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Abstract: The limit point X’ of an approximating rank-R sequence of a tensor Z can be obtained by fitting
a decomposition (S, T,U) - G to Z. The decomposition of the limit point X = (S,T,U) - G with G =
blockdiag(Gi, ..., Gm) can be seen as a three order generalization of the real Jordan canonical form. The main
aim of this paper is to study under what conditions we can turn G; into canonical form if some of the upper
triangular entries of the last three slices of G; are zeros. In addition, we show how to turn G; into canonical
form under these conditions.
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1 Introduction

A tensor can be regarded as a higher-order generalization of a matrix, which takes the form
A= (ai,..i,) ai,,...i, €R 1<iy,..,im<n

Such a multi-array A is said to be an m'"-order n-dimensional square real tensor with n™ entries a;, .. ;, . In
this paper, we only consider the case m = 3 and real-valued three-way arrays.

Definition 1.1 ([1]). Let A be a m™-order n-dimensional tensor. The mode-k matrix (or k-th matrix unfolding)
m-1
A e R™"™" " is a matrix containing the element a;,;,...;,,.

When A is a 3"%-order n-dimensional tensor, its mode-k matrices are:
Aay = [AG 1,1)00AG 1) A 1, 2)00AG 1, 2)0 AG ) T
Apy = [A(1,41). AL, 5, n) A(2,5,1)... A2, 5, ). Ay s, ) ]
Aiy = [A(L, 1,9)...A(n, 1,0) A(1, 2, 1)...A(n, 2, 0).. A,y 2) ]

Definition 1.2 ([2]). The multilinear rank of an I x J x K array is defined as the triplet(mode-1 rank, mode-2 rank,
mode-3 rank). The mode-k rank of a tensor A is defined as the rank of mode-k matrix.

Obviously, a three order tensor has 3 mode-k ranks and the different mode-k ranks of tensor are not necessarily
the same [3]. In addition, the rank and the mode-k rank of a same tensor are not necessarily equal even though
all the mode-k ranks are equal.
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Let
Sg(I,],K) = {Y e R"®|rank(Y) < R} )

Fitting the CP decomposition [4] to Z boils down to solving the following minimization problem:
Minimize || Z-Y || subjectto € Sg(I,],K) @)

Hence, we are looking for a best rank-R approximation [5] to Z. In [6], A.Stegeman has shown that such
a best rank-R approximation may not exist due to the set Sg(I,], K) not being closed for R > 2. In this
case, we are trying to compute the approximation results in diverging rank-1 terms [7]. This phenomenon
can be seen as a three-way generalization of approximate diagonalization of a nondiagonalizable matrix. In
[6, 8], A.Stegeman has shown that, analogous to the matrix case, the limit point of the approximating rank-
R sequence satisfies a three-way generalization of the real Jordan canonical form. [6, 9] show that the limit
point X is a boundary point of Sg(I, J, K) and can be obtained by fitting a decomposition (S, T, U) - G to Z,
with G = blockdiag(Gu, ..., Gm) and core block G; of size d; x d; x d; and in sparse canonical form. The
decomposition of X has been introduced in [10-12], where the block terms are (S;, T, U;) - G;. Nondiverging
rank-1 terms have an associated core block with d; = 1, and core blocks with d; > 2 are the limit of a group of
d; diverging rank-1 terms.

For groups of two, or three, or four diverging rank-1 terms, [6, 8] have shown limit point X = Zj"il & and
its decomposition X = (S, T, U) - G = X%, (S;, T}, U;) - G; have the following results.

Lemma 1.3 ([13]). For a group of d; = 2 diverging rank-1 terms, the limit X; can be written as X; = (S;, T;, U;) -G;
with S;, T;, U; of rank 2, and 2 x 2 x 2 array G; given by

10

01
we have rank(G;) = 3. Here, we denote the 2 x 2 x 2 array G; with 2 x 2 slices G1 and G; as [G1|G2]. (3) is
referred to as the canonical form of a boundary array of S»(2, 2, 2).

01
00]' G

Lemma 1.4 ([6]). For a group of d; = 3 diverging rank-1 terms, and min(I, ], K) > 3, almost all limits X; with
multilinear rank(3, 3, 3) can be written as X; = (S;, Tj, U;) - G; with S;, T;, U; of rank 3, and 3 x 3 x 3 array G;
given by

100{0%x0(001

010{00%|{000], (4)

001{000|000

where * denotes a nonzero entry. We have rank(X;) = rank(G;) = 5.

Lemma 1.5 ([8]). For a group of d; = 4 diverging rank-1 terms, and min(1, J, K) > 4, almost all limits X; with
multilinear rank(4, 4, 4) can be written as X; = (S;, Tj, U;) - G; with S;, T, Uj of rank 4, and 4 x 4 x 4 array G;
given by
1000{0x00{00x0|0001
0100/00+x0|/000%|0000O0
0010/000x%{0000|0000]’
0001|0000|0000|00O0O0

)

where * denotes a nonzero entry. We have rank(X;) = rank(G;) > 7.
Remark 1.6. The proof of Lemma 1.5 in [8] has shown that G; has multilinear rank (4,4,4).

However, the proof of Lemma 1.5 in [8] does not take account of the cases that some of the upper triangular
entries of the last three slices of G; are zeros. To make up for this defect, we assume that some of the upper
triangular entries of the last three slices of G; are zeros and study whether we can turn G; into the canonical
form (5). Firstly, we consider the following two examples.
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Example 1.7. Let G; be a 4 x 4 x 4 array that satisfies the conditions of Lemma 1.5, and the (1,4) entries of the
last three slices are equal to zeros, i.e.,

1000|3120(13290 (33160
0100({0325{03411|03 6 17
0010{0033|003 6|00 3 9
0001(0003{000 3|00 0 3

Ggj=

By subtracting 3 times the first slice of G; from slice 2,3,4, then we obtain an all-zero diagonal in slice 2,3,4.
Similarly, by subtracting 2 times the second slice from the third slice and 3 times the second slice from the fourth
slice, G; is of the form

1000/0120/0050(00100

0100/0025/0001{00 0 2

0010/0003/0000({00 0 O

0001/0000/0000{00 0O O

gj=

Next, by subtracting 2 times the third slice from the fourth slice, we can turn the (1,3) and (2,4) entries of slice
four into zeros. By subtracting 5 times the third slice from the second slice, we can turn the (2, 4) entry of slice
two into zero. Then we obtain the following form

1000{01-230/0050(0000
0100(00 2 0|0001|000O0
0010(00 O 3|0000|000O
000100 0O O0|0OOO0O0O|O00OO

G =

In each slice of the above G;, we add 23 /2 times row 2 to row 1 and subtract 232 times column 1 from column
2. Then we obtain the following form

1000(0100|{00523/2|/0000
0100/{0020(000 1 |O00O0O
0010/0003{000 0 |00O0O
0001/0000{000 O |(0O0O0O

G =

It is apparent from this example that if some of the upper triangular entries of the last three slices of G; are
zeros, we can’t turn G; into canonical form (5).

