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1 Introduction

Semirings (see [9]) abound in the mathematical world around us. The set of natural numbers, the first
mathematical structure we encounter, is a semiring. The intensive study of semiring theory was initiated
during the late 1960’s when their real and significant applications were found. Nowdays, semiring theory is an
enormously broad topic and has advanced on a very broad front. Semirings (S, +, -) occurring in the literature
satisfy at least the following axioms: (S, +) and (S, -) are semigroups, and the multiplication distributes over
addition from both sides. It is often assumed that (S, +) is idempotent and/or commutative. A semiring S is an
additively idempotent semiring, or shortly ai-semiring, if (S, +) is a semilattice (it is also called a semilattice-
ordered semigroup in [8, 10, 11]). It is well-known that the endomorphism semiring of a semilattice is an
ai-semiring. Also every ai-semiring can be embeded into the endomorphism semiring of some semilattice
(see [8, 12]). Important role in mathematics as well as broad applications (in theoretical computer science,
optimization theory, quantum physics and many other areas of science [9, 13-15]) make ai-semirings and,
especially, their varieties to be among the favourite subjects for the researchers in the algebraic theory of
semirings.

The variety of all ai-semirings is denoted by Al Let X be a fixed countably infinite set of variables and X*
the free semigroup on X. Then P;(X") is free in Al on X (see [8]). An Al-identity means an identity u ~ v, where
U=Up+-+U, V=Vi++Vy, U, VijeXt, iek, jel, k={1,2,...,k}. Recall that an ai-semiring is called
a Burnside ai-semiring if its multiplicative reduct is a Burnside semigroup, i.e., it satisfies the identity x" ~ x™
with m < n (see [16-18]). The variety of all Burnside ai-semirings (resp., Burnside semigroups) satisfying
the identities x" ~ x™ will be denoted by Sr(n, m) (resp., Sg(n, m)). There are many papers in the literature
considering Burnside semigroups and Burnside ai-semirings (see [1, 2, 4-8, 10, 16-20]). In particular, in 1979,
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McKenzie and Romanowska [19] studied the lattice of subvarieties of the subvariety Bi of Sr(2, 1) defined by
the additional identity xy ~ yx. They showed that this lattice contains precisely 5 elements: the trivial variety
T, the variety D of distributive lattices, the ai-semiring variety M defined by the additional identity x + y »~ xy,
the varieties D v M and Bi (see Figure 1).

Fig. 1. The lattice of subvarieties of Bi Bi

In 2002, Zhao [7] studied the variety Sr(2, 1), which need not satisfy xy ~ yx. They provided a model of the
free object in this variety by introducing the notion of closed subsemigroup of a semigroup. In 2005, Ghosh
et al. [1], Pastijn [2] and Pastijn and Zhao [3] studied the lattice of subvarieties of Sr(2, 1). They showed that
this lattice is a distributive lattice of order 78 and that every member of this lattice is finitely based and is
generated by a finite number of finite ordered bands.

Along this research route, some authors studied the subvarieties of Sr(n, 1). In 2005, Kufil and Polak
generalized the notion of closed subsemigroups introduced by Zhao [7] to that of n-closed subset of a
semigroup. They provided a construction of the free object in Sr(n, 1) by using n-closed subset of the free
object in Sg(n, 1). Moreover, Gajdo$ and Kufil [10] showed that Sr(n, 1) is locally finite if and only if Sg(n, 1)
is locally finite. In 2015, Ren and Zhao [21] introduced the notion of (n, m)-closed subsets of a semigroup
and gave a model of the free object in Sr(n, m) by using (n, m)-closed subset of the free object in Sg(n, m).
In 2016, Ren, Zhao and Shao [20] proved that the multiplicative semigroup of each member of Sr(n, 1) is
a regular orthocryptogroup. As an application, a model of the free object in such a variety is given. In the
same year, Ren and Zhao [4] studied the lattice of subvarieties of the subvariety of Sr(3, 1) defined by the
additional identity xy ~ yx. They showed that it is a 9-element distributive lattice. As a continuation of [4],
Ren et al. [5] studied the lattice of subvarieties of the subvariety of Sr(n, 1) defined by the additional identity
xy ~ yx. They showed that if n - 1 is square-free, then this lattice is a 2 + 2"** + 3"-element distributive lattice,
where r denotes the number of prime divisors of n — 1. They also proved that this lattice is finitely based and
finitely generated. In 2017, Ren et al. [6] studied that the lattice of the subvarieties of Sr(3, 1). They showed
that this lattice is a 179-element distributive lattice. They also showed that every member of this lattice is
finitely based and finitely generated. This paper is another contribution to this line of investigation. We shall
characterize the lattice of subvarieties of the subvariety of Sr(p + 1, 1) defined by the additional identities
zxyz ~ (zxzyz)Pzyxz(zxzyz)P.

