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Abstract: Strict RA semigroups are common generalizations of ample semigroups and inverse semigroups.
The aim of this paper is to study algebras of strict RA semigroups. It is proved that any algebra of strict
RA semigroups with finite idempotents has a generalized matrix representation whose degree is equal to
the number of non-zero regular D-classes. In particular, it is proved that any algebra of finite right ample
semigroups has a generalized upper triangular matrix representation whose degree is equal to the number of
non-zero regular D-classes. As its application, we determine when an algebra of strict RA semigroups (right
ample monoids) is semiprimitive. Moreover, we prove that an algebra of strict RA semigroups (right ample
monoids) is left self-injective iff it is right self-injective, iff it is Frobenius, and iff the semigroup is a finite
inverse semigroup.
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1 Introduction

The mathematical structures which encode information about partial symmetries are certain generalizations
of groups, called inverse semigroups. Abstractly, inverse semigroups are regular semigroups each of whose
elements has exactly one inverse; equivalently, a regular semigroup is inverse if and only if its idempotents
commute. Like groups, inverse semigroups first arose in questions concerned with the solutions of equations,
but this time in Lie’s attempt to find the analogue of Galois theory for differential equations. The symmetries
of such equations form what are now termed Lie pseudogroups, and inverse semigroups are, several times
removed, the corresponding abstract structures. In addition to their early appearance in differential geometry,
inverse semigroups have found a number of other applications in recent years including: C*-algebras;
tilings, quasicrystals and solid-state physics; combinatorial group theory; model theory; and linear logic.
Inverse semigroups have been widely investigated. For inverse semigroups, the readers are referred to the
monographs of Petrich [1] and Lawson [2]. Because of the important role of inverse semigroups in the theory
of semigroups, there are attempts to generalize inverse semigroups. (Left; Right) ample semigroups originally
introduced by Fountain in [3] are generalizations of inverse semigroups in the range of (left pp semigroups;
right pp semigroups) abundant semigroups.

Inverse semigroup algebras are a class of semigroup algebras which is widely investigated. For example,
Crabb and Munn considered the semiprimitivity of combinatorial inverse semigroup algebras (see [4]);
algebras of free inverse semigroups (see [5, 6]); nil-ideals of inverse semigroup algebras (see [7]). More
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results on inverse semigroup algebras are collected in a survey of Munn [8]. Recently, Steinberg [9, 10]
investigated representations of finite inverse semigroups. Inverse semigroups are ample semigroups and any
ample semigroup can be viewed as a subsemigroup of some inverse semigroup. Ample semigroups include
cancellative monoids and path semigroups of quivers. In [11, 12], Okninski studied algebras of cancellative
semigroups. Guo and Chen [13] proved that any algebra of finite ample semigroups has a generalized upper
triangular matrix representation. Guo and Shum [14] established the construction of algebras of ample
semigroups each of whose [7*-classes contains a finite number of idempotents. For the related results on
semigroup algebras, the reader can be referred to the books of Oknifiski [15], and Jesper and Oknifiski [16].

Frobenius algebras are algebras with non-degenerate bilinear mappings. They are closely related to
the representation theory of groups which appear in many branches of algebras, algebraic geometry and
combinatorics. Frobenius algebras and their generalizations, such as quasi-Frobenius algebras and right
(left) self-injective algebras, play an important role and become a central topic in algebra. Wenger proved
an important result (Wenger Theorem): an algebra of an inverse semigroup is left self-injective iff it is right
self-injective; iff it is quasi-Frobenius; iff the inverse semigroup is finite (see [17]). In [18], Guo and Shum
determined when an ample semigroup algebra is Frobenius and generalized Wenger Theorem to ample
semigroup algebras.

Right (Left) ample semigroups are known as generalizations of ample semigroups and include left (right)
cancellative monoids as proper subclass. So, it is natural to probe algebras of right ample semigroups. This is
the aim of paper. Indeed, any ample semigroup is both a right ample semigroup and a left ample semigroup.
The symmetry property is a “strict" one in the theory of semigroups. It is interesting whether the semigroup
algebras have the “similar" properties if we destroy the “symmetry". To be precise, for what “weak symmetry"
assumption is the Wenger Theorem valid? By weakening the condition: S is a left ample semigroup, to the
condition: Each Z-class of S contains an idempotent, we introduce strict RA semigroups (dually, strict LA
semigroups), which include ample semigroups and inverse semigroups as its proper subclasses. The follow-
ing picture illustrates the relationship between strict RA (LA) semigroups and other classes of semigroups:

£c
RA LA
SRA SLA
A
7

where £C is the class of EC-semigroups (that is, semigroups whose idempotents commute), for EC-
semigroups, see [19, 20]; SR.A is the class of strict RA semigroups; SL.A is the class of strict LA semigroups;
A is the class of ample semigroups; Z is the class of inverse semigroups, and the symbolic “|" means that the
upper class of semigroups includes properly the lower one.

Our ideas in this paper are somewhat similar as in [13, 18] and inspired by the references [21, 22]. In
Section 2, we obtain some properties of strict RA semigroups. Section 3 is devoted to the representation
theory of generalized matrices for algebras of strict RA semigroups. It is verified that any algebra of a strict
RA semigroup with finite idempotents has a generalized matrix representation whose degree is equal to the
number of non-zero regular D-classes (Theorem 3.2), extending the main result in [13]. In particular, we prove
that any algebra of a finite right ample monoid has a generalized upper triangular matrix representation
(Corollary 3.5). As applications of these representation theorems, we determine when an algebra of strict
RA finite semigroups is semiprimitive (Theorem 3.10). This extends the related result of Guo and Chen in
[13]. In particular, a sufficient and necessary condition for an algebra of right ample finite monoids to be
semiprimitive is obtained (Corollary 3.11). In Section 4, we shall determine when an algebra of right ample
semigroups is left self-injective. It is shown that an algebra of a strict RA semigroup is left self-injective, iff it
is right self-injective, iff it is Frobenius and iff the Strict RA semigroup is a finite inverse semigroup (Theorem
4.11). This result extends the Wenger Theorem to the case for strict RA semigroups. Especially, it is verified
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that if an algebra of a right ample monoid is left (resp. right) self-injective, then the monoid is finite (Corollary

4.18). So, we give a positive answer to [15, Problem 6, p.328] for the case that S is a strict RA (LA) semigroup

(especially, a right ample monoid). It is interesting to find that

— the “distance" between strict RA (LA) semigroups with finite inverse semigroups is the left (right) self-
injectivity;

— for an algebra of strict RA (LA) semigroups, left (right) self-injectivity= quasi-Frobenoius = Frobenius.

In this paper we shall use the notions and notations of the monographs [23] and [15]. For right ample
semigroups, the reader can be referred to [3].

2 Strict RA semigroups

Let S be a semigroup; we denote by E(S) the set of idempotents of S, by S* the semigroup obtained from S by
adjoining an identity if S does not have one.
To begin with, we recall some known results on Green’s relations. For any a, b € S, define

alb < S'a=S'bi.e.a=xb,b=yaforsomex,yeS;
aRb < aS' = bS'i.e.a = bu, b = av for some u, v € S;
H=LNTR;
D=LoR=RoL.

In general, £ is a right congruence and R is a left congruence. a is regular in S if there exists x € S such
that axa = a. Equivalently, a is regular if and only if aDe for some e € E(S). And, S is called regular if each
element of S is regular in S. We use Dy to denote the D-class of S containing x, and call a D-class containing
aregular element a regular D-class. It is well known that any element of a regular D-class is regular and that
the D-class containing the zero element O is just the set {0}.

