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Abstract: In this paper we investigate the stochastic retarded reaction-diffusion equations with multiplicative
white noise on unbounded domain R" (n > 2). We first transform the retarded reaction-diffusion equations
into the deterministic reaction-diffusion equations with random parameter by Ornstein-Uhlenbeck process.
Next, we show the original equations generate the random dynamical systems, and prove the existence of
random attractors by conjugation relation between two random dynamical systems. In this process, we use
the cut-off technique to obtain the pullback asymptotic compactness.
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1 Introduction

In this paper we investigate a class of stochastic partial differential equations, which are widely used in
quantum field theory, statistical mechanics and financial mathematics. It is known that there are many
dynamical systems, depending on both current and historical states. They are referred to as time-decay
dynamical systems and can be described by retarded partial differential equations. Hence, it is very important
to study the properties of retarded partial differential equations.

In this paper, we consider the asymptotic behavior of the solutions to the following stochastic retarded
reaction-diffusion equation with multiplicative noise in the whole space R" (n > 2):

du + (Au - Au)dt = ( F(x, u(t, x)) + G(x, u(t - h, x)) + g(x) ) dt + eu o dw. (1)

Here A is a positive constant; h > 0 is the delay time of the system; F and G are given functions satisfying
certain conditions which will be given in Section 2; g is a given function defined on R"; w is a two-sided
real-valued Wiener process on a probability space (Q, F, IP), with

Q={weCR,R): w(0) =0},
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the Borel g-algebra & on Q is generated by the compact open topology [2] and P is the corresponding Wiener
measure on JF; € is a positive parameter; o denotes the Stratonovich sense in the stochastic term. We identify
w(t) with we(w), i.e. we(w) = w(t, w) = w(t), t € R.

One of the most important problems for stochastic differential equations is to study the asymptotic
behavior of the solutions. The asymptotic behavior of random dynamical systems can be described by its
random attractors. The existence of attractors for partial differential equations has been studied by many
authors, see [3, 12, 16, 17, 20-27, 29, 31, 32, 34] and the references therein. However, to the best of our
knowledge, the studies of attractors for retarded partial differential equations are very few, especially for
the stochastic retarded partial differential equations. The attractors for the deterministic retarded partial
differential equations were investigated in [6, 7, 9, 33, 35], and random attractors for stochastic retarded
partial differential equations were studied in [13, 14, 30, 36]. In [13], the authors studied the existence of
random attractor for stochastic retarded reaction-diffusion equations with additive noise, while in [14, 30, 36],
the authors studied the random attractors for stochastic retarded lattice dynamical systems. In this paper,
we will study the existence of the random attractors for stochastic retarded reaction-diffusion equations
with multiplicative white noise on unbounded domain R". In the bounded domain case, the compactness of
random absorbing set can be obtained by Sobolev embeddings theory. However, in the unbounded domain
case, we can not get compactness in this way, because Sobolev embeddings are not compact. Hence, the cut-
off technique will be used to obtain the compactness. This technique has been used by many authors (see
[13, 21, 26, 27]).

The remainder of the paper is organized as follows. In section 2, we recall an important theorem which
will be used to obtain the existence of random attractor, and transform the stochastic retarded partial
differential equations to random ones by Ornstein-Uhlenbeck process. We will show that for each w € Q,
the random equation has a unique solution. In Section 3, we get some useful estimates for the solution of the
random equation. At last, we get the existence of the random attractor.

2 Preliminaries and Random Dynamical Systems

In this section we introduce some notations and recall some basic knowledge about random attractors for
random dynamical systems (RDS). The reader can refer to [2, 3, 10, 11, 17] for more details.

First, we introduce some notations which will be used in the following. Let || - || and (-, -) be the norm
and inner product in L*>(R™). For fixed h > 0, let & = C([-h, 0], L>(R™)), and let the norm of & be ||f||s =
SUP;e(_n,op [If(8)]]. Then, it is easy to see that G is a Banach space. Let (X, || - ||x) be a Banach space with
Borel o—algebra B(X), and let (Q, F, P) be a probability space. For a < b, t € [a, b] and continuous function
u € C(la - h, b], L2(R9)), define ul(s) = u(t + s) for s € [-h, 0]. From the definition, one can see that, for
tela,bl,u' €6.

Let (X, || - ||x) be a Banach space with Borel o—algebra B(X), and let (Q, &, P) be a probability space.

Definition 2.1. (Q, F, P, (6¢)¢cr) is called a metric dynamical system, if 0 : R x Q » Qis (B(R) x F, F)-
measurable, 0 is the identity on Q, Os,t = 00 05 forall s, t € Rand 6P =P forall t € R.

Definition 2.2. A stochastic process ¢ is called a continuous random dynamical system (RDS) over
(Q,F,P, (60)¢cr), if P is (B([0, +o0)) x F x B(X), B(X))-neasurable, and for all w € Q,

(1) the mapping ¢(t, w, ) : X » X, x » ¢(t, w, x) is continuous for every t = 0;

(2) ¢(0, w, -) is the identity on X;

B3)Pp(s+t,w,) = Pt, Osw, ) o p(s, w,-) foralls, t > 0.

Definition 2.3. (1) Arandom set {B(w)}ycq of X is called bounded if there exists xo € X and a random variable
r(w) > 0, such that
Bw)c {x e X: ||x-xo||x cr(w), xo € X}, forall we Q.
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(2) A random set {B(w)} ycq is called a compact random set if B(w) is compact for all w € Q.
(3) A random set {B(w)}yco C X is called tempered with respect to (0¢)¢cr, if forP - a.e. w € Q,

lim e sup |[|x|[x =0 forall y>O. )
t>+oo XEB(6-w)

(4) A random variable r(w) is said to be tempered with respect to (0¢)¢cr, if forP— a.e. w € Q,
tl_im e |r(6-tw)| = 0 forall y > 0. (3)

In the following, we assume that ¢ is a continuous RDS on X over (Q, F, P, (6¢):cr), and 2 is a collection of
random subsets of X.

Definition 2.4. Let {K(w)}y,co € 2. Then {K(w)},cq is called a random absorbing set for ¢ in 2 if for every
{B(w)} € 2 andP - a.e. w € Q, there exists T(B, w) > 0, such that

¢(t, 0_¢tw, B(6_tw)) C K(w) forall t=T(B,w). (4)

Definition 2.5. A random set {A(w)}ycq of X is called a 9-random attractor (or Z-pullback attractor) for ¢,
if the following conditions are satisfied:

(1) {A(w)}weq is compact, and w > d(x, A(w)) is measurable for every x € X;

(2) {A(w)}yeq is invariant, that is,

o(t, w, A(w)) = A(Brw) Vt = 0. (5)
(3) {A(w)}weq attracts every set in 2, that is, for every {B(w)}weo € 2, w € Q,

Jim dist(¢(t, 0-tw, B(A-1w)), A(w)) = 0, (6)

where dist(Y, Z) = sup 1r€1£ [ly - z||x is the Hausdorff semi-metrix (Y C X, Z C X).
yeyY 2z

Definition 2.6. ¢ is said to be 2-pullback asymptotically compact in X, if for all B € 2 and P-a.e. w € Q,
{(;b(tn, 0w, xn)}‘:1 has a convergent subsequence in X, as tn > oo, and x, € B(6_¢,w).

