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Abstract: Strict RA semigroups are common generalizations of ample semigroups and inverse semigroups.
The aim of this paper is to study algebras of strict RA semigroups. It is proved that any algebra of strict
RA semigroups with �nite idempotents has a generalized matrix representation whose degree is equal to
the number of non-zero regular D-classes. In particular, it is proved that any algebra of �nite right ample
semigroups has a generalized upper triangular matrix representation whose degree is equal to the number of
non-zero regularD-classes. As its application, we determine when an algebra of strict RA semigroups (right
ample monoids) is semiprimitive. Moreover, we prove that an algebra of strict RA semigroups (right ample
monoids) is left self-injective i� it is right self-injective, i� it is Frobenius, and i� the semigroup is a �nite
inverse semigroup.
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1 Introduction
Themathematical structures which encode information about partial symmetries are certain generalizations
of groups, called inverse semigroups. Abstractly, inverse semigroups are regular semigroups each of whose
elements has exactly one inverse; equivalently, a regular semigroup is inverse if and only if its idempotents
commute. Like groups, inverse semigroups �rst arose in questions concernedwith the solutions of equations,
but this time in Lie’s attempt to �nd the analogue of Galois theory for di�erential equations. The symmetries
of such equations form what are now termed Lie pseudogroups, and inverse semigroups are, several times
removed, the corresponding abstract structures. In addition to their early appearance indi�erential geometry,
inverse semigroups have found a number of other applications in recent years including: C∗-algebras;
tilings, quasicrystals and solid-state physics; combinatorial group theory; model theory; and linear logic.
Inverse semigroups have been widely investigated. For inverse semigroups, the readers are referred to the
monographs of Petrich [1] and Lawson [2]. Because of the important role of inverse semigroups in the theory
of semigroups, there are attempts to generalize inverse semigroups. (Left; Right) ample semigroups originally
introduced by Fountain in [3] are generalizations of inverse semigroups in the range of (left pp semigroups;
right pp semigroups) abundant semigroups.

Inverse semigroup algebras are a class of semigroup algebras which is widely investigated. For example,
Crabb and Munn considered the semiprimitivity of combinatorial inverse semigroup algebras (see [4]);
algebras of free inverse semigroups (see [5, 6]); nil-ideals of inverse semigroup algebras (see [7]). More
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results on inverse semigroup algebras are collected in a survey of Munn [8]. Recently, Steinberg [9, 10]
investigated representations of �nite inverse semigroups. Inverse semigroups are ample semigroups and any
ample semigroup can be viewed as a subsemigroup of some inverse semigroup. Ample semigroups include
cancellative monoids and path semigroups of quivers. In [11, 12], Okniński studied algebras of cancellative
semigroups. Guo and Chen [13] proved that any algebra of �nite ample semigroups has a generalized upper
triangular matrix representation. Guo and Shum [14] established the construction of algebras of ample
semigroups each of whose J ∗-classes contains a �nite number of idempotents. For the related results on
semigroup algebras, the reader can be referred to the books of Okniński [15], and Jesper and Okniński [16].

Frobenius algebras are algebras with non-degenerate bilinear mappings. They are closely related to
the representation theory of groups which appear in many branches of algebras, algebraic geometry and
combinatorics. Frobenius algebras and their generalizations, such as quasi-Frobenius algebras and right
(left) self-injective algebras, play an important role and become a central topic in algebra. Wenger proved
an important result (Wenger Theorem): an algebra of an inverse semigroup is left self-injective i� it is right
self-injective; i� it is quasi-Frobenius; i� the inverse semigroup is �nite (see [17]). In [18], Guo and Shum
determined when an ample semigroup algebra is Frobenius and generalized Wenger Theorem to ample
semigroup algebras.

Right (Left) ample semigroups are known as generalizations of ample semigroups and include left (right)
cancellative monoids as proper subclass. So, it is natural to probe algebras of right ample semigroups. This is
the aim of paper. Indeed, any ample semigroup is both a right ample semigroup and a left ample semigroup.
The symmetry property is a “strict" one in the theory of semigroups. It is interesting whether the semigroup
algebras have the “similar" properties if we destroy the “symmetry". To be precise, for what “weak symmetry"
assumption is the Wenger Theorem valid? By weakening the condition: S is a left ample semigroup, to the
condition: Each L̂-class of S contains an idempotent, we introduce strict RA semigroups (dually, strict LA
semigroups), which include ample semigroups and inverse semigroups as its proper subclasses. The follow-
ing picture illustrates the relationship between strict RA (LA) semigroups and other classes of semigroups:

I
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�
aEC
�
�
a SLAa LA@@

where EC is the class of EC-semigroups (that is, semigroups whose idempotents commute), for EC-
semigroups, see [19, 20]; SRA is the class of strict RA semigroups; SLA is the class of strict LA semigroups;
A is the class of ample semigroups; I is the class of inverse semigroups, and the symbolic “∣" means that the
upper class of semigroups includes properly the lower one.

Our ideas in this paper are somewhat similar as in [13, 18] and inspired by the references [21, 22]. In
Section 2, we obtain some properties of strict RA semigroups. Section 3 is devoted to the representation
theory of generalized matrices for algebras of strict RA semigroups. It is veri�ed that any algebra of a strict
RA semigroup with �nite idempotents has a generalized matrix representation whose degree is equal to the
number of non-zero regularD-classes (Theorem 3.2), extending themain result in [13]. In particular, we prove
that any algebra of a �nite right ample monoid has a generalized upper triangular matrix representation
(Corollary 3.5). As applications of these representation theorems, we determine when an algebra of strict
RA �nite semigroups is semiprimitive (Theorem 3.10). This extends the related result of Guo and Chen in
[13]. In particular, a su�cient and necessary condition for an algebra of right ample �nite monoids to be
semiprimitive is obtained (Corollary 3.11). In Section 4, we shall determine when an algebra of right ample
semigroups is left self-injective. It is shown that an algebra of a strict RA semigroup is left self-injective, i� it
is right self-injective, i� it is Frobenius and i� the Strict RA semigroup is a �nite inverse semigroup (Theorem
4.11). This result extends the Wenger Theorem to the case for strict RA semigroups. Especially, it is veri�ed
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that if an algebra of a right amplemonoid is left (resp. right) self-injective, then themonoid is �nite (Corollary
4.18). So, we give a positive answer to [15, Problem 6, p.328] for the case that S is a strict RA (LA) semigroup
(especially, a right ample monoid). It is interesting to �nd that
– the “distance" between strict RA (LA) semigroups with �nite inverse semigroups is the left (right) self-

injectivity;
– for an algebra of strict RA (LA) semigroups, left (right) self-injectivity= quasi-Frobenoius = Frobenius.

In this paper we shall use the notions and notations of the monographs [23] and [15]. For right ample
semigroups, the reader can be referred to [3].

2 Strict RA semigroups
Let S be a semigroup; we denote by E(S) the set of idempotents of S, by S1 the semigroup obtained from S by
adjoining an identity if S does not have one.

To begin with, we recall some known results on Green’s relations. For any a, b ∈ S, de�ne

aLb ⇐⇒ S1a = S1b i.e. a = xb, b = ya for some x, y ∈ S1;
aRb ⇐⇒ aS1 = bS1 i.e. a = bu, b = av for some u, v ∈ S1;
H = L ∩R;
D = L ○R = R ○ L.

In general, L is a right congruence and R is a left congruence. a is regular in S if there exists x ∈ S such
that axa = a. Equivalently, a is regular if and only if aDe for some e ∈ E(S). And, S is called regular if each
element of S is regular in S. We use Dx to denote theD-class of S containing x, and call aD-class containing
a regular element a regularD-class. It is well known that any element of a regularD-class is regular and that
theD-class containing the zero element 0 is just the set {0}.

As generalizations of Green’s L- andR-relations, we have L∗- andR∗-relations de�ned on S by

aL∗b if (ax = ay⇔ bx = by for all x, y ∈ S1),
aR∗b if (xa = ya⇔ xb = yb for all x, y ∈ S1).

It is well known that L∗ is a right congruence andR∗ is a left congruence. In general, L ⊆ L∗ andR ⊆ R∗.
And, if a, b are regular, then aL (R)b if and only if aL∗ (R∗)b.

De�nition 2.1. A semigroup S is right ample if
(A) its idempotents commute;
(B) every element a is L∗-related a (unique) idempotent a∗;
(C) for any a ∈ S and e ∈ E(S), ea = a(ea)∗.