As generalizations of Green’s £- and R-relations, we have £*- and R*-relations defined on S by

al*bif (ax = ay < bx = by forall x,y € SY),
aR*bif (xa = ya < xb = yb forall x,y € S).

It is well known that £* is a right congruence and R* is a left congruence. In general, £ < L and R ¢ R”.
And, if a, b are regular, then a£ (R)b if and only if al* (R*)b.

Definition 2.1. A semigroup S is right ample if

(4) its idempotents commute;

(B) every element a is L* -related a (unique) idempotent a*;
(C) foranyaeSande € E(S),ea=a(ea)”.

Left ample semigroups are defined by duality. Moreover, a semigroup is ample if it is both left ample and right
ample. Obviously, inverse semigroups are (left; right) ample semigroups.
As generalizations of £* and R*, we have L and R defined on S by

albif (a = ae < b = be forall e € E(S')),
aRbif(a=ea < b=ebforallecE(S")).

In general, Z is not a right congruence and R is not a left congruence. Clearly, £ ¢ £* c Land R c R* ¢ R.
Lemma2.2. Leta e Sande ¢ E(S). If aRe, then ea = a. Moreover, if g, h € E(S) and gRh, then gRh.

Proof. Since e? = e, the result follows from aRe. The rest is trivial. O
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By Lemma 2.2, it is evident that for regular elements a, b, aL (R)b if and only if aZ (R)b. Especially, on a
regular semigroup £ = £Land R = R.

Definition 2.3. A semigroup S is strict RA if S is a right ample semigroup in which for any a € S, there exists an
idempotent e such that aRe. Strict LA semigroups are defined by duality.

For a strict RA semigroup, each R-class contains exactly one idempotent; for, if e, f are idempotents and
eRf, then by Lemma 2.2, eRf, so that e = f since idempotents of a strict RA semigroup commute. We shall
denote by a” the unique idempotent in the R-class containing a. Obviously, ample semigroups are strict
LA (strict RA) semigroups. So, strict RA semigroups (strict LA semigroups) are common generalizations of
ample semigroups and inverse semigroups. Indeed, strict RA semigroups include ample semigroups as its
proper subclass; for, it is easy to see that left cancellative monoids are strict RA semigroups but not all of left
cancellative monoids are ample semigroups.

Example 2.4. Assume that Q = (V, E) is a quiver with vertices V = {1, 2, ---, r}. Denote by (i1|iz|---|in) the
path: 538> ... »8.In particular, we call the path of Q without vertices the empty path of Q, denoted by 0.
For any i € V, we appoint to have an empty path e;. Let P(Q) be the set of all paths of Q. On P(Q), define a
multiplication by: for (i1|+|im), (j1|--|in) € P(Q),

(t1]-[imlj2]-|jn) if im = j1s
(t1]-+im) o (Ja|-ljin) =
0 otherwise.

Evidently, the path algebra RQ of the quiver Q over R is just the contracted semigroup Ro[P(Q)]. By a routine
computation, (P(Q), o) is a semigroup in which

— 0is the zero element of P(Q) and e1, e3, -+, er, 0 are all idempotents of P(Q);

- eilR*(i1|-~-|im)£*eim;

- ejej = Owheneveri #j.

It is easy to see that P(Q) is a strict RA semigroup having only finite idempotents.

Example 2.5. Let C be a small category and 0 a symbol. On the set

S(C) := (Ua,peonj(cyHom(A, B)) L {0},
define: for o, 3 € Up peopjcyHom (A, B),

ao 3 if . and 8 can be composed,
ax*fl=
0 otherwise

and 0 *a = a*0 = 00 = 0. It is a routine check that (S(C), *) is a semigroup with zero 0, called the
category semigroup of C. An arrow o € Hom(A, B) is an isomorphism if there exists 3 € Hom(B, A) such that
aB = 1, and Ba = 15. We call C a groupoid if any arrow of C is an isomorphism (for groupoids, see [22] and
their references); and left (resp. right) cancellative if for any arrows «, 8,y of C, 3 = v whenever a8 = avy
(resp. ya = ya). And, C is cancellative if C is both left cancellative and right cancellative. It is not difficult to
see that any groupoid is a cancellative category. Leech categories and Clifford categories are left cancellative
categories (for these kinds of categories, see [24]).
(A) Assume that C is a left cancellative category. By computation, in the semigroup S(C), for any a «

Hom(A, B),

- 1A£*Oz7’€13;

- E(S(C))={0}u{1c:CecO0bj(C)}.

It is not difficult to check that S(C) is a strict RA semigroup. By dual arguments, if C is cancellative, then

S(C) is an ample semigroup.
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(B) When C is a groupoid. In this case, there exists 3 € Hom(B, A) such that a8 = 1,4. It follows that aSa = a.
This means that « is regular and hence S(C) is a regular semigroup. Again by the foregoing arguments,
S(C) is indeed an inverse semigroup.

Lemma 2.6. Let S be a right ample semigroup and E(S) - S = S. If |[E(S)| < oo then S is strict RA.

Proof. Let a € S and denote by e, the minimal idempotent under the partial order w on E(S) (that is, ewf
if and only if e = ef = fe) such that eqa = a. Obviously, for any f € E(S), fea = e, can imply that fa = a;
conversely, if fa = a then fe, - a = a and fe, = e, since feqwe,. Thus aReq, so S is strict RA. O

Corollary 2.7. Let S be a right ample monoid. If S is finite, then S is strict RA.

For a right ample semigroup S, define: fora, b € S,
a <y bifand only if a = be for some e € E(S). (n

In (1), the idempotent e can be chosen as a*; for, by a = be, we have a = ae, so that a* = a”e, thereby
a=aa”* =bea” =ba*.So,a <, bifand onlyif a = ba*. It is not difficult to check that <, is a partial order on
S. Moreover, we have

Lemma 2.8. If S is a right ample semigroup, then with respect to <, S is an ordered semigroup.

Proof. The proof is a routine check and we omit the detail. O

For an element a of a right ample semigroup S, we denote
O(a)={xeS:x<,a}.

If x <; athen x = ax™, so that x = aa*x* = xa”, hence x* = x*a”, therefore x*wa*, that is, x* € w(a”)
where w(a*) = {e € E(S) : ewa”}. On the other hand, for f, h € w(a*), if af = ahthenf = a*f =a*h = h.
Consequently, O(a) = {af : f e w(a*)} and |0(a)| = |w(a®)|.

Proposition 2.9. Let S be a strict RA semigroup and a, b, x € S. If x <, ab, then there exist uniquely u,v € S
such that

(01) u<ya,vs<, b;

(02) u* =x*, u* =v* and x* = v*;

(03) x =uv.

Proof. Denote v = (x*a)*bx* and u = x*av*. We have uv = x*av* - (x*a)*bx* = x*abx* = x. Because Sis a
right ample semigroup, we have x*a* <, a* and a*v* <, a*, sothatu = x*a* - a-a*v* <, a* -a-a* = a; and
(x*a)*b* <, b*, b*x* <, b*, sothatv = (x*a)*b* - b-b*x* <, b*bb* = b.

Note that v = (x#a)*bx* = vx*, we observe v* = v*x*. On the other hand, since x = uv = uvv* = xv*, we
get x* = x*v*. Thus x* = v* since E(S) commutes.