At the end of this section, we refer to [3, 17] for the existence of random attractor for continuous RDS.

Proposition 2.7. Let {K(w)}yco € 2 be a random absorbing set for the continuous RDS ¢ in 2 and ¢ is &-
pullback asymptotically compact in X. Then ¢ has a unique 2-random attractor {A(w)}ycq Which is given by

A(a)) = ﬁrgoutzr(l)(t, 0w, K(G_tw)) (7)

In the rest of this paper we will assume that Z is the collection of all tempered random subsets of & and we
will prove that the stochastic retarded reaction-diffusion equation has a Z-pullback random attractor.

In the remaining part of this section we show that there is a continuous random dynamical system
generated by the following stochastic retarded reaction-diffusion equation on R" with the multiplicative
noise:

du + (Au - Au)dt = ( F(x, u(t, x)) + G(x, u(t - h,x)) + g(x) ) dt + euodw, x€R", t>0, (8)
with the initial condition
u(t,x) = up(t,x), xeR", te[-h,O0]. 9)

Here g is a given function in L?(R"), and F, G are continuous functions satisfying the following conditions:
(A1) F : R" xR - R s a continuous function such that forall x ¢ R"and s € R,

F(x, s)s < —a1|s|? + B1(x); (10)
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IF(x, s)| < az|s]P™! + Bo(x); (1)
%F(x, s) < a3; (12)
I%F(x, s)| < B3(x). (13)

Here a;, a,, as are positive constants, p > 2, B1(x), B2(x), B3(x) are nonnegative functions on R", such that
B1(x) € L*(R™), and B (x), B3(x) € L*2(R").
(A2) G : R" xR > R is a continuous function such that for all x € R" and s1, s, € R,

|G(x, s1) — G(x, 52)| < as|s1 - S2l; (14)
|G(x, s)| < B4(x)|s| + Bs(x). (15)

Here a, is a positive constant, B4(x), Bs(x) are nonnegative functions on R" such that B4(x) € L%(R”) N
L=(R"), Bs(x) € L*(RM).

Example 2.8. Forx c R",s,s1,S, € Randp > 2, let
F(x,s) = —ai|s|P 'sgn(s);  G(x,s) = az,e’xzs.

It is easy to check that the functions F and G in Example 2.8 satisfy Condition (A1) and (A2).
In what follows we consider the probability space (Q, .#, P) which is defined in Section 1. Let

biw(-)=w(-+t)-w(t), teR. (16)

Then (Q, .#, P, (6)cr) is an ergodic metric dynamical system. Since the probability space (Q, #,P) is
canonical, one has
w(t, w) = w(t), w(t,0sw)=w(t+s,w)-w(s,w). (17)

To study the random attractor for problem (8)-(9), we first transform that system into a deterministic system
with random parameter. Let

0
z(0w) = —p / e’ (B:w)(s)ds, teR.

Then, one has that z(6;w) is the Ornstein-Uhlenbeck process and solves the following equation (see [15] for
details):
dz + uzdt = dw(t). (18)

Moreover, the random variable z(0;w) is tempered, and z(0;w) is IP-a.e. continuous. It follows from Proposi-
tion 4.3.3 [2] that there exists a tempered function r(w) > 0 such that

|z(w)| + |z(w)|* < r(w), (19)

where r(w) satisfies, for a > 0 and for P-a.e. w € Q,
r0w) < ellr(w), teR. (20)

Then it follows that for a > 0 and for P-a.e. w € Q,

2(0:w)| + |2(0:w)* < e2Ir(w), teR, (1)

12(0,p )| + |20, pw)? < €2 r(w) < et (w), teR. (22)
By [9], z(6:w) has the following properties:

lim Letw) =

o, (23)
t>+oc0 t
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0
lim 1 / |z(Bsw)|ds = E|z|, (24)
>*oo |t‘
-t
1
E|z| < \/E|z|]? = . (25)
e

It follows from (23) and (25) that there exists a positive constant u > 0 small enough, such that for ¢ > 0 large
enough,

0
Zey/|z(05w)|ds < %t; 2€|z(6:w)]| < %t. (26)

In this paper we consider the weak solutions of (8)-(9) and (30)-(31).

Definition 2.9. For any up € &, let u : [0, 00) x Q > L*(R"). Suppose that u(-, w, up) : [0, e0) > L*(R") is
continuous and "“ is measurable. Then we say that u is a weak solution of (8)-(9), if u(t, w, ug) = uo(t, w),
tel[-h,0l,we Q and u € L*([0, T], H'(R")) N LP([0, T], LP(R")), for any T > 0, and for any ¢ € C(R")

T
(u(T), §) - (0(0), ) + / (u(t), Ap - Ad) dt
0

T T
=/(F(-,u(t))+G(-,u(t—h))+g, ®) dt+e/(¢,uodw), 27)
0 0

P-a.e.w € Q.

Suppose that u is a weak solution of (8)-(9). Let v(t) = e ?Cy(¢), vo(t) = e Oy, (t) and i = O,

Then one has that
T T
(u(T), ¢) - (uO(O), ¢)) = / (%, ¢> / (ai e G‘w)v(t)) , ¢> dt
0 0

T
/(atv(t) ¢> dt+e/(1/) vodz)
0
T

= (v(T), ) - (vo(0), ) + e/(vj), vodw) —ye/ (¥, z(6:w)v) dt. (28)
)

0

In the last step of (28) we use (18). Hence, it follows from (28) and the definition of weak solution that

T
(V(T)’ l/)) - (VO(O)’ l/)) +/ (V(t), Al/) —Al/)) dt
0

T

T
_ /e—ez(Gtw) (F(, eez(sz)v(t)) +G(, eez(fohw)v(t -h)+g, !I)) dt + ]16/ (l[), Z(Gtw)v) dt. (29)
0

0
Then function v satisfying (29) is said to be the weak solution of the following equation:

% + Av = Av =e PO E(x, 70Dy (¢ X)) + e 7O G(x, 7@y (¢ - h, x)) (30)

te EZ(et“’)g(x) + eyz(etw)v

with the initial condition

vo(t, x) = e 0 y(t,x), xeR", te[-h,0]. (31)
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Equation (30)-(31) can be seen as a deterministic partial differential equation with random coefficients.

We use a similar method as in [4] to obtain the existence of weak solution to equation (30)-(31). First,
using the Galerkin method as in [28], we can get that, under the condition (A1) and (A2), for any bounded
domain O C R", (30)-(31) has a unique weak solution v(, w, vo) € C ([0, o), L*(0)) N L}, .. ([0, =), H§(0)) N
L’l"oC ([O, o), LP (O)), for P-a.e. w € Q. We can take the domain to be a family of balls, and the radius of
balls tend to oo. Then, one can get that v € L?(R") is the unique weak solution of (30)-(31) on R". Then,
u(t) = e?@@y(¢) is a unique weak solution to (8)-(9). Similar as Theorem 12 [13], we can show that (30)-(31)

generates a continuous random dynamical system (@(t))eo over (Q, F, P, (0¢)¢cr), with

@(t, 0w, B(O_w)) = V'(-, w, o), we Q, voeS, (32
and (8)-(9) generates a continuous random dynamical system (¥(t))s0 over (Q, F, P, (6¢);cr), with

Y(t, 0-cw, B(O_w)) = u'(-, w, up), weQ, upe 6. (33)

Notice that two dynamical systems are conjugate to each other. Therefore, in the following sections, we only
consider the existence of random attractor of (@(t))s0.

