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Abstract: In this paper, we introduce the concept of Sp-pseudo almost periodicity on time scales and present
some basic properties of it, including the translation invariance, uniqueness of decomposition, completeness
and composition theorem. Moreover, we prove the seemingly simple but nontrivial result that pseudo almost
periodicity implies Stepanov-like pseudo almost periodicity. As an application of the abstract results, we
present some existence anduniqueness results on thepseudo almost periodic solutions of dynamic equations
with delay.
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1 Introduction
The theory of time scales was established by S. Hilger in 1988 (see [1]). This theory uni�es continuous and
discrete problems and provides a powerful tool for applications to economics, populationsmodels, quantum
physics among others, and hence has been attracting the attention of many mathematicians (see [2, 3] and
the references therein). In 2011, Li and Wang [4, 5] introduced the concept of almost periodic functions on
time scales. Since then, many generalized forms of almost periodicity have been introduced on time scales,
such as pseudo almost periodicity [6], almost automorphy[7], weighted pseudo almost periodicity [8] etc.

To consider the almost periodicity of integrable functions on the real line, Stepanov [9] and Wiener [10]
introduced Stepanov almost periodicity in 1926. Then this concept was extended to Stepanov-like pseudo
almost periodicity by Diagana [11] in 2007. On the other hand, Li and Wang [12] extended Stepanov almost
periodicity on time scales in 2017. Motivated by the aboveworks, themain purpose of this paper is to consider
Stepanov-like pseudo almost periodicity on time scales.

The de�nition and some basic properties of Stepanov-like pseudo almost periodicity are given in Sec-
tion 3, including the translation invariance, uniqueness of decomposition, completeness and composition
theorem. Moreover, we prove the seemingly simple but nontrivial result that pseudo almost periodicity
implies Stepanov-like pseudo almost periodicity. As an application of the abstract results, we present some
results on the existence and uniqueness of pseudo almost periodic solutions of dynamic equationswith delay
in Section 4.
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2 Preliminaries
The concepts and results in this section can be found in [2, 3, 5–7, 12–15], or deduced simply from the results
given there. Throughout this paper, we denote by N, Z, R and R+ the sets of positive integers, integers, real
numbers andnonnegative real numbers, respectively.En denotes the Euclidian spaceRn orCn with Euclidian
norm ∣ ⋅ ∣, and Rn×n the space of all n × n real-valued matrices with matrix norm ∥ ⋅ ∥.

Let T be a time scale, that is, a closed and nonempty subset of R. The forward and backward jump
operators σ, ρ ∶ T→ T and the graininess µ ∶ T→ R+ are de�ned, respectively, by

σ(t) = inf{s ∈ T ∶ s > t}, ρ(t) = sup{s ∈ T ∶ s < t}, µ(t) = σ(t) − t.

If σ(t) > t, we say that t is right-scattered. Otherwise, t is called right-dense. Analogously, if ρ(t) < t, then t
is called left-scattered. Otherwise, t is left-dense. We always denote T a time scale from now on.

Let a, b ∈ Twith a ≤ b, [a, b], [a, b), (a, b], (a, b)being theusual intervals on the real line. The intervals
[a, a), (a, a], (a, a) are understood as the empty set, and we use the following symbols:

[a, b]T = [a, b] ∩ T, [a, b)T = [a, b) ∩ T, (a, b]T = (a, b] ∩ T, (a, b)T = (a, b) ∩ T.

Note that in this paper we use the above symbols only if a, b ∈ T.
Denote

C(T;En) = {f ∶ T→ En ∶ f is continuous},
C(T × D;En) = {f ∶ T × D → En ∶ f is continuous},
BC(T;En) = {f ∶ T→ En ∶ f is bounded and continuous},
Lploc(T;En) = {f ∶ T→ En ∶ f is locally Lp ∆-integrable}.

It is easy to see that BC(T;En) is a Banach space with supremum norm.
If T has a left-scattered maximum m, then Tκ = T ∖ {m}; otherwise Tκ = T.

De�nition 2.1. For f ∶ T → En and t ∈ Tκ, f∆(t) ∈ En is called the delta derivative of f(t) if for a given ε > 0,
there exists a neighborhood U of t such that

∣f(σ(t)) − f(s) − f∆(t)(σ(t) − s)∣ < ε∣σ(t) − s∣

for all s ∈ U. Moreover, f is said to be delta di�erentiable on T if f∆(t) exists for all t ∈ T.

We note that the integral ∫
b
a f(t)∆t always means ∫[a,b)T f(t)∆t in this paper, and all the theorems of

the general Lebesgue integration theory also hold for the ∆-integrals on T. For more details of continuity,
di�erentiable, ∆-measure and ∆-integral on T, Jordan ∆-measure and multi-Riemann ∆-integrable on T2,
we refer the readers to [2, 3, 13, 15, 16].

2.1 Almost periodicity and pseudo almost periodicity on T

De�nition 2.2 ([5, 7]). A time scale T is called invariant under translations if

Π ∶= {τ ∈ R ∶ t ± τ ∈ T,∀t ∈ T} ≠ {0}.

From now on, we always assume that T is invariant under translations.

De�nition 2.3 ([5, 14]). (i) A function f ∈ C(T;En) is called almost periodic on T if for every ε > 0, the set

T(f , ε) = {τ ∈ Π ∶ ∣f(t + τ) − f(t)∣ < ε,∀t ∈ T}

is relatively dense inΠ. T(f , ε) is called the ε-translation set of f , τ is called the ε-translation number of f .
Denote by AP(T;En) the set of all almost periodic functions.



828 | C.-H. Tang, H.-X. Li

(ii) Let Ω ⊂ En be open. The set AP(T × Ω;En) consists of all continuous functions f ∶ T × Ω → En such
that f(⋅, x) ∈ AP(T;En) uniformly for each x ∈ S, where S is any compact subset of Ω. That is, for ε > 0,
⋂x∈S T(f(⋅, x), ε) is relatively dense inΠ.

Let f ∈ BC(T;En). Then set

PAP0(T;En) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
f ∈ BC(T;En) ∶ lim

r→+∞

1
2r

t0+r

∫
t0−r

∣f(s)∣∆s = 0, where t0 ∈ T, r ∈ Π
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

De�nition 2.4 ([6]). A function f ∈ BC(T;En) is called pseudo almost periodic if f = g+φ, where g ∈ AP(T;En)
and φ ∈ PAP0(T;En). We denote by PAP(T;En) the set of all pseudo almost periodic functions.