Left ample semigroups are de�ned by duality. Moreover, a semigroup is ample if it is both left ample and right
ample. Obviously, inverse semigroups are (left; right) ample semigroups.

As generalizations of L∗ andR∗, we have L̂ and R̂ de�ned on S by

aL̂b if (a = ae⇔ b = be for all e ∈ E(S1)),
aR̂b if (a = ea⇔ b = eb for all e ∈ E(S1)).

In general, L̂ is not a right congruence and R̂ is not a left congruence. Clearly, L ⊆ L∗ ⊆ L̂ andR ⊆ R∗ ⊆ R̂.

Lemma 2.2. Let a ∈ S and e ∈ E(S). If aR̂e, then ea = a. Moreover, if g, h ∈ E(S) and gR̂h, then gRh.

Proof. Since e2 = e, the result follows from aR̂e. The rest is trivial.
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By Lemma 2.2, it is evident that for regular elements a, b, aL (R)b if and only if aL̂ (R̂)b. Especially, on a
regular semigroup L = L̂ andR = R̂.

De�nition 2.3. A semigroup S is strict RA if S is a right ample semigroup in which for any a ∈ S, there exists an
idempotent e such that aR̂e. Strict LA semigroups are de�ned by duality.

For a strict RA semigroup, each R̂-class contains exactly one idempotent; for, if e, f are idempotents and
eR̂f , then by Lemma 2.2, eRf , so that e = f since idempotents of a strict RA semigroup commute. We shall
denote by a# the unique idempotent in the R̂-class containing a. Obviously, ample semigroups are strict
LA (strict RA) semigroups. So, strict RA semigroups (strict LA semigroups) are common generalizations of
ample semigroups and inverse semigroups. Indeed, strict RA semigroups include ample semigroups as its
proper subclass; for, it is easy to see that left cancellative monoids are strict RA semigroups but not all of left
cancellative monoids are ample semigroups.

Example 2.4. Assume that Q = (V , E) is a quiver with vertices V = {1, 2,⋯, r}. Denote by (i1∣i2∣⋯∣in) the
path: i1○→i2○→ ⋯ →in○. In particular, we call the path of Q without vertices the empty path of Q, denoted by 0.
For any i ∈ V, we appoint to have an empty path ei. Let P(Q) be the set of all paths of Q. On P(Q), de�ne a
multiplication by: for (i1∣⋯∣im), (j1∣⋯∣jn) ∈ P(Q),

(i1∣⋯∣im) ○ (j1∣⋯∣jn) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i1∣⋯∣im ∣j2∣⋯∣jn) if im = j1;

0 otherwise.

Evidently, the path algebra RQ of the quiver Q over R is just the contracted semigroup R0[P(Q)]. By a routine
computation, (P(Q), ○) is a semigroup in which
– 0 is the zero element of P(Q) and e1, e2,⋯, er , 0 are all idempotents of P(Q);
– ei1R∗(i1∣⋯∣im)L∗eim ;
– eiej = 0 whenever i /= j.
It is easy to see that P(Q) is a strict RA semigroup having only �nite idempotents.

Example 2.5. Let C be a small category and 0 a symbol. On the set

S(C) ∶= (⊔A,B∈Obj(C)Hom(A, B)) ⊔ {0},

de�ne: for α, β ∈ ⊔A,B∈Obj(C)Hom(A, B),

α ∗ β =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α ○ β if α and β can be composed,

0 otherwise

and 0 ∗ α = α ∗ 0 = 0 ∗ 0 = 0. It is a routine check that (S(C), ∗) is a semigroup with zero 0, called the
category semigroup of C. An arrow α ∈ Hom(A, B) is an isomorphism if there exists β ∈ Hom(B, A) such that
αβ = 1A and βα = 1B. We call C a groupoid if any arrow of C is an isomorphism (for groupoids, see [22] and
their references); and left (resp. right) cancellative if for any arrows α, β, γ of C, β = γ whenever αβ = αγ

(resp. γα = γα). And, C is cancellative if C is both left cancellative and right cancellative. It is not di�cult to
see that any groupoid is a cancellative category. Leech categories and Cli�ord categories are left cancellative
categories (for these kinds of categories, see [24]).
(A) Assume that C is a left cancellative category. By computation, in the semigroup S(C), for any α ∈

Hom(A, B),
– 1AL∗αR̂1B;
– E(S(C)) = {0} ⊔ {1C ∶ C ∈ Obj(C)}.
It is not di�cult to check that S(C) is a strict RA semigroup. By dual arguments, if C is cancellative, then
S(C) is an ample semigroup.
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(B) When C is a groupoid. In this case, there exists β ∈ Hom(B, A) such thatαβ = 1A. It follows thatαβα = α.
This means that α is regular and hence S(C) is a regular semigroup. Again by the foregoing arguments,
S(C) is indeed an inverse semigroup.

Lemma 2.6. Let S be a right ample semigroup and E(S) ⋅ S = S. If ∣E(S)∣ < ∞ then S is strict RA.

Proof. Let a ∈ S and denote by ea the minimal idempotent under the partial order ω on E(S) (that is, eωf
if and only if e = ef = fe) such that eaa = a. Obviously, for any f ∈ E(S), fea = ea can imply that fa = a;
conversely, if fa = a then fea ⋅ a = a and fea = ea since feaωea. Thus aR̂ea, so S is strict RA.

Corollary 2.7. Let S be a right ample monoid. If S is �nite, then S is strict RA.

For a right ample semigroup S, de�ne: for a, b ∈ S,

a ≤r b if and only if a = be for some e ∈ E(S). (1)

In (1), the idempotent e can be chosen as a∗; for, by a = be, we have a = ae, so that a∗ = a∗e, thereby
a = aa∗ = bea∗ = ba∗. So, a ≤r b if and only if a = ba∗. It is not di�cult to check that ≤r is a partial order on
S. Moreover, we have

Lemma 2.8. If S is a right ample semigroup, then with respect to ≤r, S is an ordered semigroup.

Proof. The proof is a routine check and we omit the detail.

For an element a of a right ample semigroup S, we denote

O(a) = {x ∈ S ∶ x ≤r a}.

If x ≤r a then x = ax∗, so that x = aa∗x∗ = xa∗, hence x∗ = x∗a∗, therefore x∗ωa∗, that is, x∗ ∈ ω(a∗)
where ω(a∗) = {e ∈ E(S) ∶ eωa∗}. On the other hand, for f , h ∈ ω(a∗), if af = ah then f = a∗f = a∗h = h.
Consequently, O(a) = {af ∶ f ∈ ω(a∗)} and ∣O(a)∣ = ∣ω(a∗)∣.

Proposition 2.9. Let S be a strict RA semigroup and a, b, x ∈ S. If x ≤r ab, then there exist uniquely u, v ∈ S
such that

(O1) u ≤r a, v ≤r b;
(O2) u# = x#, u∗ = v# and x∗ = v∗;
(O3) x = uv.

Proof. Denote v = (x#a)∗bx∗ and u = x#av#. We have uv = x#av# ⋅ (x#a)∗bx∗ = x#abx∗ = x. Because S is a
right ample semigroup, we have x#a# ≤r a# and a∗v# ≤r a∗, so that u = x#a# ⋅ a ⋅ a∗v# ≤r a# ⋅ a ⋅ a∗ = a; and
(x#a)∗b# ≤r b#, b∗x∗ ≤r b∗, so that v = (x#a)∗b# ⋅ b ⋅ b∗x∗ ≤r b#bb∗ = b.

Note that v = (x#a)∗bx∗ = vx∗, we observe v∗ = v∗x∗. On the other hand, since x = uv = uvv∗ = xv∗, we
get x∗ = x∗v∗. Thus x∗ = v∗ since E(S) commutes.