3 Uniform estimates of solutions

In this section we prove the existence of the random attractor for random dynamical system (@(t))o. We first
give some useful estimates on the mild solutions of equation (30)-(31).

Lemma 3.1. Random dynamical system @ has a random absorbing set {K(w)},cq in 2, that is, for any
{B(w)}weo € 2 and P-a.e.w € Q, there is Tg(w) > 0, such that ®(t, O_;w, B(0_;w)) C K(w) for all t > Tg(w).

Proof. Taking the inner product of (30) with v, we get that

%(%_HVHZ +A|v])? +||VV])? = e"ez(ef‘”)/F(x, Oy (¢, x))vdx
R"
-€z(6;w) €z(0;_hw) _ -€z(6;w) 2
+e G(x, e v(t - h, x))vdx + e glvdx + euz(6w)||v||*. (34)
Rr Rr

We now estimate each term on the right hand side of (34). For the first term, by condition (A1) and Young
inequality we have that

e"ez(ef“’)/F(x, eSOy (¢, X)vdx < e"zez(ef“’)/—a1|eez(9“”)v|p + B1(x)dx

Rn R
= —ay POy P, 1 720 By || (35)
Note that by Young inequality, we have that forall a, b, ¢ > 0, a, 8,y > 1,and % + % + % =1,
a* bf
abc<s — + =+ —. (36)
a By

For the second term on the right hand side of (34), by condition (A2) and (36), we obtain that

e 70w / G(x, e O9y(t — h, x))vdx

Rn

< e—ez(e,w)/ﬁ4(x)
Rn

e“?Or@y (¢ — h, x)v| dx + e 70 /B5 (0)|v|dx
]RY[
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/(e = ez(etw)‘v‘) ’V(t—h X)| ( 2= 2p€z(9tw)+ez(9( hw)ﬁ (X)) dx + e~ Bfw)/ﬁs(x)‘v‘dx

Rn

< azl (p Z)ez(etw)Hva + 26——h|‘v(t h X)|| + e et;)zol’ez(e,w)Jr 2 5 €2(0;- hw)HB Hp >
1
A
where c; is a positive constant depending on a, A and h. For the third term on the right hand side of (34), by
Young inequality,

AV Lo g 2, (37)

e—ez(et(u)/g(x)vdxSZ Zezezw)HgH + = ||VH (38)
Rn

Then it follows from (34) - (38) that, forall ¢t = O

d 2 2 -2)ez(6
eI+ 2017V + e 2=y,

N

< (2eu[z0)| - A) VI + A IVE~ B )| + €20 200 1 gy RO e

4-4p

(26}1\2(0@)\ ) [vI|? +/21 ( “th(t h, x)||? \|v||2) +Cre 270 | ooz €50y 7 e2(0nw) ,(39)

with ¢; = 2Bl + £Bs])> + $Ig]I%, ¢35 = 2c1\|ﬁ4||1%. Applying Gronwall inequality, we obtain that, for all
t>0,

t t
V| +2/e§(s—t)+zey S 0l Gyl 2ds + g /eg(s-zmey s 0w dr+(p-DezOw)| 2 g
0 0

t
<e -dt+2ep [ 200, m)\dTHv H 4/ 2(s O)+2ep [ |26, cu)|d‘r( ——hHV(S h)H ~ vl )
2
0

t t
+Cy / e%(s—t)JrZey fs’ \z(efa))|dr—2€z(0[w)ds + C3/ (s t)+2ep ft |z(9,w)\dr+4 4p ez(Gsw)+ 2p ? €2(6;- hw)dS. (40)
0 0
Notice that

As-2ep [ |2(0; w)|dT

e e'%h||v(s - h)||*ds

—

~ O

-h

RISPEP |z(01w)|dfe‘%h|‘V(s)szS

=

0 t-h
h A h
/ezs 2ep [5* \z(GTa))|d1||v(s)|| ds_}_/egs—Zeyfos* \z(GTm)|dT||v(s)||2ds

-h 0
t-h

< hlvolle /e 26 i 60l ) 2 s
0

< hllvolle + / eds-26n i I26:)dr [ (g)) 12, 41)
0

Hence, it follows from (41) that

t
5 [ etecoman o (et - iR - 1) ds
0
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t
/Z\e dtr2ep N |z(9[w)|dr/ezs 2ep [; |2(6:w)|dT ——h”v(s _ h)”zds

0
t

_A g heaen [} |z(6[w)\dr/ezs 2ep 3 l2Owlar) 12 g
2

0
Ah 2 't
< e St+2ep [; \z(etw)|dr||V0H .

Then, (40) and (42) imply that

t t

— 869

(42)

V|2 + z/eg(s-mzey 1 0wldr) 7y 2 ds + al/eg(s-mzey st 20w drp-2)ez(0:a)) |1 g

0 0
t
< (1 + )e Zt+2€].t N |Z(9t(l))|dTHv0||26 + e / e%(s—t)+2€,u fst |z(9[a))\dr—2€z(6[(u)ds

0

t
t 4 Ap 2p
+C3/ (s t)+2€yf |z(9tw)|d‘r+ ez(0;(u)+ 5 €2(6s- ;,w)ds
0

For fixed ¢ € [-h, 0], we have that, for t > -0,

Vit + 0| = (1 + Ay e Bseds2em 7 0wl 2

t+o

+c, / e%(s—t—0)+2€y Jee \z(G,w)ldr—Zez(st)ds

0
t+o

+C3 /ez(s t-0)+2eu f”" |z(6, a))\dﬂ-l‘ 4P e2(0, w)+p L e2(0 s,hw)ds
0

o (1 My 0020 o 2

t
Ah A(g— t _
+cye’ /ez(s t)+2€yfS |z(6: w)|dT Zez(Gs{u)ds
0

t
A M 2p
+c3e / (s t)+2€y/ |z(6, w)ldr+ ez(Gsw)+ 5 €2(05_pw) ds.
0

and for t € [0, —0o],

Hm+mﬁﬂm%
< (1 n )ez(h t)+2€,uf0 |z(6, (u)|d‘r||V0H26

t
Ah A ¢
+C2€7/€7(5_t)+2€” I |z(9,w)\dr—2€z(95w)ds

0

t
Ah A 4- 417 2p
+c3e’ /ez(s t)+26yf |z(6, w)|d‘r+ €z(0s a))+ 5 €2(60s- hw)dS.
0

Due to (44) and (45), we find that forall t = 0

A(h-t)+2ep fo |z(6:w)|dT

IIVtIIéS(1+ )ez [Ivoll&

(43)

(44)

(45)
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t
Ah As— t -
IIPS: /ez(s O+2ep [ |2(6: w)|dr 2ez(65w) 4o

