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Abstract: The limit point X of an approximating rank-R sequence of a tensor Z can be obtained by �tting
a decomposition (S,T,U) ⋅ G to Z. The decomposition of the limit point X = (S,T,U) ⋅ G with G =
blockdiag(G1, ...,Gm) canbe seen as a three order generalization of the real Jordan canonical form. Themain
aim of this paper is to study under what conditions we can turn Gj into canonical form if some of the upper
triangular entries of the last three slices of Gj are zeros. In addition, we show how to turn Gj into canonical
form under these conditions.
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1 Introduction
A tensor can be regarded as a higher-order generalization of a matrix, which takes the form

A = (ai1 ,...,im) ai1 ,...,im ∈ R 1 ≤ i1, ..., im ≤ n

Such a multi-arrayA is said to be an mth-order n-dimensional square real tensor with nm entries ai1 ,...,im . In
this paper, we only consider the case m = 3 and real-valued three-way arrays.

De�nition 1.1 ([1]). Let A be a mth-order n-dimensional tensor. The mode-k matrix (or k-th matrix unfolding)
A(k) ∈ Rn×nm−1

is a matrix containing the element ai1 i2 ...im .

WhenA is a 3rd-order n-dimensional tensor, its mode-k matrices are:

A(1) = [A(∶, 1, 1)...A(∶, n, 1)A(∶, 1, 2)...A(∶, n, 2)...A(∶, n, n)];
A(2) = [A(1, ∶, 1)...A(1, ∶, n)A(2, ∶, 1)...A(2, ∶, n)...A(n, ∶, n)];
A(3) = [A(1, 1, ∶)...A(n, 1, ∶)A(1, 2, ∶)...A(n, 2, ∶)...A(n, n, ∶)].

De�nition 1.2 ([2]). Themultilinear rank of an I× J×K array is de�ned as the triplet(mode-1 rank, mode-2 rank,
mode-3 rank). The mode-k rank of a tensorA is de�ned as the rank of mode-k matrix.

Obviously, a three order tensorhas 3mode-k ranks and thedi�erentmode-k ranks of tensor arenot necessarily
the same [3]. In addition, the rank and themode-k rank of a same tensor are not necessarily equal even though
all the mode-k ranks are equal.
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Let
SR(I, J, K) = {Y ∈ RI×J×K ∣rank(Y) ≤ R} (1)

Fitting the CP decomposition [4] to Z boils down to solving the following minimization problem:

Minimize ∥ Z − Y ∥ subject to Y ∈ SR(I, J, K) (2)

Hence, we are looking for a best rank-R approximation [5] to Z. In [6], A.Stegeman has shown that such
a best rank-R approximation may not exist due to the set SR(I, J, K) not being closed for R ≥ 2. In this
case, we are trying to compute the approximation results in diverging rank-1 terms [7]. This phenomenon
can be seen as a three-way generalization of approximate diagonalization of a nondiagonalizable matrix. In
[6, 8], A.Stegeman has shown that, analogous to the matrix case, the limit point of the approximating rank-
R sequence satis�es a three-way generalization of the real Jordan canonical form. [6, 9] show that the limit
point X is a boundary point of SR(I, J, K) and can be obtained by �tting a decomposition (S, T, U) ⋅ G to Z,
with G = blockdiag(G1, ...,Gm) and core block Gj of size dj × dj × dj and in sparse canonical form. The
decomposition of X has been introduced in [10–12], where the block terms are (Sj , Tj , Uj) ⋅ Gj. Nondiverging
rank-1 terms have an associated core block with dj = 1, and core blocks with dj ≥ 2 are the limit of a group of
dj diverging rank-1 terms.

For groups of two, or three, or four diverging rank-1 terms, [6, 8] have shown limit point X = ∑m
j=1Xj and

its decomposition X = (S, T, U) ⋅ G = ∑m
j=1(Sj , Tj , Uj) ⋅ Gj have the following results.

Lemma 1.3 ([13]). For a group of dj = 2 diverging rank-1 terms, the limitXj can be written asXj = (Sj ,Tj ,Uj)⋅Gj
with Sj ,Tj ,Uj of rank 2, and 2 × 2 × 2 array Gj given by

[1 0 0 1
0 1 0 0

] . (3)

we have rank(Gj) = 3. Here, we denote the 2 × 2 × 2 array Gj with 2 × 2 slices G1 and G2 as [G1∣G2]. (3) is
referred to as the canonical form of a boundary array of S2(2, 2, 2).

Lemma 1.4 ([6]). For a group of dj = 3 diverging rank-1 terms, and min(I, J, K) ≥ 3, almost all limits Xj with
multilinear rank(3, 3, 3) can be written as Xj = (Sj ,Tj ,Uj) ⋅ Gj with Sj ,Tj ,Uj of rank 3, and 3 × 3 × 3 array Gj
given by

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 ∗ 0 0 0 1
0 1 0 0 0 ∗ 0 0 0
0 0 1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

, (4)

where ∗ denotes a nonzero entry. We have rank(Xj) = rank(Gj) = 5.

Lemma 1.5 ([8]). For a group of dj = 4 diverging rank-1 terms, and min(I, J, K) ≥ 4, almost all limits Xj with
multilinear rank(4, 4, 4) can be written as Xj = (Sj ,Tj ,Uj) ⋅ Gj with Sj ,Tj ,Uj of rank 4, and 4 × 4 × 4 array Gj
given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 ∗ 0 0 0 0 ∗ 0 0 0 0 1
0 1 0 0 0 0 ∗ 0 0 0 0 ∗ 0 0 0 0
0 0 1 0 0 0 0 ∗ 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where ∗ denotes a nonzero entry. We have rank(Xj) = rank(Gj) ≥ 7.

Remark 1.6. The proof of Lemma 1.5 in [8] has shown that Gj has multilinear rank (4,4,4).

However, the proof of Lemma 1.5 in [8] does not take account of the cases that some of the upper triangular
entries of the last three slices of Gj are zeros. To make up for this defect, we assume that some of the upper
triangular entries of the last three slices of Gj are zeros and study whether we can turn Gj into the canonical
form (5). Firstly, we consider the following two examples.
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Example 1.7. Let Gj be a 4 × 4 × 4 array that satis�es the conditions of Lemma 1.5, and the (1,4) entries of the
last three slices are equal to zeros, i.e.,

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 3 1 2 0 3 2 9 0 3 3 16 0
0 1 0 0 0 3 2 5 0 3 4 11 0 3 6 17
0 0 1 0 0 0 3 3 0 0 3 6 0 0 3 9
0 0 0 1 0 0 0 3 0 0 0 3 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By subtracting 3 times the �rst slice of Gj from slice 2,3,4, then we obtain an all-zero diagonal in slice 2,3,4.
Similarly, by subtracting 2 times the second slice from the third slice and 3 times the second slice from the fourth
slice, Gj is of the form

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 2 0 0 0 5 0 0 0 10 0
0 1 0 0 0 0 2 5 0 0 0 1 0 0 0 2
0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Next, by subtracting 2 times the third slice from the fourth slice, we can turn the (1,3) and (2,4) entries of slice
four into zeros. By subtracting 5 times the third slice from the second slice, we can turn the (2, 4) entry of slice
two into zero. Then we obtain the following form

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 −23 0 0 0 5 0 0 0 0 0
0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In each slice of the above Gj, we add 23/2 times row 2 to row 1 and subtract 23/2 times column 1 from column
2. Then we obtain the following form

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 0 0 0 5 23/2 0 0 0 0
0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is apparent from this example that if some of the upper triangular entries of the last three slices of Gj are
zeros, we can’t turn Gj into canonical form (5).

