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Abstract: In this paper, we introduce the concept of S?-pseudo almost periodicity on time scales and present
some basic properties of it, including the translation invariance, uniqueness of decomposition, completeness
and composition theorem. Moreover, we prove the seemingly simple but nontrivial result that pseudo almost
periodicity implies Stepanov-like pseudo almost periodicity. As an application of the abstract results, we
present some existence and uniqueness results on the pseudo almost periodic solutions of dynamic equations
with delay.
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1 Introduction

The theory of time scales was established by S. Hilger in 1988 (see [1]). This theory unifies continuous and
discrete problems and provides a powerful tool for applications to economics, populations models, quantum
physics among others, and hence has been attracting the attention of many mathematicians (see [2, 3] and
the references therein). In 2011, Li and Wang [4, 5] introduced the concept of almost periodic functions on
time scales. Since then, many generalized forms of almost periodicity have been introduced on time scales,
such as pseudo almost periodicity [6], almost automorphy(7], weighted pseudo almost periodicity [8] etc.

To consider the almost periodicity of integrable functions on the real line, Stepanov [9] and Wiener [10]
introduced Stepanov almost periodicity in 1926. Then this concept was extended to Stepanov-like pseudo
almost periodicity by Diagana [11] in 2007. On the other hand, Li and Wang [12] extended Stepanov almost
periodicity on time scales in 2017. Motivated by the above works, the main purpose of this paper is to consider
Stepanov-like pseudo almost periodicity on time scales.

The definition and some basic properties of Stepanov-like pseudo almost periodicity are given in Sec-
tion 3, including the translation invariance, uniqueness of decomposition, completeness and composition
theorem. Moreover, we prove the seemingly simple but nontrivial result that pseudo almost periodicity
implies Stepanov-like pseudo almost periodicity. As an application of the abstract results, we present some
results on the existence and uniqueness of pseudo almost periodic solutions of dynamic equations with delay
in Section 4.
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2 Preliminaries

The concepts and results in this section can be found in [2, 3, 5-7, 12-15], or deduced simply from the results
given there. Throughout this paper, we denote by N, Z, R and R* the sets of positive integers, integers, real
numbers and nonnegative real numbers, respectively. E" denotes the Euclidian space R" or C" with Euclidian
norm | - |, and R™" the space of all n x n real-valued matrices with matrix norm | - |.
Let T be a time scale, that is, a closed and nonempty subset of R. The forward and backward jump
operators o, p : T — T and the graininess p. : T — R* are defined, respectively, by
o(t)=inf{seT:s>t}, p(t)=sup{seT:s<t}, pu(t)=0(t)-t.

If o(t) > t, we say that ¢ is right-scattered. Otherwise, t is called right-dense. Analogously, if p(t) < ¢, then ¢
is called left-scattered. Otherwise, t is left-dense. We always denote T a time scale from now on.

Leta, b € Twitha < b, [a, b], [a, b), (a, b], (a, b) being the usual intervals on the real line. The intervals
[a,a), (a,a], (a,a) are understood as the empty set, and we use the following symbols:

[a,b]r=[a,b]nT, [a,b)r=[a,b)nT, (a,blr=(a,b]nT, (a,b)r=(a,b)nT.

Note that in this paper we use the above symbols only ifa, b € T.
Denote

C(T;E") = {f: T - E": f is continuous},

C(TxD;E") = {f:TxD —E": f is continuous},
BC(T;E") = {f: T » E" : f is bounded and continuous},
Ly (T;E") = {f: T - E": fislocally L A-integrable}.

It is easy to see that BC(T; E") is a Banach space with supremum norm.
If T has a left-scattered maximum m, then T" = T \ {m}; otherwise T" = T.

Definition 2.1. Forf: T - E" and t € T", fA(t) € E" is called the delta derivative of f(t) if for a given ¢ > 0,
there exists a neighborhood U of t such that

F(a(t)) ~£(5) = F2 (1) (o () - 5)| < elo(t) - s|
for all s € U. Moreover, f is said to be delta differentiable on T if f* (t) exists forall t € T.

We note that the integral fab f(t)At always means f[ a,b) f(t)At in this paper, and all the theorems of
the general Lebesgue integration theory also hold for the A-integrals on T. For more details of continuity,
differentiable, A-measure and A-integral on T, Jordan A-measure and multi-Riemann A-integrable on T2,
we refer the readers to [2, 3, 13, 15, 16].