Indeed, by u = x#av#, we have u = uv#, so that u∗ = u∗v#. It follows that u∗ ≤r v#. Consider that L∗ is a
right congruence, we have u∗L∗u = x#av#L∗(x#a)∗v# and u∗ = (x#a)∗v# since each L∗-class of S contains
exactly one idempotent. So,

v = v#v = v#(x#a)∗bx∗ = v#(x#a)∗v = u∗v,

further by de�nition, v# = u∗v#. It follows that v# ≤r u∗. Therefore u∗ = v#.
By the de�nition of u, u = x#u and x#u# = u#. But u#u = u, so u#x = x. It follows that u#x# = x#. Therefore

u# = x# since E(S) commutes.
Finally, we letm, n be elements of S satisfying the properties of u and those of v in (O1), (O2) and (O3),

respectively. Then m∗ = n# and v∗ = x∗ = n∗. By the arguments before Lemma 2.8, n = bn∗ = bv∗ = v and
m = am∗ = an#. By the �rst equality, n# = v#. Thus u = x#av# = x#an# = x#m = m#m = m. This proves the
uniqueness of u and v.
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Assume now that T is a strict RA semigroup with zero element 0. Let E be the set of nonzero idempotents of
T. For any a ∈ T/{0}, (a)ij will denote the E×Ematrix with entry a in the (i, j) position and zeros elsewhere.
Also, we still use 0 to denote the E × E matrix each of whose entries is 0. Set

M(T) = {(a)ij ∶ ia = a = aj} ∪ {0}

and de�ne an operation on M(T) by: A, B ∈ M(T),

AB =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if A = 0 or B = 0;
0 if A = (a)ij , B = (b)kl and j /= k;

(ab)il if A = (a)ij , B = (b)kl and j = k.

It is easy to check that with respect to the above operation, M(T) is a semigroup with zero element 0.
Moreover, we can observe

Lemma 2.10. The zero 0 and the elements (i)ii (i ∈ E) are all idempotents of M(T), and orthogonal each other.

Write X(T) = {0} ∪ {(a)ij ∶ a# = i, a∗ = j}. We denote by PRA(T) the subsemigroup of M(T) generated by
X(T). It is not di�cult to see that

PRA(T) = {(a)ij ∶ there exist x1, x2,⋯, xn ∈ T such that a = x1x2⋯xn
x#1 = i, x∗n = j, x∗k = x#k+1 for k = 1, 2,⋯, n − 1}.

In what follows, for any a ∈ T, we use a to denote (a)ij with a# = i, a∗ = j.

Proposition 2.11. In the semigroup PRA(T), for any (a)ij ∈ PRA(T), we have
(A) a∗ = j.
(B) (a)ij is regular if and only if a is regular in T. Moreover, if a is regular, then (a)ij ∈ X(T).
(C) (a)ijL∗(j)jj.

Proof. (A) By the de�nition of PRA(T), there exist x1, x2,⋯, xn ∈ T such that a = x1x2⋯xn , x∗k = x#k+1 where
k = 1, 2,⋯, n − 1, x#1 = i and x∗n = j. Since L∗ is a left congruence, we have

a = x1x2⋯xnL∗x∗1x2⋯xn
= x#2x2⋯xnL∗⋯L∗x∗n−1xn = xnL∗x∗n
= j

and further since each L∗-class of a left ample semigroup contains exactly one idempotent, we get a∗ = j.
(B) Let (a)ij be regular. Then there exists (x)ji ∈ PRA(T) such that

(a)ij(x)ji(a)ij = (a)ij .

It follows that axa = a, whence a is regular in T.
Conversely, assume that a is regular in T and let y be an inverse of a in T. Since x1x2⋯xnyx1x2⋯xn =

x1x2⋯xn and x1L∗i1, we have x2⋯xnyx1x2⋯xn−1xn = x2⋯xn−1xn, and hence

x3⋯xn−1xn ⋅ yx1 ⋅ x2⋯xn−1 = x∗2x3⋯xn−1xn ⋅ yx1 ⋅ x2⋯xn
= x∗2x3⋯xn−1xn ⋅ yx1x2 ⋅ x3⋯xn−1xn
= x#3x3⋯xn−1xn
= x3⋯xn .

It follows that x3⋯xn is regular. Continuing this processwehave that xn is regular. By Lemma2.2, x#nRxn. Now,
x1x2⋯xnyx1x2⋯xn = x1x2⋯xn can imply that x1x2⋯xnyx1x2⋯xn−1x#n = x1x2⋯xn−1x#n, whence x1⋯xn−1 =
x1⋯xn−1 ○ xny ○ x1x2⋯xn−1 and further regular in T. By the foregoing proof, xn−1 is regular. Applying these
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arguments to x1⋯xn−2, we know that xn−2 is regular, therefore xl is regular for l = 1,⋯, n. But xkL∗x∗k , so
xkLx∗k and as L is a right congruence,

a = x1x2⋯xnLx∗1x2⋯xn
= x2⋯xnL⋯Lx∗n−1xn = xnLx∗n
= j

and a∗ = j since each L∗-class of a strict RA semigroup contains exactly one idempotent. On the other hand,
sinceR is a left congruence, we have

a = x1x2⋯xnRx1x2⋯xn−1x#n
= x1x2⋯xn−1R⋯Rx1x#2 = x1Rx#1
= i

and a# = i since each R∗-class of a left ample semigroup contains exactly one idempotent. We have now
proved that (a)ij ∈ X(T). It follows that

ay = a# = i and ya = a∗ = j.

Furthermore, (y)ji ∈ PRA(T). Consequently, (a)ij is regular since (a)ij(y)ji(a)ij = (aya)ij = (a)ij .
(C)Now let (x)jk , (y)jl ∈ PRA(T). If (a)ij(x)jk = (a)ij(y)jl, then (ax)ik = (ay)il, hence k = l and ax = ay.

By the second equality and applying (A), we have jx = jy, and further (j)jj(x)jk = (jx)ik = (jy)il = (j)jj(y)jl;
if (a)ij(x)jk = (a)ij, then (a)ij(x)jk = (a)ij = (a)ij(j)jj, and by the foregoing proof, (j)jj(x)jk = (j)jj(j)jj. We
have now proved that for all (x)jk , (y)jl ∈ PRA(T)1, we have (j)jj(x)jk = (j)jj(y)jl whenever (a)ij(x)jk = (a)jl.
This and the equality (a)ij(j)jj = (a)ij derive that (a)ijL∗(j)jj.

3 Generalized matrix representations
Let R1, R2,⋯, Rn be associative rings (algebras) with identity and let Rij be a left Ri- right Rj-bimodule for
i, j = 1, 2,⋯, n and i < j. We call the formal n × n matrix

⎛
⎜⎜⎜⎜
⎝

a1 a12 ⋯ a1n
a21 a2 ⋯ a2n
⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ an

⎞
⎟⎟⎟⎟
⎠

with ai ∈ Ri , aij ∈ Rij for i, j = 1, 2,⋯, n, a generalized n × n matrix. For 1 ≤ i, j, k ≤ n, there is a (Ri , Rk)-
bimodule homomorphism φijk ∶ Rij ⊗Rj Rjk → Rik such that the square

Rij ⊗ Rjk ⊗ Rkl
idij ⊗ φjklÐÐÐÐÐ→ Rij ⊗ Rjl

φijk⊗idkl
×××Ö

×××Ö
φijl

Rik ⊗ Rkl ÐÐÐÐÐ→
φikl

Ril

is commutative. We denote (a ⊗ b)φijk by ab. With respect to matrix addition and matrix multiplication, the
set

⎛
⎜⎜⎜⎜
⎝

R1 R12 ⋯ R1n

R21 R2 ⋯ R2n

⋮ ⋮ ⋱ ⋮
Rn1 Rn2 ⋯ Rn

⎞
⎟⎟⎟⎟
⎠

of all generalized matrices is an R-algebra, called a generalized matrix algebra of degree n. If Rij = 0 for any
1 ≤ j ≤ i ≤ n, then we call the generalized matrix algebra a generalized upper matrix algebra of degree n.
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De�nition 3.1. A ring (An algebra) has a generalized matrix representation of degree n if there exists a ring
(an algebra) isomorphism

φ ∶ A→
⎛
⎜⎜⎜⎜
⎝

R1 R12 ⋯ R1n

R21 R2 ⋯ R2n

⋮ ⋮ ⋱ ⋮
Rn1 Rn2 ⋯ Rn

⎞
⎟⎟⎟⎟
⎠
.

For a semigroup S with zero 0, we denote by Dreg(S) the number of nonzero regular D-classes of S. By [23,
Proposition 3.2, p.45], Dreg(S) = ∣{De ∶ e ∈ E(S)/{0}}∣ = ∣E(S)/DS ∣ − 1. We arrive at the main result of this
section.

Theorem 3.2 (Generalized Matrix Representation Theorem). Let S be a strict RA semigroup and R a commu-
tative ring with unity. If ∣E(S)∣ < ∞ then R0[S] has a generalized matrix representation of degree Dreg(S).

Proof. De�ne a map ϕ by
ϕ ∶ S → R0[PRA(S)]; s ↦ ∑

u∈O(s)
(u)u# ,u∗

and span this map linearly to R0[S]. By the arguments before Proposition 2.9, ∣O(s)∣ = ∣ω(s∗)∣ ≤ ∣E(S)∣ < ∞
and hence ϕ is well de�ned.