DE GRUYTER

0
t
rose / 35—+ 26p [} 200,0)|dr+ 42 e2(050)+ 2 €20, y0) g (46)
0
Replacing w by 6w in (46), we get that forall t > 0
V60w, vo(B- s < (1 + A%y 20-0s26 I 00l 9 ) 2
¢
o6 / oA (5-0w2e [1 |2(0,w)|dT-262(05 @) g
0
t
+c3e% / Ms-t)+2ep [ |20 tcu)|dr+4 4P e2(0s tw)"'p L e2(05-¢- hw)ds (47)
0
By (26), one has that for any vo(0-¢w) € B(6-;w),
Ah Ah-t)+2ep [ |2(0r—¢w)|dT 2
t11£13°(1+ —)e:2 0 [lvolla
= lim (14 A0 gdr0en [ 0wl
A
th?olo(l + )ef(h‘t)WtHvoHZG =0 (48)
It follows from (26) that for any vo(6-;w) € B(0-1w),
¢ 0
Cze% /e%(s—t)+25y fS‘ |z(6Ha))|dT—Zez(Os,[w)dS _ Cze% /e%s+26y J“SO \z(0,w)|d-r—2€z(05w)ds
0 %t
0 0
< cze%}l /e%S"Zezw“")ds < cze% /e%S_%S"%Sds < to0, (49)
Similarly, we can get that
t
c3e% /e%(s t+2ep [!|2(0,- ,w)|dr+" P 2(6s- 1)+ 25 2 €2(0s-- hw)ds
0
0
- C3€A7h /ezs+25y J2 |z(6, w)ldr+“ 4D e2(0;w)+ 25 2 ez(0;- ,,w)ds
-t
0
< c3e% /e%s+ﬂez(9 (u)+ 2p 5 €2(6s- ha))ds < +oo. (50)
Set
0 0
p%(w) =1+ Cze% /e%s—Ze‘z(Bs(u)ds + CBQ% /e%s+ﬂez(6 w)+ 2 5 €2(0s- hw)dS. (51)
Then, there exists a Tg(w) > 0, such that for all t > Tz(w),
V' (0-cw, vo(6-cw))||& < pT(w). (52)
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To show p?(w) is tempered, we need only to prove that for any y > 0 small enough, the following holds
Jlim eV pi(6_w)=0. (53)

Using (26) again, one has that for y < A small enough,

0 0
lim et 6%5—262(95—zw)d5 < lim e e%s—Zez(Os,ta))dS
400 t>+o0
o 7

t
. _ Y — . _3
lim e ”‘/e4(5+‘) 2e200:0) g — lim e @t

8\0

t
e%s—Zez(Gsw)ds +/e%s—2e:z(95w)ds
0

t>+o00 t>+o00
0 t
< tl;zgoe’%y‘ /e%s’%sds+/e%s*%sds =0. (54)
o 0
Similarly, we can get that
0
tl_im eVt / e%s+%ez(@s,ta))+1%ez(03,[,ha))ds -o. (55)
+o0

In view of (54) and (55), we find that p3(w) is tempered. This ends the proof. O

In Lemma 3.1, we show that {K(w)},cq is a random absorbing set for @. To prove @ has a random attractor,
we need to show that @ is Z-pullback asymptotically compact. Therefore, we should obtain some estimates
for Vv.

Lemma 3.2. There exists a tempered random variable p,(w) > 0 such that for any {B(w)}wco € Z and vo(w) €
B(w), there exists a Tg(w) > O such that the solution v of (30)-(31) satisfies, for P-a.e. w € Q, for all t > Tz(Q),

t+1

/ IVV(s, 0w, vo(B-w))||*ds < pa(w). (56)
t
Proof. By (43), we have that forall t > 0

t
Z/e%(s—t)+2€yf5[ |z(9rw)|d1||vv||2d5 < (1 " %)e—%tﬂey N \z(Blw)\dTHVOHZG n
0

t t
A t A ¢ = 2
Cz/ei(s—t)ﬁey /s \z(etw)|d‘r—Zez(9[a})dS +c3 /ei(s—t)+2€y /s |z(6t(u)|d‘r+pff62(05(4))4-17”262(65,;,0))‘15. (57)
0

0

Let Tg(w) be the positive constant defined in Lemma 4.1. Replacing w by 0_;w in (57), by (48) - (50), one has
that for all t = Tg(w),

t
2 [ ettemzen O Sy(s, 0,10, vo(0-rw)] s
0

t
< (1 + ATh)e—%HZey N |Z(61—tw)|dr‘|v0(9_tw)||26 e / e%(s—t)+2€y N |z(9Hm)\dr—Zez(GS,tw)ds
0

t
A 4-4 2
+C3 / ei(s—t)+2€y fS’ |z(9Hw)|d‘r+szez(es,[m)er—f’zez(GS_(_hw) ds
0
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< pi(w). (58)

In another aspect, for s € [t, t + 1],

t+1
/ 27t DR2eu [ 2O 0ldT |G y(s 0w, V(6 w))||2ds

0
t+1

[ elrman O (s, 6.1, vo(0-r )] s

t
t+1

_A_ X T
o472 a0 / IVV(s, 81, vo(B-10))] ds. )
t
It follows from (58) and (59) that
t+1
) 4+2ep max |z(0:0)| >
[IVV(s, O-t-1w, vo(O-t1w))||“ds < e e pi(w). (60)

t
Replacing w by 8, w in the last inequality we obtain that

t+1

/ [|Vv(s, 0-tw, Vo(@-ta)))szS <e

A
5+2ep max IZ(GTw)\pz

1(w) = pa(w). (61)

This ends the proof. O

Lemma 3.3. There exists a tempered random variable ps(w) > 0 such that for any {B(w)}ycq € Z and vo(w) €
B(w), there exists a Tg(w) > 0 such that the solution v of (30)-(31) satisfies, for P-a.e. w € Q, forall t > Tg(w) +
h+1,ando., 0, € [-h, 0],

[Vt 0-w, vo(6-))||” < p3(w), (62)
t+0o,
/HAv(s,G_tw,vo(G_tw))szs < py(w). (63)

Proof. Taking the inner product of (30) with -Av, we get that

3 gglITVIE+ AV + v = e [ P, e=0u(e, 0)avx -
]Rn
e 70 [ G(x, e 0nry(t - h, x))Avdx — e 7O 2
, s g()Avdx + euz(6:w)||Vv||”. (64)
Rn Rn

We now estimate each term on the right-hand side of (64). For the first term, by Young inequality and condition
(A1), we have

—e¢#6w) / F(x, e“C9y(t, x))Avdx

Rn

_ estou) [ OF (x, 0Dy . Tydx + ‘LF(X, Oy vy |2 dx
Sx 0s
Rn .
&0 s | |9V + s | 9V

(1+a3)||Vv]] + %e””(@wnﬁg”z. (65)

IN

IN
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For the second term, it follows from condition (A2) and Young inequality that

_e€#0w) / G(x, eeZ(Q""w)v(t - h, x))Avdx
Rn

< g €40 / (eezw""“’)ﬁl,(x)|v(t - h,x)| + ﬁs(x)) Avdx

Rn

%||Av||2 + 2 2620w 2€2(01-h0) /,Bf,(x)|v(t — h, x)|*dx + é“AvHZ +2¢7262(00) /ﬁ%(x)dx
R R