This paper is organized as follows. After this introductory section, in Sect. 2 we shall give some auxiliary
results and notations that are needed in the sequel. In Sect. 3 we shall study the subvariety of Sr(p + 1,1)
defined by the additional identity zxyz ~ (zxzyz)Pzyxz(zxzyz)? . We shall show that its lattice of subvarieties
is a distributive lattice of order 179. Also, all members of this lattice are finitely based and finitely generated.
In particular, Sr(3, 1) is just the case of above variety when p = 2. Thus our main results generalize and
extend the main results in [1-4, 6, 19].

For notation and terminology not given in this paper, the reader is referred to [22-25].
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2 Preliminaries and some notations

Let Ap.1 denote the group variety defined by the identities

X x, 6)

Xy ~ yX. @)

For any S € Sr(3, 1), every subgroup of (S, -) satisfies the identity x> ~ x. This shows that every subgroup of
(S,-) is an abelian group in As. That is to say, (S, -) is a union of abelian groups which belong to A;.
For any semigroup S € Sg(p + 1, 1), by [22, Proposition II.7.1 and Exercises V.5.8 (V)]), we have

Lemma 2.1. If S satisfies the identity zxyz ~ (zxzyz)Pzyxz(zxzyz)?, then S is a union of abelian groups which
belong to Ap.1.

We denote by ROBA,,; the subvariety of Sg(p + 1,1) defined by the additional identity zxyz =
(zxzyz)Pzyxz(zxzyz)?. As usual, for a semigroup variety V, we denote by V° the semiring variety consisting
of all ai-semirings whose multiplicative reduct belongs to V. It is easy to see that ROBA,, is just the variety
of all ai-semirings whose multiplicative reduct is a union of abelian groups which belong to A,.1, i.e., the
ai-semiring variety defined by the additional identities

p

xP* » x and zxyz ~ (zxzyz)’zyxz(zxzyz)®.

In particular, Sr(3, 1) is equal to ROBAS.
Let SAp.1 denote the semigroup variety defined by the identities (1) and (2), and S¢ denote the variety of
semilattices. By [22, Lemma IV.2.3, Theorem IV. 2.4 and Exercise IV.2.16 (xii())], we have

Lemma 2.2. SA,,1 =S¢ v Ap,i.

Let w be an element of X*. The following notions and notation are needed for solving the word problem for
SA,.1 and ROBA,.1:

e i(w) denotes the initial part of w, i.e., the word obtained from w by retaining only the first occurrence of
each variable.

¢ f(w) denotes the final part of w, i.e., the word obtained from w by retaining only the last occurrence of
each variable.

e c(w) denotes the content of w, i.e., the set of all variables occurring in w.

e m(x, w) denotes the multiplicity of x in w, i.e., the number of occurrence of x in w.

e 1;(w) denotes the set {x € c(w) | i = m(x, w) (mod p)}, whereie {0,1,...,p—1}.

e 7p:1(w) denotes the set {x* | x € c(w), x € p-1,k=m(x, w) (modp)}.

¢ w denotes the word obtaining from w by deleting all occurrences of variables which belong to ro(w).

Itis easy to check that a semigroup identity u ~ vis satisfied by A, ifand only if r;(u) = r;(v) forallie p — 1.
Thus, for any semigroup identity u ~ v,

SApiiEu~v e c(u)=c(v), ri(u)=ri(v)(Viep-1), 3)
ROBA,. 1 Fu~v < i(u)=i(v), f(u) = f(v), ri(u) =ri(v) (Viep-1), (4)

where ROBA,,1 = ReB v Ay, (see [22, Theorem V.5.3]), and ReB the variety of regular bands. Now we have
Lemma 2.3. ROBA,,; satisfies the following identities

(xy)" ~ x"yP, ©)
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xPyx ~ xyx?, (6)

xyzx ~ xyxPzx, 7
Xy+zaxy+z+xzly, 8)

X1+ X2+ + Xpp1 8 X1+ X2 + o+ Xpi1 + X1X2++Xp41. 9)

Proof. By (4), it follows immediately that (5), (6) and (7) hold in ROBA,_ ;. Also,
X1+ X2+ + Xpi1
M (X1 4+ X+ Xper )PP (since ROBA;,; = (1))
N Yz iprrep+1 XiyXiy " Xip
N i, iwe; Xiy Xiy X,y + X1X2°Xp+1 (since ROBAI‘;Jr1 EX+X®~X)
M (X1 4+ X0+ Xpe1)PTE + Xaxa e Xpaa

N X1+ X2+t Xpe1 T X1X2Xp41.