Example 1.8. Let G; be a 4 x 4 x 4 array that satisfies the conditions of Lemma 1.5, and the (1,4) entries of the
second and the third slices are equal to zeros, i.e.,

[1000(3120(329 03316 5 |
0100/0325|03411|03 6 17
0010[0033[003 6|003 9
|0001/0003{0003 (000 3 |

Ggj=

Using the same method as Example 1.7, we can obtain

(1000/0100[00523/2[0005]
0100/0020[000 1 (0000
0010/0003[000 0 (0000
[0001/0000[000 0 (0000

Now, the fourth slice only has its (1,4) entry nonzero, we normalize it to one. Then by subtracting the 23 /2 times
the fourth slice from the third slice, the (1,4) entry of the third slice can be turned into zero. Then we obtain

1000/{0100|0050|0001
0100/0020(0001|0000
0010/0003(0000(|0000O0
0001/0000(0000|000O0

g =
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According to this example, we see that if some of the upper triangular entries of the last three slices of G; are
zeros, we can turn G; into canonical form (5).

A natural question is under what conditions we can turn G; into canonical form (5) if some of the upper
triangular entries of the last three slices of G; are zeros. The answer to this question is the main contribution
of this paper.

Remark 1.9. Itis worth noting that if some of the upper triangular entries of the last three slices of G; are zeros,
the entry x of canonical form (5) may be zero. Therefore, in this paper, we mainly consider the following canonical

form )
1000{0e00|{00h0|0001

0100/00f0[000i|l0000
0010/0002|0000/0000
0001/0000/0000/0000

, (6)

where e, f, 2, h, 1 may be zero, and there must be at least one nonzero entry in every slice.

Now, we prove why we require that there must be at least one nonzero entry in every slice. According to the
the definition of the mode-k matrix of a tensor, (5) is actually the mode-1 matrix of G;. Because the first slice of
G; is an identity matrix, it follows that the mode-1 rank of G; is always 4, no matter what values e, f, g, h, 1 take.

The mode-2 matrix of G; is

1000{0000{0000(0000O0
0e00(1000{0000(0000O0
00h0|0Of00[1000[0000
0001|00i0|0g00[{1000

Since each row of this matrix has a nonzero entry 1, it follows that mode-2 rank of G; is always 4, no matter what
values e, f, g, h, i take.
The mode-3 matrix of G; is

1000/0100/0010[/0001
0000/e000|0f00/00g0
0000/0000/h000|07i00
0000/0000/0000|1000

For this matrix, if there exists a row that its elements are all zeros, then the mode-3 rank of G; does not equal to
4. This contradicts the fact that the mode-3 rank of G; is 4. Consequently, e, f, g can’t be zero at the same time,
and h, i can’t be zero at the same time. This implies that there must be at least one nonzero entry in every slice.

ai1 A1z Ai13 Aig

dz1 Qzz Az3 Azq4

Definition 1.10. Fora matrix A = , we call the main diagonal elements of matrix A as the 1st

asi asz Aass dsy
as1 g2 As3 Asy
diagonal elements , and a1,, a»3, as, as the 2nd diagonal elements, and a3, a4 as the 3rd diagonal elements,

and a4 as the 4th diagonal element. The kth diagonal element of A is called zero if the elements of the kth
diagonal are all zeros. The kth diagonal elements of A is called nonzero if the kth diagonal of A has a nonzero
element.

The remaining of this paper is organized as follows. In section 2, we study some properties related to G;. In
section 3, we discuss under what conditions can we turn the 2nd diagonal elements of any two slices of the
last three slices of G; into zeros. In section 4, based on the results of the third section, we analyze under what
conditions can we turn the 3rd and 4th diagonal elements of the last three slices of G; into zeros. Finally, some
concluding remarks are given in section 5.
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2 Some properties related to G;

Before we discuss what conditions we need to turn G; into canonical form (6), we first give some properties
related to G;.

Property 2.1. If G; satisfies the conditions of Lemma 1.5, then it can be turned into

1000 a ep hz jz as es h3 j3 asg ey h4 j4
0100|0 by fz i |0 b3 f3 i3 0 by f4 iy
001000C2g2 OOC3g3 00C4g4
0001|{0 0 0d,|0 O 0d3|0 O O dy

, @)

and we can obtain the following three conclusions: (1) ap = by = cp = dp (p = 2, 3, 4) hold for almost all G;;
(2) The equations
esfa =f3e2,f382 = 83f>

esfs = fuea, fug2 = guf> 8
eufs = fues, fugs = guf3
hold for almost all G;; (3) The equations

e3iy —eziz + h3gr —g3h, =0
esiy —exig + hygr —84hy =0 9)
e4is —e3is + hags —g4h3 =0

holds for almost all G;.

Proof. The proof of Lemma 3.3 in [8] has shown that G; can be turned into (7) if it satisfies the conditions of
Lemma 3.3.

The first conclusion has been proved in Lemma 3.3 of [8].

Now we show the proof of the second conclusion. Similarly to the proof of the vectors, (ep, fp, gp) are
proportional for p = 2, 3, 4 in Lemma 3.3 of the [8]. We write A" in terms of p = 3 and compute Yé") =
AM¢ g") (A(") )~!, which yields matrix (A.10). The entries in this matrix equal those of Yg") in (A.2). It follows
that esfs = f3e2, f382 = g3f2. When we write A™ in terms of p = 4 and compute Y§") =AM CE") (AM)~1 this
yields a matrix similar with (A.10). The entries in this matrix equal those of Y§") in (A.2). It follows that e4f; =
fae2,f482 = guf>. Analogously, when writing A" in terms of p = 3 and compute Yi") = A(”)an)(A("))‘l,
we obtain that €4f3 = f4€3,f4g3 = g4f3.

Now we prove the third conclusion. Similarly to the proof of the vectors (h; — ahy, i3 — aiy) and (hy —
Bha, iy — Biy) are proportional for « = e3 /ey, 8 = e4/e; in Lemma 3.3 of the [8], we write A" in terms ofp=3
and compute YE") =AM an) (A™)~1, which yields matrix (A.10). The entries in this matrix equal those of
Y§") in (A.2). It follows that esi> — ezi3 + h3g> — g3ha = 0. We write A™M in terms of p = 4 and compute
Yg") =AMW¢ g") (A™)~1, which yields a matrix similar with (A.10). The entries in this matrix equal those of
Y;") in (A.2). It follows that e4i, — exis + hsg2 — g4h; = 0. Analogously, when writing A™ in terms of p=3
and compute Yf,") = A(")Cg")(A("))’l, we obtain that e4is — e3is + hsg3 — g4h3 = 0. O

Remark 2.2. According to the first conclusion of Property 2.1, if G; satisfies the conditions of Lemma 1.5, by
subtracting ap times the first slice of G; fromsslice p (p = 2, 3, 4), then it can be further turned into