Indeed, by u = x*av*, we have u = uv*, so that u* = u*v*. It follows that u* <, v*. Consider that £* is a
right congruence, we have u*£*u = x*av* £* (x*a)*v* and u* = (x*a)*v* since each £*-class of S contains
exactly one idempotent. So,

v=viv=v (x*a) bx* = v (x*a) v = uty,
further by definition, v = u*v¥ 1t follows that v* <, u*. Therefore u* = v*.

By the definition of u, u = x*uand x*u® = u*. But u®u = u, so u®x = x. It follows that u*x* = x*. Therefore
u* = x* since E(S) commutes.

Finally, we let m, n be elements of S satisfying the properties of u and those of vin (01), (02) and (03),
respectively. Then m* = n* and v* = x* = n*. By the arguments before Lemma 2.8, n = bn* = bv* = v and
m = am* = an®. By the first equality, n* = v*. Thus u = x*av* = x*an* = x*m = m*m = m. This proves the
uniqueness of u and v. O
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Assume now that T is a strict RA semigroup with zero element 0. Let E be the set of nonzero idempotents of
T.Forany a € T\{0}, (a); will denote the E x E matrix with entry a in the (i, j) position and zeros elsewhere.
Also, we still use 0 to denote the E x E matrix each of whose entries is 0. Set

M(T) = {(a); : ia = a = aj} U {0}
and define an operation on M(T) by: A, B e M(T),

0 ifA=00rB=0;
AB = 0 ifA:(a),-j,B: (b)kl al’ldj#k;
(ab),-l ifA= (a)ij,B = (b)kl andj = k.

It is easy to check that with respect to the above operation, M(T) is a semigroup with zero element O.
Moreover, we can observe

Lemma 2.10. The zero 0 and the elements (i);; (i € E) are all idempotents of M(T), and orthogonal each other.

Write X(T) = {0} u {(a); : a* = i,a* = j}. We denote by PRA(T) the subsemigroup of M(T) generated by
X(T). It is not difficult to see that

PRA(T) = {(a);; : there exist x1, X2, -+, Xx € T such that a = x1x2---xn
x’f =i,Xp =], X = xiﬂ fork=1,2,--,n—1}.

In what follows, for any a € T, we use a to denote (a);; with at =i, a* = j.

Proposition 2.11. In the semigroup PRA(T), for any (a);; € PRA(T), we have

4) a* =j.

(B) (a)jj is regular if and only if a is regular in T. Moreover, if a is regular, then (a); € X(T).
© (a)sL"(j)j-

Proof. (A) By the definition of PRA(T), there exist x1, X2, -+, Xn € T such that @ = x1x2---xn, X} = X}, where
k=1,2,-,n-1,x" =iand x; =j. Since £* is a left congruence, we have

a = x1X2--Xn L X1 X2 Xn
= XEXa Xn L L X 1 Xn = Xn LT X
=Jj
and further since each £*-class of a left ample semigroup contains exactly one idempotent, we get a* = j.
(B) Let (a);; be regular. Then there exists (x);; € PRA(T) such that

(a)i(x)ji(a)ij = (a)ij.

It follows that axa = a, whence a is regular in T.
Conversely, assume that a is regular in T and let y be an inverse of a in T. Since x1Xx2---XnYX1X2:+Xn =
X1X2---Xn and x1 L¥i1, we have X5+ XnYX1X2-+-Xn-1Xn = X2--Xn—1Xn, and hence

X3 Xp-1Xn - YX1 X2 Xp-1 = X;XB"'Xn—lxn “YX1 X2 Xn
= X3X3+Xn-1Xn - YX1X2 - X3°+-Xn—1Xn
= X§X3“'Xn—1xn
= X3"’Xn.

It follows that x3---x,, is regular. Continuing this process we have that x,, is regular. By Lemma 2.2, x* Rx,. Now,
X1X2:+XnYX1X2+--Xn = X1X2---Xn can imply that xlxzmxnyxlxzmxn_lxﬁ = xlxzo-~xn_1xfl, whence x1---Xp_1 =
X1---Xn—1 © XnY © X1X2--Xp—1 and further regular in T. By the foregoing proof, x,_; is regular. Applying these
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arguments to x;---Xn—2, we know that x,_ is regular, therefore x; is regular for I = 1, ---, n. But x; L*x}, so
xxLx; and as L is a right congruence,
a = X1X2--XnLX X2+ Xn
= Xp - XnLeLXn_1Xn = Xn LX)y
=j
and a* = j since each £*-class of a strict RA semigroup contains exactly one idempotent. On the other hand,
since R is a left congruence, we have
a= xlxz-uanxlxz---xn,lxﬁ
= X1X2"'Xn_1R"'RX1X§ = XlRX;#
=1
and a* = i since each R*-class of a left ample semigroup contains exactly one idempotent. We have now
proved that (a);; € X(T). It follows that
ay=a"=iandya=a*=j.

Furthermore, (y);; € PRA(T). Consequently, (a);; is regular since (a);;(y);i(a)i = (aya);j = (a);.

(C) Now let (x)jk, (¥)j1 € PRA(T).If (a)ij(x)jx = (a)ij(¥);, then (ax)y = (ay)y, hence k = land ax = ay.
By the second equality and applying (A), we have jx = jy, and further (j);; (X)jx = ()i = GY)u = ()ii(V)js
if (a)ij(x)jx = (@), then (a);;(x)jx = (a)i = (a)i;(Jj)jj, and by the foregoing proof, (j);;(x);x = (j);;(J);;- We
have now proved that for all (x);x, (¥); € PRA(T)", we have (j);; (x)jx = (j);;(¥);y whenever (a);;(x)jx = (a);.
This and the equality (a);j(j);; = (a);; derive that (a); L (j)j;. O

3 Generalized matrix representations

Let R1, R, -+, Rn be associative rings (algebras) with identity and let R;; be a left R;- right R;-bimodule for
i,j=1,2,---,nandi < j. We call the formal n x n matrix

ai aiz -+ Qin
dzi1 dz -+ dan
dn1 An2 **+ dn

with a; € R;, a; € R;j fori,j = 1, 2,---,n, a generalized n x n matrix. For 1 < i,j, k < n, thereis a (R;, Ry)-
bimodule homomorphism ¢;j : R;; ®g; Rjx — Ry such that the square

idij ® Pjl
Ri}' ® R]-k ® Ry /7 R,'j ® Rﬂ

Py ®idy J l@iz

Ry®Ry — Ry
ikl
is commutative. We denote (a ® b)¢; by ab. With respect to matrix addition and matrix multiplication, the
set

R1 R12 - Rin
R>1 R> -~ Ron
Rnl an Rn

of all generalized matrices is an R-algebra, called a generalized matrix algebra of degree n. If R;; = O for any
1 <j <1< n, then we call the generalized matrix algebra a generalized upper matrix algebra of degree n.



DE GRUYTER Algebras of right ample semigroups =— 849

Definition 3.1. A ring (An algebra) has a generalized matrix representation of degree n if there exists a ring
(an algebra) isomorphism

Ri Ri2 - Rin
69— Ry1 Ry - Rop
Rnl RnZ Rn

For a semigroup S with zero 0, we denote by D,e¢(S) the number of nonzero regular D-classes of S. By [23,
Proposition 3.2, p.45], Dyeg(S) = |{De : e € E(S)\{0}}| = |E(S)/D°| - 1. We arrive at the main result of this
section.

Theorem 3.2 (Generalized Matrix Representation Theorem). Let S be a strict RA semigroup and R a commu-
tative ring with unity. If |[E(S)| < oo then Ro[S] has a generalized matrix representation of degree Dyeg(S).