For s, t ∈ S, by Proposition 2.9, there exist uniquely x ∈ O(s), y ∈ O(t) such that u = xy, x# = u#, x∗ = y#

and y∗ = u∗, for any u ∈ O(st). So,

ϕ(st) = ∑
u∈O(st)

(u)u# ,u∗

= ∑
u=xy,x#=u# ,x∗=y# ,y∗=u∗ ,x∈O(s),y∈O(t)

(xy)x# ,y∗

= ∑
u=xy,x#=u# ,x∗=y# ,y∗=u∗ ,x∈O(s),y∈O(t)

(x)x# ,x∗(y)y# ,y∗ by Proposition 2.9

=
⎛
⎝ ∑x∈O(s)

(x)x# ,x∗
⎞
⎠
⎛
⎝ ∑y∈O(t)

(y)y# ,y∗
⎞
⎠

= ϕ(s)ϕ(t)

and ϕ is a homomorphism.
Let x = ∑

u∈supp(x)
ruu, y = ∑

v∈supp(y)
rvv ∈ R0[S]/{0} and ϕ(x) = ϕ(y). Denote

Λ(x) = {a∗ ∶ a ∈ supp(x)};
m(x, i) = ∑

u∈supp(x),u∗=i
ruu,

and let Max(x) be the set of maximal elements of Λ(x) under ≤r. Let Max∗(x) = {a∗ ∶ a ∈ Max(x)} and
M1(x) = ∑i∈Max∗(x) m(x, i). De�ne recursively

Mk(x) = ∑
l∈Max∗(x−∑k−1

j=1 ϕ(Mj(x)))
m

⎛
⎝
x −

k−1
∑
j=1

ϕ(M j(x)), l
⎞
⎠
,

where M0(x) = 0 and Mi(0) = 0 for any positive integer i. By the de�nition of ϕ, there must be a positive
integer n such that Mn(x) = 0. Let n(x) be the smallest integer such that Mn(x)(x) = 0. Now again by the
de�nition of ϕ, it is not di�cult to see that x = ∑n(x)

i=1 Mi(x). Because R0[S] is a free R-module with a basis
S/{0}, ϕ(x) = ϕ(y) can imply that M1(x) = M1(y). It follows that ϕ(x − M1(x)) = ϕ(y − M1(y)). By the
foregoing proof, M2(x) = M1(x − M1(x)) = M1(y − M1(y)) = M2(y). Continuing this process, we have
n(x) = n(y) and Mk(x) = Mk(y) for 2 ≤ k ≤ n(x). Therefore

x =
n(x)
∑
i=1

Mi(x) =
n(y)
∑
i=1

Mi(y) = y,
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and ϕ is injective.
Now let ∣E(S)∣ = n + 1. Then we may assume that E(S)/{0} = {e1, e2,⋯, en}. For any (a)ij ∈ PRA(S),

we have ia = a and a∗ = j. It follows that aj = a. Note that i = ek and j = el for some 1 ≤ k, l ≤ n. Thus
(ek)ii(a)ij = (a)ij = (a)ij(el)jj and

⎛
⎝

n
∑
p=1

ep
⎞
⎠
⋅ (a)ij = (ek)ii(a)ij

= (a)ij
= (a)ij(el)jj

= (a)ij ⋅
⎛
⎝

n
∑
p=1

ep
⎞
⎠
.

Therefore 1 = ∑n
p=1 ep is the identity of R0[PRA(S)]. So, R0[S] has an identity.

For convenience, we identify R0[S] with T ∶= ϕ(R0[S]). If ekT ≅ elT, then there exist x ∈ ekR0[T]el , y ∈
elR0[T]ek such that ek = xy, yx = el. Thus there are a ∈supp(x), b ∈supp(y) such that ek = ab, ba = el.
As x ∈ ekR0[T]el, we get eka = a. Now, ekRa and a is a regular element of PRA(S). By Proposition 2.11,
a = (u)pq for some a regular element u of S. But

(ekuel)ek ,el = (ek)ek ,ek(u)pq(el)el ,el = ekael = a = (u)pq ,

so by the multiplication of PRA(S), ek = p, el = q and hence ek = u#, el = u∗. Thus ekRuLel. In other words,
ekDel in the semigroup S. Nowwe prove that if ekT ≅ elT, then ekDel in the semigroup S. Because the reverse
is obvious, it is now veri�ed that ekT ≅ elT if and only if ekDel in the semigroup S.

Let π = ∪ri=1Ei be the partition of E(S)/{0} induced by D∣E(S) and let {f1, f2,⋯, fr} be representatives
of this partition π. Moreover, we let nk = ∣E(Dfk)∣ where Dfk is the D-class of S containing fk. (Of course,
r = Dreg(S).) Then by the foregoing proof,

T = ⊕n
i=1eiT ≅ ⊕r

k=1nk fkT

and as fk’s are mutually orthogonal, T is isomorphic to the generalized matrix algebra

⎛
⎜⎜⎜⎜
⎝

Mn1(f1Tf1) Mn1 ,n2(f1Tf2) ⋯ Mn1 ,nr(f1Tfr)
Mn2 ,n1(f2Tf1) Mn2(f2Tf2) ⋯ Mn2 ,nr(f2Tfr)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mnr ,n1(frTf1) Mnr ,n2(frTf2) ⋯ Mnr(frTfr)

⎞
⎟⎟⎟⎟
⎠
. (2)

By the construction of PRA(S), fkTfl = R0[Mkl]) whereN is the set of positive integers and
– Mij = {∏m

k=1 xi ∶ m ∈ N , x1,⋯, xk ∈ S, x#1 = fi , x∗m = fj , x∗k = x∗k+1 for 1 ≤ k ≤ m − 1} ;
– Mij = {(a)fi ,fj ∶ a ∈ Mij}.

The proof is �nished.

Example 3.3. Let S be a semigroup each of whose L∗-classes contains at least one idempotent, and assume
that the idempotents of S are in the center of S. By [25], S is a strong semilattice Y of left cancellative monoids
Mα with α ∈ Y. A routine check can show that S is a strict RA semigroup in which for any a ∈ S, a# = a∗ = fα,
where fα is the identity of Mα. It is not di�cult to see that PRA(S) = ∑α∈Y{(a)fα ,fα ∶ a ∈ Mα}. Now let
f1, f2,⋯, fn be all nonzero idempotents of S and fi be the identity of the left cancellative monoid Mαi for
i = 1, 2,⋯, n. With notations in the proof of Theorem 3.2, Mi,j = ∅ when i /= j. So, by Theorem 3.2, R0[S] is
isomorphic to the generalized matrix algebra diag(R[Mα1], R[Mα2],⋯, R[Mαn]).
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As in [26], a ring (an algebra) A has a generalized upper triangular matrix representation of degree n if there
exists a ring (algebra) isomorphism

φ ∶ A→
⎛
⎜⎜⎜⎜
⎝

R1 R12 ⋯ R1n

0 R2 ⋯ R2n

⋮ ⋮ ⋱ ⋮
0 0 ⋯ Rn

⎞
⎟⎟⎟⎟
⎠
.

Theorem 3.4 (Generalized Triangular Matrix Representation Theorem). Let S be a strict RA semigroup and R
a commutative ring. If
(A) ∣E(S)∣ < ∞; and
(B) for any e ∈ E(S), Me,e = {x ∈ S ∶ ex = x, e = x∗} is a subgroup of S,
then R0[S] has a generalized upper triangular matrix representation of degree Dreg(S).

Proof. Let us turn back to the proof of Theorem 3.2. By hypothesis, Mfi ,fi is a subgroup of S, in other words,
any element x ∈ Mfi ,fi is in a subgroup of S, and so xHe for some e ∈ E(S). But x∗ = fi, now eLfi and further
e = fi. Thus x# = fi = x∗. It follows that x ∈ Mii and Mfi ,fi ⊆ Mii . On the other hand, it is clear that Mii ⊆ Mfi ,fi .
Therefore Mii = Mfi ,fi and is a subgroup of S.

We may claim:

Claim A. For any 1 ≤ k, l ≤ r with k /= l, if Mkl /= ∅, then Mlk = ∅.

