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1 Introduction
Semirings (see [9]) abound in the mathematical world around us. The set of natural numbers, the �rst
mathematical structure we encounter, is a semiring. The intensive study of semiring theory was initiated
during the late 1960’swhen their real and signi�cant applicationswere found.Nowdays, semiring theory is an
enormously broad topic andhas advanced on a very broad front. Semirings (S,+, ⋅) occurring in the literature
satisfy at least the following axioms: (S,+) and (S, ⋅) are semigroups, and themultiplication distributes over
addition fromboth sides. It is often assumed that (S,+) is idempotent and/or commutative. A semiring S is an
additively idempotent semiring, or shortly ai-semiring, if (S,+) is a semilattice (it is also called a semilattice-
ordered semigroup in [8, 10, 11]). It is well-known that the endomorphism semiring of a semilattice is an
ai-semiring. Also every ai-semiring can be embeded into the endomorphism semiring of some semilattice
(see [8, 12]). Important role in mathematics as well as broad applications (in theoretical computer science,
optimization theory, quantum physics and many other areas of science [9, 13–15]) make ai-semirings and,
especially, their varieties to be among the favourite subjects for the researchers in the algebraic theory of
semirings.

The variety of all ai-semirings is denoted by AI. Let X be a �xed countably in�nite set of variables and X+

the free semigroup on X. Then Pf (X+) is free inAI on X (see [8]). AnAI-identitymeans an identity u ≈ v, where
u = u1 +⋯+ uk , v = v1 +⋯+ v`, ui , vj ∈ X+, i ∈ k, j ∈ `, k = {1, 2, . . . , k}. Recall that an ai-semiring is called
a Burnside ai-semiring if its multiplicative reduct is a Burnside semigroup, i.e., it satis�es the identity xn ≈ xm

with m < n (see [16–18]). The variety of all Burnside ai-semirings (resp., Burnside semigroups) satisfying
the identities xn ≈ xm will be denoted by Sr(n,m) (resp., Sg(n,m)). There are many papers in the literature
considering Burnside semigroups and Burnside ai-semirings (see [1, 2, 4–8, 10, 16–20]). In particular, in 1979,
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McKenzie and Romanowska [19] studied the lattice of subvarieties of the subvariety Bi of Sr(2, 1) de�ned by
the additional identity xy ≈ yx. They showed that this lattice contains precisely 5 elements: the trivial variety
T, the varietyD of distributive lattices, the ai-semiring varietyM de�ned by the additional identity x+ y ≈ xy,
the varieties D ∨M and Bi (see Figure 1).

Fig. 1. The lattice of subvarieties of Bi
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In 2002, Zhao [7] studied the variety Sr(2, 1), which need not satisfy xy ≈ yx. They provided a model of the
free object in this variety by introducing the notion of closed subsemigroup of a semigroup. In 2005, Ghosh
et al. [1], Pastijn [2] and Pastijn and Zhao [3] studied the lattice of subvarieties of Sr(2, 1). They showed that
this lattice is a distributive lattice of order 78 and that every member of this lattice is �nitely based and is
generated by a �nite number of �nite ordered bands.

Along this research route, some authors studied the subvarieties of Sr(n, 1). In 2005, Kuřil and Polák
generalized the notion of closed subsemigroups introduced by Zhao [7] to that of n-closed subset of a
semigroup. They provided a construction of the free object in Sr(n, 1) by using n-closed subset of the free
object in Sg(n, 1). Moreover, Gajdoš and Kuřil [10] showed that Sr(n, 1) is locally �nite if and only if Sg(n, 1)
is locally �nite. In 2015, Ren and Zhao [21] introduced the notion of (n,m)-closed subsets of a semigroup
and gave a model of the free object in Sr(n,m) by using (n,m)-closed subset of the free object in Sg(n,m).
In 2016, Ren, Zhao and Shao [20] proved that the multiplicative semigroup of each member of Sr(n, 1) is
a regular orthocryptogroup. As an application, a model of the free object in such a variety is given. In the
same year, Ren and Zhao [4] studied the lattice of subvarieties of the subvariety of Sr(3, 1) de�ned by the
additional identity xy ≈ yx. They showed that it is a 9-element distributive lattice. As a continuation of [4],
Ren et al. [5] studied the lattice of subvarieties of the subvariety of Sr(n, 1) de�ned by the additional identity
xy ≈ yx. They showed that if n−1 is square-free, then this lattice is a 2+2r+1+3r-element distributive lattice,
where r denotes the number of prime divisors of n − 1. They also proved that this lattice is �nitely based and
�nitely generated. In 2017, Ren et al. [6] studied that the lattice of the subvarieties of Sr(3, 1). They showed
that this lattice is a 179-element distributive lattice. They also showed that every member of this lattice is
�nitely based and �nitely generated. This paper is another contribution to this line of investigation. We shall
characterize the lattice of subvarieties of the subvariety of Sr(p + 1, 1) de�ned by the additional identities
zxyz ≈ (zxzyz)pzyxz(zxzyz)p .