2.1 Almost periodicity and pseudo almost periodicity on T

Definition 2.2 ([5, 7]). A time scale T is called invariant under translations if
II:={reR:t+7eT,VteT} + {0}.

From now on, we always assume that T is invariant under translations.

Definition 2.3 ([5, 14]). (i) A function f € C(T;E") is called almost periodic on T if for every ¢ > 0, the set

T(f,e)={reI:|f(t+7)-f(t)|<e,VteT}

is relatively dense in I1. T(f, €) is called the e-translation set of f, T is called the e-translation number of f.
Denote by AP(T;E") the set of all almost periodic functions.
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(ii) Let 2 ¢ E" be open. The set AP(T x (2;E") consists of all continuous functions f : T x £2 — E" such
that f(-, x) € AP(T;E") uniformly for each x € S, where S is any compact subset of 2. That is, for ¢ > 0,
Nyes T(f (-, x), €) is relatively dense in II.

Let f € BC(T;E"). Then set

+ 00

to+r
PAPo(T;E") = {fe BC(T;E"): rEm ir f If(s)|As =0, wherety e T, r ¢ H}.
to—r

0

Definition 2.4 ([6]). A function f ¢ BC(T;E") is called pseudo almost periodicif f = g+¢, whereg € AP(T;E™")
and ¢ € PAPo(T; E"). We denote by PAP(T; E") the set of all pseudo almost periodic functions.

Proposition 2.5. f(T) is relatively compact if f € AP(T;E").

Proof. 1t follows from [17, Theorem 3.4] that for f € C(T;E"), f ¢ AP(T;E") if and only if there exists g ¢
AP(R;E") such that f(t) = g(t) for t € T. Meanwhile, it is well known that g(R) is relatively compact if
g € AP(R;E"). Therefore f(T) is relatively compact if f ¢ AP(T; E"). O

Proposition 2.6 ([6]). (i) Iff € PAP(T;E") and ¢ € PAPo(T;E"), then for any r € II, f(- + 7) € PAP(T;E")
and ¢(- + 1) € PAPo(T; E™).
(ii) PAP(T,E") and PAPo(T,E") are Banach spaces under the sup norm.

2.2 Sr-almost periodic functions on T

We always assume that p > 1 afterwards without any further comments. Let

e inf{|r|: eI, 7+0}, ifT=+R,
B if T = R.

Define | - [|s : L} (T;E") > R* as

t+IC p
1
Iflse == Stl:%)(lC / |f(s)|pAs) for fe Ll (T;E").
t

feL? (T;E")is called S”-bounded if f|s» < co. Denote by BSP(T; E") the space of all these functions.

loc

Definition 2.7 ([12]). (i) A function f ¢ BSP(T;E") is called SP-almost periodic on T if for every ¢ > 0, the
e-translation set of f

T(fye) ={redl:|f(-+7) = fls <&}

is relatively dense in II. Denote the set of all these functions by S’AP(T, E").

(ii) Afunctionf : Tx (2 — E" with 2 c E" is called SP-almost periodicint € Tiff(-, x) € SPAP(T; E") uniformly
for each x € S, where S is an arbitrary compact subset of §2. That is, for e > 0, Nyes T(f(+, x), €) is relatively
dense in I1. Denote the set of all such functions by S’AP(T x 2; E").

Proposition 2.8 ([12, 18]). (i) Iff € SPAP(T;E"), thenforany r € II, f(- + 7) € SPAP(T; E").

(ii) BSP(T;E"),SPAP(T,E") are Banach spaces under the S*-norm | - |s».

(iii) Let 1 < g < p < oo. Then BSP(T;E") ¢ BSY(T;E"), SPAP(T;E") c SYAP(T; E") and |f|s: < |f|s» for
f e BSP(T;EM).

(iv) AP(T;E") c SPAP(T;E").
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3 SP-pseudo almost periodic functions

Now we introduce the concept of SP-pseudo almost periodicity on time scales and present the main properties
of it.