IN

1 - -
< Zl1AVI[? + 2e 260200 g y(e - h)| |7 + 272670 s . (66)

The third term is bounded by

—e 00 [ govdx| < 7|avI] + e gl (©7)
RH
By (64) - (67), we find that for all ¢ = 0,

%HVVHZ +114v]]7 < 2(1 + a3)|[VV| | + cse 200 4 gem2e B 2es 00l 12 | [v(t - h)|P,  (68)
with cs = 4(|Bs||* + 2|g||* + 1||B5]|>. Let Tg(w) be the positive constant defined in Lemma 3.1, take ¢ > Tp(w)
and s € [t, t + 1]. Integrating (68) over [s, t + 1], we get that

t+1

IVV(t+1, w, vo(w))||* < |[VV(s, w, vo(@))||* +2(1 + a3) / IVv(z, , vo(w))||*dT

S

t+1 t+1
+Cs /e’zez(ef“')d‘r +4]|Bs|| 2~ /e’zez(ef“’”z"w""“’)Hv(‘r - h, w, vo(w))||*dr. (69)
S S

Integrating the above inequality with respect to s over [t, t + 1], we get that
t+1
[Vv(t+ 1, w, vo(w))||* < 2(2 + a3) / [IVv(T, w, vo(w))||>dT

t
t+1 t+1

+Cs / e 2¢70:9) gt 4 4)|B4 |3~ / e 262(0:w)2e26010) .y (7 — h, w, vo(w))||2dT. (70)
t t
Replacing w by 6_;_;w in (70), we obtain that
t+1
I[VV(t+1,0_ 1w, vo(0_r1w))||* < 2(2 + as) / [[VV(T, 0_r 1w, vo(O_1w))||*dT
t

t+1 t+1
5 B o 4|1 h R o VT -n,0-t1W,VolU-t1W .
+c /e 2€z(0r—¢ 1a))d,l_+4H‘B HZ /e 2€z(0r—t-1w)+2€z(0r—¢—p 1w)|| (T h.6 (9 ))HZdT (71)
t t

It follows from (56) that for all t > Tg(w) + h,
t+1
212 +a3) / VT, 0-¢-1w, vo(B-r-1w))|[*dT < 2(2 + a3)p2(6-1w), (72)

t
t+1

/ e 2620r10) g ¢ € Y O] 73)

t
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and
t+1
/ e 2670r- 1042620019 || Gy (7 - b, Oy, Vo(O-r-1w))| P dT

t

t-h+1
2 0, 6;-
< &2 T +lz6r)]) / VAT, 0--10, Vo(8-¢-1w))|2dT
t-h
t-h+1
2€ max (|z(0: w)|+|2(0r_pw)|
=e —1srso( h ) / ||VV(T, 97“},71(07}1“); VO(G—Hh—l(e—hw))szT
t-h

< eZe 2&2{0(\2(91 w)|+|z(0

Fhw)DPz(thw).

It follows from (71) - (74) that, for all ¢t > Tz(w) + h

2e max |z(6,w)|

[[VV(t+1, 0 1w, vo(B_r1w))||* < 2(2 + a3)p2(0_1w) + cse” 10
+4||Bal1~e

Then we have that forall t > Tg(w) + h + 1,

2e 71{1522(0“2(0,(11)|+\z(01,ha})|)

p2(0_pw) = p3(w).

|VV(t, 6-¢w, vo(B-¢w))||* < p3(w).

Lett > h, -h < 01 < 0, < 0. Integrating (68) over [t + 01, t + 0>], we obtain that

t+o;
|VV(t + 02, w, vo(w))|)? + / [|Av(T, w, vo(w))||*dT
t+oq
t+0,
s||Vv(t+01,a),vo(a)))|\2+2(1+a3)/||Vv(‘r,a),v0(a}))||2dr
t+oq

t+0, t+0;

+c5/e’zez(@f“’)dr+4||ﬁ4|\fm/e‘zez(ef‘”mez(ef”'“’)\IV(T—h,a),Vo(a)))szT.

t+o1 t+oq

Replacing w by 8_;w in the last inequality, we have that

t+0,
[[VV(t + 02, 0_cw, vo(0_cw))||* + / |Av(T, 0-¢w, vo(6-cw))||*dT
t+01
t+0y
< |[|[VV(t + 01, 0_cw, vo(0_tw))||* + 2(1 + a3) / [[VV(T, -, vo(O_w))||*dT
t+oq
t+0; t+0;

+Cs / e‘z”(ef"“’)dr+4||ﬁ4||%m/e‘zezw““‘)”ez(e”’“’”)\|V(T—h,G_tw,VO(G_tw))HZdT.

t+0q t+o,

Using (76), we get that

t+0, t+0,

/ IVV(T, 6w, vo(0-w))||*dT = / IVV(T, - (Br-), Vo(0—(Br-cw)))|*dr < h max p3(0:w)).

t+o1 t+o1

By (52), we can get that

t+o0,
4/ B4l |1 / e 2e2 02620 (7 — R, 0w, vo(0-cw))|[*dT

t+o1

(74)

(75)

(76)

77)

(78)

(79)
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t+0,
< 4HB4HI%°° max p%(erw) / e—2€z(0,,[(u)+2€z(9,,[,ha))d,[.
-2h<t<-h
t+01
2 0: 7
_ 4h||ﬁ4|\%m max p%(erw)e e—nhlez(o(lZ( w)|+|z( h(ll)l). (80)
—-2hst<-h
Notice that
t+0, 02
/ e—Zez(GHw)dT _ /6—262(9 a))d_[_ < he 2e max ‘2(9 “')| (81)
t+0q o1
It follows from (76), (78)-(81) that
t+0,
2 6,
/ [|Av(T, 01w, vo(B—_w))||*dT < (1 + 2h(1 + a3)) I‘}IllaX p3(6:w) + cshe € pax, |00 +
—h<t<0
t+o1
2e max (|2(6; w)|+|2(6;-pw)|

AhlIpalfi-_max, phorwe’ A N = p(w). (82)
This ends the proof. O

Lemma3.4. Let B(w) € 2 and vo(w) € B(w). Then for any €, > 0 and P-a.e. w € Q, thereexistsa T" =
T"(B, w, €1) >0, and R* = R*(w, €1) > O such that the solution (30)-(31), satisfies for all t = T,

sup / [Vi(s, 0-tw, vo(0_(w))|dx < €7. (83)
SG[*h,O]‘ R
X|2

Proof. Let p be a smooth function defined on R* such that 0 < p(s) < 1 for all s € R*, and

0, O<s<1,
p(s) = { (84)

, S2

Then there exists a positive constant c, such that |p'(s)| < co for all s € R*. Taking the inner product of (30)
with p (' I ) v, we get that

1d x|? x|?
fa <||>|V| dX+/\/ <||>|v| dx - /p(]2>vAvdX

2
= e’ez(e“”)/F(x 70w v)p <| ‘ )vdx+e’€z(9‘“’)/G(x €7 0n®) (¢ _ h)p <|X| )vdx

k2
R"

