 (z,vﬁ(_))) ’

.[Tl/K+(/<p79(t)(u(t))dt)1/K]sC,

I

which in turn produces |u] s, (1 x,,,) < C and consequently |[u eoc) (;x, ) < C since LP2O(1, Xg(y) =
L% (1, Xg(.y). Then by means of scaling transformation, we get

lull yreoc (LXo(y) < C(fJu'] ooy (LXpy) T lullpeocy (I,Vﬁ(,)))~ (26)
This is an important inequality for later use.

In spite of the estimate (26), we do not expect the control of the modular &,,, (u) by the sum &,, , (u") +
P, (u). Conversely, we have

Proposition 5.5. For every r > O, there is an &, > 0 such that for all O < ¢ < ¢, the a priori estimate
¢Qe(-) (u,) + 5%9(-) (u) < 5r¢@9(.) (u) +r

defines a bounded subset of W*2¢0) (1, Xo(y)-
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Proof. We proceed by contradiction. Assume that there is a sequence {u} in W20 (I, Xg.)) verifying
’ ~ 1
¢96(~)(uk) + 45%9(4) (uk) < Eége(l) (uk) +r,
but @, (ux) > k. Let vi = uy /@, (ux). Then we have

Doy, (UR) + 5<P19(.>(uk) < 1+7r
¢96(-)(uk) B

4599(4) (V,k) + 5%9(.) (Vk) <

Therefore ®,,, (Vi) + Dp,,(vk) — 0, and consequently v, — 0 in W"%0(I,Xy,) as k — oo. Thus
limy_, oo P, (Vi) = 0, which contradicts to fact that &, , (vi) > 1/2 forall k € N. O

Remark 5.6. As a preparation for later arguments, following the same process as above, we can prove that for
every C > 0, there exist two small numbers 6o > 0 and po > 0 such that all the functions satisfying the a priori
estimate

gzsQe(-) (u,) + 5@019(-) (u) < (5 + Hg(éil))ége(l) (u) + CU((Sil)

comprise a bounded subset of L?°©) (I, Xg(.y) as long as 0 < § < 6o and 0 < y < po.

Define two function spaces with periodic boundary condition, one is
Wpet™ (I, Xa) = {u e Wh (I, Xo) s u(0) = u(T)},

the other is
Wpel® (I, Xp(y) = WO (I, Xg()) 0 Wit (I, Xa-)

under the condition §(0) = 6(T). Evidently, the two spaces are closed subspaces of W2 (I, X,) and
W20 (I, Xg(.y) respectively.

Let us make some investigations on the operator Df)(‘) per O, Xg(y) — pef” '(1,Xp(.y)" defined
through

(D (w),v)) = f(aQG(t)(u,(t))!V,(t))e(t)dty u,ve W (I, Xa). @7)
1

By the definition, it is easy to check that D2 y is a single-valued, monotone and demicontinuous operator,
hence it is maximal monotone. In addition, takmg v(t) = ~y(t)win 27) with v € C5°(I) and w € X+, we have

({D§y(u),v)) = f(age(t)(u'(t)),'y'(t)w)mdt
1
<d£a£>e(r)(u'(f)),v(t)W)wdt

~

1 2000 @ (), 2 (OWhaco

N\ N\,

which means that D(Z, ) is a second order nonlinear differential operator, i.e.

Dé(.) (u) = —%699(-) (u,())

in the sense of distribution.

Let U(u) = &y, (u') atu e Wpef"“(l , Xy(,)), We obtain a continuous and convex functional. A direct
calculation shows that ¥ is Gateaux differentiable everywhere with the Gateaux differential ¥’ (u) = Dé( 5 ().
Thus the subdifferential operator 0¥ is single-valued, and 0¥ (u) = D3 o(y(u) forall u e Wpef“ (I, Xg(y)-
Consider the extension of ¥ onto L2 (I, Xo(y)

- | = if u € L2O (I, Xgy) ~ Woel® (I, Xg(.))
T (u), if ue Woet® (I, Xg(.))-
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It is also easy to verify that ¥ is a semicontinuous and convex proper functional, whose subdifferential
operator has the domain