Proposition 2.5. f(T) is relatively compact if f ∈ AP(T;En).

Proof. It follows from [17, Theorem 3.4] that for f ∈ C(T;En), f ∈ AP(T;En) if and only if there exists g ∈
AP(R;En) such that f(t) = g(t) for t ∈ T. Meanwhile, it is well known that g(R) is relatively compact if
g ∈ AP(R;En). Therefore f(T) is relatively compact if f ∈ AP(T;En).

Proposition 2.6 ([6]). (i) If f ∈ PAP(T;En) and φ ∈ PAP0(T;En), then for any τ ∈ Π, f(⋅ + τ) ∈ PAP(T;En)
and φ(⋅ + τ) ∈ PAP0(T;En).

(ii) PAP(T,En) and PAP0(T,En) are Banach spaces under the sup norm.

2.2 Sp-almost periodic functions on T

We always assume that p ≥ 1 afterwards without any further comments. Let

K ∶=
⎧⎪⎪⎨⎪⎪⎩

inf{∣τ ∣ ∶ τ ∈ Π , τ ≠ 0}, if T ≠ R,
1, if T = R.

De�ne ∥ ⋅ ∥Sp ∶ Lploc(T;En) → R+ as

∥f∥Sp ∶= sup
t∈T

⎛
⎜
⎝

1
K

t+K

∫
t

∣f(s)∣p∆s
⎞
⎟
⎠

1
p

for f ∈ Lploc(T;En).

f ∈ Lploc(T;En) is called Sp-bounded if ∥f∥Sp < ∞. Denote by BSp(T;En) the space of all these functions.

De�nition 2.7 ([12]). (i) A function f ∈ BSp(T;En) is called Sp-almost periodic on T if for every ε > 0, the
ε-translation set of f

T(f , ε) = {τ ∈ Π ∶ ∥f(⋅ + τ) − f∥Sp < ε}

is relatively dense inΠ. Denote the set of all these functions by SpAP(T,En).
(ii) A function f ∶ T×Ω → En withΩ ⊂ En is called Sp-almost periodic in t ∈ T if f(⋅, x) ∈ SpAP(T;En) uniformly

for each x ∈ S, where S is an arbitrary compact subset ofΩ. That is, for ε > 0,⋂x∈S T(f(⋅, x), ε) is relatively
dense inΠ. Denote the set of all such functions by SpAP(T ×Ω;En).

Proposition 2.8 ([12, 18]). (i) If f ∈ SpAP(T;En), then for any τ ∈ Π, f(⋅ + τ) ∈ SpAP(T;En).
(ii) BSp(T;En), SpAP(T,En) are Banach spaces under the Sp-norm ∥ ⋅ ∥Sp .
(iii) Let 1 ≤ q ≤ p < ∞. Then BSp(T;En) ⊂ BSq(T;En), SpAP(T;En) ⊂ SqAP(T;En) and ∥f∥Sq ≤ ∥f∥Sp for

f ∈ BSp(T;En).
(iv) AP(T;En) ⊂ SpAP(T;En).
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3 Sp-pseudo almost periodic functions
Nowwe introduce the concept of Sp-pseudo almost periodicity on time scales and present themain properties
of it.

3.1 De�nitions

We de�ne the norm operatorN on BSp(T;En) as follows:

N(f)(t) ∶=
⎛
⎜
⎝

1
K

t+K

∫
t

∣f(s)∣p∆s
⎞
⎟
⎠

1
p

for f ∈ BSp(T;En), t ∈ T.

Lemma 3.1. The norm operatorN maps BSp(T;En) into BC(T;R+) and maps SpAP(T;En) into AP(T;R+).
Moreover, for f , g ∈ BSp(T;En), t ∈ T,

∥N(f)∥∞ = ∥f∥Sp , ∣N(f)(t) −N(g)(t)∣ ≤ N(f ± g)(t) ≤ N(f)(t) +N(g)(t). (1)

Proof. It is obvious that ∥N(f)∥∞ = ∥f∥Sp . ThenN(f) is bounded when f ∈ BSp(T;En). The second part of
(1) can be got from Minkowski inequality immediately.

Let f ∈ BSp(T;En). Then f ∈ Lploc(T;En), and the absolute continuity of integral follows that for ε > 0,
there exists δ = δ(ε) > 0 such that for any∆-measurable set e with µ∆(e) < δ,

∫
e

∣f(s)∣p∆s < Kε2 .

Thus, for t1, t2 ∈ T, t1 < t2, ∣t1 − t2∣ < δ,

∣(N(f))p(t1) − (N(f))p(t2)∣ ≤
RRRRRRRRRRRRR

1
K

t2

∫
t1

∣f(s)∣p∆s − 1
K

t2+K

∫
t1+K

∣f(s)∣p∆s
RRRRRRRRRRRRR

≤ 1
K

t2

∫
t1

∣f(s)∣p∆s + 1
K

t2+K

∫
t1+K

∣f(s)∣p∆s

< ε.

This implies that (N(f))p is continuous, andN(f) is continuous. SoN ∶ BSp(T;En) → BC(T;R+).
Let f ∈ SpAP(T;En). ThenN(f) ∈ BC(T;R+) by the proof above. For τ ∈ T(f , ε), by (1),

∥N(f)(⋅ + τ) −N(f)∥∞ = sup
t∈T

∣N(f)(t + τ) −N(f)(t)∣ = sup
t∈T

∣N(f(⋅ + τ))(t) −N(f)(t)∣

≤ sup
t∈T
N(f(⋅ + τ) − f)(t) = ∥N(f(⋅ + τ) − f)∥∞ = ∥f(⋅ + τ) − f∥Sp < ε,

which implies that T(f , ε) ⊂ T(N(f), ε). HenceN(f) ∈ AP(T;R+).

De�nition 3.2. A function f ∈ BSp(T;En) is said to be ergodic ifN(f) ∈ PAP0(T;R+), i.e.

lim
r→+∞

1
2r

t0+r

∫
t0−r

⎛
⎜
⎝

1
K

t+K

∫
t

∣f(s)∣p∆s
⎞
⎟
⎠

1
p

∆t = 0, where t0 ∈ T, r ∈ Π .

We denote by SpPAP0(T;En) the set of all ergodic functions from T to En.