Indeed, if otherwise, we pick a ∈ Mkl , b ∈ Mlk, and (a)fk ,fl , (b)fl ,fk ∈ PRA(S). Also, a
∗ = fl, fka = a, flb = b

and b∗ = fk, hence abL∗b, baL∗a. It follows that (ab)fk ,fk , (ba)fl ,fl ∈ PRA(S). Thus ab ∈ Mkk , ba ∈ Mll. But
Mkk ,Mll are both subgroups, so abHfk , baHfl. It follows that a and b are regular in S, and aRfkLb, aLfkRb.
Thus fkDfl. This is contrary to that {f1, f2,⋯, fr} are representatives of the partition of E(S)/{0} induced by
D∣E(S). So, we prove Claim A.

We next verify:

Claim B. For any 1 ≤ i, j, k ≤ r, if Mij /= ∅ and Mjk /= ∅, then Mik /= ∅.

Pick x ∈ Mij , y ∈ Mjk. So, x∗ = fj, fjy = y and xyL∗yL∗fk. It follows that (x)fi ,fj(y)fj ,fk = (xy)fi ,fk . Hence
xy ∈ Mik and Mik /= ∅. This results in Claim B.

Consider the quiver Q whose vertex set is V = {1, 2,⋯, r} and in which there is an edge from i to j if and
only if Mij /= ∅. By Claim B, there is a path from i to l if and only if Mil /= ∅. Again by Claim A, the quiver Q
has no cycles. Now by [41, Corollary, p.143], the vertices of Q can be labeled V = {1, 2,⋯, r} in such a way
that if there is an edge from i to j then i < j. This means that we can relabel V = {1, 2,⋯, r} such that if
Mij /= ∅ then i < j. In this case, the algebra (2) is a generalized upper triangular matrix algebra. The proof is
completed.

Let us turn back to the proof of Theorem 3.2 again. Assume now that S is �nite. For x, y ∈ Mii, we have x∗ =
fi = y∗, fix = x and fiy = y. So, xyL∗fiy = yL∗fi. Thus xy ∈ Mii and Mii is a subsemigroup of S. For a ∈ Mii,
if ax = ay, then x = fix = fiy = y and Mii is left cancellative. But Mii is �nite, so Mii is a subgroup. Now by
Theorem 3.4, the following corollary is immediate.

Corollary 3.5. Let S be a strict RA semigroup and R a commutative ring. If S is �nite, then R0[S] has a
generalized upper triangular matrix representation of degree Dreg(S).

Remark 3.6. Note that ample semigroups are strict RA semigroups. By Corollary 3.5, any algebra of ample
�nite semigroups has a generalized upper matrix representation. So, Corollary 3.5 extends the triangular
matrix representation theorem on algebras of ample �nite semigroups [13, Theorem 4.5].

By Corollary 2.7, any right ample �nite monoid is strict RA. So, we have the following corollary.

Corollary 3.7. Let S be a right ample monoid and R a commutative ring. If S is �nite, then R0[S] has a
generalized upper triangular matrix representation of degree Dreg(S).
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Example 3.8. With notation in Example 2.4, by Theorem 3.2, R0[P(Q)] is isomorphic to the generalized
matrix algebra

⎛
⎜⎜⎜⎜
⎝

R1 R12 ⋯ R1n

R21 R2 ⋯ R2n

⋮ ⋮ ⋱ ⋮
Rn1 Rn2 ⋯ Rn

⎞
⎟⎟⎟⎟
⎠
,

where Ri is the subalgebra of R0[P(Q)] generated by all paths from i to i, and Rij is the free module with the
set of all paths from i to j as a base.

Now let Q have no loops. In this case,Mei ,ei = {ei} is a subgroup of P(Q). By Theorem 3.4, R0[P(Q)] has
a generalized upper triangular matrix representation.

Example 3.9. Let C be a left cancellative category with ∣Obj(C)∣ < ∞. By Example 2.5, S(C) is a strict RA
semigroup in which ∣E(S(C))∣ < ∞. Obviously, the relation

π = {(1A , 1B) ∶ A, B ∈ Obj(C) and there exist arrows α, β such that 1A = αβ, 1B = βα}

is an equivalence on the set Y ∶= E(S(C))/{0}. Let Y/π = {Y1, Y2,⋯, Yr}. Moreover, we let Xi = {A ∈ Obj(C) ∶
1B ∈ Yi} and ni = ∣Xi ∣. If pick Ai ∈ Xi, then by Theorem 3.2, R0[S(C)] is isomorphic to the generalized matrix
algebra

⎛
⎜⎜⎜⎜
⎝

Mn1(R[Hom(A1, A1)]) Mn1 ,n2(R[Hom(A1, A2)]) ⋯ Mn1 ,nr(R[Hom(A1, Ar)])
Mn2 ,n1(R[Hom(A2, A1)]) Mn2(R[Hom(A2, A2)]) ⋯ Mn2 ,nr(R[Hom(A2, Ar)])

⋮ ⋮ ⋱ ⋮
Mnr ,n1(R[Hom(Ar , A1)]) Mnr ,n2(R[Hom(Ar , A2)]) ⋯ Mnr(R[Hom(Ar , Ar)])

⎞
⎟⎟⎟⎟
⎠
.

Now let C be a groupoid. In this case, Hom(Ai , Aj) = ∅whenever i /= j, and further R0[S(C)] is isomorphic to
the generalized matrix algebra

⎛
⎜⎜⎜⎜
⎝

Mn1(R[Hom(A1, A1)]) 0 ⋯ 0
0 Mn2(R[Hom(A2, A2)]) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Mnr(R[Hom(Ar , Ar)])

⎞
⎟⎟⎟⎟
⎠
.

By de�nition, the category algebra RC of C over R is just the contracted semigroup algebra R0[S(C)]. For
category algebras, see [33, 38, 39].

We conclude this section by giving a su�cient and necessary condition for the semigroup algebra of a strict
RA �nite semigroup to be semiprimitive, which is just [13, Theorem 5.5] when the semigroup is ample.

Theorem 3.10. Let S bea strict RA semigroupand R acommutative ring. If S is �nite, then R0[S] is semiprimitive
if and only if the following conditions are satis�ed:
(A) S is an inverse semigroup;
(B) for every maximum subgroup G of S, R[G] is semiprimitive.

Proof. By [13, Theorem 5.4], it su�ces to verify the su�ciency. To see this, we assume that R0[S] is semiprim-
itive. With the notations in the proof of Theorem 3.2, K0[S] is isomorphic to the generalized upper triangular
matrix algebra

⎛
⎜⎜⎜⎜
⎝

Mn1(R0[M11]) Mn1 ,n2(R0[M12]) ⋯ Mn1 ,nr(R0[M1r])
0 Mn2(R0[M22]) ⋯ Mn2 ,nr(R0[M2r])

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 ⋯ Mnr(R0[Mrr])

⎞
⎟⎟⎟⎟
⎠
.
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It follows that the Jacobson radical J (R0[S]) of R0[S] is equal to

⎛
⎜⎜⎜⎜
⎝

J (Mn1(R0[M11])) R0[M12] ⋯ R0[M1r]
0 J (Mn2(R0[M22])) ⋯ R0[M2r]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 ⋯ J (Mnr(R0[Mrr]))

⎞
⎟⎟⎟⎟
⎠
.

So, J (Mni(R0[Mii])) = 0 and for i, j = 1, 2,⋯, r, Mni ,nj(R0[Mij]) = 0 if i /= j. Thus R0[Mii] is semiprimitive,
so that R0[Mii] is semiprimitive; andMij = ∅ if i /= j. Since S is �nite,Mii is �nite, so thatMii is a subgroup of
S. But for all a ∈ Mii, aL∗fi giving aLfi, so aHfi since Mii is a subgroup of S, thus Mii is indeed a maximum
subgroup of S. By the choice of fi’s, we know that any nonzero idempotent of S isD-related to some fi, thereby
any nonzero maximum subgroup of S is isomorphic to some Mii. Therefore the condition (B) is satis�ed.

For the condition (A), we prove only that any nonzero element of S is regular. Let a ∈ S/{0} and a# =
e, a∗ = f . Let eDfi and fDfj. Then there exist u ∈ eSfk , v ∈ fkSe, x ∈ fjSf , y ∈ fSfj such that e = uv, fi =
vu, f = yx, fj = xy. It follows that fiRvLe and fRyLfj. Thus vay ∈ Mij since (v)fi ,e(a)e,f (y)f ,fj = (vay)fi ,fj . We
consider the following two cases:
– If fi = fj, then vay ∈ Mii and so as Mii is a subgroup of S, there exists b ∈ S such that vay = vaybvay, so

that a = u ⋅ vay ⋅ x = u ⋅ vaybvay ⋅ x = uv ⋅ aybva ⋅ yx = a ⋅ ybv ⋅ a. It follows that a is regular.
– Assume fi /= fj. By the foregoing proof, Mij = ∅, contrary to the fact: vay ∈ Mij .