Example 1.8. Let Gj be a 4 × 4 × 4 array that satis�es the conditions of Lemma 1.5, and the (1,4) entries of the
second and the third slices are equal to zeros, i.e.,

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 3 1 2 0 3 2 9 0 3 3 16 5
0 1 0 0 0 3 2 5 0 3 4 11 0 3 6 17
0 0 1 0 0 0 3 3 0 0 3 6 0 0 3 9
0 0 0 1 0 0 0 3 0 0 0 3 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the same method as Example 1.7, we can obtain

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 0 0 0 5 23/2 0 0 0 5
0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, the fourth slice only has its (1,4) entry nonzero, we normalize it to one. Then by subtracting the 23/2 times
the fourth slice from the third slice, the (1,4) entry of the third slice can be turned into zero. Then we obtain

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 0 0 0 5 0 0 0 0 1
0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



900 | L.-B. Cui, M.-H. Li

According to this example, we see that if some of the upper triangular entries of the last three slices of Gj are
zeros, we can turn Gj into canonical form (5).

A natural question is under what conditions we can turn Gj into canonical form (5) if some of the upper
triangular entries of the last three slices of Gj are zeros. The answer to this question is the main contribution
of this paper.

Remark 1.9. It is worth noting that if some of the upper triangular entries of the last three slices of Gj are zeros,
the entry∗of canonical form (5)maybe zero. Therefore, in this paper,wemainly consider the following canonical
form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 ē 0 0 0 0 h̄ 0 0 0 0 1
0 1 0 0 0 0 f̄ 0 0 0 0 ī 0 0 0 0
0 0 1 0 0 0 0 ḡ 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where ē, f̄ , ḡ, h̄, ī may be zero, and there must be at least one nonzero entry in every slice.
Now, we prove why we require that there must be at least one nonzero entry in every slice. According to the

the de�nition of the mode-k matrix of a tensor, (5) is actually the mode-1 matrix of Gj. Because the �rst slice of
Gj is an identity matrix, it follows that the mode-1 rank of Gj is always 4, no matter what values ē, f̄ , ḡ, h̄, ī take.

The mode-2 matrix of Gj is
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ē 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 h̄ 0 0 f̄ 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 ī 0 0 ḡ 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since each row of this matrix has a nonzero entry 1, it follows that mode-2 rank of Gj is always 4, no matter what
values ē, f̄ , ḡ, h̄, ī take.

The mode-3 matrix of Gj is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 ē 0 0 0 0 f̄ 0 0 0 0 ḡ 0
0 0 0 0 0 0 0 0 h̄ 0 0 0 0 ī 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For this matrix, if there exists a row that its elements are all zeros, then the mode-3 rank of Gj does not equal to
4. This contradicts the fact that the mode-3 rank of Gj is 4. Consequently, ē, f̄ , ḡ can’t be zero at the same time,
and h̄, ī can’t be zero at the same time. This implies that there must be at least one nonzero entry in every slice.

De�nition 1.10. For amatrix A =
⎛
⎜⎜⎜⎜
⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎟⎟
⎠
, we call themain diagonal elements ofmatrix A as the 1st

diagonal elements , and a12, a23, a34 as the 2nd diagonal elements, and a13, a24 as the 3rd diagonal elements,
and a14 as the 4th diagonal element. The kth diagonal element of A is called zero if the elements of the kth
diagonal are all zeros. The kth diagonal elements of A is called nonzero if the kth diagonal of A has a nonzero
element.

The remaining of this paper is organized as follows. In section 2, we study some properties related to Gj. In
section 3, we discuss under what conditions can we turn the 2nd diagonal elements of any two slices of the
last three slices of Gj into zeros. In section 4, based on the results of the third section, we analyze under what
conditions canwe turn the 3rd and 4th diagonal elements of the last three slices ofGj into zeros. Finally, some
concluding remarks are given in section 5.
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2 Some properties related to Gj
Before we discuss what conditions we need to turn Gj into canonical form (6), we �rst give some properties
related to Gj.

Property 2.1. If Gj satis�es the conditions of Lemma 1.5, then it can be turned into
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 a2 e2 h2 j2 a3 e3 h3 j3 a4 e4 h4 j4
0 1 0 0 0 b2 f2 i2 0 b3 f3 i3 0 b4 f4 i4
0 0 1 0 0 0 c2 g2 0 0 c3 g3 0 0 c4 g4

0 0 0 1 0 0 0 d2 0 0 0 d3 0 0 0 d4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

and we can obtain the following three conclusions: (1) ap = bp = cp = dp (p = 2, 3, 4) hold for almost all Gj;
(2) The equations

e3f2 = f3e2, f3g2 = g3f2
e4f2 = f4e2, f4g2 = g4f2
e4f3 = f4e3, f4g3 = g4f3

(8)

hold for almost all Gj; (3) The equations

e3i2 − e2i3 + h3g2 − g3h2 = 0
e4i2 − e2i4 + h4g2 − g4h2 = 0
e4i3 − e3i4 + h4g3 − g4h3 = 0

(9)

holds for almost all Gj.

Proof. The proof of Lemma 3.3 in [8] has shown that Gj can be turned into (7) if it satis�es the conditions of
Lemma 3.3.

The �rst conclusion has been proved in Lemma 3.3 of [8].
Now we show the proof of the second conclusion. Similarly to the proof of the vectors, (ep , fp , gp) are

proportional for p = 2, 3, 4 in Lemma 3.3 of the [8]. We write A(n) in terms of p = 3 and compute Y(n)2 =
A(n)C(n)2 (A(n))−1, which yields matrix (A.10). The entries in this matrix equal those of Y(n)2 in (A.2). It follows
that e3f2 = f3e2, f3g2 = g3f2. Whenwewrite A(n) in terms of p = 4 and compute Y(n)2 = A(n)C(n)2 (A(n))−1, this
yields amatrix similar with (A.10). The entries in this matrix equal those of Y(n)3 in (A.2). It follows that e4f2 =
f4e2, f4g2 = g4f2. Analogously, when writing A(n) in terms of p = 3 and compute Y(n)4 = A(n)C(n)4 (A(n))−1,
we obtain that e4f3 = f4e3, f4g3 = g4f3.

Now we prove the third conclusion. Similarly to the proof of the vectors (h3 − αh2, i3 − αi2) and (h4 −
βh2, i4−βi2) are proportional for α = e3/e2, β = e4/e2 in Lemma 3.3 of the [8], we write A(n) in terms of p = 3
and compute Y(n)2 = A(n)C(n)2 (A(n))−1, which yields matrix (A.10). The entries in this matrix equal those of
Y(n)2 in (A.2). It follows that e3i2 − e2i3 + h3g2 − g3h2 = 0. We write A(n) in terms of p = 4 and compute
Y(n)2 = A(n)C(n)2 (A(n))−1, which yields a matrix similar with (A.10). The entries in this matrix equal those of
Y(n)3 in (A.2). It follows that e4i2 − e2i4 + h4g2 − g4h2 = 0. Analogously, when writing A(n) in terms of p = 3
and compute Y(n)4 = A(n)C(n)4 (A(n))−1, we obtain that e4i3 − e3i4 + h4g3 − g4h3 = 0.