De�nition 3.3. (i) A function f ∈ BSp(T;En) is called Stepanov-like pseudo almost periodic (Sp-pseudo
almost periodic) if f = g + φ, where g ∈ SpAP(T;En) and φ ∈ SpPAP0(T;En). g and φ are called the
almost periodic component and the ergodic perturbation of f , respectively. We denote by SpPAP(T;En) the
set of all such functions f .
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(ii) A function f ∶ T × Ω → En with Ω ⊂ En is called Stepanov-like pseudo almost periodic (Sp-pseudo almost
periodic) in t ∈ T if f(⋅, x) = g(⋅, x) + φ(⋅, x) ∈ SpPAP(T;En) for each x ∈ Ω and g(⋅, x) ∈ SpAP(T;En)
uniformly for each x ∈ S, where S is an arbitrary compact subset of Ω. Denote the set of all these functions
by SpPAP(T ×Ω;En).

Remark 3.4. (i) We note that De�nition 3.3 is a generalization of Sp-pseudo almost periodicity on R intro-
duced by Diagana [19].

(ii) It is easy to check that SqPAP(T;En) ⊂ SpPAP(T;En) for 1 ≤ p ≤ q.

3.2 Some basic properties

From now on, we write f = g + φ ∈ SpPAP(T;En) implies g ∈ SpAP(T;En) and φ ∈ SpPAP0(T;En). In
this subsection, we give some basic properties of Sp-pseudo almost periodicity, including the uniqueness of
decomposition, the translation invariance and the completeness.

Proposition 3.5. The decomposition of Sp-pseudo almost periodic functions is unique.

Proof. If f = g1 +φ1 = g2 +φ2 ∈ SpPAP(T;En), then g1 − g2 = φ2 −φ1. This impliesN(g1 − g2) = N(φ1 −φ2).
Note thatN(φ1−φ2) ≤ N(φ1)+N(φ2)by (1), it follows thatN(φ1−φ2) ∈ PAP0(T;R+), and thenN(g1−g2) ∈
PAP0(T;R+). Meanwhile, g1−g2 ∈ SpAP(T;En) since g1, g2 ∈ SpAP(T;En). ThusN(g1−g2) ∈ AP(T;R+)by
Lemma 3.1. Now it follows from [6, Theorem 3.5] thatN(g1− g2) = 0. This yields that g1 = g2 in SpAP(T;En),
and consequently, φ1 = φ2 in SpPAP0(T;En).

By Proposition 2.6 (i), Proposition 2.8 (i) and Lemma 3.1, we can easily obtain the following translation
invariance of Sp-pseudo almost periodic functions. Here we omit the details.

Proposition 3.6. Let f ∈ SpPAP(T;En). Then f(⋅ + τ) ∈ SpPAP(T;En) for τ ∈ Π.

Proposition 3.7. (SpPAP0(T;En), ∥ ⋅ ∥Sp) is a Banach space.

Proof. By Proposition 2.8 (ii), we only need to prove the closedness of SpPAP0(T;En) in BSp(T;En). In fact,
let {φk} ⊂ SpPAP0(T;En) and φ ∈ BSp(T;En) with ∥φk − φ∥Sp → 0 as k → ∞. By Lemma 3.1, {N(φk)} ⊂
PAP0(T;R+) and

∥N(φk) −N(φ)∥∞ ≤ ∥N(φk − φ)∥∞ = ∥φk − φ∥Sp → 0 as k →∞.

This implies N(φ) ∈ PAP0(T;R+) since PAP0(T;R+) is a Banach space by Proposition 2.6 (ii). Hence φ ∈
SpPAP0(T;En) and SpPAP0(T;En) is closed.

To prove the completeness of the space SpPAP(T;En) we need the following lemma.

Lemma 3.8. If f = g + φ ∈ SpPAP(T;En), then ∥g∥Sp ≤ ∥f∥Sp .

Proof. Let Q(t) ∶= N(g)(t) −N(φ)(t), t ∈ T. Then by (1),

∣Q(t)∣ ≤ N(g + φ)(t) = N(f)(t), t ∈ T.

This implies that ∥Q∥∞ ≤ ∥N(f)∥∞. On the other hand, N(g) ∈ AP(T;R+) by Lemma 3.1, and clearly,
−N(φ) ∈ PAP0(T;R). Then Q = N(g) −N(φ) ∈ PAP(T;R). Thus, by [6, Theorem 4.2] and (1),

∥g∥Sp = ∥N(g)∥∞ ≤ ∥Q∥∞ ≤ ∥N(f)∥∞ = ∥f∥Sp .

Proposition 3.9. (SpPAP(T;En), ∥ ⋅ ∥Sp) is a Banach space.
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Proof. It su�ces to prove that SpPAP(T;En) is closed in BSp(T;En). Let {fk} = {gk + φk} ⊂ SpPAP(T;En)
and f ∈ BSp(T;En)with ∥fk − f∥Sp → 0 as k →∞. Then ∥fk − fj∥Sp → 0 as k, j →∞. It follows from Lemma 3.8
that ∥gk − gj∥Sp ≤ ∥fk − fj∥Sp → 0 as k, j → ∞. This together with Proposition 2.8 (ii) implies that there exists
g ∈ SpAP(T;En) such that ∥gk − g∥Sp → 0 as k →∞. Meanwhile, by Lemma 3.8,

∥φk − φj∥Sp = ∥fk − fj + gj − gk∥Sp ≤ ∥fk − fj∥Sp + ∥gk − gj∥Sp → 0 as k, j →∞,

which implies that φk → φ as k → ∞ for some φ ∈ SpPAP0(T;En) by Proposition 3.7. Let f = g + φ. Then
f ∈ SpPAP(T;En) and fk → f as k →∞. That is SpPAP(T;En) is closed in BSp(T;En).

3.3 PAP(T;En
) ⊂ SpPAP(T;En

)

We prove the seemingly simple but nontrivial result that PAP(T;En) ⊂ SpPAP(T;En) in this subsection.
For t0 ∈ T, let

EP = {(t, s) ∈ T × T ∶ t0 ≤ t < t0 +K, t ≤ s < t +K},

Lemma 3.10. (i) EP is Jordan∆-measurable.
(ii) If f ∶ EP → R is bounded continuous, then f is Riemann∆-integrable over EP, and

t0+K

∫
t0

t+K

∫
t

f(t, s)∆s∆t =
t0+K

∫
t0

s

∫
t0

f(t, s)∆t∆s +
t0+2K

∫
t0+K

t0+K

∫
s−K

f(t, s)∆t∆s. (2)

Proof. By a fundamental calculation, we can prove that EP is Jordan ∆-measurable and f is Riemann ∆-
integrable over EP. Here we omit the details, and we only prove that (2) holds. Let R = [t0, t0 +K)T × [t0, t0 +
2K)T and F ∶ R → R be de�ned as

F(t, s) =
⎧⎪⎪⎨⎪⎪⎩

f(t, s), if (t, s) ∈ EP ,
0, if (t, s) ∈ R ∖ EP .