D(OW) = {ue WH?O (I, Xy() : thereisan ¢ L2001, Xj(.y) such that
f(i(f),v(t))e(t)dl‘: f(ZO(-)(u,)(t)’V,(t)>0(t)dt (28)
1 1

forallv e W;éf"(‘) (I, Xoy) }»

together with 0w (u) = Df)(,)(u) = ¢in er,gfg(')(l, Xg(,)" for the function ¢ € Lo (I, Xj(.) satisfying (28)
and all u € D(0¥). In this sense, we can say that 0¥ ¢ Dé(,).
Taking the intersection
1,00( .
W = Wyt *O (1, Xp(y) N LE7O (I, V()

as the work space, where the norm | - ||y, takes the value |u| W y lullpeoer 1,y,,)» and consider
P

0O (LX)
the sum
D(u) =T (') + Pp,q, (u)
as the potential functional. Evidently, (u) is a continuous modular on W with the effective domain D(&) =
W, its subdifferential operator
0B = Djj(y + 0%y,

is a maximal monotone subset of Wyl*® (I, Xg(.) x Wpet?® (I, Xp.y)* . Moreover, by (26) and the coercivity
of Dpyys Doy .y » WE have

((0P(u), u)) T(U) + By, ()

lullw — W llpee (LXey) ¥ lullpeocs (LVs(s)

— oo as |ufw — oo,

which yields the coercivity, hence surjectivity of 0&. Furthermore, suppose that for every 3 ¢ B, g is strictly
convex, then &, ., hence @ is also strictly convex, which in turn leads to the injectivity of 0. Summing up,
we conclude that

Theorem 5.7. Suppose all the hypotheses mentioned above are satisfied, then for every f € L%0 (I, Xg(_)) c
WY, there is a unique u € VW and a corresponding selection ¢ € aéﬁw o, (W) such that

Dé()(u) +& :f inWw”. (29)

In other words, for every f € L2%0 ({1, X;(,) ), second order differential inclusion

—%age(t)(ul(t)) +0py(ry (u(t)) > f(t) a.e.onl (30)

with periodic boundary values admits a unique weak solution u in the sense

[ (oo (W ).V (Dot + [ (6O VO)owdt = [ (F(D).V(O)agodt

i T i
forallv e W.

The above theorem shows that the sum operator Dé () T 0Py, is both injective and surjective, its inverse
(Dé(l) + 0Py, )~! is existing and single-valued. Moreover, in light of Proposition 5.5, together with the
compact imbedding W < L% (I, X4.), we can prove that

Theorem 5.8. If all the hypotheses of Theorem 5.3 together with (25) are satisfied, then the inverse operator
2 =~ -1 x * .
(Dyg(y + 0Py, )+ LOO (1, Xg(y) — L0 (1, Xg(y)
is both bounded and strongly continuous in the sense that for any sequence {f } convergentto f in L%0 (I, X;(_) )

weakly, the corresponding sequence {(Dé(,) +08,,, ) fi} converges to (Dé(.) + 0Dy, ) fin L0 (1, Xq(.))
strongly.
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Let us consider the operator f : I x X — X. Assume that

~ foranyJeII(I)andu ¢ Xg:, t = f(t, u) lies in Lo(1, X5:)s

- foreverytel, f(t,-): Xg¢r) ~ Xg(t) is demicontinuous, and

- thereis an p > 0 and a nonnegative integrable function h for which inequality

0oty (f (£, 1)) < pog(e (u) + h(t) (31)

holds for all u € Xg(y).