1000|0ey hy jo|0Oes hs js|0eq hy jgu
0100(00 f5 02|00 f35i3|00 f4 ig4
0010/00 0500 0g3/00 O g4
000100 0 O|OO0OO0OO|OO0O0OO

Remark 2.3. According to the second conclusion of the Property 2.1, if f2f3f4 + O, the vectors (ep, fp, 8p) (p =
2,3, 4) are proportionate. If f> = f5 = f4 = 0, the vectors (ep, fp, 8p) (p = 2, 3, 4) are disproportionate.
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By the first conclusion of Property 2.1, we have turned the first diagonal elements of the last three slices of G;
into zeros. In the next section, we mainly consider turning the 2nd diagonal elements of any two slices of the
last three slices of G; into zeros. Noting thatif f>f3f4 + 0, the vectors (ep, fp, 8p) (p = 2, 3, 4) are proportionate.
This implies that we can directly turn the 2nd diagonal elements of any two slices of the last three slices of G;
into zeros if f,f5f4 + 0. However, in this paper we assume some of the upper triangular entries of the last three
slices of G; are zeros. This means the vectors (ep, fy, 8p) (p = 2, 3, 4) may not be proportionate. Consequently,
we first discuss all the combinations of ey, fp, gp (p = 2, 3, 4) when some of them are equal to zeros. On the
other hand, noting that ey, fp, 8p (p = 2, 3, 4) satisfies equations (8), it is easy to get the following conclusion.

Property 2.4. There are 91 combinations of ep, fp, 8p (p = 2, 3, 4) when some of them are equal to zeros and
satisfy the equations (8).

Proof. We traverse ep, fp, 8p (p = 2, 3, 4) based on the number of nonzero entries, and remove some of the
combinations that do not meet the conditions (8).

If one of ep, fp, gp (0 = 2, 3, 4) is not equal to zero, and the remaining eight of them are equal to zeros,
this yields 9 combinations. For convenience, we only write nonzero entry in each combination, i.e., e, es,
s, f2, f3, fu, 82, 83, 84. For example, e, represents e; £ 0,e3=es=fr=f3=fs=82=83=84=0.

If two of ep, fp,8p (p = 2,3, 4) are not equal to zeros, and the remaining seven of them are equal to
zeros, this yields CS combinations. However, some combinations do not satisfy conditions (8). For example,
combination e; # 0,f5 # 0,e3 = e4 = f> = fs = g2 = g3 = g4 = 0 contradicts the condition f5e, = esf> of (8).
Thus, we remove this combination. Similarly, we remove other combinations that do not meet conditions (8).
Finally, by traversing we obtain the following 24 combinations that satisfy conditions (8): e»es, ezes, ese,
f2f3, fofu, f3fu, 8283, 8284, 8384, €2f2, €282, 282, €3f3, €383, f383, €ufu, €484, fugu, €283, €284, €382, €384,
€482, €483.

Analogously, if three of ep, fp, g8p (b = 2,3, 4) are not equal to zeros, and the remaining six of them
are equal to zeros, there are 24 combinations that satisfy conditions (8), i.e., exeses, f>f3f4, 828384, €282,
e3f383, eufugu, €28283, €28284, €28384, €38283, €38284, €38384, €48283, €48284, €48384, €2€382, €2€383,
€2€384, €2€482, €2€483, €2€484, €3€482, €3€483,63€484.

If four of ep, fp, gp (P = 2, 3, 4) are not equal to zeros, and the remaining five of them are equal to zeros,
there are 21 combinations that satisfy conditions (8), i.e., e2esf2f3, ezesfofs, esesfsfu, €2e38283, 248284,
e3e48384, 2138283, 218284, [3f48384, €2038284, €2€38384, €2€48283, €2€48384, €3€48283, €3€48284,
€2828384, €3828384, €4828384, €2€3€482, €2€3€483, €2€3€484.

If five of ey, fp, 8p (p = 2, 3, 4) are not equal to zeros, and the remaining four of them are equal to zeros,
there are 6 combinations that satisfy conditions (8), i.e., €2€3228384, €2€4828384, €3€4828384, €2€3€48283,
€2€3€48284, €2€3€48384.

If six of ep, fp,gp (p = 2,3, 4) are not equal to zeros, and the remaining three of them are equal to
zeros, there are 6 combinations that satisfy conditions (8), i.e., e;esesf>f3fu, €2e3e4828384, fof3f1828384,
exf282e3f383, exf282e4f484, e3f383e4fugs.

If seven (or eight) of ep, fp, gp (p = 2, 3, 4) are not equal to zeros, the remaining two (or one) of them are
equal to zeros (or zero), there is no combination that satisfies conditions (8).

The last one combination is that ep, fp, g8p (p = 2, 3, 4) are all nonzero, i.e., e;esesf>f3f4828384- O

In the next section, we will study in which combinations of the 91 combinations in Property 2.4 we turn the
2nd diagonal elements of any two slices of the last three slices into zeros.

Remark 2.5. Noting that if ep, fp, 8p (v = 2, 3, 4) are all zeros, this combination also satisfies the conditions
(8). However, another question arises: Under this combination, we can turn G; into canonical form? Our answer
is negative. In fact, if ep, fp, 8p (p = 2, 3, 4) are all zeros, then the 2nd diagonal elements of the last three slices
of Gj are all zeros. This means in the process of transforming G; into canonical form, the 2nd diagonal elements of
the last three slices of G; are always zeros. However, in canonical form (6), there exist a slice whose 2nd diagonal
elements are nonzero. Therefore, if ep, fp, gp (p = 2, 3, 4) are all zeros, we can’t turn G; into canonical form.
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3 Make the 2nd diagonal of any two slices of the last three slices
of G; zero

In this section we analyze under what conditions we can turn the 2nd diagonal elements of any two slices of
the last three slices of G; into zeros.

It is worth noting that if 2nd diagonal elements of any two slices of the last three slices of G; can be turned
into zeros, then we can continue to analyze the 3rd and 4th diagonal elements. If the 2nd diagonal elements of
any two slices of the last three slices of G; cannot be turned into zeros, it is meaningless to continue to analyze
the 3rd and 4th diagonal elements. Therefore, in this section, we only consider the 2nd diagonal elements of
the last three slices of G;.

Another thing we should pay attention to is why we discuss the conditions that turn the 2nd diagonal
elements of any two slices of the last three slices of G; into zeros, instead of the conditions that turn the
2nd diagonal elements of the 3rd and the 4th slices into zeros. In fact, if the 2nd diagonal elements of the
second slice and the fourth slice (or the second slice and the third slice) are equal to zeros, we can exchange
the second slice and the third slice ( or the second slice and the fourth slice). The specific operation will be
discussed in detail in the next section and so is omitted here.