Proof. Define a map ¢ by
©:S—>Ro[PRA(S)]; s+ > (W)ys
ue0(s)
and span this map linearly to Ro[S]. By the arguments before Proposition 2.9, |0(s)| = |w(s™)| < |[E(S)| < oo
and hence ¢ is well defined.
For s, t € S, by Proposition 2.9, there exist uniquely x € O(s), y € O(t) such that u = xy, x* = u*, x* = y*
and y* = u”, for any u € O(st). So,

‘P(St): Z (u)u“,u*

ueO(st)

(Xy)x‘*,y*

u=xy,x*=ut ,x*=y*,y*=u*,xe0(s),ye0(t)

> ()t xe (V) .y by Proposition 2.9

u=xy,x*=u* x*=y* y*=u*,xe0(s),ye0(t)

( Z (X)x”,x*)( Z (y)y*‘,y*)
xe0(s) yeO(t)

= @(s)e(t)

and ¢ is a homomorphism.
Letx= Y rnau,y= Y nveRo[S]\{0}and o(x) = »(y). Denote

uesupp(x) vesupp(y)
A(x) ={a* :aesupp(x)};
m(x,i) = > rul,

uesupp(x),u*=i

and let Max(x) be the set of maximal elements of A(x) under <,. Let Max*(x) = {a* : a € Max(x)} and
M (X) = iepax (xy M(X, ). Define recursively

M (x) = 3 m(x—l(z_:lgp(Mj(x)),l),
)

leMax*(x—Z:]’-‘;1 P(Mi(x)) =1

where M°(x) = 0 and M'(0) = O for any positive integer i. By the definition of ¢, there must be a positive
integer n such that M"(x) = 0. Let n(x) be the smallest integer such that M"®(x) = 0. Now again by the
definition of ¢, it is not difficult to see that x = Z?:(f) Mi(x). Because Ro[S] is a free R-module with a basis
S\{0}, ¢(x) = (y) can imply that M*(x) = M*(y). It follows that x(x — M*(x)) = ¢(y — M*(y)). By the
foregoing proof, M?(x) = M'(x - M*(x)) = M*(y - M*(y)) = M?(y). Continuing this process, we have
n(x) = n(y) and M*(x) = M*(y) for 2 < k < n(x). Therefore

nw )
x=) M(x)=> M(y)-=y,
i=1 i=1
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and ¢ is injective.
Now let |E(S)| = n + 1. Then we may assume that E(S)\{0} = {e1, €2, -, en}. For any (a); € PRA(S),
we have ia = a and a” = j. It follows that aj = a. Note that i = e, and j = e; for some 1 < k, [ < n. Thus

(ex)ii(a)ij = (a)ij = (a)ij(er);; and

-

ep) “(a)ij = (ex)ii(a)y

= (a)j
= (a)ij(er)jj

. <a>u-~(iep).
p=1

Therefore 1 = },_; e, is the identity of Ro[PRA(S)]. So, Ro[S] has an identity.

For convenience, we identify Ro[S] with T := o(Ro[S]). If €, T = e;T, then there exist x € exRo[T]e;, y €
e1Ro[T]ex such that e, = xy, yx = e;. Thus there are a esupp(x), b esupp(y) such that e = ab, ba = e;.
As x € exRo[T]e;, we get exa = a. Now, e,Ra and a is a regular element of PRA(S). By Proposition 2.11,
a = (u)pq for some a regular element u of S. But

(exuer)e,e; = (€x)er,ex (U)pg(€r)ese; = €xae; = a = (U)pgs

so by the multiplication of PRA(S), ex = p, ; = g and hence ey = u*, e; = u*. Thus e, RuLe,. In other words,
erDe; in the semigroup S. Now we prove thatif e; T = e;T, then e, De; in the semigroup S. Because the reverse
is obvious, it is now verified that e, T = e, T if and only if e, De; in the semigroup S.

Let m = U;_, E; be the partition of E(S)\{0} induced by D|g s and let {f1, f2,---, f;} be representatives
of this partition w. Moreover, we let n, = |E(Dy, )| where Dy, is the D-class of S containing fi. (Of course,
r = Dreg(S).) Then by the foregoing proof,

T=oLeT = & T
and as fi’s are mutually orthogonal, T is isomorphic to the generalized matrix algebra

Mo, (A1) Muin (A Tf2) - Mo, (i Tr)
Mosiy (B TFD) My (F2TF2) My, (F2TF)

)
Mnr:nl(fTVTE) Mn,,nz(]TrT]TZ) e M”r(ﬁTfT)
By the construction of PRA(S), fi Tf; = Ro[My;]) where AV is the set of positive integers and
My ={IljL, xi:m €N, X1, Xk €S, X} = fi, Xin = i, X§ = X}, for 1 <k <m - 1};
Mi]' = {(a)fi’f]. tdae Mi]'}.
The proof is finished. O

Example 3.3. Let S be a semigroup each of whose £*-classes contains at least one idempotent, and assume
that the idempotents of S are in the center of S. By [25], S is a strong semilattice Y of left cancellative monoids
M., with « € Y. A routine check can show that S is a strict RA semigroup in which forany a ¢ S, a* = a* = f.,
where f, is the identity of M. It is not difficult to see that PRA(S) = Y ey{(a)s. 5. : @ € Ma}. Now let
fi,f2, -+, fn be all nonzero idempotents of S and f; be the identity of the left cancellative monoid M, for
i=1,2,-,n. With notations in the proof of Theorem 3.2, M; ; = @ when i # j. So, by Theorem 3.2, Ro[S] is
isomorphic to the generalized matrix algebra diag(R[Ma, ], R[Ma, ], s R[Ma, ).
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As in [26], a ring (an algebra) 2 has a generalized upper triangular matrix representation of degree n if there
exists a ring (algebra) isomorphism

R1 R12 - Rin
bt 0 R, - Ron
0 0 - Rp

Theorem 3.4 (Generalized Triangular Matrix Representation Theorem). Let S be a strict RA semigroup and R
a commutative ring. If

(A) |E(S)| < oo; and

(B) forany e e E(S), Me,e = {x€S:ex=x,e=x"}is asubgroup of S,

then Ro[S] has a generalized upper triangular matrix representation of degree Dyeg(S).

Proof. Let us turn back to the proof of Theorem 3.2. By hypothesis, My, 1, is a subgroup of S, in other words,
any element x € My, 5, is in a subgroup of S, and so x#e for some e € E(S). But x* = f;, now eLf; and further
e = f;. Thus x* = fi = x*. It follows that x € M;; and My, f, < Mj;. On the other hand, it is clear that M;; ¢ My, f.
Therefore M;; = My, ¢, and is a subgroup of S.

We may claim:

Claim A. Forany 1 < k,l < rwith k 4 1, if My, # @, then My, = @.

Indeed, if otherwise, we pick a € My;, b € My, and (a)y, s, (b)f,f, € PRA(S). Also, a* = fi, fra=a,fib=">b
and b* = fi, hence abL*b, baL” a. It follows that (ab)y, 5., (ba)s, s, € PRA(S). Thus ab € My, ba € My. But
My, My are both subgroups, so abHfy, baHf;. It follows that a and b are regular in S, and aRfLb, aLfiRb.
Thus fi Df;. This is contrary to that {f1, f>, -+, fr} are representatives of the partition of E(S)\{0} induced by
Dg(s)- So, we prove Claim A.

We next verify:

Claim B. For any 1 <1i,j, k <r, if M;; # @ and My, # @, then My # @.