+e =0 [ g(x)p (‘ i >vdx+ellz(9tw) p <‘X‘ >\V| dx. (85)
/ /

We now estimate each term in (85). For the third term on the left hand-side of (85), we have that

2 2 2
—/p<|k|2 )vAvdx—/ <|X| >|Vv| dx+/p (‘X‘ >v%-Vvdx
RVI RYI
2
/ 2
=/p <|k—|2) |Vv|2dx + / p (‘%) k—)z( - Vvdx, (86)
RH

ks|x|sv/2k

2
/ p ('%) v% - Vvdx

s|x|5\/§k

and
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2V2 x|
52w (B ) imiivviax
ks|x|sv/2k

4 2
B0 [ wioviaxs 22 (1P + ovI?) (87)

IN

IN

By (86) and (87), one has that

2
2
_/p ('%) vAvdxz/p <|X| >|Vv| dx - 250 (\|v|| +[|Vv|| ) (88)
RYI R"

For the first term on the right-hand side of (85) by condition (A1), we have

e—ez(etw)/F(X eez(elw)v)p (‘ | )de

Rn

_ e—Zez(Otw)/F(X’ eez(Bla))V)p (| | > 9“")vdx

Rn

—aleu”z)ezw[“)/ (‘ i >\V|pdx+e’2€z(9“")/ (|X| >B1(X)dx (89)

Rn R

IN

For the second term on the right-hand side of (85) we have that

2
‘e'ez(e“")/G(x €7 0n@)y (¢ _ h)p (M )vdx

Rn

< eeste) / pa) e

eOenwly (¢ - h)’,D (|X| ) |v|dx + e"¢#0@) /ﬁ (X)P< i ) |vidx. (90)

By (36), the first term on the right-hand side of (90) is bounded by

—ez(etw)/ﬁ (X) €z(6;- ;,w)v(t h)‘p (|X‘ ) ‘V‘dX

. . 2 2 : 2
e () (1 () w6 ()7
RH
< al/e(pfz)ez(ezw)p (|z| ) |V|pdx+ Ze ’Z‘h/p <|X| ) |V(t—h)| dx
R" R"

2 2 2
+cq / p () exsesomfhesoc (g, 0)* ax, oD

and the second term on the right-hand side of (90) is bounded by

gex(0w) / Bs(p ( L ) Vidx <A ('if) ViRdx + 120w / p ('X| ) Bidx.  (92)
]R" Rn

For the third term on the right-hand side of (85) we have that

e—ez(Ozw)/ g(x)p (‘ |2> vdx
/p <|x| ) Vi s Lo / ) <|”§|22> 22(0)dx. 93)

Rn
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It follows from (85) - (93) that
2 2
% p (|i|2 ) [v|?dx < <Zey|z(6tw)| ) /p <‘;§‘2 > v|*dx
Rﬂ
"/ (BE) (e ttwte- o - w2) s 422 (1w o owi?)
+Ze_zez(9‘w)/P <|X| ) {ﬂl(X)+ Aﬁs(X)+ Ag (X)}

+2c x| |2 2 e2(0:w)+ 24 €2(0,-w) = d
6 [P g Bi* ()dx. (94)

Let Tz(w) be the positive constant defined in Lemma 3.1. Set T;(B, w)
inequality to (94), we obtain that for ¢ > Ty,

/p <|X| ) |V| dx < ez(T1 t)+2€MfT1 |2(6; lu)ldT/p (‘X| ) |V(T1)| dx

> Tg(w) + h + 1. Applying Gronwall

R'l
A / e3o-0n2eu ! lerwlar / p (‘jﬁ‘z ) (e7"vie =P = |v”) dx ds
T
t
e e (PO
T
t
+2/e%(5—0+2€ﬂ N \2(91“’)“”7‘2”(95“')//) <|X| ) |:ﬁ1(X)+ Aﬁs(x)+ Ag (x)] dx ds
T, Rn
! 2 2p
+2C6/ez(5 0+2ep [ |2(0:w)|dr+ F ez(0sw)+ 7 e2(6s- hw)/p <|X| >ﬁZ 2(x)dx ds. (95)
T, Rn

If we take t > Ty + h, then, by (95), we can get that for all o € [-h, 0],

2 t+o
/p (\xl > V(¢ + 0)|2dx < ed Tt 2en |z(9,w)|dr/p <|x| ) W(T1)dx

RH
/1 t+o 5
/ el ool 0w [ (%) (e s = m)P - |v?) dx ds
]er
t+o
e (TR L
T,
t+o
t+o X 1 1
+2/ez(s t-0)+2ep [{*7 |2(6; w)|dT-2€2(0s (u)/p <‘k‘2 > [ﬁl(x)"' Zﬂé(x)_" XgZ(X)] dx ds
T,
t+o ) ,
+0 2B
+2C6/ 3(s-t-0)+2ep [[*7 |2(6:w)|d+ 422 e2(6sw)+ 25 ez(9$_hw)/p (%) Z’z (x)dx ds. (96)
Ty

RH
It follows that forall t = T; + h,

sup /P (| | ) |V(t+0’)| dx < eZ(T1+h t+2€ij |z(9,w)\dTHv(T )Hb

—h<0<0
RYI
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t
4 4 A(s-0+2ep [! |z(6,w)|dT ‘X‘ -4h 2 112
t5e / P\ 5 (e [v(s - h)|” - |v]| ) dx ds

t
4eg m A(s— 't
+7°ez /ez(s 0+2ep [} |2(6,w)|d (||v|\2 + ||VVH2) ds

T
t
+2e” /e%(s"mze" ks ‘Z(efw)ldr_zez(esw)/l? (|X| ) [ﬁ1(x)+ Aﬁs(x)+ (x)] dx ds
T1 R
t
+2c10 / ds-e2ep [} 1206r0) dr+- 52 cx.w)+ 7% ex(6n) / p <|X| )ﬁz * ()dx ds. ©7)
T1 Rn

Replacing w by 8_;w, we obtain from (97) that for all t > T;(B, w),

2 t
sup / p (%) V'(0, 0_w, vo(B_w))[2dx < e* e2 T =026k J1, 120@ldr) T g (1) o (B_y(w)))|I5

—h<0<0
]:Rn

2

t
+ 2
+%e%/\e%(s—t)+2€}lfs |Z(91—[w)|dT/p <|i|2 >e 2 ‘v(s_h 6_ ‘w, VO(H tw))| —|V(S 6_ ‘w, VO(G tw))| dx ds

1 R"

t
LZOeAZh /e%(s’mze" J; 12Br-rw)ldr (Hv(s, 0_cw, vo(6_tw))||* + ||V V(s, 0_w, vo(G,tw))Hz) ds
T;

t
+2eA7h/ 2(5-0w2ep [} |2(0r-qw)|dr-2e2(0,- “")/P (‘X| ) [ﬁl(x)+ Aﬁs(x)+ Ag (x)] dx ds

1
t

+2C1e%/ (5= 2ep [} |2(0r-1w)|dT+ 42 €2(65- )+ 2 €2(65+- hw)/p <|X| )ﬁfi 2(x)dx ds. (98)