This paper is organized as follows. After this introductory section, in Sect. 2 we shall give some auxiliary
results and notations that are needed in the sequel. In Sect. 3 we shall study the subvariety of Sr(p + 1, 1)
de�nedby the additional identity zxyz ≈ (zxzyz)pzyxz(zxzyz)p . We shall show that its lattice of subvarieties
is a distributive lattice of order 179. Also, all members of this lattice are �nitely based and �nitely generated.
In particular, Sr(3, 1) is just the case of above variety when p = 2. Thus our main results generalize and
extend the main results in [1–4, 6, 19].

For notation and terminology not given in this paper, the reader is referred to [22–25].
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2 Preliminaries and some notations
Let Ap+1 denote the group variety de�ned by the identities

xp+1 ≈ x, (1)
xy ≈ yx. (2)

For any S ∈ Sr(3, 1), every subgroup of (S, ⋅) satis�es the identity x3 ≈ x. This shows that every subgroup of
(S, ⋅) is an abelian group in A3. That is to say, (S, ⋅) is a union of abelian groups which belong to A3.

For any semigroup S ∈ Sg(p + 1, 1), by [22, Proposition II.7.1 and Exercises V.5.8 (V)]), we have

Lemma 2.1. If S satis�es the identity zxyz ≈ (zxzyz)pzyxz(zxzyz)p, then S is a union of abelian groups which
belong to Ap+1.

We denote by ROBAp+1 the subvariety of Sg(p + 1, 1) de�ned by the additional identity zxyz ≈
(zxzyz)pzyxz(zxzyz)p. As usual, for a semigroup varietyV, we denote byV○ the semiring variety consisting
of all ai-semirings whose multiplicative reduct belongs to V. It is easy to see that ROBA○p+1 is just the variety
of all ai-semirings whose multiplicative reduct is a union of abelian groups which belong to Ap+1, i.e., the
ai-semiring variety de�ned by the additional identities

xp+1 ≈ x and zxyz ≈ (zxzyz)pzyxz(zxzyz)p .

In particular, Sr(3, 1) is equal to ROBA○3.
Let SAp+1 denote the semigroup variety de�ned by the identities (1) and (2), and S` denote the variety of

semilattices. By [22, Lemma IV.2.3, Theorem IV. 2.4 and Exercise IV.2.16 (xii(γ))], we have

Lemma 2.2. SAp+1 = S` ∨ Ap+1.

Let ω be an element of X+. The following notions and notation are needed for solving the word problem for
SAp+1 and ROBAp+1:

● i(ω) denotes the initial part of ω, i.e., the word obtained from ω by retaining only the �rst occurrence of
each variable.

● f(ω) denotes the �nal part of ω, i.e., the word obtained from ω by retaining only the last occurrence of
each variable.

● c(ω) denotes the content of ω, i.e., the set of all variables occurring in ω.
● m(x, ω) denotes themultiplicity of x in ω, i.e., the number of occurrence of x in ω.
● ri(ω) denotes the set {x ∈ c(ω) ∣ i ≡ m(x, ω) (mod p)}, where i ∈ {0, 1, . . . , p − 1}.
● rp+1(ω) denotes the set {xk ∣ x ∈ c(ω), x ∈ p − 1, k ≡ m(x, ω) (mod p)}.
● ω denotes the word obtaining from ω by deleting all occurrences of variables which belong to r0(ω).

It is easy to check that a semigroup identity u ≈ v is satis�ed byAp+1 if and only if ri(u) = ri(v) for all i ∈ p − 1.
Thus, for any semigroup identity u ≈ v,

SAp+1 ⊧ u ≈ v ⇔ c(u) = c(v), ri(u) = ri(v) (∀ i ∈ p − 1), (3)
ROBAp+1 ⊧ u ≈ v ⇔ i(u) = i(v), f(u) = f(v), ri(u) = ri(v) (∀ i ∈ p − 1), (4)

where ROBAp+1 = ReB ∨ Ap+1 (see [22, Theorem V.5.3]), and ReB the variety of regular bands. Now we have

Lemma 2.3. ROBA○p+1 satis�es the following identities

(xy)p ≈ xpyp , (5)
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xpyx ≈ xyxp , (6)
xyzx ≈ xyxpzx, (7)
xy + z ≈ xy + z + xzpy, (8)

x1 + x2 +⋯ + xp+1 ≈ x1 + x2 +⋯ + xp+1 + x1x2⋯xp+1. (9)

Proof. By (4), it follows immediately that (5), (6) and (7) hold in ROBA○p+1. Also,

x1 + x2 +⋯ + xp+1

≈ (x1 + x2 +⋯ + xp+1)p+1 (since ROBA○p+1 ⊧ (1))
≈ ∑i1 ,i2 ,...,ip+1∈p+1 xi1xi2⋯xip+1

≈ ∑i1 ,i2 ,...,ip+1∈p+1 xi1xi2⋯xip+1 + x1x2⋯xp+1 (since ROBA○p+1 ⊧ x + x ≈ x)
≈ (x1 + x2 +⋯ + xp+1)p+1 + x1x2⋯xp+1

≈ x1 + x2 +⋯ + xp+1 + x1x2⋯xp+1.