Then for t ∈ [t0, t0 +K)T,

F(t, s) =
⎧⎪⎪⎨⎪⎪⎩

f(t, s), if s ∈ [t, t +K)T,
0, if s ∈ [t0, t)T ∪ [t +K, t0 + 2K)T,

and F(t, ⋅) can only be discontinuous at t and t + K since f ∶ EP → R is bounded continuous. It follows from
[20, Theorem 5.8] that F(t, ⋅) is∆-integrable on [t0, t0 + 2K)T. Thus, by [21, Theorem 2.15],

∬
R

F(t, s)∆t∆s =
t0+K

∫
t0

⎛
⎜
⎝

t0+2K

∫
t0

F(t, s)∆s
⎞
⎟
⎠
∆t =

t0+K

∫
t0

t+K

∫
t

f(t, s)∆s∆t. (3)

On the other hand, for s ∈ [t0, t0 +K)T,

F(t, s) =
⎧⎪⎪⎨⎪⎪⎩

f(t, s), if t ∈ [t0, s)T,
0, if t ∈ [s, t0 +K)T,

and for s ∈ [t0 +K, t0 + 2K)T,

F(t, s) =
⎧⎪⎪⎨⎪⎪⎩

0, if t ∈ [t0, s −K)T,
f(t, s), if t ∈ [s −K, t0 +K)T.

Similarly, we can get that for every s ∈ [t0, t0 + 2K)T, F(⋅, s) is ∆-integrable on [t0, t0 + K)T. Thus, by [21,
Remark 2.16],

∬
R

F(t, s)∆t∆s =
t0+2K

∫
t0

⎛
⎜
⎝

t0+K

∫
t0

F(t, s)∆t
⎞
⎟
⎠
∆s
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=
t0+K

∫
t0

s

∫
t0

f(t, s)∆t∆s +
t0+2K

∫
t0+K

t0+K

∫
s−K

f(t, s)∆t∆s.

This together with (3) leads to the conclusion.

Proposition 3.11. PAP(T;En) ⊂ SpPAP(T;En).

Proof. Let f = g+φ ∈ PAP(T;En)with g ∈ AP(T;En) and φ ∈ PAP0(T;En). Then f ∈ BSp(T;En), AP(T;En) ⊂
SpAP(T;En)byProposition 2.8 (iii), andweneed only to prove thatφ ∈ PAP0(T;En), i.e.N(φ) ∈ PAP0(T;R).
In fact, let q > 0 with 1/p + 1/q = 1, for �xed t0 ∈ T and m ∈ N,

1
mK

t0+mK

∫
t0

N(φ)(t)∆t ≤ (mK)
1
q−1

⎛
⎜
⎝

t0+mK

∫
t0

(N(φ)(t))p∆t
⎞
⎟
⎠

1
p

=
⎛
⎜
⎝

1
mK2

t0+mK

∫
t0

t+K

∫
t

∣φ(s)∣p∆s∆t
⎞
⎟
⎠

1
p

≤ ∥φ∥
p−1
p
∞

⎛
⎜
⎝

1
mK2

t0+mK

∫
t0

t+K

∫
t

∣φ(s)∣∆s∆t
⎞
⎟
⎠

1
p

= ∥φ∥
1
q
∞

⎛
⎜
⎝

1
mK2

m−1
∑
i=0

t0+K

∫
t0

t+K

∫
t

∣φ(s + iK)∣∆s∆t
⎞
⎟
⎠

1
p

.

Meanwhile, by Lemma 3.10 and the fact that ∣φ∣ + ∣φ(⋅ + K)∣ ∈ PAP0(T;Rn),

1
mK2

m−1
∑
i=0

t0+K

∫
t0

t+K

∫
t

∣φ(s + iK)∣∆s∆t

= 1
mK2

m−1
∑
i=0

⎛
⎜
⎝

t0+K

∫
t0

s

∫
t0

∣φ(s + iK)∣∆t∆s +
t0+2K

∫
t0+K

t0+K

∫
s−K

∣φ(s + iK)∣∆t∆s
⎞
⎟
⎠

≤ 1
mK

m−1
∑
i=0

⎛
⎜
⎝

t0+K

∫
t0

∣φ(s + iK)∣∆s +
t0+2K

∫
t0+K

∣φ(s + iK)∣∆s
⎞
⎟
⎠

= 1
mK

t0+mK

∫
t0

(∣φ(s)∣ + ∣φ(s +K)∣)∆s

→ 0 as m → +∞.

Then
1
mK

t0+mK

∫
t0

N(φ)(t)∆t → 0 as m → +∞.

This implies thatN(φ) ∈ PAP0(T;R).

3.4 Composition theorems

We will use the following Sp-Lipschitz condition for f ∈ SpAP(T × En;En):
(H) There exists a constant Lf > 0 such that for any x, y ∈ BSp(T;En) and t ∈ T,

N(f(⋅, x(⋅)) − f(⋅, y(⋅)))(t) ≤ LfN(x − y)(t).
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Remark 3.12. Obviously, (H) implies that ∥f(⋅, x(⋅)) − f(⋅, y(⋅))∥Sp ≤ Lf ∥x − y∥Sp . Moreover, f satis�es (H) if
f(t, x) is Lipschitz continuous in x ∈ En uniformly in t ∈ T, i.e. ∣f(t, x) − f(t, y)∣ ≤ L∣x − y∣ for every x, y ∈ En,
t ∈ T and some constant L.

Theorem 3.13. Assume that f ∈ SpAP(T×En;En) satis�es (H), and u ∈ SpAP(T;En)with u(T) compact. Then
f(⋅, u(⋅)) ∈ SpAP(T;En).

Proof. By (H),
∥f(⋅, u(⋅)) − f(⋅, 0)∥Sp ≤ Lf ∥u∥Sp .