Thus, (9) holds in ROBA, . ;. In the remainder we need only to prove that (8) holds in ROBA,, ;. The following
is derivable from the identities determining ROBA,, ; and identities (4), (5), (9):

Xy +2zw~xy+z+xyzl + 2P xyz (by (9))
~ Xy + 2+ xXPyzP 4 2P xyz(xy)P 2P (by (5))
mxy+z+ (X + 2P Ixyz(xy)P T xyz?
Xy +2z+ (XF + 2P xPyP + xP 2P xPyP ) xyzP (by (4),(9))
~ XY + 2+ XPLyzP 4+ 2P xyzP + xPZP xyzP.

Thus, ROBA, ., satisfies the identity
xy+zw~xy+z+xP2PxyzP.

In a left-right dual way we can show that ROBA, , ; satisfies the identity
Xy +zw~xy+z+20xyZPyP.

Furthermore, we have

Xy+z
~ Xy +z+xPZPxyzP + 2PxyZPyP + xyzP (by (9))
~ Xy + 2z + xPZPxyzP + 2P xyzPyP + xyzP

+xPZPxyzl - (xyzP P71 2P xyzPyP (by (9))
m Xy + 2z +xP2PxyzP + 2P xyZPyP + xyzP + xP 2P xy 2P yP (by (4))
Xy +z+xP2Pxyz? + 2P xyZPyP + xyzP + xP 2P xZPyzPyP (by (7))
m Xy + 2+ xPZPxyZP + 2P xyZPyP + xyZP + (xz)PxZPy(zy)P (by (5))

~ Xy +z+xXPZPxyZ? + ZPxyZPyP + xyzP + xZPy.
Thus, ROBA, ., satisfies identity (8). O

Lemma 2.4. Let S be an ai-semiring in Sr(p + 1, 1). Then the following is true,

(VaeS)(Vi,jeB,i¢j)ai+aj:a+a2+-~-+a”. (10)

Proof. Suppose that Sis an ai-semiring in Sr(p+1, 1). Thenforanya € S, a?** = a. Without loss of generality,
suppose that i,j € p and i < j. We have

ad+d=d(@+d?)

= d'(a? +d 7P (since S = x**! ~ x)
- di(@ 4 @20 g gPU-D)y
=ad'(a+a’+--+ad) (since p is a prime)

—a+a’+--+a.

This completes the proof. O



DE GRUYTER On some varieties of ai-semirings satisfying x?*1 » x = 917

Let u ~ v be an Al-identity and X a set of identities which include the identities determining Al. Under the
presence of the identities determining Al, it is easy to verify that u ~ v gives rise to the identities u ~ u + v},
vV~ V+U,lek,je L. Conversely, the latter k + ¢ identities give rise to u ~ u + v ~ v. Thus, to show that u ~ v
is derivable from X, we only need to show that the simpler identitiesu ~ u + vj, v~ v+ u;, i € k,j € £ are
derivable from X.

3 The lattice L(ROBA,, )

In the current section, we shall characterize the lattice L(ROBA,, ) of subvarieties of ROBA,, ;, and prove
that each member of this lattice is finitely based and finitely generated.

Let (Zp,-) be the cyclic group of order p and ZS the 0-group obtained from Z, by adjoining an extra
element O, where a-0 =0-a = 0 for every a € Z, u {0}. Define an additive operation on Zg as follows:

a, ifa=b;
a+b-=
0, otherwise.

Then (Z, +, ) forms an ai-semiring. It is easy to check that Zj is in ROBAj, ,, but not in Sr(2, 1). In fact, we
have

Lemma 3.1. Let S be an ai-semiringinROBA, , ;. Then S is a member of Sx(2, 1) ifand only if it does not contain
a copy of Zp.

Proof. The direct part is obvious. Conversely, suppose that S is an ai-semiring in ROBA,, ;, but not in Sr(2, 1).
Then there exists a € S such that a is not equal to a”. Thus by Lemma 2.4, we can show that {a, a,...,a%, a+
a* + -+ a?} is a subsemiring of S and is a copy of Zg. This completes the proof. O

Let M, denote SA; ., n [x” +y” ~ x’y?]. From [5, Lemma 4.12], HSP(Zp) = M. Also, by [5, Proposition 4.13],
the interval [M, M, ] consists of the two varieties M and M,. Thus we have

Lemma 3.2. The interval [T, M,] consists of the three varieties T, M and Mp.