Consequently, a is regular, as required.

Based on Corollary 2.7, any right ample �nite monoid is strict RA. Again by Theorem 3.10, the following
corollary is obvious.

Corollary 3.11. Let S be a right amplemonoid. If S is �nite, then K0[S] is semiprimitive if andonly if the following
conditions are satis�ed:
(A) S is an inverse semigroup;
(B) for every maximum subgroup G of S, R[G] is semiprimitive.

Note that inverse semigroups are strict RA.ByTheorem3.10,we can re-obtain thewell-known result on inverse
semigroup algebras as follows:

Corollary 3.12. Let S be an inverse semigroup. If S is �nite, then K0[S] is semiprimitive if and only if for every
maximum subgroup G of S, R[G] is semiprimitive.

4 Self-injective algebras
Recall that an algebra A (possibly without unity) is right (respectively, left) self-injective if A is an injective
right (respectively, left) A-module. Okiniński pointed out that for a semigroup S and a �eld K, the algebra
K[S] is right (left) self-injective if and only if so is K0[S] (see [15, the arguments before Lemma 3, p.188]). So,
in this section we always assume that the semigroup has zero element θ. The aim of this section is to answer
when the semigroup algebra of a strict RA semigroup is left self-injective.

To begin with, we recall a known result on left (right) perfect rings, which follows from [27, Theorem
(23.20), p.354 and Corollary (24.19), p.365].

Lemma 4.1. Let R be a ring with unity. If R is left (right) perfect, then
(A) R does not contain an in�nite orthogonal set of nonzero idempotents.
(B) Any quotient of R is left (right) perfect.

We need some known facts on left self-injective semigroup algebras. By the dual of [28, Theorem 1], any left
self-injective algebra is a left perfect algebra. Note that, by the argument in [29, Remark], whenever K0[S] is
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left perfect, there exist ideals Si , i = 0, 1,⋯, n, such that

θ = S0 ⊏ S1 ⊏ ⋯ ⊏ Sn = S

and the Rees quotients Si/Si+1 are completely 0-simple or T-nilpotent. So, the following lemma is straight.

Lemma 4.2. Let S be an arbitrary semigroup and K a �eld. If K0[S] is a left self-injective K-algebra, then
(A) There exist ideals Si , i = 0, 1,⋯, n, such that θ = S0 ⊏ S1 ⊏ ⋯ ⊏ Sn = S and the Rees quotients Si/Si+1 are

completely 0-simple or T-nilpotent.
(B) ([15, Lemmas 9 and 10, p.192]) S satis�es the descending chain condition on principal right ideals and has

no in�nite subgroups.
(C) [28, Theorem 1] K0[S] is left perfect.
(D) [28, Lemma 1] K0[S]

Rad(K0[S])
is regular, where Rad(K0[S]) is the Jacobson radical of K0[S].

Moreover, we have

Lemma 4.3. Let S be a right ample semigroup. If K0[S] is left self-injective, then
(A) ∣E(S)∣ < ∞.
(B) For any e ∈ E(S)/{0}, the subset Me,e = {x ∈ S ∶ ex = x, x∗ = e} is a �nite subgroup of S.

Proof. (A) By Lemma 4.2, we assume that Si , i = 0, 1,⋯, n, are ideals of S satisfying the conditions:
– θ = S0 ⊏ S1 ⊏ ⋯ ⊏ Sn = S; and
– the Rees quotients Si/Si+1 are completely 0-simple or T-nilpotent.

So, S = {θ} ⊔ (⊔ni=1Si/Si−1). This shows that for any e ∈ E(S)/{θ}, there exists i ≥ 1 such that Si/Si−1 is
completely 0-simple and e ∈ Si/Si−1. Now, to verify that E(S) is �nite, it su�ces to prove that any completely
0-simple semigroup Si/Si−1 is �nite.

Now let Si/Si−1 be a completely 0-simple semigroup. By the de�nition of Rees quotient, any nonzero
idempotents of Si/Si−1 is an idempotent of S. But E(S) is a semilattice, so Si/Si−1 is an inverse semigroup. Thus
Si/Si−1 is a Brandt semigroup. By the structure theorem of Brandt semigroups in [30], Si/Si−1 is isomorphic
to the semigroup T = I × G × I ⊔ {θ} whose multiplication is de�ned by

(a, g, x)(b, h, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(a, gh, y) if x = b;

θ otherwise,

where I is a nonempty set and G is a subgroup of Si/Si−1 Clearly, G is a subgroup of S. By Lemma 4.2(B), G is
a �nite group. By computation, any nonzero idempotent of T is of the form: (a, 1G , a)where 1G is the identity
of G.

For convenience, we identify Si/Si−1 with T. Now,we need only to show that ∣I∣ < ∞. By Lemma 4.2, K0[S]
is left perfect, and so K0[S]

Rad(K0[S])
is semisimple. It follows that K0[S]

Rad(K0[S])
has an identity. It is easy to see

that K0[Si−1] is an ideal of K0[S]. Consider the algebra W ∶= K0[S]
Rad(K0[S]) + K0[Si−1]

. Note that

K0[S]
Rad(K0[S])

Rad(K0[S])+K0[Si−1]
Rad(K0[S])

≅ K0[S]
Rad(K0[S]) + K0[Si−1]

≅
K0[S]

K0[Si−1]
Rad(K0[S])+K0[Si−1]

K0[Si−1]

,

we can observe that
– (a, 1G , a)(b, 1G , b) = θ whenever a /= b;
– W has an unity;
– (a, 1G , a) + Rad(K0[S]) + K0[Si−1] /≡ (b, 1G , b) + Rad(K0[S]) + K0[Si−1] whenever a /= b.
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Again by the property that (a, 1G , a)(b, 1G , b) = θ whenever a /= b, we get that the set

X ∶= {(a, 1G , a) + Rad(K0[S]) + K0[Si−1] ∶ a ∈ I}

is an orthogonal set of nonzero idempotents of W. On the other hand, since K0[S]
Rad(K0[S])

is semisimple, we

know that K0[S]
Rad(K0[S])

is left perfect, and so by Lemma 4.1,W is left perfect. Again by Lemma 4.1, this shows

thatW does not contain an in�nite orthogonal set of nonzero idempotents. It follows that ∣X∣ < ∞. Therefore
∣I∣ < ∞ since ∣X∣ = ∣I∣. Consequently, Si/Si−1 is �nite, and so ∣E(S)∣ < ∞.

(B) Let a ∈ Me,e. Consider the chain of principal right ideals of S:

⋯anS1 ⊆ an−1S1 ⊆ ⋯ ⊆ a2S1 ⊆ aS1.

By Lemma 4.2, there exists a positive integer n such that anS1 = an+1S1. That is, there is x ∈ S1 such that
an = an+1x. Hence an−1 = a∗an−1 = a∗anx = anx. Continuing this process, we can obtain a∗ = ax. But
a = aa∗, now aRa∗. Thus a is regular. Therefore aHa∗ since aL∗a∗. So,Me,e is a subgroup of S and further
by Lemma 4.2, Me,e is �nite.

For convenience, in the rest of this section, we always let S be a strict RA semigroup and K a �eld. Assume
that K0[S] is a left self-injective K-algebra. Let us turn back to the proof of Theorem 3.2. We know that∑n

i=1 ei
is the identity of K0[PRA(S)]. By Theorem 3.4, we have that Mij = ∅ if j < i, and

K0[S] ∶=B ≅
⎛
⎜⎜⎜⎜
⎝

Mn1(K0[M11]) Mn1 ,n2(K0[M12]) ⋯ Mn1 ,nr(K0[M1r])
0 Mn2(K0[M22]) ⋯ Mn2 ,nr(K0[M2r])

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 ⋯ Mnr(K0[Mrr])

⎞
⎟⎟⎟⎟
⎠
.

Since our aim is to show that S is �nite, for convenience, we may assume ni = 1 for i = 1, 2,⋯, r. So, we let

B =
⎛
⎜⎜⎜⎜
⎝

K0[M11] K0[M12] ⋯ K0[M1r]
0 K0[M22] ⋯ K0[M2r]

. . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 ⋯ K0[Mrr]

⎞
⎟⎟⎟⎟
⎠
.

For 1 ≤ j ≤ r, we denote by mj the smallest positive integer in the set {i ∶ Mij /= ∅}. By de�nition, mj ≤ j for
any i.