Pick x € Myj,y € M. So, x* = fj, fiy = y and xyL"yL"fi. It follows that (X), s, (V)5 = (X¥)y,.,- Hence
Xy € My, and My, # @. This results in Claim B.

Consider the quiver Q whose vertex setis V = {1, 2, ---, r} and in which there is an edge from i to j if and
only if M;; # @. By Claim B, there is a path from i to [ if and only if M;; # @. Again by Claim A, the quiver Q
has no cycles. Now by [41, Corollary, p.143], the vertices of Q can be labeled V = {1, 2, -, r} in such a way
that if there is an edge from i to j then i < j. This means that we can relabel V = {1, 2, -, r} such that if
Mj; # @ then i < j. In this case, the algebra (2) is a generalized upper triangular matrix algebra. The proof is
completed. O

Let us turn back to the proof of Theorem 3.2 again. Assume now that S is finite. For x, y € M;;, we have x* =
fi =y, fix = xand fiy = y. So, xyL*fiy = yL*f;. Thus xy € M;; and M;; is a subsemigroup of S. For a € M;,
if ax = ay, then x = fix = fiy = y and Mj; is left cancellative. But Mj; is finite, so M;; is a subgroup. Now by
Theorem 3.4, the following corollary is immediate.

Corollary 3.5. Let S be a strict RA semigroup and R a commutative ring. If S is finite, then Ro[S] has a
generalized upper triangular matrix representation of degree Dyeg(S).

Remark 3.6. Note that ample semigroups are strict RA semigroups. By Corollary 3.5, any algebra of ample
finite semigroups has a generalized upper matrix representation. So, Corollary 3.5 extends the triangular
matrix representation theorem on algebras of ample finite semigroups [13, Theorem 4.5].

By Corollary 2.7, any right ample finite monoid is strict RA. So, we have the following corollary.

Corollary 3.7. Let S be a right ample monoid and R a commutative ring. If S is finite, then Ro[S] has a
generalized upper triangular matrix representation of degree Dyeg(S).
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Example 3.8. With notation in Example 2.4, by Theorem 3.2, Ro[P(Q)] is isomorphic to the generalized
matrix algebra

Ri1 R12 - Rin
R>1 R> - Ron
Rnl an Rn

where R; is the subalgebra of Ro[P(Q)] generated by all paths from i to i, and R;; is the free module with the
set of all paths from i to j as a base.

Now let Q have no loops. In this case, Me, ¢, = {e;} is a subgroup of P(Q). By Theorem 3.4, Ro[P(Q)] has
a generalized upper triangular matrix representation.

Example 3.9. Let C be a left cancellative category with |Obj(C)| < oo. By Example 2.5, S(C) is a strict RA
semigroup in which |E(S(C))| < oo. Obviously, the relation

7 ={(1a, 1p) : A, B € Obj(C) and there exist arrows «, 3 such that 1, = a3, 15 = Ba}

is an equivalence on the set Y := E(S(C))\{0}.Let Y/w = {¥1, Y5, ---, Y; }. Moreover, we let X; = {A € Obj(C) :
1p € Y;} and n; = |X;|. If pick A; € X;, then by Theorem 3.2, Ro[S(C)] is isomorphic to the generalized matrix
algebra

M, (R[Hom(A1, A1)])  Mn,,n, (R{Hom (A1, A2)]) - M, ,n,(R[HOm(A1, Ar)])
Mn, n, (R[THOM(A2, A1)])  Mn,(R[Hom(A2, A2)]) -+ Mny.n, (R[Hom (A2, Ar)]) [

Mo, (R(HOM(Ar, A1)]) Moy (R{HOM(Ar, A2)]) -+ My, (R[Hom(Ar, A,)])

Now let C be a groupoid. In this case, Hom(A;, A;) = @ whenever i # j, and further Ro[S(C)] is isomorphic to
the generalized matrix algebra

My, (R[Hom(A1, A1)]) 0 0
0 M, (R[Hom(A,, 4,)]) - 0
0 o - My, (R[Hom(Av, A)])

By definition, the category algebra RC of C over R is just the contracted semigroup algebra Ro[S(C)]. For
category algebras, see [33, 38, 39].

We conclude this section by giving a sufficient and necessary condition for the semigroup algebra of a strict
RA finite semigroup to be semiprimitive, which is just [13, Theorem 5.5] when the semigroup is ample.

Theorem 3.10. Let S be a strict RA semigroup and R a commutative ring. If S is finite, then R [ S] is semiprimitive
if and only if the following conditions are satisfied:

(4) Sis an inverse semigroup;

(B) for every maximum subgroup G of S, R[G] is semiprimitive.

Proof. By [13, Theorem 5.4], it suffices to verify the sufficiency. To see this, we assume that Ry[S] is semiprim-
itive. With the notations in the proof of Theorem 3.2, K[ S] is isomorphic to the generalized upper triangular
matrix algebra
Mn, (Ro[M11]) Mny,n, (Ro[Mi2]) - Mn,,n, (Ro[M1r])
0 Mn,(Ro[M22]) +++ Mn,,n, (Ro[Ma2r])

0 0 -+ My, (Ro[My])
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It follows that the Jacobson radical J (Ro[S]) of Ro[S] is equal to

J(Mn,(Ro[M11]))  Ro[M1] -+ Ro[Mu]
0 ](an(Ro[Mzz])) Ro[M]
........ oo;(M(RO[nT]))

So, J (Mn,(Ro[My])) = O and fori,j = 1,2, -+, 7, My, n,(Ro[My]) = 0if i #j. Thus Ro[M;] is semiprimitive,
so that Ro[M;;] is semiprimitive; and M;; = @ if i # j. Since S is finite, Mj; is finite, so that M;; is a subgroup of
S. But for all a € M;;, aL* f; giving aLf;, so aHf; since M;; is a subgroup of S, thus M;; is indeed a maximum
subgroup of S. By the choice of f;’s, we know that any nonzero idempotent of S is D-related to some f;, thereby
any nonzero maximum subgroup of S is isomorphic to some M;;. Therefore the condition (B) is satisfied.
For the condition (A), we prove only that any nonzero element of S is regular. Let a € S\{0} and a* =
e,a” = f. Let eDf; and fDf;. Then there exist u € eSfy,v € fiSe,x € f;Sf,y € fSfj such thate = uv, f; =
vu, f = yx, fj = xy. It follows that fiRvLe and fRyLf;. Thus vay € My; since (v)y, e(a)es(¥)ss, = (vay)y, s, We
consider the following two cases:
- Iff; = fj, then vay € M;; and so as M;; is a subgroup of S, there exists b € S such that vay = vaybvay, so
thata =u-vay-x=u-vaybvay-x =uv-aybva-yx =a-ybv-a. It follows that a is regular.
- Assume f; # f;. By the foregoing proof, M;; = @, contrary to the fact: vay ¢ M;;.

Consequently, a is regular, as required. O

Based on Corollary 2.7, any right ample finite monoid is strict RA. Again by Theorem 3.10, the following
corollary is obvious.

Corollary 3.11. Let S be aright ample monoid. If S is finite, then Ko [ S] is semiprimitive if and only if the following
conditions are satisfied:

(A) Sis an inverse semigroup;

(B) for every maximum subgroup G of S, R[ G| is semiprimitive.

Note that inverse semigroups are strict RA. By Theorem 3.10, we can re-obtain the well-known result on inverse
semigroup algebras as follows:

Corollary 3.12. Let S be an inverse semigroup. If S is finite, then Ko[S] is semiprimitive if and only if for every
maximum subgroup G of S, R[G] is semiprimitive.