Proof. LetV ¢ [T, Mp]and V # T. Then M ¢ V since M is minimal nontrivial subvariety of M,. It follows that
Ve[M, Mp]JandsoV =MorV = M,. O

Letu = uy + - + Uy, where u; € X*,i € k. We put C(u) = Uiex ¢(u;). To solve the word problem of the ai-
semiring 22 we need the following Lemmas, which are the special cases of [5, Corollary 4.15 and Lemma 5.1]
whenn=p + 1.

Lemma3.3. Let u ~ u + q be an Al-identity, where u = uy + - + Uy, u;,q € X*,i € k. Then Zg satisfies
u~u+gqifandonlyifc(q) ¢ C(u) and rp+1(q) = rp+1(u,-1~~~u,-(p+l)e ) for some positive integer ¢ and some
Uiy enns ui(w)e € {ui | ie k}

Lemma 3.4. Let u ~ u + q be an Al-identity, where u = uy + -+ Uy, u;, ge X", ic k. IfZg satisfiesu ~ u + q,
then there exists q1 in X* with rp,1(q1) = rp+1(q) and c(q) < ¢(q1) € C(u) such that u ~ u + q1 is satisfied in
ROBA’, ;.

For a semiring variety V, we denote by £(V) the lattice of all subvarieties of V. In the following we shall
characterize the lattice L(ROBA,, ;). Suppose that S be a member of ROBA, ;. It is shown in [20, Lemma 2.1]
that E(S) forms a member of Sr(2, 1). Define a mapping ¢ as follows

¢: L(ROBA), ;) — L(St(2,1)), V> VNSK(2,1).
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Then it is easy to see that ¢ is subjective. For any V € L(ROBA, ), if S € ¢(V), then S € VN Sr(2,1) and
so S € {E(S)|S € V}. It follows that (V) c {E(S)|S € V}. On the other hand, if E(S) € {E(S)|S € V}, then
S € V. Since E(S) is a subsemiring of S, we have that E(S) € V and so E(S) € VnSr(2,1). It follows that
{E(S)|S € V} € (V). Therefore, (V) = {E(S)|S € V}. We use t(x1,...,Xxn) to denote the Al-term ¢ which
contains no other variables than x1, . .., x, (but not necessarily all of them). If W is the subvariety of Sr(2, 1)
determined by the additional identities

U(X1yeees Xn) ® V(XDyenny Xn),
then we denote by W), the subvariety of ROBA; . ; determined by the additional identities
uxf, ..o 2 v, 1)
Then for any V ¢ [W, W, ],
W = (W) € (V) € o(Wp) = W 1 (Sr(2,1)) = W,

it follows that V ¢ o (W) and so [W,W,] ¢ ¢ *(W). Conversely, if V e ¢ *(W), then V e [W,W,].
Otherwise, (V) # W, a contradiction. Thus, for any W € £(Sr(2,1)), ¢ ' (W) is the interval [W, W] of
L(ROBA;, ). Moreover, if Wi, W € £(Sr(2, 1)) such that W; ¢ Wy, then it is easy to check that W; ¢ W».
Suppose that (V;);e; is a family of varieties in ROBA,, ;. Then (V;) ¢ V; ¢ m foralli e I. Furthermore,
Ve(Vi) € VVic Ve(Vi) € Ve(Vi).
iel iel iel iel
This implies that ¢(V;Vi) = Viae(Vi) and so ¢ is a complete v-epimorphism. Moreover, it is clear
that ¢ is a complete A-epimorphism. It follows that ¢ is a complete epimorphism. Thus, L(ROBA, ) =
Uwez(sr(2,1)) [W, Wy 1.

Notice that M is the subvariety of Sr(2, 1) determined by the additional identities xy ~ yx and x + y »~ xy.
Thus M,, is the subvariety of ROBA; ,; determined by the additional identities x”y” ~ yx¥ and x? +y? ~ xPy?.
By [22, Lemma IV.2.3], ROBA; ., n [x’y? ~ y’x”] = SA; ., and so M, = M,,.