Thus, (9) holds inROBA○p+1. In the remainder we need only to prove that (8) holds inROBA○p+1. The following
is derivable from the identities determining ROBA○p+1 and identities (4), (5), (9):

xy + z ≈ xy + z + xyzp + zp−1xyz (by (9))
≈ xy + z + xp+1yzp + zp−1xyz(xy)pzp (by (5))
≈ xy + z + (xp + zp−1xyz(xy)p−1)xyzp

≈ xy + z + (xp + zpxpyp + xpzpxpyp)xyzp (by (4), (9))
≈ xy + z + xp+1yzp + zpxyzp + xpzpxyzp .

Thus, ROBA○p+1 satis�es the identity

xy + z ≈ xy + z + xpzpxyzp .

In a left-right dual way we can show that ROBA○p+1 satis�es the identity

xy + z ≈ xy + z + zpxyzpyp .

Furthermore, we have

xy + z
≈ xy + z + xpzpxyzp + zpxyzpyp + xyzp (by (9))
≈ xy + z + xpzpxyzp + zpxyzpyp + xyzp

+xpzpxyzp ⋅ (xyzp)p−1 ⋅ zpxyzpyp (by (9))
≈ xy + z + xpzpxyzp + zpxyzpyp + xyzp + xpzpxyzpyp (by (4))
≈ xy + z + xpzpxyzp + zpxyzpyp + xyzp + xpzpxzpyzpyp (by (7))
≈ xy + z + xpzpxyzp + zpxyzpyp + xyzp + (xz)pxzpy(zy)p (by (5))
≈ xy + z + xpzpxyzp + zpxyzpyp + xyzp + xzpy.

Thus, ROBA○p+1 satis�es identity (8).

Lemma 2.4. Let S be an ai-semiring in Sr(p + 1, 1). Then the following is true,

(∀a ∈ S) (∀i, j ∈ p, i ≠ j) ai + aj = a + a2 +⋯ + ap . (10)

Proof. Suppose that S is an ai-semiring in Sr(p+1, 1). Then for any a ∈ S, ap+1 = a.Without loss of generality,
suppose that i, j ∈ p and i < j. We have

ai + aj = ai(ap + aj−i)
= ai(ap + aj−i)p+1 (since S ⊧ xp+1 ≈ x)
= ai(aj−i + a2(j−i) +⋯ + ap(j−i))
= ai(a + a2 +⋯ + ap) (since p is a prime)
= a + a2 +⋯ + ap .

This completes the proof.
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Let u ≈ v be an AI-identity and Σ a set of identities which include the identities determining AI. Under the
presence of the identities determining AI, it is easy to verify that u ≈ v gives rise to the identities u ≈ u + vj,
v ≈ v + ui, i ∈ k, j ∈ `. Conversely, the latter k + ` identities give rise to u ≈ u + v ≈ v. Thus, to show that u ≈ v
is derivable from Σ, we only need to show that the simpler identities u ≈ u + vj, v ≈ v + ui, i ∈ k, j ∈ ` are
derivable fromΣ.

3 The latticeL(ROBA○

p+1)
In the current section, we shall characterize the lattice L(ROBA○p+1) of subvarieties of ROBA○p+1, and prove
that each member of this lattice is �nitely based and �nitely generated.

Let (Zp , ⋅) be the cyclic group of order p and Z0
p the 0-group obtained from Zp by adjoining an extra

element 0, where a ⋅ 0 = 0 ⋅ a = 0 for every a ∈ Zp ∪ {0}. De�ne an additive operation on Z0
p as follows:

a + b =
⎧⎪⎪⎨⎪⎪⎩

a, if a = b;
0, otherwise.

Then (Z0
p ,+, ⋅) forms an ai-semiring. It is easy to check that Z0

p is in ROBA○p+1, but not in Sr(2, 1). In fact, we
have

Lemma 3.1. Let S be an ai-semiring inROBA○p+1. Then S is amember ofSr(2, 1) if and only if it does not contain
a copy of Z0

p.

Proof. Thedirect part is obvious. Conversely, suppose that S is an ai-semiring inROBA○p+1, but not inSr(2, 1).
Then there exists a ∈ S such that a is not equal to ap. ThusbyLemma2.4,we can show that{a, a2, . . . , ap , a+
a2 +⋯ + ap} is a subsemiring of S and is a copy of Z0

p. This completes the proof.

LetMp denote SA○p+1 ∩ [xp + yp ≈ xpyp]. From [5, Lemma 4.12], HSP(Z0
p) =Mp. Also, by [5, Proposition 4.13],

the interval [M, Mp] consists of the two varietiesM andMp. Thus we have

Lemma 3.2. The interval [T, Mp] consists of the three varieties T, M andMp.

Proof. LetV ∈ [T, Mp] andV ≠ T. ThenM ⊆ V sinceM is minimal nontrivial subvariety ofMp. It follows that
V ∈ [M, Mp] and so V =M or V =Mp.

Let u = u1 + ⋯ + uk , where ui ∈ X+, i ∈ k. We put C(u) = ⋃i∈k c(ui). To solve the word problem of the ai-
semiring Z0

p we need the following Lemmas, which are the special cases of [5, Corollary 4.15 and Lemma 5.1]
when n = p + 1.