Then
∥f(⋅, u(⋅))∥Sp ≤ ∥f(⋅, 0)∥Sp + Lf ∥u∥Sp < ∞.

That is
f(⋅, u(⋅)) ∈ BSp(T;En). (4)

Since u(T) is compact, for ε > 0, there exist �nite open balls Ok , k = 1, 2, . . . ,m, with center uk ∈ u(T) and
radius ε

8Lf such that u(T) ⊂ ⋃m
k=1 Ok . Set Bk ∶= {s ∈ T ∶ u(s) ∈ Ok}, k = 1, 2, . . . ,m. Then T = ⋃m

k=1 Bk .
Moreover, let E1 ∶= B1, Ek ∶= Bk ∖ (⋃k−1

i=1 Bi), k = 2, . . . ,m. Then Ei ∩ Ej = ∅ for i ≠ j and T = ⋃m
k=1 Ek . De�ne a

step function û ∶ T → En by û(s) ∶= uk , s ∈ Ek , k = 1, 2, . . . ,m. It is clear that ∣u(s) − û(s)∣ < ε
8Lf for all s ∈ T.

Then by (H), for τ ∈ ⋂m
k=1 T(f(⋅, uk), ε

4m ),

∥f(⋅ + τ , u(⋅)) − f(⋅, u(⋅))∥Sp
≤ ∥f(⋅ + τ , u(⋅)) − f(⋅ + τ , û(⋅))∥Sp + ∥f(⋅ + τ , û(⋅)) − f(⋅, û(⋅))∥Sp + ∥f(⋅, û(⋅)) − f(⋅, u(⋅))∥Sp

≤ 2Lf ∥u − û∥Sp + sup
t∈T

⎛
⎜
⎝

1
K

t+K

∫
t

∣f(s + τ , û(s)) − f(s, û(s))∣p∆s
⎞
⎟
⎠

1
p

< ε

4 + sup
t∈T

⎛
⎜
⎝

1
K

m
∑
k=1

∫
[t,t+K)T∩Ek

∣f(s + τ , uk) − f(s, uk)∣p∆s
⎞
⎟
⎠

1
p

≤ ε

4 +
m
∑
k=1

∥f(⋅ + τ , uk) − f(⋅, uk)∥Sp ≤
ε

4 +m ⋅ ε

4m = ε

2 .

Notice that G ∶= ⋂m
k=1 T(f(⋅, uk), ε

4m )∩T(u, ε
2Lf ) is relatively dense by [22, Lemma 4.9]. Thus, for τ ∈ G, by (H),

∥f(⋅ + τ , u(⋅ + τ)) − f(⋅, u(⋅))∥Sp
≤ ∥f(⋅ + τ , u(⋅ + τ)) − f(⋅ + τ , u(⋅))∥Sp + ∥f(⋅ + τ , u(⋅)) − f(⋅, u(⋅))∥Sp

< Lf ∥u(⋅ + τ) − u∥Sp +
ε

2 < ε.

This implies that G ⊂ T(f(⋅, u(⋅)), ε), and T(f(⋅, u(⋅)), ε) is relatively dense. Therefore, f(⋅, u(⋅)) ∈
SpAP(T;En).

Theorem 3.14. Let f = g + φ ∈ SpPAP(T ×En;En) and u = x + y ∈ SpPAP(T;En) with x(T) compact. Assume
that f and g satisfy (H) with Lipschitz constants Lf and Lg, respectively. Then f(⋅, u(⋅)) ∈ SpPAP(T;En).

Proof. Let I1(t) = g(t, x(t)), I2(t) = f(t, u(t)) − f(t, x(t)) and I3(t) = φ(t, x(t)), t ∈ T. Then

f(t, u(t)) = I1(t) + I2(t) + I3(t), t ∈ T.

By Theorem 3.13, we have I1 ∈ SpAP(T;En). So it su�ces to prove that I2, I3 ∈ SpPAP0(T;En).
Since f satis�es (H) with Lf ,

∥I2∥Sp = ∥f(⋅, u(⋅)) − f(⋅, x(⋅))∥Sp ≤ Lf ∥u − x∥Sp = Lf ∥y∥Sp < ∞.
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which implies that BSp(T;En). Moreover, since y ∈ SpPAP0(T;En), for given t0 ∈ T,

1
2r

t0+r

∫
t0−r

N(I2)(s)∆s =
1
2r

t0+r

∫
t0−r

N(f(⋅, u(⋅)) − f(⋅, x(⋅)))(s)∆s

≤
Lf
2r

t0+r

∫
t0−r

N(y)(s)∆s → 0, as r → +∞.

This shows that I2 ∈ SpPAP0(T;En).
By the same arguments as to get (4), we can get I3 ∈ BSp(T;En). Since x(T) is compact, for any ε > 0,

as the proof of Theorem 3.13, we can �nd xi ∈ x(T), Ei ⊂ T, i = 1, 2, . . . , l and x̂ ∶ T → En such that x̂(s) ∶=
xi , s ∈ Ei , i = 1, 2, . . . , l, Ei ∩ Ej = ∅ for i ≠ j, T = ⋃l

i=1 Ei , and ∣x(s) − x̂(s)∣ < ε
2(Lf+Lg) for all s ∈ T. Since

φ(⋅, x) ∈ SpPAP0(T;En) for every x ∈ En, there exists r0 > 0 such that for r > r0, 1 ≤ i ≤ l,

1
2r

t0+r

∫
t0−r

N(φ(⋅, xi))(s)∆s <
ε

2l . (5)

Note that φ satis�es (H) with Lf + Lg since f and g satisfy (H) with Lf and Lg, respectively, then by (H) and (5),
for r > r0,

1
2r

t0+r

∫
t0−r

N(φ(⋅, x(⋅)))(t)∆t

≤ 1
2r

t0+r

∫
t0−r

N(φ(⋅, x(⋅)) − φ(⋅, x̂(⋅)))(t)∆t + 1
2r

t0+r

∫
t0−r

N(φ(⋅, x̂(⋅)))(t)∆t

≤ 1
2r

t0+r

∫
t0−r

(Lf + Lg)N(x − x̂)(t)∆t + 1
2r

t0+r

∫
t0−r

⎛
⎜
⎝

1
K

l
∑
i=1

∫
[t,t+K)T∩Ei

∣φ(s, xi)∣p∆s
⎞
⎟
⎠

1
p

∆t

≤ ε

2 +
l
∑
i=1

1
2r

t0+r

∫
t0−r

N(φ(⋅, xi))(t)∆t < ε.