Remark 2.2. According to the �rst conclusion of Property 2.1, if Gj satis�es the conditions of Lemma 1.5, by
subtracting ap times the �rst slice of Gj from slice p (p = 2, 3, 4), then it can be further turned into

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 e3 h3 j3 0 e4 h4 j4
0 1 0 0 0 0 f2 i2 0 0 f3 i3 0 0 f4 i4
0 0 1 0 0 0 0 g2 0 0 0 g3 0 0 0 g4

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Remark 2.3. According to the second conclusion of the Property 2.1, if f2f3f4 ≠ 0, the vectors (ep , fp , gp) (p =
2, 3, 4) are proportionate. If f2 = f3 = f4 = 0, the vectors (ep , fp , gp) (p = 2, 3, 4) are disproportionate.
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By the �rst conclusion of Property 2.1, we have turned the �rst diagonal elements of the last three slices of Gj
into zeros. In the next section, we mainly consider turning the 2nd diagonal elements of any two slices of the
last three slices ofGj into zeros. Noting that if f2f3f4 ≠ 0, the vectors (ep , fp , gp) (p = 2, 3, 4) are proportionate.
This implies that we can directly turn the 2nd diagonal elements of any two slices of the last three slices of Gj
into zeros if f2f3f4 ≠ 0. However, in this paper we assume some of the upper triangular entries of the last three
slices ofGj are zeros. Thismeans the vectors (ep , fp , gp) (p = 2, 3, 4)may not be proportionate. Consequently,
we �rst discuss all the combinations of ep , fp , gp (p = 2, 3, 4) when some of them are equal to zeros. On the
other hand, noting that ep , fp , gp (p = 2, 3, 4) satis�es equations (8), it is easy to get the following conclusion.

Property 2.4. There are 91 combinations of ep , fp , gp (p = 2, 3, 4) when some of them are equal to zeros and
satisfy the equations (8).

Proof. We traverse ep , fp , gp (p = 2, 3, 4) based on the number of nonzero entries, and remove some of the
combinations that do not meet the conditions (8).

If one of ep , fp , gp (p = 2, 3, 4) is not equal to zero, and the remaining eight of them are equal to zeros,
this yields 9 combinations. For convenience, we only write nonzero entry in each combination, i.e., e2, e3,
e4, f2, f3, f4, g2, g3, g4. For example, e2 represents e2 /= 0, e3 = e4 = f2 = f3 = f4 = g2 = g3 = g4 = 0.

If two of ep , fp , gp (p = 2, 3, 4) are not equal to zeros, and the remaining seven of them are equal to
zeros, this yields C2

9 combinations. However, some combinations do not satisfy conditions (8). For example,
combination e2 /= 0, f3 /= 0, e3 = e4 = f2 = f4 = g2 = g3 = g4 = 0 contradicts the condition f3e2 = e3f2 of (8).
Thus, we remove this combination. Similarly, we remove other combinations that do not meet conditions (8).
Finally, by traversing we obtain the following 24 combinations that satisfy conditions (8): e2e3, e2e4, e3e4,
f2f3, f2f4, f3f4, g2g3, g2g4, g3g4, e2f2, e2g2, f2g2, e3f3, e3g3, f3g3, e4f4, e4g4, f4g4, e2g3, e2g4, e3g2, e3g4,
e4g2, e4g3.

Analogously, if three of ep , fp , gp (p = 2, 3, 4) are not equal to zeros, and the remaining six of them
are equal to zeros, there are 24 combinations that satisfy conditions (8), i.e., e2e3e4, f2f3f4, g2g3g4, e2f2g2,
e3f3g3, e4f4g4, e2g2g3, e2g2g4, e2g3g4, e3g2g3, e3g2g4, e3g3g4, e4g2g3, e4g2g4, e4g3g4, e2e3g2, e2e3g3,
e2e3g4, e2e4g2, e2e4g3, e2e4g4, e3e4g2, e3e4g3,e3e4g4.

If four of ep , fp , gp (p = 2, 3, 4) are not equal to zeros, and the remaining �ve of them are equal to zeros,
there are 21 combinations that satisfy conditions (8), i.e., e2e3f2f3, e2e4f2f4, e3e4f3f4, e2e3g2g3, e2e4g2g4,
e3e4g3g4, f2f3g2g3, f2f4g2g4, f3f4g3g4, e2e3g2g4, e2e3g3g4, e2e4g2g3, e2e4g3g4, e3e4g2g3, e3e4g2g4,
e2g2g3g4, e3g2g3g4, e4g2g3g4, e2e3e4g2, e2e3e4g3, e2e3e4g4.

If �ve of ep , fp , gp (p = 2, 3, 4) are not equal to zeros, and the remaining four of them are equal to zeros,
there are 6 combinations that satisfy conditions (8), i.e., e2e3g2g3g4, e2e4g2g3g4, e3e4g2g3g4, e2e3e4g2g3,
e2e3e4g2g4, e2e3e4g3g4.

If six of ep , fp , gp (p = 2, 3, 4) are not equal to zeros, and the remaining three of them are equal to
zeros, there are 6 combinations that satisfy conditions (8), i.e., e2e3e4f2f3f4, e2e3e4g2g3g4, f2f3f4g2g3g4,
e2f2g2e3f3g3, e2f2g2e4f4g4, e3f3g3e4f4g4.

If seven (or eight) of ep , fp , gp (p = 2, 3, 4) are not equal to zeros, the remaining two (or one) of them are
equal to zeros (or zero), there is no combination that satis�es conditions (8).

The last one combination is that ep , fp , gp (p = 2, 3, 4) are all nonzero, i.e., e2e3e4f2f3f4g2g3g4.

In the next section, we will study in which combinations of the 91 combinations in Property 2.4 we turn the
2nd diagonal elements of any two slices of the last three slices into zeros.

Remark 2.5. Noting that if ep , fp , gp (p = 2, 3, 4) are all zeros, this combination also satis�es the conditions
(8). However, another question arises: Under this combination, we can turn Gj into canonical form? Our answer
is negative. In fact, if ep , fp , gp (p = 2, 3, 4) are all zeros, then the 2nd diagonal elements of the last three slices
ofGj are all zeros. Thismeans in the process of transformingGj into canonical form, the 2nd diagonal elements of
the last three slices of Gj are always zeros. However, in canonical form (6), there exist a slice whose 2nd diagonal
elements are nonzero. Therefore, if ep , fp , gp (p = 2, 3, 4) are all zeros, we can’t turn Gj into canonical form.
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3 Make the 2nd diagonal of any two slices of the last three slices
of Gj zero

In this section we analyze under what conditions we can turn the 2nd diagonal elements of any two slices of
the last three slices of Gj into zeros.

It is worth noting that if 2nd diagonal elements of any two slices of the last three slices of Gj can be turned
into zeros, thenwe can continue to analyze the 3rd and 4th diagonal elements. If the 2nd diagonal elements of
any two slices of the last three slices ofGj cannot be turned into zeros, it is meaningless to continue to analyze
the 3rd and 4th diagonal elements. Therefore, in this section, we only consider the 2nd diagonal elements of
the last three slices of Gj.

Another thing we should pay attention to is why we discuss the conditions that turn the 2nd diagonal
elements of any two slices of the last three slices of Gj into zeros, instead of the conditions that turn the
2nd diagonal elements of the 3rd and the 4th slices into zeros. In fact, if the 2nd diagonal elements of the
second slice and the fourth slice (or the second slice and the third slice) are equal to zeros, we can exchange
the second slice and the third slice ( or the second slice and the fourth slice). The speci�c operation will be
discussed in detail in the next section and so is omitted here.