Lemma 3.3. Let u ≈ u + q be an AI-identity, where u = u1 + ⋯ + uk , ui , q ∈ X+, i ∈ k. Then Z0
p satis�es

u ≈ u + q if and only if c(q) ⊆ C(u) and rp+1(q) = rp+1(ui1⋯ui(p+1)`
) for some positive integer ` and some

ui1 , . . . , ui(p+1)`
∈ {ui ∣ i ∈ k}.

Lemma 3.4. Let u ≈ u + q be an AI-identity, where u = u1 +⋯ + uk , ui , q ∈ X+, i ∈ k. If Z0
p satis�es u ≈ u + q,

then there exists q1 in X+ with rp+1(q1) = rp+1(q) and c(q) ⊆ c(q1) ⊆ C(u) such that u ≈ u + q1 is satis�ed in
ROBA○p+1.

For a semiring variety V, we denote by L(V) the lattice of all subvarieties of V. In the following we shall
characterize the latticeL(ROBA○p+1). Suppose that S be amember ofROBA○p+1. It is shown in [20, Lemma 2.1]
that E(S) forms a member of Sr(2, 1). De�ne a mapping ϕ as follows

ϕ ∶ L(ROBA○p+1) → L(Sr(2, 1)), V↦ V ∩ Sr(2, 1).
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Then it is easy to see that ϕ is subjective. For any V ∈ L(ROBA○p+1), if S ∈ ϕ(V), then S ∈ V ∩ Sr(2, 1) and
so S ∈ {E(S)∣S ∈ V}. It follows that ϕ(V) ⊆ {E(S)∣S ∈ V}. On the other hand, if E(S) ∈ {E(S)∣S ∈ V}, then
S ∈ V. Since E(S) is a subsemiring of S, we have that E(S) ∈ V and so E(S) ∈ V ∩ Sr(2, 1). It follows that
{E(S)∣S ∈ V} ⊆ ϕ(V). Therefore, ϕ(V) = {E(S)∣S ∈ V}. We use t(x1, . . . , xn) to denote the AI-term t which
contains no other variables than x1, . . . , xn (but not necessarily all of them). IfW is the subvariety of Sr(2, 1)
determined by the additional identities

u(x1, . . . , xn) ≈ v(x1, . . . , xn),

then we denote by Ŵp the subvariety of ROBA○p+1 determined by the additional identities

u(xp1 , . . . , x
p
n) ≈ v(xp1 , . . . , x

p
n).

Then for any V ∈ [W, Ŵp],

W = ϕ(W) ⊆ ϕ(V) ⊆ ϕ(Ŵp) = Ŵp ∩ (Sr(2, 1)) =W,

it follows that V ∈ ϕ−1(W) and so [W, Ŵp] ⊆ ϕ−1(W). Conversely, if V ∈ ϕ−1(W), then V ∈ [W, Ŵp].
Otherwise, ϕ(V) ≠ W, a contradiction. Thus, for any W ∈ L(Sr(2, 1)), ϕ−1(W) is the interval [W, Ŵp] of
L(ROBA○p+1). Moreover, ifW1,W2 ∈ L(Sr(2, 1)) such thatW1 ⊆ W2, then it is easy to check that Ŵ1 ⊆ Ŵ2.
Suppose that (Vi)i∈I is a family of varieties in ROBA○p+1. Then ϕ(Vi) ⊆ Vi ⊆ ϕ̂(Vi) for all i ∈ I. Furthermore,

⋁
i∈I
ϕ(Vi) ⊆ ⋁

i∈I
Vi ⊆ ⋁

i∈I
ϕ̂(Vi) ⊆ ⋁̂

i∈I
ϕ(Vi).

This implies that ϕ(⋁i∈IVi) = ⋁i∈Iϕ(Vi) and so ϕ is a complete ∨-epimorphism. Moreover, it is clear
that ϕ is a complete ∧-epimorphism. It follows that ϕ is a complete epimorphism. Thus, L(ROBA○p+1) =
⋃W∈L(Sr(2,1))[W, Ŵp].

Notice thatM is the subvariety of Sr(2, 1) determined by the additional identities xy ≈ yx and x+ y ≈ xy.
Thus M̂p is the subvariety ofROBA○p+1 determined by the additional identities xpyp ≈ ypxp and xp+yp ≈ xpyp.
By [22, Lemma IV.2.3], ROBA○p+1 ∩ [xpyp ≈ ypxp] = SA○p+1 and so M̂p =Mp.

Recall (see [1]) that the latticeL(Sr(2, 1)) can be divided into �ve intervals: [T,N∩P∩Sr(2, 1)], [D,N∩
Sr(2, 1)], [M,P ∩ Sr(2, 1)], [D ∨M,K ∩ Sr(2, 1)] and [Bi, Sr(2, 1)], where N ∩ Sr(2, 1) is the subvariety of
Sr(2, 1) determined by the identity

x ≈ x + xyx, (11)

P ∩ Sr(2, 1) is the subvariety of Sr(2, 1) determined by the identity

xyx ≈ x + xyx, (12)

and K ∩ Sr(2, 1) is the subvariety of Sr(2, 1) determined by the identity

x + xyx + xyzyx ≈ x + xyzyx. (13)

Thus we have

Theorem 3.5. Let V ∈ [T,N ∩ P ∩ Sr(2, 1)] ∪ [D,N ∩ Sr(2, 1)]. Then V̂p = V.