Rn

T,
Now we estimate each term on the right hand side of (98). We first replace t by T; and replace w by 0_w in
(46), we have that

Ah, i !
[IV(T1, 61w, 0-vo(@))|[§ = (1+ 57) ex W Tw2enfo T EOm@ldr| yo(6_w)| &

Ty
+cy ezh / e%(s—Tl)JrZey fSTI \z(OHw)|dT—2€z(9Hw)ds

0
Ty
)] T _4p
+C3€5h / (s Ty)+2ep [T |2(6,- [a))\dr+ P ez(0s-w)+ = zez(es - ”‘”)ds. (99)

0
Therefore, for the first term on the right hand side of (98),
a2 + ! Tt 1
e’ g2 N 0w2en Jo, [H0eldr) |y T (g (), vo(6-(w)))] |5

A t
< (1 i 7)e}lh e—;HZey fo \z(GT,[(u)\dr||v0(97tw)”26

T,
+Cze/1h / e%(s—t)+2€y fst \z(BH(u)|d‘r—2€z(95,tw)ds
0

Ty
+C3€Ah/ A(s-0+2ep [} |z(6,- tw)\dﬂ“ P e2(6s-. (w)+ 5t 22 e2(0s- - hw)ds (100)

0
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We now estimate the terms in (100) as follows. For the first term, by (26), we find that for t > Ty and vo(0-¢w) €
B(e—tw)y

Jim (1+ %)e“‘ e 2t2en Jo l2O-ldT) (9 )12
+00

0
Jim (1+ %h)e“ e 20201 [ 1200l 1y (9 )%
+oo

lim (14 %”‘)eﬂh e 1 o (B_w)||3 = 0. (101)

IN

For the second term, by (26)

T,

lim ¢, oM e%(s—t)ﬂey J! \z(GHa))|dr—2€z(95,tw)ds
t>+o0
0
Ty
- lim ¢, oM e%(s—t)+2€y J2, |2(0: w)|dr-2€2(05-1w) g
t>+o0
0
T,
< lim cyet [ 2016056045 _ o, (102)
t>+o00
0

Similarly, we can get the following estimate for the third term on the right-hand side of (100):

T,
lim c; U / e%(s—t)+2ey st |z(0,_tw)\dr+%‘2"ez(GS_(w)Jr}%ez(Gs,t,hw)ds -0. (103)
t>+oo
0
It follows from (100) - (103) that
lim ¢ 2026/, [2O0-@ldr) T (g (1), vo(6- (@))% = O, (104)

t>+oc0

which implies that for any €; > 0, thereisa T, = T»(B, w, €) > T; such that

A
e et Mtr2an i, FOnlin) i (6 (@), vo(6- ())& = €. (105)

Next, we estimate the second term on the right hand side of (98). Similarly as (42), we can obtain that

¢ 2
Ae% /eg(s’t)*zei‘ Ji 126r-w)|dr /p ('%) e’%h|v(s —h, 6_tw, vo(0_w))|* - |V(s, O_w, vo(O_cw))|*dx ds

N

T, Rn

‘ 2
< 46% e%(Tl-t)+2€H Jo |2(6z-cw)|dT /p (%) sup |VT1 (0, 0_w, v0(9_tw))|2dx ds
2 fn k —h<0<0

< %e% g2 (N-0+2en fg 20 ldr) 1y (9w, vo(6-1w))| |- (106)

By (104) and (106), we know that for any €; > 0, there exists a T3 = T3(B, w, €) > T1 such that

N| >

t
e% /eg(s—t)dey N |2(6r-w)|dr

Ty (107)
x /p ('i';) e Mv(s ~ h, 6w, vo(8-))? - v(s, 8w, vo(8-cw))|dx ds < €1.
Rn
For the third term on the right hand side of (98), by Lemma 3.1 and Lemma 3.3, we obtain that
t

/e%(s“)“e" I3 120wl dr (Hv(s, 0_tw, vo(0-tw))||* + ||V V(s, O-cw, vo(G,tw))Hz) ds

T
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o2 (IR LI (536, (w) + p3(65-w) ) ds
e%5+2€}l fso |(6rw)ldr (p%(gs(l)) + p3(95(l))) ds

0
< /e% "4 (pl(Gs(u)+p3(95(u)) ds < oo, (108)

This implies that there exists a T, = T4(B, w, €) > T; and R, = R(w, €1) such that forall t > T, and k > R,

t
4eco An

- ¢ 2 /e%(s’mze“ J3 6ol dr (||v(s, 0_cw, vo(0_tw))||*> + |V (s, O_cw, v0(9_ta)))||2) ds<e;. (109)
T,
Note that 8, € L}(R), B5 € L2(R"), g € L?(R"). Thus, there is R3 = R3(w, €1) such that for all k > R3
1 1
/p <|k‘2 ) [ﬂl(x)+ Aﬁs(X)+ Ag (x)} dx < / {Bl(x)+ ZBE(X)JF Zgz(x)} dx < €. (110)
R"

x|zk

Then, for the fourth term on the right hand side of (98) we have that

t
Ze%/ A(s-t)+2ep [} |2(0r-w)|dT-2€2(6s- 1 w) /P (‘;i‘z ) [ﬁl(x) + %ﬁ%(X) + %gz(x)] dx ds

T,

IN

t
% /‘e’z‘(s—t)+26y J! \z(GH(u)|d1—2€z(05,[a))ds

~

1

0
_ 2ere” / ohsr2en [0 20w dr-2e2(6,0) g
T, -t
0
< 2€1e% /egs’%s’%sds = 176eA2h61 (111)

|
3

Notice that 8, € L2 (R™). Thus, there is R4 = R4(€1, w) such that for all k > Ry,

2 2p
/ ('X' ) B (x)dx < / B (x)dx < €1 (112)

R |x|=k

Then, similarly as (111), there exists a constant ¢ > 0, such that
t
210 / o3 (5-0%2ep [} |26, )| dr+ P exbs- )t % €25 1) / p (m > 77 (x)dx ds < ce;. (13)
T,

Let T = max{T1, T», T5.T4} and R = max{R;, R, R3}. Then, it follows from (98), (105), (107), (109), (111) and
(113) that

| ‘2 t 2 16
sup [ p [vi(a, O-tw, vo(O-_tw))| dxs(c+7e2 +3)eq, (114)

—hsa<0

This ends the proof. O
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Lemma 3.5. Let B(w) € 2 and vo(w) € B(w). Then there are tempered random variables ps(w), pg(w), such
that the solution of (30)-(31) satisfies for all t > Tg(w) + 2h + 1, and 0, 01, 0, € [-h, 0],

V! (0, 8-¢w, vo(0-tw))| |3 zn) < P5(@); (115)
IVi(01, 01w, vo(B-¢w)) — V(02 O-¢w, vo(B_cw))|| < pe(w)| a1 — 02| /2. (116)

Proof. By Lemma 3.1 and Lemma 3.3, we get that forall t > Tg(w) + h + 1, and ¢ € [-h, 0],

HVt(O', Gfta), vO(G,tw))\ |?.11(Rn)

[V(t + 0, -, vo(B-tw))||> + ||V V(t + 0, 01w, vo(O-rw))||?

max (pf(6,w) + p3(6w) ) = ps(w). (117)

IN

For 01, 0, € [-h, 0] (assuming 0, < 0, for simplicity), one has that,

|[Vi(01, O-tw, vo(8-tw)) — V' (02, O-w, vo(B-tw))||?