Now, based on the Property 2.4, we discuss under what conditions we can turn 2nd diagonal elements
of any two slices of the last slices of G; into zeros. For convenience of the following discussion, we divide the
91 combinations of Property 2.4 into three categories. We regard each category as a set. Each element of the
set represents a combination, which can be represented by the nonzero entries of ep, fy, gp (p = 2, 3, 4). For
example, the element e, of set T; represents e; + 0,e3 = e4 = f> = f3 = f4 = g2 = 83 = g4 = 0. The element
e.g3 of set T, represents e, # 0,83+ 0,es=e,=fr=f3=f4,=82=84=0.

T1={e2, e3, €4, 82,83, 84, €263, €2€4, €3€4, 8283, 8284, 8384, €2/2, €282, /282, e3f3, €383, f383, eufu,
engy, fugs, e2eses, §28384, €2f282, €3f383, eufugu, e2e3faf3, ereufofu, eseufsfu, 238283,
f2f1828u4, f3f4838u4, €2e3eufaf3fu, /34828384, €2f282€3f383, exf282€4fu8u,
esf3gseufugu, ereseufof3fu828384}

T = {€283, €284, €382, €384, €482, €483, €28283, €28284, 28384, €38283, €38284, €38384, €48283,
€48284,€48384, €2€382, €2€383, €2€384, €2€482, €2€483, €2€484, €3€482, €3€483, €3€484,
€2e38284, €2€38384, €2€48283, €2€48384, €3€48283, €3€48284, €2828384, €3828384,
€4828384,€2€3€482,€2€3€483,€2€3€484, €2€3828384, €2€4828384, €3€4828384,
e2e3e48283, €2€3€48284, €2€3€48384 }

T3 = {f2, 3, fu, fof3, fofu, f3fa, fofsfa, €2€38283, €2048284, €3€48384, €2€3€4828384 )

Now we show that under each combination of T; we can turn 2nd diagonal elements of any two slices of the
last three slices of G; into zeros. For each combination in T1, nonzero entries in ey, fy, gp (p = 2,3, 4) are
either in the same slice or in the same position of different slices.

In fact, if nonzero entries are in the same slice, there are just two slices of the last three slices of G; whose
2nd diagonal elements are zeros. For example, the element esf3g3 of T; represents e3 + 0, f3 # 0,83 0, e, =
e, =f2 = f4 = g2 = g4 = 0. From Remark 2.2, G; is of the form

1000 Othjz 063h3j3 00h4j4
0100[{00 0|00 f3i3][00 0 iy4
0010000 0|00 0g3/000O0
0001|000 0|00 O0O0O|O00O0O

From the above Gj, we can see that 2nd diagonal elements of the second and fourth slices are zeros.
If nonzero entries lie in the same position of different slices, it will yield two possibilities. The first case is
that there exist two slices whose 2nd diagonal elements are nonzero. For these two slices, by subtracting one
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slice from the other slice we can turn the 2nd diagonal elements of one of them into zeros. After this, we can
obtain two slices of the last three slices of G; whose 2nd diagonal elements are equal to zeros. For example,
the element esesfsf, in T; represents es # 0,e4 + 0,f3 # 0, f, # 0,e2 = f> = g2 = g3 = g4 = 0. From Remark
2.2, Gj is of the form
1000 Othjz 063 h3j3 064 h4j4
0100[000 |00 f5i3/00 fu4 is
0010/000 0|00 O0O0O0|OO0O0O
0001|000 0|00 O0OO0O|OO0O0O

For this G;, through subtracting e4/es times the third slice from the fourth slice (or es/e; times the fourth
slice from the third slice), we can turn e, and f; (or e3 and f3 ) into zeros because e4f3 = f,e3 holds for almost
all G; in (8). Then we get the second and fourth slices (or the second and third slices ) whose 2nd diagonal
elements are zeros. The second case is that there exist three slices whose 2nd diagonal elements are nonzero.
For these three slices, through subtracting one slice from another two slices, then we can turn the 2nd diagonal
elements of two of them into zeros. For example, the element e;esesf>f3f4 in T1 represents e; # 0, es # 0,
e, #0,f2#0,f3#0,fs+0, g2 =g3 = g4 =0. From Remark 2.2, G; is of the form

1000 Oezhzjz O€3h3j3 0€4h4j4
010000 f5i2/00 f5i3/0 0 f4 i
0010/00 OOIOO0O OO|IO0OO0 OO
000100 OOIOO0O 0OO|IO0OO0 OO

For this G;, through subtracting es/e, times the second slice from the third slice and e, /e, times the second
slice from the fourth slice (or e, /e times the third slice from the second slice and e, /e times the third slice
from the fourth slice or e; /e, times the fourth slice from the second slice and e3 /e, times the fourth slice from
the third slice), we can turn es, f3, ey, f4 (01 ez, f>, e, f4 Or €2, f>, e3, f3 ) into zeros because esf> = f3ez,
esf> = fues, esfs = fyes holds for almost all G; in (8). Then we get the third and fourth (or the second and
fourth or the second and third) slices whose 2nd diagonal elements are zeros.

Now we show that under each combination of T,, we can’t turn 2nd diagonal elements of any two slices
of the last three slices of G; into zeros. For each combination in T,, we find that nonzero entries in ey, f», gp
(p = 2, 3, 4) are in different position of different slices, which results in at least two slices whose 2nd diagonal
elements can’t be turned into zeros. For example, the element e, g3 in T, represents e; # 0, g3 # 0, €3 = e4 =
f2 =13 =f4 = g2 = g4 = 0. From Remark 2.2, G; is of the form

1000 0€2h2j2 00h3j3 00h4j4
0100|/00 01i(]000 i3[{00 0 i4
0010/{00 000|000 g3|000O0
0001|000 000|000 O|O00O0OO0O

For this G;, if we can turn e; into zero, then we get the second and fourth slices whose 2nd diagonal elements
are all zeros; if we can turn g5 into zero, then we get the third and fourth slices whose 2nd diagonal elements
are all zeros. On the other hand, e, can be turned into zero only by the (1,2) entry of the third slice or the (1,2)
entry of the fourth slice; g3 can be turned into zero only by the (3,4) entry of the second slice or the (3,4) entry
of the fourth slice. However, (1,2) entries of the third and fourth slices are all zeros; (3,4) entries of the second
and fourth slices are all zeros; so e, and g5 can’t be turned into zeros. This implies that if nonzero entries are
in different position of different slices, we can’t turn any two slices of the last three slices whose 2nd diagonal
elements into zeros. Therefore, it makes no sense to continue to analyze the 3rd and 4th diagonal elements.
Consequently, in the next section, we no longer consider all the combinations in T5.

For each combination of T3, we have not found the relationship between ey, fp, gp and hp, ip, j, for p =
2, 3, 4. Consequently, in the next section analysis we no longer consider all the combinations in T5.
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4 Make the 3rd and 4th diagonal of the last three slices of G; zero

In this section we analyze under what conditions we can turn the 3rd and the 4th diagonal elements of the
last three slices of G; into zeros.