Proof. From N ∩ Sr(2, 1) ⊧ (11), we have that ̂N ∩ Sr(2, 1)p satis�es the identity

xp ≈ xp + xpypxp . (14)

Notice that Z0
p /⊧ (14). Then Z0

p ∉ ̂N ∩ Sr(2, 1)p and so by Lemma 3.1, ̂N ∩ Sr(2, 1)p ⊆ Sr(2, 1). It follows
from V̂p ⊆ ̂N ∩ Sr(2, 1)p that V̂p ⊆ Sr(2, 1).

Assume thatV ∈ L(Sr(2, 1)) andV ⊧ u ≈ u+q, where u = u1+⋯+uk , ui , q ∈ X+, i ∈ k. FromROBA○p+1 ⊧ (5)
it follows that V̂p satis�es the identity

up1 +⋯ + upk ≈ up1 +⋯ + upk + qp . (15)
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Lemma 3.6. Let V ∈ [M,P ∩ Sr(2, 1)]. Then V ∨HSP(Z0
p) = V̂p .

Proof. Since P ∩ Sr(2, 1) ⊧ (12), it follows that ̂P ∩ Sr(2, 1)p satis�es the identity

xpypxp ≈ xp + xpypxp . (16)

We immediately have that this is the case for V̂p, too. Notice that HSP(Z0
p) = M̂p. Thus V ∨ HSP(Z0

p) ⊆ V̂p.
It remains to show that every identity which is satis�ed in V ∨ HSP(Z0

p) can be deduced from the identities
which hold in V̂p.

Let u ≈ u+ q be anAI-identity which is satis�ed inV∨HSP(Z0
p), where u = u1 +⋯+ uk , ui , q ∈ X+, i ∈ k.

Since Z0
p satis�es this identity, by Lemma 3.4 there exists q1 in X+ with rp+1(q1) = rp+1(q) (and so ri(q1) =

ri(q) for all i ∈ p − 1) and c(q) ⊆ c(q1) such that u ≈ u + q1 is satis�ed in ROBA○p+1 . Thus the following are
derivable from the identities which hold in V̂p:

u ≈ u + q1

≈ u + q1 + up1q1 +⋯ + upkq1 (by (9))
≈ u + q1 + (up1 +⋯ + upk)q1

≈ u + q1 + (up1 +⋯ + upk + qp)q1 (by (15))
≈ u + q1 + (up1 +⋯ + upk)q1 + qpq1.

This derives the identity
u ≈ u + qpq1.

In a left-right dual way we have
u ≈ u + q1qp .

Therefore the following are satis�ed in V̂p:

u ≈ u + qpq1 + q1qp

≈ u + qpq1 + q1qp + qpq1(q1qp)p (by (9))
≈ u + qpq1 + q1qp + qpq1qp (by (1), (5))
≈ u + qpq1qp .

Furthermore, we have the following are derivable from the identities which are satis�ed in V̂p:

u ≈ u + qpq1qp

≈ u + qqp1q
p (V̂p ⊧ qpq1qp ≈ qqp1q

p)
≈ u + q(qpqp1q

p + qp) (by (16))
≈ u + qqpqp1q

p + qqp

≈ u + qqpqp1q
p + q.

This shows that u ≈ u + q is satis�ed in V̂p and so V ∨HSP(Z0
p) = V̂p.

By Lemma 3.1 and 3.6, we can establish the following result.

Theorem 3.7. Let V ∈ [M,P ∩ Sr(2, 1)]. Then the interval [V, V̂p] of L(ROBA○p+1) consists of two varieties V
and V ∨HSP(Z0

p).

For an ai-semiring S we denote by S0 the ai-semiring obtained from S by adding an extra element 0, where
a + 0 = a, a0 = 0a = 0 for every a ∈ S. Written Bp as Z0

p, then we have

Lemma 3.8. Let S ∈ ROBA○p+1. Then S satis�es the identity

x + (x + xp)yp(x + xp) ≈ xp + (x + xp)yp(x + xp) (17)

if and only if it does not contain a copy of B0
p.
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Proof. Necessary. It is obvious.
Su�ciency. Suppose that S ∈ ROBA○p+1, but that S does not satisfy identity (17). Then there exist a, b ∈ S

such that
a + (a + ap)bp(a + ap) ≠ ap + (a + ap)bp(a + ap).

It is easily veri�ed that c, a + c, a2 + c, . . . , ap + c and a + ap + c are not equal to each other, where c =
(a + ap)bp(a + ap). Put S1 = {c, a + c, a2 + c, . . . , ap + c, a + ap + c}. By identities (1) and (10), it is routine
to verify that S1 forms a subsemiring of S, which is a copy of B0

p.

Let u = u1 + ⋯ + um , where ui ∈ X+, i ∈ m, and Z ⊆ ⋃i∈m c(ui). If c(ui) ∩ Z ≠ ∅ for every i, then we write
DZ(u) = ∅. Otherwise, DZ(u) is the sum of terms ui for which c(ui)∩ Z = ∅. The proof of the following result
is easy and omitted.