Lemma 4.4. Mkl ⋅Mmj ,j = 0 whenever Mkl /= Mmj ,mj .

Proof. By de�nition, Mk,mj ⋅Mmj ,j ⊆ Mk,j and

Mkl ⋅Mmj ,j

⎧⎪⎪⎨⎪⎪⎩

=0 if l /= mi

⊆Mk,j if l = mj .

In the second case, k ≤ mj. This shows that k = mj by the minimality of mj.

Lemma 4.5. ∣Mmj ,j ∣ < ∞.

Proof. Lemma 4.3 results the case for mj = j. Assume now that mj < j. By Lemma 4.4, the algebra

C ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 K0[Mmj ,j] 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
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is a left ideal ofB. Pick w ∈ Mmj ,j and de�ne

θ ∶ Mmj ,j → Mmj ,j; x →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x if x ∈ Mmj ,mjw

0 if otherwise,

and span linearly to K0[Mi,mi]. Further de�ne a map ζ of C intoB by

X =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 (x)mj ,j 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

→ ζ(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 (θ(x))mj ,j 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

By Lemma 4.4, a routine computation shows that ζ is aB-module homomorphism. ButB is left self-injective,
now by Baer condition, there exists U ∈B such that ζ(A) = AU for any A ∈ C. Especially, ζ(X) = XU. Now let
U = (ukl). Then ujj = ∑n

k=1 rkak where rk ∈ K, ak ∈ Mjj. Since ζ(X) = XU, we have (θ(x))mj ,j = (θ(x)mj ,jujj =
(∑n

k=1 rkxak)mj ,j and

x =
n
∑
k=1

rkxak . (3)

So, we may let n1, n2,⋯, ns be positive integers such that
– n1 + n2 +⋯ + ns = n;
– (∗) xal = x, for l = 1, 2,⋯, n1;
– (∗∗) xanq+1 = xanq+2 = ⋯ = xanq+nq+1−1 = bq for q = 1, 2,⋯, s, where b1, b2,⋯, bs are di�erent

elements in Mjj.

Nowby Eq. (3), we get r1+r2+⋯rn1 = 1 and rnl+1+rnl+2+⋯rnl+nl+1−1 = 0 for l = 1, 2,⋯, s. Note that fj = x∗L∗x.
Therefore by Eq. (∗), al = fjal = x∗al = x∗ = fj, for l = 1, 2,⋯, n1; and by Eq. (∗∗), x∗anq+1 = x∗anq+2 =
⋯ = x∗anq+nq+1−1 for q = 1, 2,⋯, s, so that as x∗ = fj, anq+1 = anq+2 = ⋯ = anq+nq+1−1 for q = 1, 2,⋯, s.
Consequently, ujj = fj.

Now, for any x ∈ Mmj ,j, (θ(x))mj ,j = (x)mj ,jujj = (xfj)mj ,j = (x)mj ,j. This shows that θ(x) = x and Mmj ,j =
Mmj ,mjw since θ(x) = 0 for any x ∈ Mmj ,j/Mmj ,mjw. It follows that ∣Mmj ,j ∣ < ∞ since Mmj ,mj = Mfj ⊆ Mfj ,fj and
by Lemma 4.3 (B), is a �nite subgroup.

Lemma 4.6. ∣Mij ∣ < ∞.

Proof. If i = mj, nothing is to prove.
If mj /= i and Mij /= ∅, then mj < i. Let i0 be the smallest positive integer of the set

Y = {k ∶ there exist k = k0, k1, k2,⋯, km = i such that MKl−1 ,kl /= ∅ for l = 1, 2,⋯,m − 1}.

We shall prove i0 = mj. Assume on the contrary that i0 /= mj. By de�nition, Mk0 j /= ∅ and specially Mi0 j /= ∅.
Thus mj < i0. By the minimality of i0, Mki = ∅ for 1 ≤ k < i0, and further Mki0 ⋅Mi0 j = 0. This and Lemma 4.4
show that

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 K0[Mmj ,j] 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 K0[Mi0 ,j] 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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is a left ideal ofB and that the map η de�ned by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 (a)mj ,j 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 (b)i0 ,j 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→ η(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 (a)mj ,j 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is a B-module homomorphism. Since B is left self-injective, it follows from Baer condition that there exists
V ∈ B such that η(A) = AV for any A ∈ D. Hence (a)mj ,j = (a)mj ,jvjj and 0 = (b)mj ,jvjj where V = (vij).
By the �rst equality, avjj = a and further by a similar arguments as proving ujj = fj in the proof of Lemma
4.5, fj = vjj /= 0; by the second equality, 0 = (b)mj ,jvjj = (bfj)mj ,j = (b)mj ,j and b = 0, so that as b∗ = fj, we
get 0 = fj, thus vjj = 0, contrary to the foregoing proof: vjj /= 0. Therefore mj = i0. We have now proved that
Mi0 iMij ⊆ Mmj ,j. This shows that cMij ⊆ Mmj ,j for some c ∈ Mi0 i. Note that for w, z ∈ Mij, if cw = cz, then
fiw = fiz, so that w = z. We can observe that ∣cMij ∣ = ∣Mij ∣, and ∣Mij ∣ ≤ ∣Mmj ,j ∣ < ∞.

Lemma 4.7. Mij = ∅ if i /= j.

Proof. By Lemmas 4.2 and 4.6, B is a �nite dimensional algebra and further is quasi-Frobenius. Assume on
the contrary that there exists Mij /= ∅. Let n be the biggest number such that Min /= ∅ for some i /= n, and
further let m be the biggest number such that Mmn /= ∅. Obviously, m < n. By de�nition, Mkm = ∅ if m < k (if
not, then asMmn /= ∅ and by de�nition,Mkn /= ∅, contrary to themaximality ofm); andMnl = ∅ if n < l (if not,
then asMin /= ∅ and by de�nition,Mil /= ∅, contrary to the maximality of n). By these, a routine computation
shows that

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 K0[M1n] 0 ⋯ 0
0 ⋯ 0 K0[M2n] 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 K0[Mmn] 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is a left ideal ofB.
Let x ∈ K0[Mjl] and Mij /= ∅. If K0[Mij]x = 0, then ax = 0 for some a ∈ Mij, so that by a similar argument

as proving ujj = fj in the proof of Lemma 4.5, a∗x = 0. By a∗ = fj, x = fjx = a∗x = 0. So, K0[Mij]x = 0 if and
only if x = 0. Because Mmn /= ∅, this can show that the right annihilator annr(E) of E inB is equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

K0[M11] ⋯ K0[M1,n−1] K0[M1n] K0[M1,n+1] ⋯ K0[M1r]
⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮
0 ⋯ K0[Mn−1,n−1] K0[Mn−1,n] K0[Mn−1,n+1] ⋯ K0[Mn−1,r]
0 ⋯ 0 0 0 ⋯ 0
0 ⋯ 0 0 K0[Mn+1,n+1] ⋯ K0[Mn+1,r]
⋮ ⋯ ⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 0 0 ⋯ K0[Mrr]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

But the left annihilator ann`(annr(E)) of annr(E) inB includes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 K0[M1n] 0 ⋯ 0
0 ⋯ 0 K0[M2n] 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 K0[Mnn] 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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It is clear that ann`(annr(E)) /= E. But B is a quasi-Frobenius algebra, so that by [31, Theorem 30.7, p.333]
we should have ann`(annr(E)) = E, a contradiction.

Theorem 4.8. Let S be a strict RA semigroup and K a �eld. Then K0[S] is left self-injective if and only if S is a
�nite inverse semigroup.

Proof. To verify Theorem 4.8, by [18, Theorem 4.1], it su�ces to prove that if K0[S] is left self-injective, then
S is regular. Assume now that K0[S] is left self-injective. By Theorem 3.4, K0[S] is isomorphic to

⎛
⎜⎜⎜⎜
⎝

Mn1(K0[M11]) Mn1 ,n2(K0[M12]) ⋯ Mn1 ,nr(K0[M1r])
Mn2 ,n1(K0[M21]) Mn2(K0[M22]) ⋯ Mn2 ,nr(K0[M2r])
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mnr ,n1(K0[Mr1]) Mnr ,n2(K0[Mr2]) ⋯ Mnr(K0[Mrr])

⎞
⎟⎟⎟⎟
⎠
.