This yields that I3 ∈ SpPAP0(T;En).

By Proposition 2.5, x(T) is compact for x ∈ AP(T;En). Then by Theorem 3.11 and 3.14, we have the following
corollary.

Corollary 3.15. Let f = g + φ ∈ SpPAP(T ×En;En) and u ∈ PAP(T;En). Assume that f and g satisfy (H). Then
f(⋅, u(⋅)) ∈ SpPAP(T;En).

4 Dynamic equations

4.1 Exponential functions

A function p ∶ T → R is called regressive provided 1 + µ(t)p(t) ≠ 0 for all t ∈ Tκ. The set of all regressive
and rd-continuous functions p ∶ T → R will be denoted by R = R(T) = R(T;R). We de�ne the set R+ =
R+(T;R) = {p ∈ R ∶ 1 + µ(t)p(t) > 0 for t ∈ T}. The set of all regressive functions on time scales forms an
Abelian group under the addition⊕ de�ned by p⊕q ≜ p+q+µ(t)pq. Meanwhile, the additive inverse in this
group is denoted by ⊖p ≜ − p

1 + µ(t)p .



Stepanov-like pseudo almost periodic functions | 835

De�nition 4.1 ([2]). If p ∈ R then the exponential function is de�ned by

ep(t, s) = exp
⎛
⎜
⎝

t

∫
s

ξµ(τ)(p(τ))∆τ
⎞
⎟
⎠
,

for s, t ∈ T, with the cylinder transformation

ξh(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
h
Log(1 + hz), if h ≠ 0,

z, if h = 0,

where Log is the principal logarithm.

De�nition 4.2 ([2]). A matrix-valued function A ∶ T → Rn×n is called regressive if I + µ(t)A(t) is invertible for
all t ∈ Tκ, and the class of all such regressive and rd-continuous functions is denoted, similarly to the scalar
case, byR = R(T) = R(T;Rn×n).

De�nition 4.3 ([2]). Let t0 ∈ T and A ∈ R(T;Rn×n). The unique matrix-valued solution of the initial value
problem (IVP)

X∆(t) = A(t)X(t), X(t0) = I, (6)

where I denotes the n × n identity matrix, is called the matrix exponential function (at t0), which is denoted by
eA(⋅, t0).

We note that the existence and uniqueness of IVP (6) can be obtained by [2, Theorem 5.8].

Lemma 4.4 ([2]). Let t, s ∈ T.
(i) ep(t, t) = 1, eA(t, t) = I.
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s).
(iii) ep(t, s)ep(s, r) = ep(t, r), eA(t, s)eA(s, r) = eA(t, r).

Lemma 4.5. Let a > 0 be a constant and t, s ∈ T.
(i) e⊖a(t, s) ≤ 1 if t ≥ s.
(ii) e⊖a(t + τ , s + τ) = e⊖a(t, s) for τ ∈ Π.
(iii) There exists N > 0 such that (t − s)e⊖a(t, s) ≤ N for t ≥ s.
(iv) For t0 ∈ T, e⊖a(t0, ⋅) is increasing on (−∞, t0]T.
(v) The series∑∞

j=1 e⊖a(t, σ(t) − (j − 1)K) converges uniformly for t ∈ T. Moreover, for all t ∈ T,

∞
∑
j=1

e⊖a(t, σ(t) − (j − 1)K) ≤ λa ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
1 − e−aK

, T = R,

2 + aµ̄ + 1
aµ̄

, T ≠ R,

where µ̄ ∶= sup
t∈T

µ(t).

Proof. (i) is obvious. (ii) can be readily obtained by the fact that µ(t + τ) = µ(t) for all t ∈ T and τ ∈ Π . If
T = R, (t − s)e⊖a(t, s) = (t − s)e−a(t−s) ≤ 1

ae . That is (iii) holds with N = 1
ae . If T ≠ R, let {ti}i∈I , I ⊆ N, be all

right-scattered points in T. By [13, Theorem 5.2],

e⊖a(t, s) = exp
⎛
⎜
⎝
∫

[s,t)T

(−a)dτ − ∑
ti∈[s,t)T

Log(1 + aµ(ti))
⎞
⎟
⎠

= e−aµL([s,t)T) ∏
ti∈[s,t)T

1
1 + aµ(ti)

≤ ∏
ti∈[s,t)T

1
1 + aµ(ti)

, (7)

whereµL denotes the Lebesguemeasure. For t > s, there exists a unique nts ∈ N such that t ∈ [s+(nts−1)K, s+
ntsK)T. Let t0 ∈ T be right-scattered, then for every n ∈ Z, t0 + nK is right-scattered and µ(t0 + nK) = µ(t0).
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Moreover, for s ∈ T, [s, s + (nts − 1)K)T contains nts − 1 right-scattered points with form t0 + nK. Denote
Γ = 1 + aµ(t0) for the convenient of writing. Then by (7),

(t − s)e⊖a(t, s) ≤ ntsK ∏
ti∈[s,s+(nts−1)K)T

1
1 + aµ(ti)

≤ ntsK( 1
1 + aµ(t0)

)
nts−1

= ntsKΓ 1−nts ≤ KΓ
1−1/ lnΓ

lnΓ .

So (iii) holds with N = KΓ 1−1/ lnΓ / lnΓ .
(iv) can be veri�ed easily by the de�nition.
If T = R, for t ∈ T,

∞
∑
j=1

e⊖a(t, σ(t) − (j − 1)K) =
∞
∑
j=1

e−a(j−1) = 1
1 − e−a

.

That is (v) holds for T = R. If T ≠ R, then K ≥ µ̄ = sup
t∈T

µ(t) > 0, and it is easy to see that there exists a

right-scattered point t0 such that µ(t0) = µ̄. In addition, for t ∈ T and j ≥ 3, [t, σ(t) − (j − 1)K)T contains at
least j − 2 right-scattered points with forms t0 + ntK, nt ∈ Z, µ(t0 + ntK) = µ(t0) = µ̄, and

e⊖a(t, σ(t) − (j − 1)K) ≤ (e⊖a(σ(t0), t0))j−2 = (1 + aµ̄)2−j .