Lemma 3.9. Let S ∈ ROBA○p+1 and u ≈ v be an AI-identity, where u = u1 + ⋯ + um , v = v1 + ⋯ + vn, ui , vj ∈
X+, i ∈ m, j ∈ n. Then S0 satis�es u ≈ v if and only if for every Z ⊆ C(u)⋃ C(v), either DZ(u) = DZ(v) = ∅ or
DZ(u) ≠ ∅ ≠ DZ(v) and DZ(u) ≈ DZ(v) is satis�ed in S.

Lemma 3.10. HSP(B0
p) = SA○p+1.

Proof. It is obvious that HSP(B0
p) ⊆ SA○p+1. To prove that SA○p+1 ⊆ HSP(B0

p), we need only to show that every
identity satis�ed in HSP(B0

p) can be derived from the identities determining SA○p+1.
Let u ≈ u+q be any identity which is satis�ed inHSP(B0

p), where u = u1+⋯+un , ui , q ∈ X+, i ∈ n. Choose
Z = C(u)/c(q). Since DZ(u + q) ≠ ∅, by Lemma 3.9, DZ(u) ≠ ∅. Assume that DZ(u) = u1 +⋯ + uk, k ≤ n. By
using Lemma 3.9 again, Bp ⊧ DZ(u) ≈ DZ(u)+q. It follows from Lemma 3.3 that C(DZ(u)) = c(q). By Lemma
3.4, there exists q1 in X+with rp+1(q1) = rp+1(q) (and so ri(q1) = ri(q) for all i ∈ p − 1) and c(q1) ⊆ C(DZ(u))
such that DZ(u) ≈ DZ(u) + q1 is satis�ed in SA○p+1. Thus, it is easy to check that

DZ(u) ≈ DZ(u) + q1 ≈ DZ(u) + q1 + up1⋯u
p
kq1 (by (9))

also is satis�ed in SA○p+1. Notice that up1⋯u
p
kq1 ≈ q is satis�ed in SAp+1. Thus DZ(u) ≈ DZ(u) + q is satis�ed

in SA○p+1 and so u ≈ u + q is also satis�ed in SA○p+1. This shows that HSP(B0
p) = SA○p+1.

Suppose that S ∈ B̂ip. Then S ∈ ROBA○p+1 and E(S) ∈ Bi. This means that (S, ⋅) is a semilattice of abelian
groups which belong to Ap+1 and so by [22, Exercise IV.2.16 (v), p177], S ∈ SA○p+1. It follows that B̂ip ⊆ SA○p+1.
Thus, B̂ip = SA○p+1 since SA○p+1 ⊆ B̂ip is clear.

Lemma 3.11. Let V ∈ [Bi, Sr(2, 1)]. Then V ∨HSP(B0
p) = V̂p.

Proof. Let V ∈ [Bi, Sr(2, 1)]. Since it is easily seen that V ∨HSP(B0
p) ⊆ V̂p, we only need to show that V̂p ⊆

V∨HSP(B0
p). Let u ≈ u+ q be anAI-identity which is satis�ed inV∨HSP(B0

p), where u = u1 +⋯+un , ui , q ∈
X+, i ∈ n. In the following we show that this identity is derivable from the identities determining V̂p.

Let Z = C(u)/c(q). Since DZ(u + q) ≠ ∅, by Lemma 3.9, DZ(u) ≠ ∅. Assume that DZ(u) = u1 + ⋯ + uk,
k ≤ n. By Lemma 3.9, Bp ⊧ DZ(u) ≈ DZ(u) + q and so ⋃i∈k c(ui) = c(q). By Lemma 3.4, there exists q1 in
X+ with rp+1(q1) = rp+1(q) (and so ri(q1) = ri(q) for all i ∈ p − 1) and c(q) ⊆ c(q1) ⊆ ⋃i∈k c(ui) such that
DZ(u) ≈ DZ(u)+ q1 is satis�ed in ROBA○p+1. Therefore, u ≈ u+ q1 is also satis�ed in ROBA○p+1. Proceeding as
in the proof of Lemma 3.6, we have that u ≈ u+qpq1qp is derivable from the identities determining V̂p . Notice
that V̂p ⊧ qpq1qp ≈ q. Thus u ≈ u+q is derivable from the identities determining V̂p . Thus, V̂p ⊆ V∨HSP(B0

p)
and so V̂p = V ∨HSP(B0

p).