4 Self-injective algebras

Recall that an algebra 2l (possibly without unity) is right (respectively, left) self-injective if 2l is an injective
right (respectively, left) 2-module. Okininski pointed out that for a semigroup S and a field K, the algebra
K[S] is right (left) self-injective if and only if so is Ko[S] (see [15, the arguments before Lemma 3, p.188]). So,
in this section we always assume that the semigroup has zero element 6. The aim of this section is to answer
when the semigroup algebra of a strict RA semigroup is left self-injective.

To begin with, we recall a known result on left (right) perfect rings, which follows from [27, Theorem
(23.20), p.354 and Corollary (24.19), p.365].

Lemma 4.1. Let R be a ring with unity. If R is left (right) perfect, then
(A) R does not contain an infinite orthogonal set of nonzero idempotents.
(B) Any quotient of R is left (right) perfect.

We need some known facts on left self-injective semigroup algebras. By the dual of [28, Theorem 1], any left
self-injective algebra is a left perfect algebra. Note that, by the argument in [29, Remark], whenever Ko[S] is
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left perfect, there exist ideals S;,i =0, 1, -+, n, such that
0=SocSiccS =8
and the Rees quotients S;/S;,1 are completely O-simple or T-nilpotent. So, the following lemma is straight.

Lemma 4.2. Let S be an arbitrary semigroup and K a field. If Ko[S] is a left self-injective K-algebra, then

(A) There existideals S;,i=0,1,--,n, suchthat = So = S1 c --- = Sy = S and the Rees quotients S;/S;,, are
completely O-simple or T-nilpotent.

(B) ([15, Lemmas 9 and 10, p.192]) S satisfies the descending chain condition on principal right ideals and has
no infinite subgroups.

(C) [28, Theorem 1] Ko[S] is left perfect.

(D) [28, Lemma 1] Ko[S]

Rad(Ko[S]) is regular, where Rad(Ko[S]) is the Jacobson radical of Ko[S].

Moreover, we have

Lemma 4.3. Let S be a right ample semigroup. If Ko[S] is left self-injective, then
(A) |E(S)| < oo.
(B) Forany e € E(S)\{0}, the subset Me,e = {x € S: ex = x, x* = e} is a finite subgroup of S.

Proof. (A) By Lemma 4.2, we assume that S;,i =0, 1, ---, n, are ideals of S satisfying the conditions:
- 0=SycS1c--cSp,=S;and
— the Rees quotients S;/S;.1 are completely O-simple or T-nilpotent.

So, S = {6} u (LUl ,S;\Si_1). This shows that for any e € E(S)\{0}, there exists i > 1 such that S;/S;_; is
completely O-simple and e € S;/S;_1. Now, to verify that E(S) is finite, it suffices to prove that any completely
0-simple semigroup S;/S;_1 is finite.

Now let S;/S;-1 be a completely 0-simple semigroup. By the definition of Rees quotient, any nonzero
idempotents of S;/S;_; isanidempotent of S. But E(S) is a semilattice, so S;/S;_1 is an inverse semigroup. Thus
Si/Si—1 is a Brandt semigroup. By the structure theorem of Brandt semigroups in [30], S;/S;_1 is isomorphic
to the semigroup T = I x G x I u {6} whose multiplication is defined by

(a,gh,y) ifx = b;
(a,g,x)(b,h,y) =
0 otherwise,

where I is a nonempty set and G is a subgroup of S;/S;_; Clearly, G is a subgroup of S. By Lemma 4.2(B), G is
a finite group. By computation, any nonzero idempotent of T is of the form: (a, 15, a) where 1; is the identity
of G.

For convenience, we identify S;/S;_; with T. Now, we need only to show that |I| < co. By Lemma 4.2, Ko[S]

is left perfect, and so %&z%\?]) is semisimple. It follows that %IE:%S]) has an identity. It is easy to see
Ko[S]

that Ko[S;_1] is an ideal of Ko[S]. Consider the algebra W := . Note that

Rad(Ko [SD + Ko [Si—l]

Ko[S] Ko[S]
Rad(Ko[SD Ko[S] . Ko[Si1]
Rad(Ko[S])+Ko[Si-1] ~ Rad(KO[S]) +K0[Si—1] T Rad(Ko[S])+Ko[Si1]’

Rad(Ko[S]) Ko[Si-1]

we can observe that

- (a,16,a)(b, 16, b) = 0 whenever a # b;

— W has an unity;

- (a,1g,a)+Rad(Ko[S]) + Ko[Si-1] # (b, 16, b) + Rad(Ko[S]) + Ko[Si-1] whenever a # b.
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Again by the property that (a, 15, a)(b, 16, b) = 0 whenever a # b, we get that the set
X:={(a,1g,a) + Rad(Ko[S]) + Ko[Si-1] : a €I}

Ko[S]
Rad(Ko[S])

is left perfect, and so by Lemma 4.1, W is left perfect. Again by Lemma 4.1, this shows

is an orthogonal set of nonzero idempotents of W. On the other hand, since

Ko[S]
Rad(Ko[S])
that W does not contain an infinite orthogonal set of nonzero idempotents. It follows that |X| < co. Therefore

[I] < oo since |X| = |I|. Consequently, S;/S;_; is finite, and so |[E(S)]| < co.
(B) Let a € Me,e. Consider the chain of principal right ideals of S:

is semisimple, we

know that

1 -1c1 21 1
-a'§S'ca" 'S c..ca’S caS'.

By Lemma 4.2, there exists a positive integer n such that a"S* = a"*'S!. That is, there is x ¢ S' such that

a" = a™'x. Hence a"! = a*a™ ! = a*a"x = a"x. Continuing this process, we can obtain a* = ax. But
a = aa*,now aRa”. Thus a is regular. Therefore aH{a* since aL*a”. So, M., is a subgroup of S and further
by Lemma 4.2, M. . is finite. O

For convenience, in the rest of this section, we always let S be a strict RA semigroup and K a field. Assume
that Ko[S] is a left self-injective K-algebra. Let us turn back to the proof of Theorem 3.2. We know that 7 ; &;
is the identity of Ko[PRA(S)]. By Theorem 3.4, we have that M;; = @ if j < i, and

My, (Ko[M11]) Mn,,n, (Ko[M12]) -+ Mny.n, (Ko[M1r])

0 My, (Ko[M22]) -+ Mn,,n,(Ko[M2r])

0 0 o My, (Ko[My])

Since our aim is to show that S is finite, for convenience, we may assume n; = 1 fori =1, 2, ---, r. So, we let

Ko[Mi1] Ko[M12] -+ Ko[Mi/]

0  Ko[Mp] - Ko[Ma]

For 1 < j < r, we denote by m; the smallest positive integer in the set {i : M;; # @}. By definition, m; < j for
any i.
Lemma 4.4. My, - My, ; = 0 whenever My # My, m;.

Proof. By definition, My, - Mm,,; € My ; and

__ ___|=0 if 1 # m;
My My jy —— .
EMk,]' ifl = m;.
In the second case, k < m;. This shows that k = m; by the minimality of m;. O

Lemma 4.5. |My, j| < co.