Recall (see [1]) that the lattice £(Sr(2, 1)) can be divided into five intervals: [T, NnPnSr(2,1)], [D,Nn
Sr(2,1)],[M,PnSr(2,1)],[DvM,KnSr(2,1)] and [Bi, Sr(2, 1)], where Nn Sr(2, 1) is the subvariety of
Sr(2, 1) determined by the identity

X~ X+ XYX, (11)

P nSr(2, 1) is the subvariety of Sr(2, 1) determined by the identity
XYX ~ X + XYX, (12)
and K n Sr(2, 1) is the subvariety of Sr(2, 1) determined by the identity
X+ XyX + XyzZyX ~ X + XyzZyX. (13)

Thus we have
Theorem 3.5. Let Ve [T,NnPnSr(2,1)]u[D,NnSr(2,1)]. ThenV, = V.

Proof. FromNnSr(2,1) = (11), we have that N n Sr(2, 1), satisfies the identity

xP & xP + xXPyPxP. (14)

Notice that Z, # (14). Then Z, ¢ NnSr(2,1), and so by Lemma 3.1, NnSr(2,1), € Sr(2, 1). It follows
from V,, c NnSr(2,1), that V,, ¢ Sr(2,1). O

AssumethatV e £(Sr(2,1))and V= u~ u+q, whereu = uy +--+uy, u;, g€ X', i € k. FromROBA; ; = (5)
it follows that V,, satisfies the identity

p

ot mll v g (15)

p
u
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Lemma3.6. LetV e [M,PnSr(2,1)]. Then Vv HSP(Z)) = V,,.

Proof. SincePnSr(2,1) = (12), it follows that P n Sr(2, 1), satisfies the identity
XPyPxP w xP + xPyPxP. (16)

We immediately have that this is the case for V,, too. Notice that HSP(Z)) = M. Thus V v HSP(Z)) c V.
It remains to show that every identity which is satisfied in V v HSP(ZS) can be deduced from the identities
which hold in V.

Let u ~ u + g be an Al-identity which is satisfied in VvHSP(Zg), whereu = uy +--+uy, u;, ge X, iek.
Since Zg satisfies this identity, by Lemma 3.4 there exists g1 in X with rp.1(q1) = rp+1(q) (and so r;(q1) =
ri(q) forallie p—1)and c(q) < c(q1) such that u ~ u + g, is satisfied in ROBA, . ; . Thus the following are
derivable from the identities which hold in V:

u~u-+dga
MU+ qr+ulqr+ e+ ulq (by (9))
su+qr+ (Ul + e+ ul)q
ru+qr+ W+ +ul +¢°)q1 (by (15))
su+qr+ (Ul + e+ ul) g+ qPqa.

This derives the identity
ursu+qq.

In a left-right dual way we have

usu+qiq-.
Therefore the following are satisfied in V,:
u~u+qq1+q1q°
vu+q'q1+q1q° + 47 q1(q14" )P (by (9))
~u+ @+ it + P g’ (by (1), (5))

u+qq1q°.

bl

Furthermore, we have the following are derivable from the identities which are satisfied in V;:

u~u+qg’qi1q*
~ U+ qqhq” (Vo = ¢°q14" ~ qd )
~u+q(qqiq’ +q°) (by (16))
~u+qqPqiq’ +qq”
~u+4qq°qiq’ +q.

This shows that u ~ u + ¢ is satisfied in V,, and so V v HSP(Z)) = V,,. O

By Lemma 3.1 and 3.6, we can establish the following result.

Theorem 3.7. LetV € [M, P nSr(2,1)]. Then the interval [V, V] of L(ROBA; . ) consists of two varieties V
and Vv HSP(Z)).

For an ai-semiring S we denote by S° the ai-semiring obtained from S by adding an extra element 0, where
a+0=a,a0=0a =0 for every a € S. Written B, as Zg, then we have

Lemma 3.8. Let S ¢ ROBA, ;. Then S satisfies the identity
x+ (x+xXP)W(x+xP) x xP + (x + xXP)yP (x + xP) (17)

if and only if it does not contain a copy of Bg.
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Proof. Necessary. It is obvious.
Sufficiency. Suppose that S e ROBA,, ;, but that S does not satisfy identity (17). Then there exist a, b € S
such that
a+(a+ad’)bf(a+a’)+a’ +(a+a’)b’(a+d).

It is easily verified that c, a + c, a+c,...,a° + cand a + a® + c are not equal to each other, where ¢ =
(a+aP)b’(a+aP).PutS; ={c,a+c, a’*+c,...,a’ +c, a+a’ + c}. By identities (1) and (10), it is routine
to verify that S; forms a subsemiring of S, which is a copy of Bg. O

Letu = uy + -+ Um, where u; € X*, i e m,and Z € Ujepm c(u;). If c(u;) n Z # @ for every i, then we write
Dz(u) = @. Otherwise, Dz(u) is the sum of terms u; for which c(u;) n Z = @. The proof of the following result
is easy and omitted.