Lemma 3.12. The subvariety of ROBA○p+1 determined by (17) satis�es the identity

xypzp + xpz ≈ xpypz + xzp . (18)
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Proof. We only need to show that identity (18) is derivable from (17) and the identities determining
ROBA○p+1. On one hand, we have

xpypzp + xp−1z
≈ xpypzp + xp−1z + xp−1(xpypzp)pz + (xp−1z)pxpypzp(xp−1z)p (by (8), (9))
≈ xpypzp + xp−1z + xp−1ypz + (xp−1z)pyp(xp−1z)p (by (1), (5), (7))
≈ xpypzp + xp−1z + xp−1ypz + (xp−1z)pyp(xp−1z)p

+(xp−1z)((xp−1z)pyp(xp−1z)p)p + ((xp−1z)pyp(xp−1z)p)p(xp−1z)
+(xp−1z)(xpypzp)p−1(xp−1z) (by (9))

≈ xpypzp + xp−1z + xp−1ypz + (xp−1z)pyp(xp−1z)p

+(xp−1z)yp(xp−1z)p + (xp−1z)pyp(xp−1z) + (xp−1z)yp(xp−1z) (by (1), (5), (7))
≈ xpypzp + xp−1ypz + xp−1z
+(xp−1z + (xp−1z)p)yp(xp−1z + (xp−1z)p)

≈ xpypzp + xp−1ypz + (xp−1z)p

+(xp−1z + (xp−1z)p)yp(xp−1z + (xp−1z)p). (by (17))

This derives the identity

xypzp + xpz ≈ x(xpypzp + xp−1z) ≈ x(xpypzp + xp−1z + xp−1ypz + (xp−1z)p). (19)

On the other hand, we also have

xp−1ypz + xpzp

≈ xp−1ypz + xpzp + xp(xp−1ypz)pzp (by (8))
≈ xp−1ypz + xpzp + xpypzp (by (1), (5))
≈ xp−1ypz + (xp−1z)p + xpypzp + (xp−1z)pxpypzp(xp−1z)p (by (1), (5), (9))
≈ xp−1ypz + (xp−1z)p + xpypzp + (xp−1z)pyp(xp−1z)p (by (1), (5), (7))
≈ xp−1ypz + (xp−1z)p + xp−1((xp−1z)p)pyp((xp−1z)p)pz
+xpypzp + (xp−1z)pyp(xp−1z)p (by (8))

≈ xp−1ypz + (xp−1z)p + xp−1zpypxpz + xpypzp

+(xp−1z)pyp(xp−1z)p (by (1), (5)
≈ xp−1ypz + (xp−1z)p + xp−1zpypxpz + xp−1zypxpzp

+xpypzp + (xp−1z)pyp(xp−1z)p (by (6))
≈ xp−1ypz + (xp−1z)p + xp−1zpypxpz + (xp−1z)yp(xp−1z)p

+xpypzp + (xp−1z)pyp(xp−1z)p (by (1), (5))
≈ xp−1ypz + (xp−1z)p + xp−1zpypxpz + (xp−1z)yp(xp−1z)p

+(xp−1z)pyp(xp−1z) + xpypzp + (xp−1z)pyp(xp−1z)p (by (6))
≈ xp−1ypz + (xp−1z)p + xp−1zpypxpz + (xp−1z)yp(xp−1z)p

+(xp−1z)pyp(xp−1z) + xpypzp + (xp−1z)pyp(xp−1z)p

+(xp−1z)yp(xp−1z)p(xpypzp)p−1(xp−1z)pyp(xp−1z) (by (9))
≈ xp−1ypz + (xp−1z)p + xp−1zpypxpz + (xp−1z)yp(xp−1z)p

+(xp−1z)pyp(xp−1z) + (xp−1z)yp(xp−1z)
+xpypzp + (xp−1z)pyp(xp−1z)p (by (1), (5), (7))

≈ xp−1ypz + (xp−1z)p + xp−1zpypxpz + xpypzp

+(xp−1z + (xp−1z)p)yp(xp−1z + (xp−1z)p)
≈ xp−1ypz + xp−1z + xp−1zpypxpz + xpypzp

+(xp−1z + (xp−1z)p)yp(xp−1z + (xp−1z)p). (by (17))

This deduces the identity

xpypz + xzp ≈ x(xp−1ypz + xpypzp) ≈ x(xp−1ypz + xpypzp + xp−1z + (xp−1z)p). (20)

This shows that the subvariety of ROBA○p+1 determined by (17) satis�es identity (18).



922 | A.Wang, Y. Shao

Lemma 3.13. Let V ∈ L(Sr(2, 1)) such that D ∨ M ⊆ V. Then V ∨HSP(Bp) is the subvariety of [V, V̂p]
determined by the identity (18).

Proof. It is easily seen that V ∨HSP(Bp) ⊆ V̂p. Since both V and Bp satisfy (18), V ∨HSP(Bp) also satis�es
this identity. It remains to show that every AI-identity satis�ed inV ∨HSP(Bp) is derivable from (18) and the
identities determining V̂p.

Let u ≈ u+q be anAI-identity which is satis�ed inV∨HSP(Bp), where u = u1+⋯+un , ui , q ∈ X+, i ∈ n.
Since D2 ⊧ u ≈ u + q, there exists ui such that c(ui) ⊆ c(q), where i ∈ n. Since Bp ⊧ u ≈ u + q, by Lemma 3.4
there exists q1 in X+ with rp+1(q1) = rp+1(q) (and so ri(q1) = ri(q) for all i ∈ p − 1) and c(q) ⊆ c(q1) such
that u ≈ u + q1 is satis�ed in ROBA○p+1. Proceeding as in the proof of Lemma 3.6,

V̂p ⊧ u ≈ u + qpq1qp .

Similarly,
V̂p ⊧ u ≈ u + qpuiqp .