Then for any t ∈ T,
∞
∑
j=1

e⊖a(t, σ(t) − (j − 1)K) ≤ e⊖a(t, σ(t)) + e⊖a(t, σ(t) − K) +
∞
∑
j=3

(1 + aµ̄)2−j

≤ (1 + aµ̄) + 1 + 1
aµ̄

= 2 + aµ̄ + 1
aµ̄

.

That is (v) holds for T ≠ R.

Lemma 4.6. Assume that A ∈ R(T;Rn×n) is almost periodic and

∥eA(t, s)∥ ≤ Ce⊖α(t, s), t ≥ s, (8)

where C and α are positive real numbers. Let M = (1 + αK)C2N with N the constant in Lemma 4.5 (iii), and for
ε > 0,

Υ(ε) = {r ∈ Π ∶ ∥eA(t + r, σ(s) + r) − eA(t, σ(s))∥ < ε, t, s ∈ T, t ≥ σ(s)}.

Then T(A, ε/M) ⊂ Υ(ε), which implies that Υ(ε) is relatively dense inΠ.

Proof. For ε > 0, let r ∈ T(A, ε/M) and U(t, σ(s)) ∶= eA(t + r, σ(s) + r) − eA(t, σ(s)). Di�erentiate U with
respect to t and denote by ∂∆U

∂∆ t the partial derivative, then

∂∆U
∂∆t

= A(t + r)eA(t + r, s + r) − A(t)eA(t, σ(s))

= A(t)U(t, σ(s)) + (A(t + r) − A(t))eA(t + r, σ(s) + r).

Note that U(σ(s), σ(s)) = 0, then by the variation of constants formula ([2, Theorem 5.24]),

U(t, σ(s)) =
t

∫
σ(s)

eA(t, σ(τ))(A(τ + r) − A(τ))eA(τ + r, σ(s) + r)∆τ .

Therefore, by (8), Lemma 4.4, 4.5 and the fact that µ(τ) ≤ K, τ ∈ T, for t, s ∈ T with t ≥ σ(s),

∥U(t, σ(s))∥ ≤
t

∫
σ(s)

∥eA(t, σ(τ))∥∥(A(τ + r) − A(τ))∥∥eA(τ + r, σ(s) + r)∥∆τ
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≤ ε

M
C2

t

∫
σ(s)

e⊖α(t, σ(τ))e⊖α(τ + r, σ(s) + r)∆τ

= ε

M
C2e⊖α(t, σ(s))

t

∫
σ(s)

e⊖α(τ , σ(τ))∆τ

= ε

M
C2e⊖α(t, σ(s))

t

∫
σ(s)

(1 + αµ(τ))∆τ

≤ ε

M
C2(1 + αK)(t − σ(s))e⊖α(t, σ(s))

≤ ε

M
C2(1 + αK)N = ε.

This implies that T(A, ε/M) ⊂ Υ(ε), and Υ(ε) is relatively dense inΠ.

4.2 Dynamic equations with delay

As an application of the results obtained in the above sections, we consider the following nonlinear dynamic
equation with delay:

x∆(t) = A(t)x(t) + f(t, x(t − ω)), t ∈ T, (9)

whereA(t) is an n×n almost periodicmatrix function,ω ∈ Π ,ω > 0 and f ∈ SpPAP(T×En;En)∩C(T×En;En).
To consider (9), we �rst consider its corresponding linear equation:

x∆(t) = A(t)x(t) + f(t), t ∈ T, (10)

where f = g + φ ∈ SpPAP(T;En) ∩ C(T;En).

Lemma 4.7. Assume that A ∈ R(T;Rn×n) with (8) satis�ed. Then (10) admits a unique bounded continuous
solution u(t) given by

u(t) =
t

∫
−∞

eA(t, σ(s))f(s)∆s, t ∈ T. (11)

Proof. For t ∈ T, j ≥ 1, by Hölder inequality,

t−(j−1)K

∫
t−jK

∣f(s)∣∆s ≤ K1/q
⎛
⎜
⎝

t−(j−1)K

∫
t−jK

∣f(s)∣p∆s
⎞
⎟
⎠

1/p

= KN(f)(t − jK) ≤ K∥f∥Sp . (12)

Then by (8), (11) and Lemma 4.5 (iv), (v), for t ∈ T,

∣u(t)∣ ≤
∞
∑
j=1

t−(j−1)K

∫
t−jK

∥eA(t, σ(s))∥∣f(s)∣∆s

≤ C
∞
∑
j=1

t−(j−1)K

∫
t−jK

e⊖α(t, σ(s))∣f(s)∣∆s

≤ C
∞
∑
j=1

e⊖α(t, σ(t) − (j − 1)K)
t−(j−1)K

∫
t−jK

∣f(s)∣∆s

≤ CλαK∥f∥Sp .

Thus u is well de�ned and bounded continuous. Moreover, by Lemma 4.4, �x t0 ∈ T,

u(t) =
t

∫
−∞

eA(t, σ(s))f(s)∆s = eA(t, t0)
t

∫
−∞

eA(t0, σ(s))f(s)∆s.
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Then by Lemma 4.4 and [2, Theorem 5.3 (iii)],

u∆(t) = A(t)eA(t, t0)
t

∫
−∞

eA(t0, σ(s))f(s)∆s + eA(σ(t), t0)eA(t0, σ(t))f(t) = A(t)u(t) + f(t),

which implies that u is a solution of (10). Assume that v ∶ T → En is another bounded solution of (10). For
r ∈ T, by the variation of constants formula ([2, Theorem 5.24]),

v(t) = eA(t, r)v(r) +
t

∫
r

eA(t, σ(s))f(s)∆s, t ∈ T.

Since v is bounded, (8) implies that eA(t, r)v(r) → 0 as r → −∞. Letting r → −∞,

v(t) =
t

∫
−∞

eA(t, σ(s))f(s)∆s = u(t).

That is the bounded solution of (10) is unique.

Theorem 4.8. Assume that A ∈ R(T;Rn×n) is almost periodic and (8) holds. Then (10) admits a unique pseudo
almost periodic solution u(t) given by (11).

Proof. By Lemma 4.7, it su�ces to prove that u ∈ PAP(T;En). In fact, for t ∈ T, let

u(t) =
t

∫
−∞

eA(t, σ(s))f(s)∆s =
∞
∑
j=1

uj(t),

where

uj(t) =
t−(j−1)K

∫
t−jK

eA(t, σ(s))f(s)∆s

=
t−(j−1)K

∫
t−jK

eA(t, σ(s))g(s)∆s +
t−(j−1)K

∫
t−jK

eA(t, σ(s))φ(s)∆s

∶= ϕj(t) + ψj(t), j ∈ N.