Proof. Lemma 4.3 results the case for m; = j. Assume now that m; < j. By Lemma 4.4, the algebra
0--0 0 0--0

¢:=]0--0 Ko[m] 0--0

0--0 0 0--0
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is a left ideal of 8. Pick w € My, ; and define

X if X € Mm;,m;w
0: Mmiri - Mm].,j; X —
0 if otherwise,
and span linearly to Ko[M;,, ]. Further define a map ¢ of € into B by
0---0 O 0--0 0--0 0 0--0
X=10--0 (X)m;,j 0--0]=>¢(X)=]0--0 (9(X))m,-,j 0--0
0---0 0O 0--0 0.0 0 0--0
By Lemma 4.4, a routine computation shows that ¢ is a 8-module homomorphism. But B is left self-injective,
now by Baer condition, there exists U € B such that ((A) = AU for any A ¢ €. Especially, ¢((X) = XU. Now let
U = (uw)- Then uj; = ¥§_; ria where ry € K, ay € Mj;. Since ((X) = XU, we have (6(x))m,,j = (0(X)m,,juj; =
(Xke1 TieXay),, ; and
n
X = Z riXday. (3)
k=1
So, we may let ny, ny, -+, ns be positive integers such that
- Nyp+Ny+-+nNs=n;
- (%) xa;=x,forl=1,2,---,nq;

- (#%) XAn,41 = XApg42 = -+ = XAnging,,-1 = bg forq = 1,2, -, s, where by, by, -+, bs are different
elements in Mj;.

NowbyEq. (3), wegetry+ra+--rn, = 1and ry41+rn+2+Tnsn,,-1 = 0forl = 1,2, -, s. Note that f; = x* L*x.
Therefore by Eq. (*), a; = fja; = x"a; = x* = fj,for1 = 1,2,---,n1; and by Eq. (*%), X an 41 = X" an,42 =
= X Qnying,-1 forq = 1,2,--,s, so that as x* = fj, an,+1 = Anye2 = = = Anying,-1 forq = 1,2, s.
Consequently, uj; = f;.

Now, for any x € My, j, (0(X))m;j = (X)m;,jWji = (Xfj)m;,j = (X)m,,j- This shows that 6(x) = x and My, ; =
Mm;,m;w since 6(x) = 0 for any x € My,;\Mm,,m;w. It follows that |[My, ;| < co since Mm;,m; = My, < My, ;, and
by Lemma 4.3 (B), is a finite subgroup. O

Lemma 4.6. |M;j| < co.

Proof. 1f i = mj, nothing is to prove.
If m; # i and M;; # @, then m; < i. Let i be the smallest positive integer of the set

Y = {k: thereexist k = ko, k1, k2, -+, km = i such that Mg,_ , # oforl=1,2,--.,m-1}.

We shall prove ip = m;. Assume on the contrary that io # m;. By definition, My ; # & and specially M; ; # 2.
Thus m; < ip. By the minimality of io, My; = @ for 1 < k < io, and further My;, - M;,; = 0. This and Lemma 4.4
show that

0--0 0 0--0

0+ 0 Ko[Myp, ;] 0+ 0

00 Ko[M,;] 00

0--0 0 0--0
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is a left ideal of B and that the map 7 defined by

0---0 O O0--0 0--0 O O0--0
0.0 (a)mj’]. 0.0 0.0 (a)mj,j 0---0
A=l 0  0 i len(@) = 8
00 (b)y; 0--0 0---0 O O0--0
0---0 O O0--0 0--0 O O0--0

is a B-module homomorphism. Since ‘B is left self-injective, it follows from Baer condition that there exists
V € B such that n(A) = AV for any A € ©. Hence (a)m;j = (a)m,jvjj and O = (b)m, ;jvjj where V = (vy).
By the first equality, avj; = a and further by a similar arguments as proving uj; = f; in the proof of Lemma
4.5, f; = vjj # 0; by the second equality, O = (b)m, jVjj = (bfj)m,j = (b)m,; and b = 0, so that as b* = f;, we
get O = fj, thus vj; = 0, contrary to the foregoing proof: vj; # 0. Therefore m; = ip. We have now proved that
M;,iM;j € My, ;. This shows that cM;; © My, ; for some ¢ € M;,;. Note that for w,z € My, if cw = cz, then
fiw = fiz, so that w = z. We can observe that [cM;;| = [Mj;, and [Mj| < [Mp, j| < 0. O

Lemma 4.7. M;; = @ifi#].

Proof. By Lemmas 4.2 and 4.6, B is a finite dimensional algebra and further is quasi-Frobenius. Assume on
the contrary that there exists M;; # &. Let n be the biggest number such that M;, # @ for some i # n, and
further let m be the biggest number such that M, # @. Obviously, m < n. By definition, My, = @ if m < k (if
not, then as Mmn # @ and by definition, My, # &, contrary to the maximality of m); and M,; = @if n < [ (if not,
then as M;, # @ and by definition, My # @, contrary to the maximality of n). By these, a routine computation
shows that

00 Ko[My,] 00
00 Ko[Mz;] 00
¢=|0-0Ko[Mmn] 00
0--0 0 0--0
0--0 0 0--0

is a left ideal of 8.

Let x € Ko [m] and M;; # @. If Ko [m]x = 0, then ax = O for some a € Mj;, so that by a similar argument
as proving uj; = ]7, in the proof of Lemma 4.5, a*x = 0. By a* = fi, x = f,-x =a*x = 0.So, Ko [m]x =0 if and
only if x = 0. Because Mmn # &, this can show that the right annihilator ann,(€) of € in 98 is equal to

Ko[M11] -+ Ko[Min-1] Ko[Min] Ko[Mi,ns1] Ko[Mx/]
0 - Ko[Mn-1,n-1] Ko[Mn-1,n] Ko[Mn-1,n+1] -+ Ko[Mn-1,r]
0 0 0 0 0
0 0 0 Ko[Mni1,n+1] - Ko[Mns1,r]
0 0 0 0 Ko[M;]
But the left annihilator ann,(ann;(€)) of ann,(€) in B includes
0--0Ko[Min] 00
00 Ko[M,] 00
00 Ko[Mun] 00
00 O 0--0
0--0 0 0--0
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It is clear that ann,(ann,(€)) # €. But B is a quasi-Frobenius algebra, so that by [31, Theorem 30.7, p.333]
we should have ann,(ann,(€)) = &, a contradiction. O

Theorem 4.8. Let S be a strict RA semigroup and K a field. Then Ko [S] is left self-injective if and only if S is a
finite inverse semigroup.

Proof. To verify Theorem 4.8, by [18, Theorem 4.1], it suffices to prove that if Ko[S] is left self-injective, then
S is regular. Assume now that Ko[S] is left self-injective. By Theorem 3.4, Ko[S] is isomorphic to

Mnl(KO[@) Mnl,nz (KO@]) Mnl,n,(Ko[@])
Mn, n, (Ko[M21])  Mn, (Ko[M22]) -+ Mn,,n, (Ko[M2r])

Mn,,nl(l(o[m]) M"r:"z(l(o[m]) Mn,(KO[m])

By Theorem 3.4 and Lemma 4.7, whenevert i # j, My, (Ko [Miii]) =0, sothat M;; = g, thus {x e S: x* =fi,x* =
fij} = @. Note that f;’s are representatives of the partition = = Uj_, E, of E(S)\{0} induced by D. Therefore
{xeS:x"=e,x* =h} = zforall e e E;, h ¢ E; with i # j. This means that for all x € S, x*Dx*.