Our main idea is as follows. For each combination in T;, combining with expression (9), we can obtain
the relationship between ep, gp and hp,i, (p = 2, 3, 4). Through the relationship between them, we give
conditions that can turn the 3rd and 4th diagonal elements of the last three slices of G; into zeros. Under
these conditions, we can turn g; into canonical form (6).

Theorem 4.1. If one of ep, fp, 8p (p = 2,3, 4) is not equal to zero, the remaining eight of them are equal to
zeros, there are 6 combinations in Ty, i.e., ep, 8p (b = 2, 3, 4). If ex + O, the other of ep, fp, 8p (b = 2,3, 4) are
equal to zeros, under conditions ix = iy = i, = 0, hyj; # jyhz, orif gx # O, the other of ep, fp, 8p (0 = 2,3, 4) are
equal to zeros, under conditions hy = hy = h; = 0, jyi, + iyj,, where x,y,z € {2,3,4} and x + y + z, we can turn
G; into canonical form (6).

Proof. Here, we only consider the combination that e, # 0, the remaining eight of ep, f,, gp (v = 2, 3, 4) are
equal to zeros. The combinations that es + 0 (ores + 0 or g2 + 0 or g3 + 0 or g4 + 0), the remaining eight
of ey, fp, 8p (b = 2, 3, 4) are equal to zeros can be proved in a similar way as the combination that e, # 0, the
remaining eight of ey, f,, gp (p = 2, 3, 4) are equal to zeros.

Ife; #0,e3=e4=fr=f3=fis=g>=83 =84 =0, according to (9), we have i3 = i5 = O, then G; is of the

form
1000 Oezhzjz 00h3j3 00h4j4

0100{00 0i,|0000|00O0 O
001000 00|0OOO0OO|OO0O0O
0001/00 00|0OOOO|OO0OO0O

Because the mode-3 rank of G; is 4, then hsj, # j3h4. Next, we show why the mode-3 rank of G; is not equal to
4 if h3j, = jshy. Suppose hs = 0, then jsh, = 0. This yields three possibilities. The first case is j; = 0, h4 # O,
then all the entries of the third slice are equal to zeros. The second case is j3 # 0, hs = 0, if j;, = O, then all
the entries of the fourth slice are equal to zeros; if j, + 0, by subtracting j/j; times the third slice from the
fourth slice (or j3/j4 times the fourth slice from the third slice), we can turn j, (or j3) into zero, then all the
entries of the fourth (or third) slice are equal to zeros. The third case is j3 = 0, hs = 0, then all the entries
of the third slice are equal to zeros. The situations where we suppose that j, = 0 or j3 = 0 or h4; = O can be
dealt with analogously. Suppose hs, js, j3, h4 are nonzero, by subtracting h4/hs3 times the third slice from the
fourth slice (or h3/h,4 times the fourth slice from the third slice), we can turn h4 and j4 (or h3 and js3) into
zeros. Then all the entries of the third slice (or the fourth slice) are equal to zeros. From the above discussion
we can see that, if h3j, = jshs, there always exists a slice whose entries are all equal to zeros. This implies
that the mode-3 rank of G; is 3. Thus we draw the conclusion that h3j, # j3hs.

Now we prove that i, must be equal to zero, because i, can be turned into zero only through (2,3) or (3,4)
entry of the second slice or through (2,4) entry of the third or (2,4) entry of the fourth slice. However, (2,3) and
(3,4) entries of the second slice, (2,4) entry of the third and fourth slices are all equal to zeros. This means in
the process of transforming G; into canonical form, i, can’t be turned into zero. Therefore, we must have i,
equal to zero.

Now we prove how we turn G; into canonical formife, # 0,e3 =es=fo =f3 =f4 =82 =83 =84 = 0,
under conditions that i, = i3 = i4 = 0 and hsj,; # j3hy4. In fact, under these conditions, G; have the following

form
1000 0€2h2j2 00h3j3 00h4j4

010000 O00O0|0OOOO|OO0O0OO
001000 00|000O0(00O0 O
000100 00|0OO0OO0OO|OO0O0O



906 —— L.-B.Cui, M.-H. Li DE GRUYTER

Firstly, we discuss how to standardize the last two slices. Because hsj, + j3hs, suppose hs = 0, then jsh, + 0.
If j, = 0, then the third slice only has its (1, 4) entry j3 nonzero, the fourth slice only has its (2, 3) entry hy
nonzero. We normalize them to one. By exchanging the third slice and the fourth slice, then we obtain the
following form

1000|0e; hj2|0010(0001

0100/00 00(0000(00O0O0

0010/00 00(0000(00O0O

000100 0 0({0000O(O0O0O0O

(10)

If j, + 0, by subtracting j4/j3 times the third slice from the fourth slice, we can turn j, into zero. After this,
the third slice only has j; is nonzero, the fourth slice only has h, is nonzero. Similarly, we normalize them to
one. By exchanging the third slice and the fourth slice, then we obtain (10). The situations where we suppose
that j, = O or j3 = 0 or h4 = O can be dealt with analogously.

Next, we discuss how to standardize the second slice. If h, = j, = 0, then we have transformed g; into
canonical form. If h,, j, are nonzero, we can turn them into zeros. The specific method is: h, can be turned
into zero by subtracting h, times the third slice from the second slice, j, can be turned into zero by subtracting
j» times the fourth slice from the second slice.

Consequently, if ex + 0, the remaining eight of ep, f, gp (p = 2, 3, 4) are equal to zeros, under conditions
ix =1y = i; = 0 and hyj; # jyh,, wherex =2,y =3,z=4o0rx = 2,y = 4,z = 3, we can turn §; into canonical
form. O

Remark 4.2. In fact, theorem 4.1 contains the following six cases.

Letx=2,y=3,z=40rx=2,y=4,z=3.

Casel:Ife; +0,e3=e4=f>=f3=f4 = g2 = g3 = g4 = 0, under conditions i, = i3 = i; = 0 and hsj, # j3ha,
we can turn G; into canonical form.

Case2:Ifg, + 0,e; = e3 =e4 =f> = f3 = f4 = g3 = g4 = 0, under conditions h, = hs = h, = 0 and
J3is # i3j4, we can turn G; into canonical form.

Letx=3,y=2,z=40rx=3,y=4,z=2.

Case3:Ifes #0,ex=e4=f> =f3 = f4, = g2 = g3 = g4 = 0, under conditions i, = i3 = i, = 0 and hj4 # j2ha,
we can turn G; into canonical form.

Case 4:If g3 + 0,e2 = es =e4 = f> = f3 = f4 = g2 = g4 = 0, under conditions h, = h; = hy = 0 and
J214 # i2j4, we can turn G; into canonical form.

Letx=4,y=2,z=30rx=4,y=3,z=2.

Case5:Ife, #0,ex=e3=f2 =f5 = f4, = g2 = g3 = g4 = 0, under conditions i, = i3 = i, = 0 and hyj3 # j2hs,
we can turn G; into canonical form.