Now, based on the Property 2.4, we discuss under what conditions we can turn 2nd diagonal elements
of any two slices of the last slices of Gj into zeros. For convenience of the following discussion, we divide the
91 combinations of Property 2.4 into three categories. We regard each category as a set. Each element of the
set represents a combination, which can be represented by the nonzero entries of ep , fp , gp (p = 2, 3, 4). For
example, the element e2 of set T1 represents e2 ≠ 0, e3 = e4 = f2 = f3 = f4 = g2 = g3 = g4 = 0. The element
e2g3 of set T2 represents e2 ≠ 0, g3 ≠ 0, e3 = e4 = f2 = f3 = f4 = g2 = g4 = 0.

T1 = {e2, e3, e4, g2, g3, g4, e2e3, e2e4, e3e4, g2g3, g2g4, g3g4, e2f2, e2g2, f2g2, e3f3, e3g3, f3g3, e4f4,
e4g4, f4g4, e2e3e4, g2g3g4, e2f2g2, e3f3g3, e4f4g4, e2e3f2f3, e2e4f2f4, e3e4f3f4, f2f3g2g3,
f2f4g2g4, f3f4g3g4, e2e3e4f2f3f4, f2f3f4g2g3g4, e2f2g2e3f3g3, e2f2g2e4f4g4,
e3f3g3e4f4g4, e2e3e4f2f3f4g2g3g4}

T2 = {e2g3, e2g4, e3g2, e3g4, e4g2, e4g3, e2g2g3, e2g2g4, e2g3g4, e3g2g3, e3g2g4, e3g3g4, e4g2g3,
e4g2g4, e4g3g4, e2e3g2, e2e3g3, e2e3g4, e2e4g2, e2e4g3, e2e4g4, e3e4g2, e3e4g3, e3e4g4,
e2e3g2g4, e2e3g3g4, e2e4g2g3, e2e4g3g4, e3e4g2g3, e3e4g2g4, e2g2g3g4, e3g2g3g4,
e4g2g3g4, e2e3e4g2, e2e3e4g3, e2e3e4g4, e2e3g2g3g4, e2e4g2g3g4, e3e4g2g3g4,
e2e3e4g2g3, e2e3e4g2g4, e2e3e4g3g4}

T3 = {f2, f3, f4, f2f3, f2f4, f3f4, f2f3f4, e2e3g2g3, e2e4g2g4, e3e4g3g4, e2e3e4g2g3g4}

Now we show that under each combination of T1 we can turn 2nd diagonal elements of any two slices of the
last three slices of Gj into zeros. For each combination in T1, nonzero entries in ep , fp , gp (p = 2, 3, 4) are
either in the same slice or in the same position of di�erent slices.

In fact, if nonzero entries are in the same slice, there are just two slices of the last three slices of Gj whose
2nd diagonal elements are zeros. For example, the element e3f3g3 of T1 represents e3 ≠ 0, f3 ≠ 0, g3 ≠ 0, e2 =
e4 = f2 = f4 = g2 = g4 = 0. From Remark 2.2, Gj is of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 h2 j2 0 e3 h3 j3 0 0 h4 j4
0 1 0 0 0 0 0 i2 0 0 f3 i3 0 0 0 i4
0 0 1 0 0 0 0 0 0 0 0 g3 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From the above Gj, we can see that 2nd diagonal elements of the second and fourth slices are zeros.
If nonzero entries lie in the same position of di�erent slices, it will yield two possibilities. The �rst case is

that there exist two slices whose 2nd diagonal elements are nonzero. For these two slices, by subtracting one
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slice from the other slice we can turn the 2nd diagonal elements of one of them into zeros. After this, we can
obtain two slices of the last three slices of Gj whose 2nd diagonal elements are equal to zeros. For example,
the element e3e4f3f4 in T1 represents e3 ≠ 0, e4 ≠ 0, f3 ≠ 0, f4 ≠ 0, e2 = f2 = g2 = g3 = g4 = 0. From Remark
2.2, Gj is of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 h2 j2 0 e3 h3 j3 0 e4 h4 j4
0 1 0 0 0 0 0 i2 0 0 f3 i3 0 0 f4 i4
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For this Gj, through subtracting e4/e3 times the third slice from the fourth slice (or e3/e4 times the fourth
slice from the third slice), we can turn e4 and f4 (or e3 and f3 ) into zeros because e4f3 = f4e3 holds for almost
all Gj in (8). Then we get the second and fourth slices (or the second and third slices ) whose 2nd diagonal
elements are zeros. The second case is that there exist three slices whose 2nd diagonal elements are nonzero.
For these three slices, through subtractingone slice fromanother two slices, thenwecan turn the 2nddiagonal
elements of two of them into zeros. For example, the element e2e3e4f2f3f4 in T1 represents e2 ≠ 0, e3 ≠ 0,
e4 ≠ 0, f2 ≠ 0, f3 ≠ 0, f4 ≠ 0, g2 = g3 = g4 = 0. From Remark 2.2, Gj is of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 e3 h3 j3 0 e4 h4 j4
0 1 0 0 0 0 f2 i2 0 0 f3 i3 0 0 f4 i4
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For this Gj, through subtracting e3/e2 times the second slice from the third slice and e4/e2 times the second
slice from the fourth slice (or e2/e3 times the third slice from the second slice and e4/e3 times the third slice
from the fourth slice or e2/e4 times the fourth slice from the second slice and e3/e4 times the fourth slice from
the third slice), we can turn e3, f3, e4, f4 ( or e2, f2, e4, f4 or e2, f2, e3, f3 ) into zeros because e3f2 = f3e2,
e4f2 = f4e2, e4f3 = f4e3 holds for almost all Gj in (8). Then we get the third and fourth (or the second and
fourth or the second and third) slices whose 2nd diagonal elements are zeros.

Now we show that under each combination of T2, we can’t turn 2nd diagonal elements of any two slices
of the last three slices of Gj into zeros. For each combination in T2, we �nd that nonzero entries in ep , fp , gp
(p = 2, 3, 4) are in di�erent position of di�erent slices, which results in at least two slices whose 2nd diagonal
elements can’t be turned into zeros. For example, the element e2g3 in T2 represents e2 ≠ 0, g3 ≠ 0, e3 = e4 =
f2 = f3 = f4 = g2 = g4 = 0. From Remark 2.2, Gj is of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 0 h3 j3 0 0 h4 j4
0 1 0 0 0 0 0 i2 0 0 0 i3 0 0 0 i4
0 0 1 0 0 0 0 0 0 0 0 g3 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For this Gj, if we can turn e2 into zero, then we get the second and fourth slices whose 2nd diagonal elements
are all zeros; if we can turn g3 into zero, then we get the third and fourth slices whose 2nd diagonal elements
are all zeros. On the other hand, e2 can be turned into zero only by the (1,2) entry of the third slice or the (1,2)
entry of the fourth slice; g3 can be turned into zero only by the (3,4) entry of the second slice or the (3,4) entry
of the fourth slice. However, (1,2) entries of the third and fourth slices are all zeros; (3,4) entries of the second
and fourth slices are all zeros; so e2 and g3 can’t be turned into zeros. This implies that if nonzero entries are
in di�erent position of di�erent slices, we can’t turn any two slices of the last three slices whose 2nd diagonal
elements into zeros. Therefore, it makes no sense to continue to analyze the 3rd and 4th diagonal elements.
Consequently, in the next section, we no longer consider all the combinations in T2.

For each combination of T3, we have not found the relationship between ep , fp , gp and hp , ip , jp for p =
2, 3, 4. Consequently, in the next section analysis we no longer consider all the combinations in T3.
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4 Make the 3rd and 4th diagonal of the last three slices of Gj zero
In this section we analyze under what conditions we can turn the 3rd and the 4th diagonal elements of the
last three slices of Gj into zeros.