Taken any u € L°(I, Xo(.y), denote by F(u) = f(t,u). It is easy to see that under the first assumption upon
f,ifu e S(I, Xo+), then F(u) e L°(I, Xg(_)), and by (31), it comes F(u) € L% (1, X;(,)). Consequently, from
the density of S(I, Xo+) in L (I, Xg(.)) and the demicontinuity assumption upon f, we can derive that
F(u) e L%o (I, X5(.y) provided u € L?© (I, X .y ). Moreover, we have

Proposition 5.9. F is a bounded and demicontinuous operator from L%°© (I, Xy(.y) to L%0 (I, Xg(,)-

Proof. Boundedness of F comes from (31) immediately. For the weak continuity, suppose that {u,} is a
sequence of L?°©) (I, X4.)) converging to u strongly, that is

f 00(ty (Un(t) —u(t))dt - 0as n — oo.
T

Thus there is a subsequence, say {ux} itself satisfying
lim og(s)(un(t) —u(t)) =0a.e.onl.
n—oo

From the boundedness of {un} in L%© (I, X,.)) and (31), we get the boundedness of {F(un)} in
L%0 (1, Xg(.) ). Consequently, there is a subsequence, without loss of generality, assuming also {u,} itself,
and a function ¢ € L%0 (I, X;(,) ), such that F(u,) — £ weakly, or equivalently

Tim [ (f(t un(6) - €(6), V(E)o(odt = 0
1
forall v e L0 (I, Xg(,)), which in turn yields

lim f(f(t, un(t)) - £(£), V)o(rydt = 0 (32)
E

for all measurable subsets E of I and all elements v of X+ since S(I, X+ ) is dense in L?© (I, Xg(.y) by H(A).
On the other hand, since

nli{go(f(f, un(t))s Ve = (f(t, u(t)), viacr
a.e. on I, for each ¢ > 0, by Egorov’s theorem, there is a measurable set E. ¢ I with |I \ E.| < ¢ verifying
(f(t,un(t)), Vo) = (f(t, u(t)), v)o( uniformly on E.
as n — oo, consequently for any subset E of E., we have

Tim [ (F(t un(6)) - £t u(6)), Voo dt = . (33)
E

Putting (32) and (33) together with the same subset E, we obtain

[ (e u(®) - €0, Vot <o,

E
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which implies
(f(t,u(t)) —&(t),v)g =0 (34)

a.e. on E. and eventually a.e. on I by the arbitrariness of E and ¢ respectively.

Suppose that {v,} is a dense and countable subset of X+, then there is a subset Eq of I with zero
complement on which (34) holds with v replaced by v, for all k € N. Finally, using the density of X,+ in
Xo(r), we deduce that f(¢, u(t)) = £(¢) in Xj,) on Eo. Therefore F(u) = ¢ and F(un) —~ F(u) in L% (I, X5()
as n — oo. Thus the proof has been completed. O

Putting Theorem 5.8 and Proposition 5.9 together, we can easily see that the composite operator
2 = -1 A .
F = (Dg(.) + aéw(_)) o F:L°0 (I, Xg(.)) g LQQO(I, X@(.))
is both continuous and compact. Moreover, we have

Theorem 5.10. Under all the assumptions mentioned above, there is an o > O such that as long as 0 < u < o,
F has a fixed point in L®°© (I, X4(.y), or in other words, second order differential inclusion

d '
—aage(t)(u (£)) + 0wy (u(t)) > f(t,u(t)) a.e.onl (35)
has a weak solution in W.

Proof. Consider the set
S={ueW:u=XF(u) forsome 0 < X< 1}.

Evidently, every member of S is a weak solution of the inclusion
d _ _
2900 (A YW (8) + 0oy (A u(t)) > f(t,u(t)) ae.on 1.

By multiplying both sides of the above inclusion by A™*u’(t), and integrate on I, then using the assumption
(31), we can deduce that
@Qe(.>(A_1u,) + 5tpﬁ(»)(}‘_lu) < ((F(u)! A_lu)>9(‘)

<P (871 F(u)) + Dy, (63 'u)

< 0(6_1)[.“@99(-)()‘_1“) + HhHLl(I)] + 5¢Qe(-) (/\_111)

= (6+1o(5))Pogey (N u) + R 111y
By taking 6o > 0 and po > O as in Remark 5.6 and letting O < § < dp, 0 < u < uo, we can claim that
{A\'u:u e S}isbounded in L2 (I, Xo(.y)- Therefore, there is a constant C > 0 independent of \ such that
[uleec (LXo(y) < C for all u € S. Finally by invoking Leray-Schauder’s alternative theorem for the compact

and strongly continuous operators (refer to [18, Ch. 13] or [19]), we can assert the existence of the fixed point
of F. O

Remark 5.11. From the demicontinuity of F and the compactness of the inverse (Df) () 0Py )1, we can also
check that solution set of (35) is a nonempty and compact subset of W.