Lemma3.9. LetS ¢ ROBAfJ+1 and u ~ v be an Al-identity, where u = uy + -+ + Um, V = V1 + -~ + Vp, Uj, Vj €
X*, iem, jen. Then S° satisfies u ~ v if and only if for every Z ¢ C(u) U C(v), either Dz(u) = Dz(v) = @ or
Dz(u) + @ + Dz(v) and Dz(u) ~ Dz(v) is satisfied in S.

Lemma3.10. HSP(B)) = SA; ;.

Proof. It is obvious that HSP(Bg) cSA, .. To prove that SA; ., ¢ HSP(BS), we need only to show that every
identity satisfied in HSP(BS) can be derived from the identities determining SA, ;.

Let u ~ u+q be any identity which is satisfied in HSP(BS), where u = uy +---+upn, Ui, q € X*, i € n. Choose
Z = C(u)\c(q). Since Dz(u + q) + @, by Lemma 3.9, Dz(u) # @. Assume that Dz(u) = u1 +--- + ug, k < n. By
using Lemma 3.9 again, B, = Dz(u) ~ Dz(u) +q. It follows from Lemma 3.3 that C(Dz(u)) = c(q). By Lemma
3.4, there exists g1 in X" withrp,1(q1) = rp+1(q) (andsor;(q1) = ri(q) foralli e p — 1)and c¢(g1) < C(Dz(u))
such that Dz(u) ~ Dz(u) + g1 is satisfied in SA, . . Thus, it is easy to check that

Dz(u) » Dz(u) + g1~ Dz(u) + g1 + uf--uf g1 (by (9))

also is satisfied in SA, . Notice that u?---ufq1 ~ q is satisfied in SAp,1. Thus Dz(u) ~ Dz(u) + q is satisfied

inSA,,; and so u ~ u + q is also satisfied in SA, ;. This shows that HSP(B)) = SA). 1. O

Suppose that S ¢ Bi,. Then S ¢ ROBA,,; and E(S) ¢ Bi. This means that (S, -) is a semilattice of abelian
groups which belong to A1 and so by [22, Exercise IV.2.16 (v), p177], S € SA,, ;. It follows that Bi, < SA,, ;.
Thus, Bi, = SA,,; since SA,; < Bi, is clear.

Lemma 3.11. Let V ¢ [Bi,Sr(2,1)]. Then Vv HSP(B)) = V,,.

Proof. Let V ¢ [Bi, Sr(2, 1)]. Since it is easily seen that V v HSP(Bg) c V,,, we only need to show that V,, ¢
Vv HSP(Bg). Let u ~ u + g be an Al-identity which is satisfied in Vv HSP(BS), where u = uy +--+uUn, Uj, q €
X", i e n. In the following we show that this identity is derivable from the identities determining \7;.

Let Z = C(u)\c(q). Since Dz(u + q) # @, by Lemma 3.9, Dz(u) # @. Assume that Dz(u) = uq + - + Uy,
k < n.By Lemma 3.9, By = Dz(u) ~ Dz(u) + q and so U; c(u;) = ¢(q). By Lemma 3.4, there exists q; in
X" with rp11(q1) = rp+1(q) (and so r;(q1) = r;i(q) foralli e p— 1) and c(q) < c(q1) S Uje c(u;) such that
Dz(u) ~ Dz(u) + q1 is satisfied in ROBA,, ;. Therefore, u ~ u + g is also satisfied in ROBA,, . Proceeding as
in the proof of Lemma 3.6, we have that u ~ u+g”q14” is derivable from the identities determining V;. Notice
that V; E ¢’ q1q” ~ q. Thus u ~ u+q is derivable from the identities determining V;. Thus, \7; cVv HSP(Bg)
and so V,, = Vv HSP(B)). O

Lemma 3.12. The subvariety of ROBA, . determined by (17) satisfies the identity

xyP2P + xPz ~ xPyPz + x2P. (18)
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Proof. We only need to show that identity (18) is derivable from (17) and the identities determining
ROBA; . ;. On one hand, we have

xPyPzl + xP7'z
nXPYPZP 4+ xP Tz TN (xPYP 2Pz + (XP T 2)PAPYP 2P (XPT1Z)P (by (8), (9))
mXPYPZP 4 xP Tz 4 X yPz 4+ (P 2)PyP (X z)P (by (1), (5), (7))
mXPYPZP 4 xP Tz X yPz 4+ (P 2)PyP (X z)P