Case 6:If g, + 0,e2 = es =e4 = f> = f3 = f4 = g2 = g3 = 0, under conditions h, = hs = hy = 0 and
j213 # i2j3, we can turn G; into canonical form.

For the sake of simplicity, we write the above six cases as follows:

ex # 0, the other are zero, ix =iy =i; =0, hyj; # jyhz;

gx # 0, the other are zero, hy = hy = h; =0, iyj; # jyiz;

where x,y,z€{2,3,4} andx #y + z.

The following theorem is also written in a similar way, and we don’t repeat it. For example, exey # O, ix =
iy=i,=0, fzyjz * fyhz, where x = 2,y = 3,z = 3, in Theorem 4.3 representsife, + 0,e3 + 0,es=fr2=f3 =f4 =
g2 = g3 = g4 = 0, under conditions i, = i3 = iy, = 0 and l~13j4 * f;hz., can we turn G; into canonical form.

Theorem 4.3. Iftwo of ey, fp, 8p (P = 2, 3, 4) are not equal to zeros, the remaining seven of them are equal to
zeros, there are 15 combinations in Ty, i.e. exe3, €€, €3€4, 8283, 8284, 8384, €2f2, €3f3, esfu, f282, f383, fuga,
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€282, €383, e,84. For each combinations, we can turn G; into canonical form under the following conditions:

exey #0,ix = iy = i = 0, hyj; # jyhz;

2x8y # 0, he = hy = h; = 0,1,j; # Jyizs

exfx #0,1y =i, =0, hyjz # jyhz;

fx8x #0, hy = h, =0, iyj, # jyiz;

exgx #0,iy = hy =0,ih; # 0,y # 0, hyiy = ixhz;
(ex8x # 0, iyhyizh; # 0, hyiy = ixhy, hyjz # jyhz);
where x,y,z€{2,3,4}andx +y # z.

Proof. Firstly, we discuss the combination that e;e; # 0, the remaining seven of ep, fp, g8p (b = 2, 3, 4) are
equal to zeros. The combinations e,es, eses, 8283, 8284, 8384 can be similar as in the discussion with e, es.
Ifeses +0,e4=f>=f3=f4 = g2 = g3 = g4 = 0, according to (9), we can obtain i, = 0 and e»i3 = e3i,.
Because e, es # 0, then i, and i3 are zero or nonzero at the same time. This yields two possibilities.
The first case is i> = i3 = 0. Then G; is of the form

1000[0ey hyjo|0e3 hsj3|00 hyjy
0100/00 OO|OO0O OO|O0O0OO0O
0010/00 OO0O|OO0O OO|O0O0O0O
0001|000 OO|OO0O OO|OO0OOO

By subtracting es/e, times the second slice from the third slice, we can turn e; into zero. Then we obtain the
following form:

1000|0e; hyj2|00h3j3|00 hyjs

0100/00 0 0O|0O0O0O0|0O0O0O0

0010/00 00|000O0O(000 O’

0001/00 0 0O|0OO0OO0OO0O|0OO0O0O

where f13 =hs - e3h2/ez,f3 = j3 — e3ja2/ez. According to Theorem 4.1, under condition f13j4 # f3h4, we can
turn G; into canonical form. Analogously, by subtracting e, /es times the third slice from the second slice, we
can turn e, into zero, under condition fzzj4 * f2h4, where hy = hy — exhs/es, 72 = jo — ez2j3/es, we can also
turn G; into canonical form.

The second case is i»i3 # 0. By subtracting e /e, times the second slice from the third slice, we can turn
es, i3 into zeros according to e,is = esi,. Then we obtain the following form:

1000|0e; hyj2|00h373|00 hyjs
0100(00 0i,/000 0[000 O
0010/00 00(0000|000O0|’
0001{00 00[{000 0000 O

where f13 = h3 - eshay/ey, 73 = j3 — e3ja/ea. According to Theorem 4.1, only under conditions i = 0 and
fu ju + 53 h4, we can turn G; into canonical form. This contradicts the fact that i,i3 # 0.

Thus we conclude that if exey # 0, the remaining seven of e, fp, gp(p = 2, 3, 4) are equal to zeros, under
conditions iy = iy = i; = 0, ﬁyjz * fyhz, wherex = 2,y =3,z=40rx =3,y = 2,z = 4, we can turn G; into
canonical form (6).

Next, we discuss the combination that e,f> # 0, the remaining seven of ep, f,, g» (p = 2, 3, 4) are equal
to zeros. The combinations f>g», esfs, f383, e4fs, f4g4 can be similar as in the discussion with e,f>.

Ifexf, #0,e3 =e4 =f3 =fy = g2 = g3 = g4 = 0, according to (9), we can obtain i3 = i5 = 0. Because
the mode-3 rank of §; is 4, then hsj, # jshs. The way to standardize the last two slices is the same as in
Theorem 4.1, so we don’t repeat it here. Now, we show how to standardize the second slice. The way to turn
h, and j, into zeros is the same as in Theorem 4.1. It remains to consider how to turn i, into zero. In fact, if
i, = 0, then we have transformed G; into canonical form. If i # 0, for every slice of G;, by subtracting i, /f>
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times column 3 from column 4 and adding i,/f> times row 4 to row 3, we can turn i, into zero. Then the (1,4)
entry of slice three is turned into —i, /f>. Next, by subtracting —i, /f> times the fourth slice form the third slice,
we can turn (1, 4) entry of slice three into zero.

Consequently, if exfy # O, the remaining seven of ey, fp, gp(p = 2,3, 4) are equal to zeros, under
conditions iy = i; = 0 and hyj, # jxhs, wherex = 2,y =3,z =4o0rx = 2,y = 4,z = 3, we can turn G;
into canonical form.

Next, we discuss the combination that e,g; # O, the remaining seven of ey, f,, g8p (p = 2, 3, 4) are equal
to zeros. The combinations es g3, e;g4 can be similar as in the discussion with e, g>.

Ifesgs #0,e3 =e4 =fa =f5 =fs =85 = g4 =0, according to (9), we have e,i3 = h3g2, €2is = h4gs.
Because e, g, # 0, so we must have i3 and h; being zero or nonzero at the same time, i, and h4 being zero or
nonzero at the same time. This yields four possibilities.