Thus the following are derivable from identity (18) and the identities which hold in V̂p:

u ≈ u + qpq1qp + qpuiqp

≈ u + qqp1q
p + qpuiqp

≈ u + qqp1(uiq
p)p + qpuiqp (since V̂p ⊧ qpq1qp ≈ qqp1(uiq

p)p)
≈ u + q(uiqp)p + qpqp1uiq

p (by (18))
≈ u + q + qpqp1uiq

p .

Hence, u ≈ u + q is derivable from (18) and the identities determining V̂p.

Theorem 3.14. Let V ∈ [Bi, Sr(2, 1)]. Then the interval [V, V̂p] of L(ROBA○p+1) consists of the three varieties
V, V ∨HSP(Bp) and V ∨HSP(B0

p).

Proof. By Lemma 3.11, V ∨HSP(B0
p) = V̂p and so V ∨HSP(B0

p) ∈ [V, V̂p]. Since B0
p ∈ V ∨HSP(B0

p) and B0
p ∉

V ∨HSP(Bp), V ∨HSP(Bp) ≠ V ∨HSP(B0
p). Further, it is easy to see that V,V ∨HSP(Bp) and V ∨HSP(B0

p)
are di�erent members of [V, V̂p]. Suppose thatW ∈ [V, V̂p] andW ≠ V. Then it follows from Lemma 3.1 that
V ∨HSP(Bp) ⊆ W. If W is a proper subvariety of V ∨HSP(B0

p), then, by Lemma 3.8 and 3.12, W satis�es
identity (18). It follows from Lemma 3.13 that V ∨HSP(Bp) =W.

Theorem 3.15. Let V ∈ [D ∨M,K ∩ Sr(2, 1)]. Then the interval [V, V̂p] consists of the two varieties V and V∨
HSP(Bp).

Proof. Since K ∩ Sr(2, 1) ⊧ (13), it follows immediately that ̂K ∩ Sr(2, 1)p satis�es the identity

xp + xpypxp + xpypzpypxp ≈ xp + xpypzpypxp . (21)

Notice that B0
p /⊧ (21). Then, by Lemma 3.8, ̂K ∩ Sr(2, 1)p ⊧ (17). From Lemma 3.12 we have that

̂K ∩ Sr(2, 1)p ⊧ (18). Suppose now that V ∈ [D ∨M,K ∩ Sr(2, 1)]. Then V̂p ⊧ (18). Thus, by Lemma 3.13,
V ∨HSP(Bp) = V̂p. Thus, by Lemma 3.1, the result holds.

Theorem 3.16. Each member of L(ROBA○p+1) is �nitely based and �nitely generated.

Proof. Since eachmember ofL(Sr(2, 1)) is �nitely based and �nitely generated, it follows fromLemmas 3.6,
3.11, 3.13, Theorems 3.5, 3.7, 3.14 and 3.15 that this is the case for each member of L(ROBA○p+1), too.

Theorem 3.17. L(ROBA○p+1) is a 179-element distributive lattice.

Proof. Notice that both [T,N ∩ P ∩ Sr(2, 1)] and [M,P ∩ Sr(2, 1)] have 4 elements, [D,N∩ Sr(2, 1)] has 9
elements, [D ∨M,K ∩ Sr(2, 1)] has 25 elements, and [Bi, Sr(2, 1)] has 36 elements (see [2, Section 4]). By
Theorems 3.5, 3.7, 3.14 and 3.15, we have that L(ROBA○p+1) has 179 elements.
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Assume that V1,V2,V3 ∈ L(ROBA○p+1) such that V1 ∨ V2 = V1 ∨ V3 and V1 ∧ V2 = V1 ∧ V3. Then we
have that ϕ(V1) ∨ ϕ(V2) = ϕ(V1) ∨ ϕ(V3) and ϕ(V1) ∧ ϕ(V2) = ϕ(V1) ∧ ϕ(V3) and so ϕ(V2) = ϕ(V3)
since L(Sr(2, 1)) is distributive. Let V denote the variety ϕ(V2). Then V2 and V3 are members of [V, V̂p].
If V ∈ [T,N ∩ P ∩ Sr(2, 1)] ∪ [D,N ∩ Sr(2, 1)]. Then, by Theorem 3.5, V2 = V3. If V ∈ [M,P ∩ Sr(2, 1)] ∪
[D ∨M,K ∩ Sr(2, 1)]. Then, by Theorem 3.7 and 3.15, we have that [V, V̂p] = {V,V ∨ HSP(Bp)}. Suppose
that V2 ≠ V3. Then V1 ∨ V2 = V1 ∨ V3 and V1 ∧ V2 = V1 ∧ V3 can not hold at the same time, by Lemma
3.1. This implies that V2 = V3. If V ∈ [Bi, Sr(2, 1)]. Then, by Theorem 3.14, we have that [V, V̂p] = {V,V ∨
HSP(Bp),V ∨ HSP(B0

p)}. Suppose that V2 ≠ V3. Then V1 ∨ V2 = V1 ∨ V3 and V1 ∧ V2 = V1 ∧ V3 can not
hold at the same time, by Lemma 3.1 and 3.8. Thus, V2 = V3. This shows that L(ROBA○p+1) is a distributive
lattice.
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