= ||[v(t + 01, O-¢w, vo(8-1w)) — V(t + 02, 01w, vo(O_¢w))||*

t+0,
d
= | (s, 0-cw, vo(0-¢w))||*ds
dt
t+o1
t+o; t+0;
s/\/||v(s,G_tw,vo(e_tw))\|ds+ / [|Av(s, 0-tw, vo(O-tw))||ds
t+o, t+o
t+0;
+ / | F(x, e v(s, 0w, vo(0w)))||ds
t+o,
t+o,
+ / ||e 620 G(x, eZO-1Oy(s — h, 0w, vo(0_w)))||ds
t+o1
t+o; t+0,
+/|\e’€z(95"“’)g|\ds+ey/||z(957tw)v(s,G,tw,vo(e,tw))nds. (118)
t+oq t+o

Now, we estimate each term on the right hand side of (118). By Lemma 3.1, and Lemma 3.3 we find that for all
t>Tg(w)+2h+1,

t+0; t+0;
/ |[v(s, 0-tw, vo(0-¢w))||ds = / |[V(s, 0-5(0s-tw), vo(-s(0s-tw)))||ds < max p1(6rw)lo1 - 02|; (119)
t+0q t+01 o
t+0,
|12(0s-¢w)Vv(s, O-tw, vo(6-¢w))||ds < max z(6rw)p1(6rw)|o1 - 02]; (120)
t+0q

t+0, t+0; 1/2
/ [|Av(s, 0-tw, vo(O-cw))||ds < (/ ||Av(s, -, v0(0_tw))||2ds> 01 — 02|Y? < pa(w)|oy — 02| 3121)

t+01 +01

and

t+o,
/ le*®gi|ds < max =@ jjg]] |01 - 0. (122)
—hs1<0

t+o1
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Using conditions (A1) and (A2), we obtain

t+0;
|le” @) F(x, &0y (s, 6 1w, vo(0-,w)))||ds
t+oq
t+0,
< / aze@"z)ezws’f“’)ﬂv(s, 0_cw, vo(0_cw))| [Pt + e"ez(es’f“’)||ﬁz\|ds
t+01
< (az max e“’*z)e‘z(ef“’)lp‘l’_l(erw) + max ee‘z(ef“’)lﬂﬁz“) lo1 - 02], (123)
—h=1<0 —h=<1<0
and
t+0;
/ |le 620 G (x, eZO-1 Wy (s — h, 0_w, vo(0_w)))||ds
t+0q
< (I}llaxo ee|z(9,a})\+e\z(01—hw)|p1(erihw) + HB5H> |01 - 03] (124)
—hst<
The lemma follows from (119) to (124). This ends the proof. O

Next, we use Ascoli theorem to show that @ is 2 pullback asymptotically compact.

Lemma 3.6. The random dynamical system @ is & pullback asymptotically compact in &; thatis, for P-a.e. w €
Q, the sequence {D(tn, 0—¢,, vo(0-t,)) } 5oy has a convergent subsequence in S provided tn, - oo and vo(6-,) €
B(th (U).

Proof. Let Qi be the set of {x € R" : |x| < k}. Since t, > oo, there exists N = N(B, w) such that t, >
Tg(w) + 2h + 1, for all n > N. Using Lemma 3.5, we obtain that for n > N and ¢ € [-h, 0],

||V[" (O', G_t"(l), Vo(e_["w))HHl(Qk) < p5(a)) (125)

This implies that {®(tn, 0, w, vo(0-r,w))}ooy is relatively compact in L?(Qy), since the embedding from
H'(Qy) to L2(Qy) is compact. From Lemma 3.5, we can also obtain that for all n > N, and 01, 0, € [-h, 0],

V'"(01, 6, w, vo(B-t,w)) = v'"(01, O, w, Vo (O, )| |20y < Ps(@)|01 - 0,2 (126)

This means that {@(ts, 0-¢,w, vo(0-t,w)) }my is equicontinuous. By Ascoli Theorem we have that for fixed
k € N, {vi"(g, 0_t,w, vo(0_¢,w))}32, is relatively compact in C([~h, 0]; L?(Qy)). Therefore, for each k € N,
there exists a subsequence {®(ty, 0, w, vo(G_tnl_ w))} converges to 17, (-, w) in C([-h, 0]; L?>(Qy)). Notice that,
for fixed 0 € [-h, 0] and w € Q, ny,1(0, w) coincides with 1, (g, w) on Q. Hence, for any € > 0, there exists
N; = Ni(w, €) € N, such that foralli > Ny,

sup [[v"i(0, -, w, vo(0-r, ) - N(0, W)||2(q, < €. (127)
0€[-h,0]

By Lemma 3.1, we have that for all ¢ € [-h, 0], and i > N,
Vi (0, 64, @, vo(O-t, ®))|12(qy) < 065[1}?1?,0] Vi (@, 6-t, @, vo(0-t, ®))]| 2rny < p1(w). (128)
Hence, forall k € N,
|In(o, w)||12qy < gg Iv™i(a, 0-t, w, vo(6-¢, W))ll12(qy < P1(w). (129)
It follows that,

00, @)z <SP (0, @), < P1(@). (130)
EN
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Therefore, n(o, w) € L?(R"). By Lemma 3.4, for every B € 2 and €¢; > 0, there exist K = K(w, €;) and
N, = N>(w, €1), such that foralli > N, and k > K,

sup HVt"" (O', G_t"i s Vo(e_[ni ))HLZ(\X\zk) <€1. (131)
0€[-h,0]

Notice that forall I > k > K and o € [-h, 0],

1§ (0, @) L2 e|xj<t) = Him Vi (0, O-ty,w» Vo(O-t, )| 12kex|<D

(132)
< sup V(0 0-tyyws VO(O-ty, )| 12(xfsk) < €1-
o€[-h,0],i>N;
It follows that
sup [[§(0, Wllp2(xzi = SUP 160, ]2 (kejuf<n) < €1- (133)
o€[-h,0] o€[-h,0],I>k
Then, (113), (127) and (131) imply that for all i > max Ny, N>,
sup_[[v"(0, 01, @, vo(0-t, w)) - &(0, W)
0€([-h,0]
< sup ||V["" (U, 9_["iw, Vo(e_[ni (1))) - f(U’, w)HLZ(Qk) +2 sup ||Vt"" (O', B_tni w, Vo(e_["i a)))Hqux‘ak)
0€[-h,0] 0€[-h,0]
+2 sup |[§(0, @) r2(xpsh)
0€([-h,0]
< 5€;. (134)
This ends the proof. O

Theorem 3.7. The random dynamical system @ has a unique 2-random attractor in G.

Proof. By Lemma 3.1, we know that @ has a random absorbing set, and by Lemma 3.6, we obtain that @ is 2-
pullback asymptotically compact in &. Therefore, by Proposition 2.1, @ has an unique 2-pullback attractor.
This ends the proof. O
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