Remark 5.12. In our setting, periodic boundary condition can be replaced by the following one:
u(T) = Ku(0),

where K : Xq(0y — Xo(r) iS a bounded linear operator with other conditions unchanged.
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At the end of this paper, let us choose an anisotropic elliptic partial differential equation of second order to
illustrate our results,
_Dt(|Dtu|p(x,t)—2Dtu) _ Zﬁl Di(|Diu|qf(x,t)—zDiu)
= ug(t,x,u), (t,x)eIx 0,
u(0,x) =u(T,x), xef,
u(t,x) =0, (t,x) eI x00.
Here D; denotes the partial differential derivative with respect to t, p and g; are doubly variable exponents
introduced in Example 3.22 and Remark 4.13 respectively.
Suppose that g : I x 2 x R - R is a Caratheodory function with a nonstandard growth, i.e. for a.e.
(t,x) eI x 2, uw g(t, x,u)is continuous, and forall u € R, (¢, x) — g(¢, x, u) is measurable, together with

(36)

lg(t, %, u)| < C(1+ [uf07) (37)

holding for a.e. (t,x) e [ x 2 and all u € R.

Let f(t,u)(x) = g(t,x, u(t,x)). Since L°(I, L°(£2)) is equivalent to L°(Q), one can easily check that
f(t,u) liesin L°(I, L°(£2)) provided u does. Moreover, combining (37) with the continuity of g(t, x, u) with
respect to u, we can find that f(t, u) € L°(I, L (2)) forallu € L°(I, L?(£2)), and f(t, u) is weakly continuous
from LP(*) () to LP (¥ () for a.e. t € I, together with (31) verified.

Suppose that p(t, x) and g;(t, x) (i = 1, 2, ---, N) are variable exponents as in Example 3.22 and Remark
413 fulfilling

igf?(q;“(t,x)—p(t,x))>0, i=1,2,-,N. (38)

Using the notations and definitions in Examples 3.22, 4.11 and Remark 4.13, from equation (36), we then derive
an abstract evolution equation (35) on the space

W = W;ér@p(» (I, LP(',X)(Q)) A L& (I, Wé,Q(',X)(Q)).

From all the assumptions of Example 3.22 and Remark 4.13 together with (38), one can easily verify all the
conditions listed in Theorem 5.3 as well as (25). Thus in terms of Theorem 5.10, equation (35) has a solution u
in W, whose scalar version, still denoted by u, solves (36) in the sense of distribution, i.e.

N
f (IDauf“O=2Du)Devdxdt + 3 f (IDu["*O"2D ) Dvdxdt = f F(t w)v(t, x)dxdt
Q =19 Q

forallv e Céer(l , C=(£2)). In conclusion, under all the conditions upon h, p and g; (i = 1, 2, ---, N) including
(38), there is a o > 0 such that for all 0 < i < uo, Equation (36) has a weak solution.

Remark 5.13. Unlike the traditional one, here we do not need u(t, x) = 0 on the whole boundary 0Q and do
not require the whole log-Hélder continuity of p and q; (i = 1, 2, -+, N). Hence Poincaré’s inequality

Ul oo gy < Cl VUl Lacn (g

could not be applied even if p(t,x) < qi(t,x) foralli € {1,2,--, N}. By these reasons, here we give up
WiP0(Q) as the work space, instead, an anisotropic space W;gf”‘) (I, IPC) (2)) n L%o (I, Wy A9 ()
is taken into account, while the elliptic equation (36) turns to be an abstract second order evolution equation.
To our best knowledge, this way to deal with the anisotropic elliptic equations with nonstandard growth is new,
and different to that applied in available literature.
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