Our main idea is as follows. For each combination in T1, combining with expression (9), we can obtain
the relationship between ep , gp and hp , ip (p = 2, 3, 4). Through the relationship between them, we give
conditions that can turn the 3rd and 4th diagonal elements of the last three slices of Gj into zeros. Under
these conditions, we can turn Gj into canonical form (6).

Theorem 4.1. If one of ep , fp , gp (p = 2, 3, 4) is not equal to zero, the remaining eight of them are equal to
zeros, there are 6 combinations in T1, i.e., ep , gp (p = 2, 3, 4). If ex ≠ 0, the other of ep , fp , gp (p = 2, 3, 4) are
equal to zeros, under conditions ix = iy = iz = 0, hy jz ≠ jyhz, or if gx ≠ 0, the other of ep , fp , gp (p = 2, 3, 4) are
equal to zeros, under conditions hx = hy = hz = 0, jy iz ≠ iy jz, where x, y, z ∈ {2, 3, 4} and x ≠ y ≠ z, we can turn
Gj into canonical form (6).

Proof. Here, we only consider the combination that e2 ≠ 0, the remaining eight of ep , fp , gp (p = 2, 3, 4) are
equal to zeros. The combinations that e3 ≠ 0 (or e4 ≠ 0 or g2 ≠ 0 or g3 ≠ 0 or g4 ≠ 0), the remaining eight
of ep , fp , gp (p = 2, 3, 4) are equal to zeros can be proved in a similar way as the combination that e2 ≠ 0, the
remaining eight of ep , fp , gp (p = 2, 3, 4) are equal to zeros.

If e2 ≠ 0, e3 = e4 = f2 = f3 = f4 = g2 = g3 = g4 = 0, according to (9), we have i3 = i4 = 0, then Gj is of the
form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 0 h3 j3 0 0 h4 j4
0 1 0 0 0 0 0 i2 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because the mode-3 rank of Gj is 4, then h3j4 ≠ j3h4. Next, we show why the mode-3 rank of Gj is not equal to
4 if h3j4 = j3h4. Suppose h3 = 0, then j3h4 = 0. This yields three possibilities. The �rst case is j3 = 0, h4 ≠ 0,
then all the entries of the third slice are equal to zeros. The second case is j3 ≠ 0, h4 = 0, if j4 = 0, then all
the entries of the fourth slice are equal to zeros; if j4 ≠ 0, by subtracting j4/j3 times the third slice from the
fourth slice (or j3/j4 times the fourth slice from the third slice), we can turn j4 (or j3) into zero, then all the
entries of the fourth (or third) slice are equal to zeros. The third case is j3 = 0, h4 = 0, then all the entries
of the third slice are equal to zeros. The situations where we suppose that j4 = 0 or j3 = 0 or h4 = 0 can be
dealt with analogously. Suppose h3, j4, j3, h4 are nonzero, by subtracting h4/h3 times the third slice from the
fourth slice (or h3/h4 times the fourth slice from the third slice), we can turn h4 and j4 (or h3 and j3) into
zeros. Then all the entries of the third slice (or the fourth slice) are equal to zeros. From the above discussion
we can see that, if h3j4 = j3h4, there always exists a slice whose entries are all equal to zeros. This implies
that the mode-3 rank of Gj is 3. Thus we draw the conclusion that h3j4 ≠ j3h4.

Now we prove that i2 must be equal to zero, because i2 can be turned into zero only through (2,3) or (3,4)
entry of the second slice or through (2,4) entry of the third or (2,4) entry of the fourth slice. However, (2,3) and
(3,4) entries of the second slice, (2,4) entry of the third and fourth slices are all equal to zeros. This means in
the process of transforming Gj into canonical form, i2 can’t be turned into zero. Therefore, we must have i2
equal to zero.

Now we prove how we turn Gj into canonical form if e2 ≠ 0, e3 = e4 = f2 = f3 = f4 = g2 = g3 = g4 = 0,
under conditions that i2 = i3 = i4 = 0 and h3 j4 ≠ j3h4. In fact, under these conditions, Gj have the following
form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 0 h3 j3 0 0 h4 j4
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Firstly, we discuss how to standardize the last two slices. Because h3j4 ≠ j3h4, suppose h3 = 0, then j3h4 ≠ 0.
If j4 = 0, then the third slice only has its (1, 4) entry j3 nonzero, the fourth slice only has its (2, 3) entry h4

nonzero. We normalize them to one. By exchanging the third slice and the fourth slice, then we obtain the
following form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

If j4 ≠ 0, by subtracting j4/j3 times the third slice from the fourth slice, we can turn j4 into zero. After this,
the third slice only has j3 is nonzero, the fourth slice only has h4 is nonzero. Similarly, we normalize them to
one. By exchanging the third slice and the fourth slice, then we obtain (10). The situations where we suppose
that j4 = 0 or j3 = 0 or h4 = 0 can be dealt with analogously.

Next, we discuss how to standardize the second slice. If h2 = j2 = 0, then we have transformed Gj into
canonical form. If h2, j2 are nonzero, we can turn them into zeros. The speci�c method is: h2 can be turned
into zero by subtracting h2 times the third slice from the second slice, j2 can be turned into zero by subtracting
j2 times the fourth slice from the second slice.

Consequently, if ex ≠ 0, the remaining eight of ep , fp , gp (p = 2, 3, 4) are equal to zeros, under conditions
ix = iy = iz = 0 and hy jz ≠ jyhz, where x = 2, y = 3, z = 4 or x = 2, y = 4, z = 3, we can turn Gj into canonical
form.

Remark 4.2. In fact, theorem 4.1 contains the following six cases.
Let x = 2, y = 3, z = 4 or x = 2, y = 4, z = 3.
Case 1: If e2 ≠ 0, e3 = e4 = f2 = f3 = f4 = g2 = g3 = g4 = 0, under conditions i2 = i3 = i4 = 0 and h3j4 ≠ j3h4,

we can turn Gj into canonical form.
Case 2: If g2 ≠ 0, e2 = e3 = e4 = f2 = f3 = f4 = g3 = g4 = 0, under conditions h2 = h3 = h4 = 0 and

j3i4 ≠ i3 j4, we can turn Gj into canonical form.
Let x = 3, y = 2, z = 4 or x = 3, y = 4, z = 2.
Case 3: If e3 ≠ 0, e2 = e4 = f2 = f3 = f4 = g2 = g3 = g4 = 0, under conditions i2 = i3 = i4 = 0 and h2j4 ≠ j2h4,

we can turn Gj into canonical form.
Case 4: If g3 ≠ 0, e2 = e3 = e4 = f2 = f3 = f4 = g2 = g4 = 0, under conditions h2 = h3 = h4 = 0 and

j2i4 ≠ i2 j4, we can turn Gj into canonical form.
Let x = 4, y = 2, z = 3 or x = 4, y = 3, z = 2.
Case 5: If e4 ≠ 0, e2 = e3 = f2 = f3 = f4 = g2 = g3 = g4 = 0, under conditions i2 = i3 = i4 = 0 and h2j3 ≠ j2h3,

we can turn Gj into canonical form.
Case 6: If g4 ≠ 0, e2 = e3 = e4 = f2 = f3 = f4 = g2 = g3 = 0, under conditions h2 = h3 = h4 = 0 and

j2i3 ≠ i2 j3, we can turn Gj into canonical form.
For the sake of simplicity, we write the above six cases as follows:

ex ≠ 0, the other are zero, ix = iy = iz = 0, hy jz ≠ jyhz;
gx ≠ 0, the other are zero, hx = hy = hz = 0, iy jz ≠ jy iz;

where x, y, z ∈ {2, 3, 4} and x ≠ y ≠ z.
The following theorem is also written in a similar way, and we don’t repeat it. For example, exey ≠ 0, ix =

iy = iz = 0, h̃y jz ≠ j̃yhz, where x = 2, y = 3, z = 3, in Theorem 4.3 represents if e2 ≠ 0, e3 ≠ 0, e4 = f2 = f3 = f4 =
g2 = g3 = g4 = 0, under conditions i2 = i3 = i4 = 0 and h̃3j4 ≠ j̃3h4, can we turn Gj into canonical form.