On the other hand, by Lemma 4.3(B), for any e € E(S)\{O}, M. = {x € S: x" = e, x* = e} is a subgroup
of S and so M;; is a subgroup of S. Let f € E(S)\{0} and eDf. Letx,y ¢ Swithx* = e,y* = f,x* = fandy* = ¢,
and of course x,y € M. Then as £* is a right congruence, we have xyL*fy =y, so that y # 0. Similarly,
yx # 0. Note that (X)ef, (¥)r,e € PRA(S). We observe that (xy)e,e = (X)es(¥)r,e € PRA(S)\{0}, and hence
Xy € Me,. Thus there is a € M, such that e = axy since M. is a subgroup of S with identity e. This and
ye =y imply that eLy. Therefore y is regular. We have now proved that y is regular whenever y*Dy*.

However, any element of S is regular and S is regular, as required. O

It is a natural problem whether Theorem 4.8 is valid for the case for right self-injectivity. We answer this
question next. Firstly, we prove the following lemma.

Lemma 4.9. Let S be a right ample semigroup and Ko[S] have an unity 1. If Ko[S] is right self-injective, then S
is a finite inverse semigroup.

Proof. Forany a € S, S'a is a left ideal of S, and so Ko[S*a] is a left ideal of Ko[S]. Since Ko[S] is right self-
injective, and by [31, Lemma 30.9, p.334], we have anng(annr(Ko[Sla])) = Ko[Sla]. By the definition of £*,
ann,(Ko[S'a]) = ann,(a) = ann,(a*) = (1 - a*)Ko[S] and so

Ko[S'a] = anny(ann,(Ko[S'a]) = ann,((1 - a*)Ko[S]) = Ko[S]a* = Ko[S'a].

It follows that S*a = S'a*. Thus aLa* so that a is a regular element of S. Therefore S is an inverse semigroup,
and by the Wenger Theorem, S is a finite inverse semigroup. O

Based on Lemma 4.9, we can verify the following theorem, which illuminates that Theorem 4.8 is valid for
right self-injectivity.

Theorem 4.10. Let S be a strict RA semigroup. Then Ko [S] is right self-injective if and only if S is a finite inverse
semigroup.

Proof. By Theorem 4.8, it suffices to verify the necessity. By Lemma 4.9, we need only to show that Ko[S] has
an identity. Now let us turn back to the proof of Lemma 4.3(A). We notice that the proof is valid for right
self-injectivity and so |E(S)| < oo when Ko[S] is right self-injective. By Theorem 3.4, we have that Ko[S] is
isomorphic to the generalized upper triangular matrix algebra

Mn, (Ro[M11]) Mny,n, (Ro[M12]) - Mn,,n, (Ro[M1r])

0 Mn,(Ro[M22]) +++ Mn,,n, (Ro[Mar])

0 0 <+ Mn,(Ro[Myr])
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It is easy to see that Ko[S] has an identity. We complete the proof. O

We now arrive at the main result of this section, which follows immediately from Theorems 4.8 and 4.10.

Theorem 4.11. Let S be a strict RA semigroup and K a field. Then the following statements are equivalent:
(1) Ko[S] is left self-injective;

(2) Ko[S] is right self-injective;

(3) S is a finite inverse semigroup;

(4) Ko[S] is quasi-Frobenius;

(5) Ko[S]is Frobenius.

Note that ample semigroups are both strict RA and strict LA. By Theorem 4.11 and its dual, the following
corollary is immediate, which is the main result of [18] (see, [18, Theorem 4.1]).

Corollary 4.12. Let S be an ample semigroup and K a field. Then the following statements are equivalent:
(1) Ko[S] is left self-injective;

(2) S is a finite inverse semigroup;

(3) Kol[S] is quasi-Frobenius;

(4) Ko[S] is Frobenius;

(5) Ko[S] is right self-injective.

Let S be a right ample monoid. Note that E(S)-S = S. By Corollary 2.7, S is a strict RA semigroup. If Ko[ S] is left
self-injective, then S has only finite idempotents. Now, by Theorem 4.11, the following corollary is immediate.

Corollary 4.13. Let S be a right ample monoid. Then the following statements are equivalent:
(1) Ko[S] is left self-injective;

(2) S is a finite inverse semigroup;

(3) Kol[S] is quasi-Frobenius;

(4) Ko[S] is Frobenius;

(5) Ko[S] is right self-injective.

Recall that if A is aring and A’ is the standard extension of A to a ring with unity, then A is left self-injective if
and only if the left A'-module A satisfies the Baer condition (c.f. [32, Chapter 1]). The following example, due
to Okninski [28], shows that in Theorem 4.8, the assumption that E(S) is a semilattice, i.e., all idempotents
commute, is essential.

Example 4.14. Let S = {g, h} be the semigroup of left zeros, and Q the field of rational numbers. Consider
the algebra Q[S] = Qo[S] and the standard extension Q[S]" of Q[S] to a Q-algebra with unity. It may be
shown that for any left ideal I of Q[S]*, any homomorphism of left Q[S]'-modules I — Q[S], extends to
a homomorphism of Q[S]*-modules IQ[S]* — Q[S]. Moreover, by computing the right ideals of Q[S]*, one
can easily check that Q[ S]* satisfies Baer’s condition. Hence, Q[ S] satisfies Baer’s condition as Q[ S]*-module
which means that Q[S] is left self-injective. On the other hand, since Q[S] has no right identities, it is obvious
that Q[S] is not right self-injective.

Obviously, the polynomial algebra K[x] is indeed the semigroup algebra K[M], where M = {1, x, X2, 3 It
is easy to see that M is a cancellative monoid, and of course, a strict RA semigroup. By Theorem 4.11 and
its dual, K[x] is neither left self-injective nor right self-injective. Recall that a category C is said to be finite
if |Obj(C)| < oo and |[Hom(A, B)| < oo, for all A, B € Obj(C). For the self-injectivity of path algebras and
category algebras, we have the following proposition.

Proposition 4.15. (A) Let Q be a quiver and K a field. Then the path algebra KQ is left self-injective if and only
if Q has neither edges nor loops; if and only if KQ is right self-injective.
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(B) Let C be a left cancellative category. Then the category algebra KC is left self-injective if and only if C is
a finite groupoid; if and only if KC is right self-injective.

Proof. (A) We only need to prove the necessity. If KQ is left (resp. right) self-injective, then S(Q) is a finite
inverse semigroup. It follows that Q has no circles, and of course, no loops. On the other hand, since the
idempotents of S(Q) are empty paths, it is easy to show that any edge is not regular in the semigroup S(Q),
thus Q has no edges.

(B) By Example 2.5, S(C) is an inverse semigroup whenever C is a groupoid. So, it suffices to verify the
necessity. Assume that KC is left self-injective, then by Theorem 4.8, S(C) is a finite inverse semigroup. It
follows that C is a finite groupoid. O

Recall from [27] that an algebra 2( with unity is semisimple if and only if every left 2-module is injective. So,
any semisimple algebra is left self-injective. By Theorem 4.11 and Corollary 3.12, we immediately have

Theorem 4.16. Let S be a strict RA semigroup and K be a field. If Ko[S] has a unity, then Ko[S] is semisimple
if and only if S is a finite inverse semigroup and the order of any maximum subgroup of S is not divided by the
characteristic of K.

By Theorem 4.11, the following proposition is immediate, which answers positively [15, Problem 6, p.328] for
strict RA semigroups:

Does the fact that K[S] is a right (respectively, left) self-injective imply that S is finite?

Proposition 4.17. Let S be a strict RA semigroup. If Ko[S] is left (respectively, right) self-injective, then S is
finite.

Moreover, we have the following corollary.

Corollary 4.18. Let S be a right ample monoid and K a field. If Ko[S] is left (respectively, right) self-injective,
then S is finite.
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