For ε > 0, it follows from [22, Lemma 4.9] that T (A, ε
2MK(1+∥g∥Sp )

)∩T (g, ε
2CK) is relatively dense inΠ. Denote

G1 = Υ ( ε

2K(1 + ∥g∥Sp)
) ∩ T (g, ε

2CK) ,

where Υ the one given in Lemma 4.6. Then G1 is relatively dense inΠ by Lemma 4.6. Let τ ∈ G1, t, s ∈ T with
t ≥ σ(s),

∣eA(t + τ , σ(s + τ))g(s + τ) − eA(t, σ(s))g(s)∣
≤ ∥eA(t + τ , σ(s) + τ) − eA(t, σ(s))∥∣g(s + τ)∣ + ∥eA(t, σ(s))∥∣g(s + τ) − g(s)∣

≤ ε∣g(s + τ)∣
2K(1 + ∥g∥Sp)

+ Ce⊖α(t, σ(s))∣g(s + τ) − g(s)∣

≤ ε∣g(s + τ)∣
2K(1 + ∥g∥Sp)

+ C∣g(s + τ) − g(s)∣.

Now by the same calculation of (12), we can get for j ∈ N,

∣ϕj(t + τ) − ϕj(t)∣
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=
RRRRRRRRRRRRRR

t−(j−1)K

∫
t−jK

(eA(t + τ , σ(s + τ))g(s + τ) − eA(t, σ(s))g(s))∆s
RRRRRRRRRRRRRR

≤ ε

2K(1 + ∥g∥Sp)

t−(j−1)K

∫
t−jK

∣g(s + τ)∣∆s + C
t−(j−1)K

∫
t−jK

∣g(s + τ) − g(s)∣∆s

≤ εK∥g∥Sp
2K(1 + ∥g∥Sp)

+ CK∥g(⋅ + τ) − g∥Sp

< ε

2 + CK ε

2CK = ε.

This implies that G1 ⊂ T(ϕj , ε). Then T(ϕj , ε) is relatively dense inΠ and ϕj is almost periodic for j ∈ N.
Meanwhile, by Lemma 4.5 (iv), for j ∈ N and t ∈ T,

e⊖α(t, σ(t) − (j − 1)K) ≤ e⊖α(t, σ(t)) = 1 + αµ(t) ≤ 1 + αµ̄.

Then by (8) and the same calculation of (12),

∣ψj(t)∣ ≤
t−(j−1)K

∫
t−jK

∥eA(t, σ(s))∥∣φ(s)∣∆s

≤ C
t−(j−1)K

∫
t−jK

e⊖α(t, σ(s))∣φ(s)∣∆s

≤ Ce⊖α(t, σ(t) − (j − 1)K)
t−(j−1)K

∫
t−jK

∣φ(s)∣∆s

≤ C(1 + αµ̄)KN(φ)(t − jK),

which implies that ψj ∈ BC(T;En). Notice that φ ∈ SpPAP0(T;En). Thus for a �xed t0 ∈ T,

lim
r→+∞

1
2r

t0+r

∫
t0−r

∣ψj(t)∣∆t ≤ C(1 + αµ̄)K lim
r→+∞

1
2r

t0+r

∫
t0−r

N(φ)(t − jK)∆t = 0.

Hence ψj ∈ PAP0(T;En) and uj = ϕj + ψj ∈ PAP(T;En). Consequently, u ∈ PAP(T;En).

Remark 4.9. When T = R, µ(t) = 0 for all t ∈ T and hence A ∈ R automatically. Then Theorem 4.8 is an
extension of [19, Theorem 3.2] to time scales.

For nonlinear dynamics equation (9), we have the following result.

Theorem 4.10. Assume that A ∈ R(T;Rn×n) with (8) satis�ed, and f = g + φ ∈ SpPAP(T × En;En) ∩ C(T ×
En;En)with f and g satisfying (H)with Lipschitz constants Lf and Lg, respectively. Then (9) has a unique pseudo
almost periodic solution u satisfying

u(t) =
t

∫
−∞

eA(t, σ(s))f(s, u(s − ω))∆s, t ∈ T, (13)

provided that CKLfλα < 1, where λα is as in Lemma 4.5.

Proof. Let ϕ ∈ PAP(T;En). It follows from Proposition 2.6 (i) and Corollary 3.15 that f(⋅,ϕ(⋅ − ω)) ∈
SpPAP(T;En). Let

T(ϕ)(t) ∶=
t

∫
−∞

eA(t, σ(s))f(s,ϕ(s − ω))∆s, t ∈ T.
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Then T(ϕ) ∈ PAP(T;En) by Theorem 4.8. That is T ∶ PAP(T;En) → PAP(T;En). By (H), (8), Lemma 4.5 and
the same calculation of (12), for ϕ, θ ∈ PAP(T;En), t ∈ T,

∣T(ϕ)(t) − T(θ)(t)∣ ≤
t

∫
−∞

∥eA(t, σ(s))∥∣f(s,ϕ(s − ω)) − f(s, θ(s − w))∣∆s

≤ C
∞
∑
j=1

t−(j−1)K

∫
t−jK

e⊖α(t, σ(s))∣f(s,ϕ(s − ω)) − f(s, θ(s − ω))∣∆s

≤ C
∞
∑
j=1

e⊖α(t, σ(t) − (j − 1)K)
t−(j−1)K

∫
t−jK

∣f(s,ϕ(s − ω)) − f(s, θ(s − ω))∣∆s

≤ CK
∞
∑
j=1

e⊖α(t, σ(t) − (j − 1)K)N(f(⋅,ϕ(⋅ − ω)) − f(⋅, θ(⋅ − ω)))(t − jK)

≤ CKLf
∞
∑
j=1

e⊖α(t, σ(t) − (j − 1)K)N(ϕ(⋅ − ω) − θ(⋅ − ω))(t − jK)

≤ CKLfλα∥ϕ − θ∥∞.

This implies that
∥T(ϕ) − T(θ)∥∞ ≤ CKLfλα∥ϕ − θ∥∞.

Thus T is a contraction operator since CKLfλα < 1, and then T has a unique �xed point u ∈ PAP(T;En). This
means that (9) has a unique pseudo almost periodic solution u satisfying (13).
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