By Theorem 3.4 and Lemma 4.7, whenever i /= j,Mni ,nj(K0[Mij]) = 0, so thatMij = ∅, thus {x ∈ S ∶ x# = fi , x∗ =
fj} = ∅. Note that fi’s are representatives of the partition π = ∪ri=1Er of E(S)/{0} induced by D. Therefore
{x ∈ S ∶ x# = e, x∗ = h} = ∅ for all e ∈ Ei , h ∈ Ej with i /= j. This means that for all x ∈ S, x#Dx∗.

On the other hand, by Lemma 4.3(B), for any e ∈ E(S)/{0}, Me,e = {x ∈ S ∶ x# = e, x∗ = e} is a subgroup
of S and soMii is a subgroup of S. Let f ∈ E(S)/{0} and eDf . Let x, y ∈ Swith x# = e, y# = f , x∗ = f and y∗ = e,
and of course x, y ∈ Me,f . Then as L∗ is a right congruence, we have xyL∗fy = y, so that y /= 0. Similarly,
yx /= 0. Note that (x)e,f , (y)f ,e ∈ PRA(S). We observe that (xy)e,e = (x)e,f (y)f ,e ∈ PRA(S)/{0}, and hence
xy ∈ Me,e. Thus there is a ∈ Me,e such that e = axy since Me,e is a subgroup of S with identity e. This and
ye = y imply that eLy. Therefore y is regular. We have now proved that y is regular whenever y#Dy∗.

However, any element of S is regular and S is regular, as required.

It is a natural problem whether Theorem 4.8 is valid for the case for right self-injectivity. We answer this
question next. Firstly, we prove the following lemma.

Lemma 4.9. Let S be a right ample semigroup and K0[S] have an unity 1. If K0[S] is right self-injective, then S
is a �nite inverse semigroup.

Proof. For any a ∈ S, S1a is a left ideal of S, and so K0[S1a] is a left ideal of K0[S]. Since K0[S] is right self-
injective, and by [31, Lemma 30.9, p.334], we have ann`(annr(K0[S1a])) = K0[S1a]. By the de�nition of L∗,
annr(K0[S1a]) = annr(a) = annr(a∗) = (1 − a∗)K0[S] and so

K0[S1a] = ann`(annr(K0[S1a]) = ann`((1 − a∗)K0[S]) = K0[S]a∗ = K0[S1a∗].

It follows that S1a = S1a∗. Thus aLa∗ so that a is a regular element of S. Therefore S is an inverse semigroup,
and by the Wenger Theorem, S is a �nite inverse semigroup.

Based on Lemma 4.9, we can verify the following theorem, which illuminates that Theorem 4.8 is valid for
right self-injectivity.

Theorem 4.10. Let S be a strict RA semigroup. Then K0[S] is right self-injective if and only if S is a �nite inverse
semigroup.

Proof. By Theorem 4.8, it su�ces to verify the necessity. By Lemma 4.9, we need only to show that K0[S] has
an identity. Now let us turn back to the proof of Lemma 4.3(A). We notice that the proof is valid for right
self-injectivity and so ∣E(S)∣ < ∞ when K0[S] is right self-injective. By Theorem 3.4, we have that K0[S] is
isomorphic to the generalized upper triangular matrix algebra

⎛
⎜⎜⎜⎜
⎝

Mn1(R0[M11]) Mn1 ,n2(R0[M12]) ⋯ Mn1 ,nr(R0[M1r])
0 Mn2(R0[M22]) ⋯ Mn2 ,nr(R0[M2r])

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 ⋯ Mnr(R0[Mrr])

⎞
⎟⎟⎟⎟
⎠
.
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It is easy to see that K0[S] has an identity. We complete the proof.

We now arrive at the main result of this section, which follows immediately from Theorems 4.8 and 4.10.

Theorem 4.11. Let S be a strict RA semigroup and K a �eld. Then the following statements are equivalent:
(1) K0[S] is left self-injective;
(2) K0[S] is right self-injective;
(3) S is a �nite inverse semigroup;
(4) K0[S] is quasi-Frobenius;
(5) K0[S] is Frobenius.

Note that ample semigroups are both strict RA and strict LA. By Theorem 4.11 and its dual, the following
corollary is immediate, which is the main result of [18] (see, [18, Theorem 4.1]).

Corollary 4.12. Let S be an ample semigroup and K a �eld. Then the following statements are equivalent:
(1) K0[S] is left self-injective;
(2) S is a �nite inverse semigroup;
(3) K0[S] is quasi-Frobenius;
(4) K0[S] is Frobenius;
(5) K0[S] is right self-injective.

Let S be a right amplemonoid. Note that E(S)⋅S = S. By Corollary 2.7, S is a strict RA semigroup. If K0[S] is left
self-injective, then S has only �nite idempotents. Now, by Theorem 4.11, the following corollary is immediate.

Corollary 4.13. Let S be a right ample monoid. Then the following statements are equivalent:
(1) K0[S] is left self-injective;
(2) S is a �nite inverse semigroup;
(3) K0[S] is quasi-Frobenius;
(4) K0[S] is Frobenius;
(5) K0[S] is right self-injective.

Recall that ifA is a ring andA1 is the standard extension ofA to a ringwith unity, thenA is left self-injective if
and only if the leftA1-moduleA satis�es the Baer condition (c.f. [32, Chapter 1]). The following example, due
to Okniński [28], shows that in Theorem 4.8, the assumption that E(S) is a semilattice, i.e., all idempotents
commute, is essential.

Example 4.14. Let S = {g, h} be the semigroup of left zeros, and Q the �eld of rational numbers. Consider
the algebra Q[S] = Q0[S] and the standard extension Q[S]1 of Q[S] to a Q-algebra with unity. It may be
shown that for any left ideal I of Q[S]1, any homomorphism of left Q[S]1-modules I → Q[S], extends to
a homomorphism of Q[S]1-modules IQ[S]1 → Q[S]. Moreover, by computing the right ideals of Q[S]1, one
can easily check thatQ[S]1 satis�es Baer’s condition.Hence,Q[S] satis�es Baer’s condition asQ[S]1-module
whichmeans thatQ[S] is left self-injective. On the other hand, sinceQ[S] has no right identities, it is obvious
thatQ[S] is not right self-injective.

Obviously, the polynomial algebra K[x] is indeed the semigroup algebra K[M], where M = {1, x, x2,⋯}. It
is easy to see that M is a cancellative monoid, and of course, a strict RA semigroup. By Theorem 4.11 and
its dual, K[x] is neither left self-injective nor right self-injective. Recall that a category C is said to be �nite
if ∣Obj(C)∣ < ∞ and ∣Hom(A, B)∣ < ∞, for all A, B ∈ Obj(C). For the self-injectivity of path algebras and
category algebras, we have the following proposition.

Proposition 4.15. (A) Let Q be a quiver and K a �eld. Then the path algebra KQ is left self-injective if and only
if Q has neither edges nor loops; if and only if KQ is right self-injective.
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(B) Let C be a left cancellative category. Then the category algebra KC is left self-injective if and only if C is
a �nite groupoid; if and only if KC is right self-injective.

Proof. (A) We only need to prove the necessity. If KQ is left (resp. right) self-injective, then S(Q) is a �nite
inverse semigroup. It follows that Q has no circles, and of course, no loops. On the other hand, since the
idempotents of S(Q) are empty paths, it is easy to show that any edge is not regular in the semigroup S(Q),
thus Q has no edges.

(B) By Example 2.5, S(C) is an inverse semigroup whenever C is a groupoid. So, it su�ces to verify the
necessity. Assume that KC is left self-injective, then by Theorem 4.8, S(C) is a �nite inverse semigroup. It
follows that C is a �nite groupoid.

Recall from [27] that an algebra A with unity is semisimple if and only if every left A-module is injective. So,
any semisimple algebra is left self-injective. By Theorem 4.11 and Corollary 3.12, we immediately have

Theorem 4.16. Let S be a strict RA semigroup and K be a �eld. If K0[S] has a unity, then K0[S] is semisimple
if and only if S is a �nite inverse semigroup and the order of any maximum subgroup of S is not divided by the
characteristic of K.

By Theorem 4.11, the following proposition is immediate, which answers positively [15, Problem 6, p.328] for
strict RA semigroups:

Does the fact that K[S] is a right (respectively, left) self-injective imply that S is �nite?

Proposition 4.17. Let S be a strict RA semigroup. If K0[S] is left (respectively, right) self-injective, then S is
�nite.

Moreover, we have the following corollary.

Corollary 4.18. Let S be a right ample monoid and K a �eld. If K0[S] is left (respectively, right) self-injective,
then S is �nite.
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