+(PT ) (P 2)PyP (P 2)P )P+ (T 2Py (P )P )P (P )

+(xX 1) (PyP 2P )P (X z) (by (9))
n XPyPZP 4 xP Tz 4 Py + (P Z)PyP (P z)P

+(P T2y (P2 4 (PP YP (P 2) + (P TR2)yP (P 2)  (by (1), (5), (7))
nXPyPZP 4 xP Pz 4 Xz

+(Pz+ (PP )P (P (P 2)P)
n XPyPZP 4 XP N yPz 4+ (P Z)P

+OF 7z (P TI)P )P (P z + (P 2)P). (by (17))

This derives the identity
xyP 2P+ xPz 5 x(XPYP 2P + XP 71 2) m x(XPYP 2P + Xz xXP TPz 4 (P 12)P). (19)
On the other hand, we also have

xXPlyPz 4 xP 2P

mxXPThyPz 4 xP 2P 4 xP ()P TyPZ)P 2P (by (8))
mxXPTlyPz 4 xP 2P+ xPyP 2P (by (1), (5))
XYz (PTIZ)P 4 xPyP 2P+ (P 2)PxPyP 2P (xP T Z)P (by (1), (5),(9))
P XYz (P 2)P 4 XPYP 2P 4 (P 2)PyP (T )P (by (1), (5), (7))
XYz (P IZ)P 4+ XTI (P Z)P)PYP (P z)P )Pz

+XPYP2P 4 (P 2)PyP (P )P (by (8))
mxXPTryPz 4 (P71 Z)P X ZPyP Pz 4+ XPyP 2P

+(XP 2Py ()P (by (1), (5)
m XPlyPz 4 ()P T12)P 4 XPTIZPyPXP z + xP T zyPxP 2P

+XPYP2P 4 (P 2)PyP (P )P (by (6))
M xXPTNYPz 4 (PP + XTIy Xz + (P )y ()P )P

+XPYP2P 4 (P 2)PyP (7 2)P (by (1), (5))
mxXPThyPz 4 (P IZ)P 4 X TIPYP Pz + ()P z)yP (P z)P

TP 2P yP (P ) £ xPYP 2P+ (P 2)PYP (P )P (by (6))

M xXPTNYPz 4+ (PTI2)P + XPTIZPYPXP 2+ (P )y ()P )P

+(XPI2)PYP (P z) + xPyP 2P+ (P 2)PyP (P z)P

+(xPTL2)yP (P 2)P (xPyP 2P )P (X 2)PyP (P 2) (by (9))
XYz (TP + XTIy Xz + (T )y ()P )P

+(XP2)PyP (P z) + (P 2)yP (kP z)

+xPyP2P + (P z)PyP (X1 z)P (by (1), (5),(7))
o XPTYYPz 4 (PT1Z)P 4+ XPTIZPyPXP z + XPyP 2P

+(P Tz 4+ (PP (P z 4 (xPT12)P)
o XPYPz e xXP Tz 4 PPy xP z 4 xPyP 2P

+OP Lz PP )P (P2 (P 2)P). (by (17))

This deduces the identity
XPYPz+x2” w x(XP Yz 4 XPYP2P) m x (P YP 2+ XPYP 2+ X 2+ (X I2)P). (20)

This shows that the subvariety of ROBA,; . ; determined by (17) satisfies identity (18). O
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Lemma3.13. Let V ¢ £(Sr(2,1)) such that Dv M c V. Then Vv HSP(B,) is the subvariety of [V, V,]
determined by the identity (18).

Proof. It is easily seen that Vv HSP(B,) < V. Since both V and B, satisfy (18), V v HSP(B, ) also satisfies
this identity. It remains to show that every Al-identity satisfied in V v HSP(B,) is derivable from (18) and the
identities determining V.

Let u ~ u + g be an Al-identity which is satisfied in Vv HSP(B,), where u = uy +---+un, uj, g€ X", ien.
Since D = u ~ u + g, there exists u; such that c(u;) ¢ c(q), wherei € n. Since B, = u ~ u + g, by Lemma 3.4
there exists g1 in X* with rp11(q1) = rp+1(g) (and so r;(g1) = ri(q) foralli e p — 1) and c(q) < c(g1) such
that u ~ u + q1 is satisfied in ROBA,, ;. Proceeding as in the proof of Lemma 3.6,

Vycuru+q’qiq".