Theorem 4.3. If two of ep , fp , gp (p = 2, 3, 4) are not equal to zeros, the remaining seven of them are equal to
zeros, there are 15 combinations in T1, i.e. e2e3, e2e4, e3e4, g2g3, g2g4, g3g4, e2f2, e3f3, e4f4, f2g2, f3g3, f4g4,
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e2g2, e3g3, e4g4. For each combinations, we can turn Gj into canonical form under the following conditions:

exey ≠ 0, ix = iy = iz = 0, h̃y jz ≠ j̃yhz;
gxgy ≠ 0, hx = hy = hz = 0, ĩy jz ≠ j̃y iz;
ex fx ≠ 0, iy = iz = 0, hy jz ≠ jyhz;
fxgx ≠ 0, hy = hz = 0, iy jz ≠ jy iz;
exgx ≠ 0, iy = hy = 0, izhz ≠ 0, jy ≠ 0, hx iz = ixhz;
(exgx ≠ 0, iyhy izhz ≠ 0, hx iy = ixhy , hy jz ≠ jyhz);
where x, y, z ∈ {2, 3, 4} and x ≠ y ≠ z.

Proof. Firstly, we discuss the combination that e2e3 ≠ 0, the remaining seven of ep , fp , gp (p = 2, 3, 4) are
equal to zeros. The combinations e2e4, e3e4, g2g3, g2g4, g3g4 can be similar as in the discussion with e2e3.

If e2e3 ≠ 0, e4 = f2 = f3 = f4 = g2 = g3 = g4 = 0, according to (9), we can obtain i4 = 0 and e2i3 = e3i2.
Because e2e3 ≠ 0, then i2 and i3 are zero or nonzero at the same time. This yields two possibilities.

The �rst case is i2 = i3 = 0. Then Gj is of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 e3 h3 j3 0 0 h4 j4
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By subtracting e3/e2 times the second slice from the third slice, we can turn e3 into zero. Then we obtain the
following form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 0 h̃3 j̃3 0 0 h4 j4
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where h̃3 = h3 − e3h2/e2, j̃3 = j3 − e3j2/e2. According to Theorem 4.1, under condition h̃3j4 ≠ j̃3h4, we can
turn Gj into canonical form. Analogously, by subtracting e2/e3 times the third slice from the second slice, we
can turn e2 into zero, under condition h̃2j4 ≠ j̃2h4, where h̃2 = h2 − e2h3/e3, j̃2 = j2 − e2 j3/e3, we can also
turn Gj into canonical form.

The second case is i2i3 ≠ 0. By subtracting e3/e2 times the second slice from the third slice, we can turn
e3, i3 into zeros according to e2i3 = e3i2. Then we obtain the following form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 0 h̃3 j̃3 0 0 h4 j4
0 1 0 0 0 0 0 i2 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where h̃3 = h3 − e3h2/e2, j̃3 = j3 − e3 j2/e2. According to Theorem 4.1, only under conditions i2 = 0 and
h̃3j4 ≠ j̃3h4, we can turn Gj into canonical form. This contradicts the fact that i2i3 ≠ 0.

Thus we conclude that if exey ≠ 0, the remaining seven of ep , fp , gp(p = 2, 3, 4) are equal to zeros, under
conditions ix = iy = iz = 0, h̃y jz ≠ j̃yhz, where x = 2, y = 3, z = 4 or x = 3, y = 2, z = 4, we can turn Gj into
canonical form (6).

Next, we discuss the combination that e2f2 ≠ 0, the remaining seven of ep , fp , gp (p = 2, 3, 4) are equal
to zeros. The combinations f2g2, e3f3, f3g3, e4f4, f4g4 can be similar as in the discussion with e2f2.

If e2f2 /= 0, e3 = e4 = f3 = f4 = g2 = g3 = g4 = 0, according to (9), we can obtain i3 = i4 = 0. Because
the mode-3 rank of Gj is 4, then h3j4 /= j3h4. The way to standardize the last two slices is the same as in
Theorem 4.1, so we don’t repeat it here. Now, we show how to standardize the second slice. The way to turn
h2 and j2 into zeros is the same as in Theorem 4.1. It remains to consider how to turn i2 into zero. In fact, if
i2 = 0, then we have transformed Gj into canonical form. If i2 ≠ 0, for every slice of Gj, by subtracting i2/f2
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times column 3 from column 4 and adding i2/f2 times row 4 to row 3 , we can turn i2 into zero. Then the (1,4)
entry of slice three is turned into −i2/f2. Next, by subtracting −i2/f2 times the fourth slice form the third slice,
we can turn (1, 4) entry of slice three into zero.

Consequently, if ex fx /= 0, the remaining seven of ep , fp , gp(p = 2, 3, 4) are equal to zeros, under
conditions iy = iz = 0 and hy jz /= jxhz, where x = 2, y = 3, z = 4 or x = 2, y = 4, z = 3, we can turn Gj
into canonical form.

Next, we discuss the combination that e2g2 /= 0, the remaining seven of ep , fp , gp (p = 2, 3, 4) are equal
to zeros. The combinations e3g3, e4g4 can be similar as in the discussion with e2g2.

If e2g2 /= 0, e3 = e4 = f2 = f3 = f4 = g3 = g4 = 0, according to (9), we have e2i3 = h3g2, e2i4 = h4g2.
Because e2g2 /= 0, so we must have i3 and h3 being zero or nonzero at the same time, i4 and h4 being zero or
nonzero at the same time. This yields four possibilities.

The �rst case is i3 = h3 = 0, i4h4 /= 0. Then Gj is of the form
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 0 0 j3 0 0 h4 j4
0 1 0 0 0 0 0 i2 0 0 0 0 0 0 0 i4
0 0 1 0 0 0 0 g2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because the mode-3 rank of Gj is 4, then j3 ≠ 0. Next, we normalize j3 to one, and it can be used to turn j2 and
j4 into zeros if j2 and j4 are nonzero. After this, by exchanging the third slice and the fourth slice, then we can
obtain the following form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 0 0 0 h4 0 0 0 0 1
0 1 0 0 0 0 0 i2 0 0 0 i4 0 0 0 0
0 0 1 0 0 0 0 g2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If h2 and i2 are equal to zeros, then we have turned Gj into canonical form. If one of h2, i2 is equal to zero,
we can’t turn Gj into canonical form. In fact, if h2 = 0, i2 ≠ 0, for every slice, by subtracting i2/g2 times row 3
from row 2 and adding i2/g2 times column 2 to column 3, we can turn i2 into zero. Butmeanwhile, h2 is turned
into nonzero. Similarly, if h2 ≠ 0, i2 = 0, while turning h2 into zero, i2 is turned into nonzero. Similarly to the
discussionof the above, if h2 and i2 arenonzero, after turn h2 into zero, i2 is turned into ĩ2 = i2+h2g2/e2.While
turning ĩ2 into zero, h2 is turned into nonzero. If we add a restriction condition h2i4 = i2h4, by subtracting
h4/h2 times the third slice from the second slice, we can turn h2 and i2 into zeros. Hence, we have turned Gj
into canonical form. From the above discussion we can see that, if i3 = h3 = 0, i4h4 /= 0, only under condition
h2i4 = i2h4 we can turn Gj into canonical form.