The first case is i3 = h3 = 0, ish4 # 0. Then G; is of the form

1000 Oezhzjz 000j3 00h4j4
0100(00 0 i,|0000[00 O iy
001000 0g|0000|00O0 O
000100 O O|0O0O0O0O0O|O0O0O0 O

Because the mode-3 rank of §j is 4, then j; # 0. Next, we normalize j3 to one, and it can be used to turn j, and
ja into zeros if j, and j, are nonzero. After this, by exchanging the third slice and the fourth slice, then we can
obtain the following form

1000({0e;h, 0|00h; 0{0001

0100/00 0i|000is]0000

001000 0g(000O0|0000O0

000100 0 0|00O0OO0O|00O0O

If h; and i, are equal to zeros, then we have turned §; into canonical form. If one of h», i> is equal to zero,
we can’t turn G; into canonical form. In fact, if h, = 0, i, # 0, for every slice, by subtracting i,/g, times row 3
from row 2 and adding i, /g, times column 2 to column 3, we can turn i, into zero. But meanwhile, h; is turned
into nonzero. Similarly, if h, # 0, i, = 0, while turning h, into zero, i, is turned into nonzero. Similarly to the
discussion of the above, if h, and i, are nonzero, after turn h, into zero, i is turned into i, = i>+h> g2/ez. While
turning i, into zero, h; is turned into nonzero. If we add a restriction condition h,i4 = i,hs4, by subtracting
h4/h, times the third slice from the second slice, we can turn h, and i, into zeros. Hence, we have turned G;
into canonical form. From the above discussion we can see that, if i3 = h3 = 0, ish4 # 0, only under condition
h»i4 = i2h4 we can turn G; into canonical form.

The second case is i3hs = 0, i5 = h4 = 0. This situation can be similar as in the discussion with i3 = h3 =
0,ishs # 0.

The third case is i3 = h3 = i5 = h4 = 0. Then G; is of the form

1000 062h2j2 000j3 000j4
0100/00 0 i,(0000(0000
0010/{00 0g(0000|0000
0001/00 0O 0|0000|000O0

If one of j3, j4 is equal to zero, then the mode-3 rank of G; is equal to 3. If j; and j, are all equal to zeros, then the
mode-3rank of G; is equal to 2. If j3 and j; are nonzero, by subtracting j /j3 times the third slice from the fourth
slice, we can turn j, into zero. Then the mode-3 rank of G; is equal to 3. Consequently, if i3 = h3 = is = h4 = 0,
we can’t turn G; into canonical form.

The fourth case is ish3ishy # O. It follows from eyis = h3 g2, e2i4 = h4g, that ishy = ishs. This means the
vectors (hs, i3) and (hs, i4) are proportional. If the vectors (hs, j3) and (ha, j4) are also proportional, then
the mode-3 rank of G; is not equal to 4. Therefore, we conclude that hsjs # hsjs. Similarly to the discussion of
the case that i3 = h3 = 0, ish4 # 0. If we add a restriction condition hyi, = i, h4 or hyiz = i2h3, we can turn h;
and i, into zero. Hence, if izh3ishs # O, under conditions hsjs # hajs, hais = i2hs Or h3js # hajsz, hyis = irhs,
we can turn g; into canonical form.
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Based on the above argument, we draw the conclusion that if exgx # 0, the remaining seven of e, fp, 8»
(p=2,3,4) are equal to zeros, under conditions iy = hy = 0, i;h; # 0, j, # O, hyi; = ixh; or iyhyizh, # 0O,
hyiy = ixhy, hyj: # jyhz, wherex = 2,y = 3,z = 4orx = 2,y = 4,z = 3, we can turn §; into canonical
form. O

Theorem 4.4. If three of ep, fp, 8p (p = 2, 3, 4) are not equal to zeros, the remaining six of them are equal to
zeros, there have 5 combinations in T1, i.e. e;e3€4, 828384, €2f282, e3f383, esfsg4. For each combinations, G;
can be turned into canonical form under the following conditions:

exeye; + 0, ix = iy = iy = 0, hyj; # jyhz;
8x8y8z # 0, hx = hy = h; = 0,1, # jyiz;
exfxgx # 0,1y =hy =0,ih; #0,j, # O;
(exfx8x # 0,iyhyizh; # 0, jyhz # hyjz );
where x,y,z€{2,3,4}andx +y # z.

Proof. Firstly, we discuss the combination that e;eses # 0, the remaining six of ep, fp, gp (p = 2, 3, 4) are
equal to zeros. The combination g,g3g4 can be similar as in the discussion with e, ese;.

If eeses # 0,f2 = f3 = fu = g2 = g3 = g4 = 0, according to (9), we have esi, = izes, eslz = ey,
e,4is = esi4. Because e, ese, # 0, so we must have iy, i3, is being zero or nonzero at the same time. This yields
two possibilities. The first case is iy = i3 = i5 = 0. The second case is i»i3i; # 0. Similarly to the discussion
of the situation e;e3 # 0 in Theorem 4.3, only for the case that i = i3 = i, = 0 we can turn G; into canonical
form. Now, we show if i, = i3 = i4 = 0, under what conditions we can turn G; into canonical form. In fact, if
i» = i3 = i4 = 0, then §; is of the form

1000 0€2h2j2 0€3h3j3 0€4h4j4
010000 00|00 OO0|0OO0 OO
001000 00|00 OO0|0OO0 OO
0001|000 00|00 OO0|0OO0 OO

Through subtracting es /e, times the second slice from the third slice and e, /e, times the second slice from
the fourth slice, we can turn e3 and e, into zeros. Then g; is of the form

1000|0e;hyj2|00h373]/00 hyjs
0100(00 00000 O0|000 O
0010(00 00(0000[(000O]
0001(00 00000 0|000 O

where h; = hs — eshy /e, j3 = j3 — e3jz/ea, hy = hy — esha /e, ju = ju — eajz/ea. According to the mode-3 rank
of G is 4, then I~1374 + jgfu. Thus we draw the conclusion that if exeye, # 0, the remaining six of ep, fp, gp(p =
2,3, 4) are equal to zeros, under the conditions iy = iy = i; = 0, i:ly}:z + }yﬁz, where x,y,z € {2,3,4} and
X #y # z, we can turn G; into canonical form.

Next, we discuss the combination that e,f>g, # 0, the remaining six of ep, f, gp (p = 2, 3, 4) are equal
to zeros. The combinations esf3g3, e4f4g4 can be similar as in the discussion with e»f>g>.

Ifesf282 #0, es =es=f35=f4 =83 = g4 = 0, according to (9), we have e,i3 = h3g>, e2is = h4g>. Because
e,g> + 0, then i3 and hs are zero or nonzero at the same time, i, and h, are zero or nonzero at the same
time. This yields four possibilities. The proof of these four cases is almost identical as the case that e;g, + 0
in Theorem 4.3, the major change is that h, can be turned into zero by e,, i, can be turned into zero by f>.
Consequently, if exfxgx # 0, theremaining six of e, fp, g» (p = 2, 3, 4) are zeros, under conditions iy = hy = 0,
izh: # 0, jy # 0ot iyhyih; # 0, hyj, # jyh,, wherex =2,y =3,z=40rx =2,y = 4,z = 3, we can turn G; into
canonical form. O

Theorem 4.5. If four of ey, fp, 8p (P = 2, 3, 4) are not equal to zero, the remaining five of them are equal to
zeros, there have 6 combinations in T1, i.e. e2e3f2f3, e2eufafs, esesfsfu, f2138283, f2f48284, f3f48384. For each
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combination, G; can be turned into canonical form under the following conditions:

exeyfxfy #0,i, = 0, ix, iy being zero or nonzero at same time, I~1yjz + fyhz;
fxfygx8y # 0, hz = 0, hy, hy being zero or nonzero at same time, jyi- # 7yjz;

where x,y,z€{2,3,4}andx +y # z.