Similarly,
V,cur~u+q’uqg.
Thus the following are derivable from identity (18) and the identities which hold in \7;:

u~u+q’qiq’ + g uig”

u+qqiq’ +qPuiq’

u+qqt(uig”)? + q°uig?  (since V, = ¢°q14” ~ qq (uig”)?)
~u+q(uig”)? + q° guig”  (by (18))

M u+q+qiqiuig”

24

bd

Hence, u ~ u + q is derivable from (18) and the identities determining \7;. O

Theorem 3.14. Let V ¢ [Bi, Sr(2, 1)]. Then the interval [V, V] of L(ROBA, . ) consists of the three varieties
V, Vv HSP(B,) and V v HSP(B}).

Proof. By Lemma 3.11, Vv HSP(BY) = V,, and so Vv HSP(B)) € [V, V} ]. Since B) ¢ Vv HSP(BY) and B ¢
Vv HSP(B,), VVHSP(B,) + Vv HSP(BS). Further, it is easy to see that V, Vv HSP(B,) and V v HSP(BS)
are different members of [V, V,]. Suppose that W € [V, V,,] and W % V. Then it follows from Lemma 3.1 that
Vv HSP(B,) ¢ W. If W is a proper subvariety of Vv HSP(B)), then, by Lemma 3.8 and 3.12, W satisfies
identity (18). It follows from Lemma 3.13 that Vv HSP(B,) = W. O

Theorem 3.15. LetV ¢ [Dv M, K nSr(2,1)]. Then the interval [V, V] consists of the two varieties V and Vv
HSP(B,).
Proof. Since KnSr(2,1) = (13), it follows immediately that K n Sr(2, 1), satisfies the identity

X+ xPyPxP + xPyP 2 yP P o xP + xPyP 2P yPxP. (21)

Notice that By # (21). Then, by Lemma 3.8, KnSr(2,1), = (17). From Lemma 3.12 we have that
KnSr(2,1), = (18). Suppose now that V ¢ [Dv M, KnSr(2,1)]. Then V, = (18). Thus, by Lemma 3.13,
Vv HSP(B,) = V,,. Thus, by Lemma 3.1, the result holds. O

Theorem 3.16. Each member of L(ROBA, ) is finitely based and finitely generated.

Proof. Since each member of £(Sr(2, 1)) is finitely based and finitely generated, it follows from Lemmas 3.6,
3.11, 3.13, Theorems 3.5, 3.7, 3.14 and 3.15 that this is the case for each member of E(ROBA}’J +1), too. O

Theorem 3.17. L(ROBA,,,) is a 179-element distributive lattice.

Proof. Notice that both [T, NnPnSr(2,1)] and [M,PnSr(2, 1)] have 4 elements, [D, Nn Sr(2,1)] has 9
elements, [D v M, KnSr(2, 1)] has 25 elements, and [Bi, Sr(2, 1)] has 36 elements (see [2, Section 4]). By
Theorems 3.5, 3.7, 3.14 and 3.15, we have that L(ROBA, ;) has 179 elements.
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Assume that Vq,V,, V3 ¢ E(ROBA;; +1) such that V4 vV, = V5 v V3 and V4 AV = V5 A V3. Then we
have that o (V1) v ¢(V2) = ¢(V1) v ¢(V3) and o(V1) A ¢(V2) = (V1) A (V3) and s0 ¢(V2) = ¢(Vs3)
since £(Sr(2, 1)) is distributive. Let V denote the variety »(V2). Then V, and V3 are members of [V, V,].
IfVe[T,NnPnSr(2,1)]u[D,NnSr(2,1)]. Then, by Theorem 3.5, V, = V3. If V ¢ [M,PnSr(2,1)] u
[DvM,KnSr(2,1)]. Then, by Theorem 3.7 and 3.15, we have that [V,V,] = {V,V v HSP(B,)}. Suppose
that Vo # V3. Then V; vV, = V; v V3 and V; A Vo = Vi A V3 can not hold at the same time, by Lemma
3.1. This implies that V, = V3. If V € [Bi, Sr(2, 1)]. Then, by Theorem 3.14, we have that [V, V,] = {V,V v
HSP(By),V v HSP(BS)}. Suppose that Vo # V3. Then V; vV, = V; v V3 and V; A V, = V3 A V3 can not
hold at the same time, by Lemma 3.1 and 3.8. Thus, V, = V3. This shows that E(ROBA;H) is a distributive
lattice. O
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