The second case is i3h3 ≠ 0, i4 = h4 = 0. This situation can be similar as in the discussion with i3 = h3 =
0, i4h4 /= 0.

The third case is i3 = h3 = i4 = h4 = 0. Then Gj is of the form
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 0 0 j3 0 0 0 j4
0 1 0 0 0 0 0 i2 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 g2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If one of j3, j4 is equal to zero, then themode-3 rank ofGj is equal to 3. If j3 and j4 are all equal to zeros, then the
mode-3 rank ofGj is equal to 2. If j3 and j4 are nonzero, by subtracting j4/j3 times the third slice from the fourth
slice, we can turn j4 into zero. Then the mode-3 rank of Gj is equal to 3. Consequently, if i3 = h3 = i4 = h4 = 0,
we can’t turn Gj into canonical form.

The fourth case is i3h3i4h4 /= 0. It follows from e2i3 = h3g2, e2i4 = h4g2 that i3h4 = i4h3. This means the
vectors (h3, i3) and (h4, i4) are proportional. If the vectors (h3, j3) and (h4, j4) are also proportional, then
the mode-3 rank of Gj is not equal to 4. Therefore, we conclude that h3j4 ≠ h4j3. Similarly to the discussion of
the case that i3 = h3 = 0, i4h4 /= 0. If we add a restriction condition h2i4 = i2h4 or h2i3 = i2h3, we can turn h2

and i2 into zero. Hence, if i3h3i4h4 /= 0, under conditions h3j4 ≠ h4 j3, h2i4 = i2h4 or h3j4 ≠ h4j3, h2i3 = i2h3,
we can turn Gj into canonical form.
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Based on the above argument, we draw the conclusion that if exgx ≠ 0, the remaining seven of ep , fp , gp
(p=2,3,4) are equal to zeros, under conditions iy = hy = 0, izhz ≠ 0, jy ≠ 0, hx iz = ixhz or iyhy izhz ≠ 0,
hx iy = ixhy, hy jz ≠ jyhz, where x = 2, y = 3, z = 4 or x = 2, y = 4, z = 3, we can turn Gj into canonical
form.

Theorem 4.4. If three of ep , fp , gp (p = 2, 3, 4) are not equal to zeros, the remaining six of them are equal to
zeros, there have 5 combinations in T1, i.e. e2e3e4, g2g3g4, e2f2g2, e3f3g3, e4f4g4. For each combinations, Gj
can be turned into canonical form under the following conditions:

exeyez ≠ 0, ix = iy = iz = 0, h̃y j̃z ≠ j̃y h̃z;
gxgygz ≠ 0, hx = hy = hz = 0, ĩy j̃z ≠ j̃y ĩz;
ex fxgx ≠ 0, iy = hy = 0, izhz ≠ 0, jy ≠ 0;
(ex fxgx ≠ 0, iyhy izhz ≠ 0, jyhz ≠ hy jz );
where x, y, z ∈ {2, 3, 4} and x ≠ y ≠ z.

Proof. Firstly, we discuss the combination that e2e3e4 ≠ 0, the remaining six of ep , fp , gp (p = 2, 3, 4) are
equal to zeros. The combination g2g3g4 can be similar as in the discussion with e2e3e4.

If e2e3e4 /= 0, f2 = f3 = f4 = g2 = g3 = g4 = 0, according to (9), we have e3i2 = i3e2, e4i2 = e2i4,
e4i3 = e3i4. Because e2e3e4 ≠ 0, so wemust have i2, i3, i4 being zero or nonzero at the same time. This yields
two possibilities. The �rst case is i2 = i3 = i4 = 0. The second case is i2i3i4 ≠ 0. Similarly to the discussion
of the situation e2e3 ≠ 0 in Theorem 4.3, only for the case that i2 = i3 = i4 = 0 we can turn Gj into canonical
form. Now, we show if i2 = i3 = i4 = 0, under what conditions we can turn Gj into canonical form. In fact, if
i2 = i3 = i4 = 0, then Gj is of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 e3 h3 j3 0 e4 h4 j4
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Through subtracting e3/e2 times the second slice from the third slice and e4/e2 times the second slice from
the fourth slice, we can turn e3 and e4 into zeros. Then Gj is of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 e2 h2 j2 0 0 h̃3 j̃3 0 0 h̃4 j̃4
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where h̃3 = h3 − e3h2/e2, j̃3 = j3 − e3j2/e2, h̃4 = h4 − e4h2/e2, j̃4 = j4 − e4j2/e2. According to the mode-3 rank
of Gj is 4, then h̃3 j̃4 ≠ j̃3h̃4. Thus we draw the conclusion that if exeyez ≠ 0, the remaining six of ep , fp , gp(p =
2, 3, 4) are equal to zeros, under the conditions ix = iy = iz = 0, h̃y j̃z ≠ j̃y h̃z, where x, y, z ∈ {2, 3, 4} and
x ≠ y ≠ z, we can turn Gj into canonical form.

Next, we discuss the combination that e2f2g2 ≠ 0, the remaining six of ep , fp , gp (p = 2, 3, 4) are equal
to zeros. The combinations e3f3g3, e4f4g4 can be similar as in the discussion with e2f2g2.

If e2f2g2 /= 0, e3 = e4 = f3 = f4 = g3 = g4 = 0, according to (9), we have e2i3 = h3g2, e2i4 = h4g2. Because
e2g2 ≠ 0, then i3 and h3 are zero or nonzero at the same time, i4 and h4 are zero or nonzero at the same
time. This yields four possibilities. The proof of these four cases is almost identical as the case that e2g2 ≠ 0
in Theorem 4.3, the major change is that h2 can be turned into zero by e2, i2 can be turned into zero by f2.
Consequently, if ex fxgx /= 0, the remaining six of ep , fp , gp(p = 2, 3, 4) are zeros, under conditions iy = hy = 0,
izhz ≠ 0, jy ≠ 0 or iyhy izhz ≠ 0, hy jz ≠ jyhz, where x = 2, y = 3, z = 4 or x = 2, y = 4, z = 3, we can turn Gj into
canonical form.

Theorem 4.5. If four of ep , fp , gp (p = 2, 3, 4) are not equal to zero, the remaining �ve of them are equal to
zeros, there have 6 combinations in T1, i.e. e2e3f2f3, e2e4f2f4, e3e4f3f4, f2f3g2g3, f2f4g2g4, f3f4g3g4. For each
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combination, Gj can be turned into canonical form under the following conditions:

exey fx fy ≠ 0, iz = 0, ix , iy being zero or nonzero at same time, h̃y jz ≠ j̃yhz;
fx fygxgy ≠ 0, hz = 0, hx , hy being zero or nonzero at same time, j̃y iz ≠ ĩy jz;
where x, y, z ∈ {2, 3, 4} and x ≠ y ≠ z.

Proof. Here,weonly discuss the combination that e2e3f2f3 ≠ 0, the remaining�ve of ep , fp , gp (p = 2, 3, 4)are
equal to zeros. The combinations e2e4f2f4, e3e4f3f4, f2f3g2g3, f2f4g2g4, f3f4g3g4 can be similar as in the
discussion with e2e3f2f3.