Proof. Here, we only discuss the combination that e;esf>fs5 # 0, the remaining five of e, fp, g8p (p = 2, 3, 4)are
equal to zeros. The combinations ezef>fs, eseafsfu, f2f38283, f2f18284, f3f48384 can be similar as in the
discussion with e esfafs.

If exesfofs # 0,e4 = f4 = 82 = 83 = g4 = 0, according to (9), we have i; = 0 and ei3 = e3i,. The proof of
this case is almost identical as the combination that e;e; # 0 in Theorem 4.3, the major change is that i, (or
i3) can be turned into zero by f> (or f3) if i, (or i3) is nonzero.

Thus we conclude that if e;esf>f5 # 0, the remaining five of ep; frs8p(p = 2,3,4) are equal to zeros,
under conditions i, = 0, iy, iy being zero or not at the same time, hyj, # jyh., where x = 2,y = 3,z = 4 or
X =3,y =2,z =4, wecan turn G; into canonical form. O

Theorem 4.6. If six of ey, fp, 8p (P = 2,3, 4) are not equal to zero, the remaining three of them are equal

to zeros, there we have 5 combinations in Ti, i.e. exesesfofsfs, fof3fa828384, €2f282€3f383, exf282e4f4g4,
esfigsesfyg4. For each combination, G; can be turned into canonical form under the following conditions:

exeyezfxfyfz # 0,ix, 1y, i; being zero or nonzero at same time, fly]z # jyﬂz;
fufyf-8x8y8z * 0, hx, hy, h; being zero or nonzero at same time, jyi, # iyjz;
exfxgxeyfygy + 0, hy =1, =0, hsi, 0,j, # 0;

(exfxgxeyfygy # 0, hyly #0,hz =iz =0, j; 2 0);

(exfxgxeyfygy # 0, hylyhsiz # 0, hyjz # jyhz);

where x,y,z€{2,3,4}andx +y # z.

Proof. Firstly, we discuss the combination that e;esesfaf3fs # O, the remaining three of e, fp, g8p (p = 2, 3, 4)
are equal to zeros. The combination f,f5f,g.g384 can be similar as in the discussion with e>esesfofsfs. If
exesesfafsfu # 0, 82 = g3 = g4 = 0, according to (9), we have e,i3 = esiy, e4iz = ezis, €4i3 = e3is. The proof
of this combination is almost identical as the combination that e;es e, + 0 in Theorem 4.4, the major change
is that i, (or i3 or i) can be turned into zero by f> (or f5 or fy) if i, (or i3 or is) is nonzero. Thus we conclude
that if e;esesfofsfs # O, the remaining three of ey, fp, gp (p = 2, 3, 4) are equal to zeros, under conditions
ix, 1y, iz being zero or not at the same time, fzyfz * 7yfzz, wherex,y,y €{2,3,4}and x # y + z, we can turn G;
into canonical form.

Next, we discuss the combination that e>f>g2esf3g3 # 0, the remaining three of ep, f», gp (p = 2, 3, 4)are
equal to zeros. The combinations e, f>g2e3f383, e2f282e4f484, €3f383e4f4,84 can be similar as in the discussion
with exf282e3f383. If exf282e3f383 # 0, e4 = f4 = 84 = 0, according to (9), we have esis — exis + h3g2 -gshy =
0,e,i4 = hsg, and esis = hsgs3. Because e;e38,83 + 0 and es/ex = g3/82 = «, then we obtain el = gohs,
where i3 = i3 — aiz, I3 = h3 — ahy. On the other hand, because eresg.g3 0, s0 h3 and i; are zero or nonzero
at the same time, h,4 and i, are zero or nonzero at the same time. This yields four possibilities. These four
situations can be discussed as the situation that e»f>g> # 0, the remaining six of ep, fp, gp (p = 2, 3, 4) are
equal to zeros.

Consequently, if exfxgxeyfygy 74 0, the remaining three of e, fp, g8p (p = 2, 3, 4) are equal to zeros, under
conditions hy = ly =0, hyi; # 0, ]y + 0, or hyly +#0,h; =i, =0,j; # 0, or hylyhzlz + 0, hy]z + ]yhz, where
x=2,y=3,z=4,0rx =2,y = 4,z =3, we can turn G; into canonical form. O
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Theorem 4.7. Ifeyp, fy, 8p (p = 2, 3, 4) are allnonzero, G; can be turned into canonical form under the following
conditions: L L .
exeyezfufyf:8x8y8z #+ 0, hy = iy = 0, hz = i # 0, jy # 0;
(exeye:fxfyf-8x8y8z # 0, fly?yflz;z # O’jyi"z # ﬁy72)§
wherex,y,z€{2,3,4}andx +y # z.

Proof. According to the second conclusion of Property 2.1, if ep, fp, gp (p = 2,3, 4 ) are all nonzero, the
vectors (ep, fp, 8p) (p = 2, 3, 4) being proportional. Then we can turn es, es, f3, f4, 83, 84 into zeros due to
the vectors (ep, fp, 8p) (b = 2, 3, 4) are proportional. Then we obtain the following for the last three slices of
Gj:

0eyhy jo|00hs3j3([00hyjs

00 f, ,|0007/000 i,

00 0g|0000|00O0O0

00 0 O|]0OOOO|0O0O0OO0O

where i3 = hs — ahy, j3 = j3 - aja, 134 = hy - Bha, ja =ja-fjaanda= es/e, B =esfe;.

Now we show that equality e)ls = g2h3 and exis = g2h4 holds. Firstly, we write e3 = aer, 83 = ag,es =
ﬁez, g4 = Bga. Next, by substituting them into the first two equations of (9), we obtain e,i; = g,hs and
esis = g2h4 Because e,g, # 0, then i3 and h3 are zero or nonzero at the same time, i, and h4 are zero or
nonzero at the same time. This yields four possibilities. These four situation can be discussed just as the
situation that e, esesfaf3fs # 0, the remaining three of ey, fy, gp(p = 2, 3, 4) are equal to zeros.

Consequently, if exfxgxeyfy, gye:f-g- are nonzero, under conditions hy =i, =0, h, =1, # 0, jy # 0or
hyiyh;i, # 0,jyh; + hyj, , we can turn G; into canonical form. O

5 Concluding remarks

In this paper, we have studied under what conditions we can turn g; into canonical form (6) if some of the
upper triangular entries of the last three slices of G; are zeros. In addition, we have shown how to turn G; into
canonical form under these conditions. In the future, it will be interesting to explore the connection between
our three order generalization of the Jordan canonical form and eigenvectors for three order arrays.
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