If e2e3f2f3 /= 0, e4 = f4 = g2 = g3 = g4 = 0, according to (9), we have i4 = 0 and e2i3 = e3i2. The proof of
this case is almost identical as the combination that e2e3 ≠ 0 in Theorem 4.3, the major change is that i2 (or
i3) can be turned into zero by f2 (or f3) if i2 (or i3) is nonzero.

Thus we conclude that if e2e3f2f3 /= 0, the remaining �ve of ep , fp , gp(p = 2, 3, 4) are equal to zeros,
under conditions iz = 0, ix , iy being zero or not at the same time, h̃y jz ≠ j̃yhz, where x = 2, y = 3, z = 4 or
x = 3, y = 2, z = 4, we can turn Gj into canonical form.

Theorem 4.6. If six of ep , fp , gp (p = 2, 3, 4) are not equal to zero, the remaining three of them are equal
to zeros, there we have 5 combinations in T1, i.e. e2e3e4f2f3f4, f2f3f4g2g3g4, e2f2g2e3f3g3, e2f2g2e4f4g4,
e3f3g3e4f4g4. For each combination, Gj can be turned into canonical form under the following conditions:

exeyez fx fy fz ≠ 0, ix , iy , iz being zero or nonzero at same time, h̃y j̃z ≠ j̃y h̃z;
fx fy fzgxgygz ≠ 0, hx , hy , hz being zero or nonzero at same time, j̃y ĩz ≠ ĩy j̃z;
ex fxgxey fygy ≠ 0, h̃y = ĩy = 0, hz iz ≠ 0, j̃y ≠ 0;
(ex fxgxey fygy ≠ 0, h̃y ĩy ≠ 0, hz = iz = 0, jz ≠ 0);
(ex fxgxey fygy ≠ 0, h̃y ĩyhz iz ≠ 0, h̃y jz ≠ j̃yhz);
where x, y, z ∈ {2, 3, 4} and x ≠ y ≠ z.

Proof. Firstly, we discuss the combination that e2e3e4f2f3f4 ≠ 0, the remaining three of ep , fp , gp (p = 2, 3, 4)
are equal to zeros. The combination f2f3f4g2g3g4 can be similar as in the discussion with e2e3e4f2f3f4. If
e2e3e4f2f3f4 /= 0, g2 = g3 = g4 = 0, according to (9), we have e2i3 = e3i2, e4i2 = e2i4, e4i3 = e3i4. The proof
of this combination is almost identical as the combination that e2e3e4 ≠ 0 in Theorem 4.4, the major change
is that i2 (or i3 or i4) can be turned into zero by f2 (or f3 or f4) if i2 (or i3 or i4) is nonzero. Thus we conclude
that if e2e3e4f2f3f4 /= 0, the remaining three of ep , fp , gp (p = 2, 3, 4) are equal to zeros, under conditions
ix , iy , iz being zero or not at the same time, h̃y j̃z ≠ j̃y h̃z, where x, y, y ∈ {2, 3, 4} and x ≠ y ≠ z, we can turn Gj
into canonical form.

Next, we discuss the combination that e2f2g2e3f3g3 ≠ 0, the remaining three of ep , fp , gp (p = 2, 3, 4)are
equal to zeros. The combinations e2f2g2e3f3g3, e2f2g2e4f4g4, e3f3g3e4f4g4 canbe similar as in thediscussion
with e2f2g2e3f3g3. If e2f2g2e3f3g3 /= 0, e4 = f4 = g4 = 0, according to (9), we have e3i2 − e2i3 + h3g2 − g3h2 =
0,e2i4 = h4g2 and e3i4 = h4g3. Because e2e3g2g3 ≠ 0 and e3/e2 = g3/g2 = α, then we obtain e2 ĩ3 = g2h̃3,
where ĩ3 = i3 −αi2, h̃3 = h3 −αh2. On the other hand, because e2e3g2g3 ≠ 0, so h̃3 and ĩ3 are zero or nonzero
at the same time, h4 and i4 are zero or nonzero at the same time. This yields four possibilities. These four
situations can be discussed as the situation that e2f2g2 ≠ 0, the remaining six of ep , fp , gp (p = 2, 3, 4) are
equal to zeros.

Consequently, if ex fxgxey fygy /= 0, the remaining three of ep , fp , gp (p = 2, 3, 4) are equal to zeros, under
conditions h̃y = ĩy = 0, hz iz ≠ 0, j̃y ≠ 0, or h̃y ĩy ≠ 0, hz = iz = 0, jz ≠ 0, or h̃y ĩyhz iz ≠ 0, h̃y jz ≠ j̃yhz, where
x = 2, y = 3, z = 4, or x = 2, y = 4, z = 3, we can turn Gj into canonical form.
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Theorem 4.7. If ep , fp , gp (p = 2, 3, 4) are all nonzero,Gj can be turned into canonical formunder the following
conditions:

exeyez fx fy fzgxgygz ≠ 0, h̃y = ĩy = 0, h̃z = ĩz ≠ 0, j̃y ≠ 0;
(exeyez fx fy fzgxgygz ≠ 0, h̃y ĩy h̃z ĩz ≠ 0, j̃y h̃z ≠ h̃y j̃z);
where x, y, z ∈ {2, 3, 4} and x ≠ y ≠ z.

Proof. According to the second conclusion of Property 2.1, if ep , fp , gp ( p = 2, 3, 4 ) are all nonzero, the
vectors (ep , fp , gp) (p = 2, 3, 4) being proportional. Then we can turn e3, e4, f3, f4, g3, g4 into zeros due to
the vectors (ep , fp , gp) (p = 2, 3, 4) are proportional. Then we obtain the following for the last three slices of
Gj:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 e2 h2 j2 0 0 h̃3 j̃3 0 0 h̃4 j̃4
0 0 f2 i2 0 0 0 ĩ3 0 0 0 ĩ4
0 0 0 g2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where h̃3 = h3 − αh2, j̃3 = j3 − αj2, h̃4 = h4 − βh2, j̃4 = j4 − βj2 and α = e3/e2, β = e4/e2.

Now we show that equality e2 ĩ3 = g2h̃3 and e2 ĩ4 = g2h̃4 holds. Firstly, we write e3 = αe2, g3 = αg2,e4 =
βe2, g4 = βg2. Next, by substituting them into the �rst two equations of (9), we obtain e2 ĩ3 = g2h̃3 and
e2 ĩ4 = g2h̃4. Because e2g2 ≠ 0, then ĩ3 and h̃3 are zero or nonzero at the same time, ĩ4 and h̃4 are zero or
nonzero at the same time. This yields four possibilities. These four situation can be discussed just as the
situation that e2e3e4f2f3f4 ≠ 0, the remaining three of ep , fp , gp(p = 2, 3, 4) are equal to zeros.

Consequently, if ex fxgxey fy , gyez fzgz are nonzero, under conditions h̃y = ĩy = 0, h̃z = ĩz ≠ 0, j̃y ≠ 0 or
h̃y ĩy h̃z ĩz ≠ 0, j̃y h̃z ≠ h̃y j̃z , we can turn Gj into canonical form.

5 Concluding remarks
In this paper, we have studied under what conditions we can turn Gj into canonical form (6) if some of the
upper triangular entries of the last three slices of Gj are zeros. In addition, we have shown how to turn Gj into
canonical form under these conditions. In the future, it will be interesting to explore the connection between
our three order generalization of the Jordan canonical form and eigenvectors for three order arrays.
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