3.1 Definitions

We define the norm operator N on BSP (T; E") as follows:

1
t+1C

N()(t) = (Ilcff(s)V’As) for f e BSP(T;E"), teT.
t

Lemma 3.1. The norm operator N' maps BS? (T; E") into BC(T; R") and maps S’ AP(T; E") into AP(T;R™).
Moreover, for f,g e BSP(T;E"), t e T,

IN(P) oo = Ifllse» INA(E) =N () (O] < N(f = 8)(£) <N (F)(E) + N(g)(8). €y
Proof. 1t is obvious that [N (f)]e = |f]s-- Then N/ (f) is bounded when f ¢ BS?(T;E"). The second part of

(1) can be got from Minkowski inequality immediately.
Let f € BSP(T;E"). Then f € LY (T;E"), and the absolute continuity of integral follows that for ¢ > 0,

loc
there exists § = §(¢) > 0 such that for any A-measurable set e with ua(e) <4,

[rsras <.

Thus, for t1,t, € T, t1 < t3, |l'1 — t2| <4,

t, tH+IC

VDY () - (N ()] < | / |f<s>”As—,§[ [ vepas
1 t; 1 t,+IC

<< f FoFas+ g /K f(s)P As

<Ee.

This implies that (N (f))* is continuous, and N (f) is continuous. So N : BSP(T; E") - BC(T; R").
Let f € SPAP(T; E"). Then N'(f) € BC(T; R") by the proof above. For 7 € T(f, ), by (1),

INUYC+7) =N () oo =St1€1%3|/\/(f)(t+7)—/\f(f)(t)\ =St1€1%1|/\/(f('+7))(f)—N(f)(t)l
Sstg%)/\f(f(*ﬂ =N = INFC+7)=lloo = If(+7) = fllsr <,
which implies that T(f, ¢) c T(N(f), ). Hence N'(f) e AP(T; R"). O

Definition 3.2. A function f € BSP(T;E") is said to be ergodic if N'(f) € PAPo(T;R"), i.e.

1

1 to+r, 1 t+IC P
lim —f —[ s)PAs| At=0, wheretoeT,rell.
A K IF(s)l 0
o—T

We denote by SP PAP,(T; E") the set of all ergodic functions from T to E".

Definition 3.3. (i) A function f ¢ BSP(T;E") is called Stepanov-like pseudo almost periodic (SP-pseudo
almost periodic) if f = g + ¢, where g € SPAP(T;E") and ¢ € SPPAPy(T;E"). g and ¢ are called the
almost periodic component and the ergodic perturbation of f, respectively. We denote by S’ PAP(T; E") the
set of all such functions f.
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(ii) A functionf : T x 2 — E" with 2 c E" is called Stepanov-like pseudo almost periodic (SP-pseudo almost
periodic)int € Tiff(-,x) = g(-, x) + ¢(-, x) € SPPAP(T;E") for each x € 2 and g(-,x) € SPAP(T; E")
uniformly for each x € S, where S is an arbitrary compact subset of (2. Denote the set of all these functions
by SPPAP(T x £2; E").

Remark 3.4. (i) We note that Definition 3.3 is a generalization of SP-pseudo almost periodicity on R intro-
duced by Diagana [19].
(ii) It is easy to check that STPAP(T; E") c SPPAP(T;E") for1 < p < q.

3.2 Some basic properties

From now on, we write f = g + ¢ ¢ SPPAP(T;E") implies g ¢ SPAP(T;E") and ¢ € SPPAPy(T;E"). In
this subsection, we give some basic properties of S”-pseudo almost periodicity, including the uniqueness of
decomposition, the translation invariance and the completeness.

Proposition 3.5. The decomposition of S”-pseudo almost periodic functions is unique.

Proof. Iff = g1+ ¢1 = 82+ ¢2 € SPPAP(T; E"), then g1 — g2 = ¢2 — ¢1. This implies N' (g1 - 82) = N (¢1 — ¢2).
Note that N'(¢p1—¢2) < N (#1)+N (¢2) by (1), it follows that A/ (#1-¢2) € PAPo(T; R"), and then A'(g1-82) ¢
PAPo(T;R*). Meanwhile, g1 -g> € SPAP(T; E") since g1, g2 € SPAP(T; E™). Thus N'(g1-82) € AP(T; R*) by
Lemma 3.1. Now it follows from [6, Theorem 3.5] that A'(g1 — g2) = 0. This yields that g; = g> in SPAP(T; E"),
and consequently, ¢1 = ¢, in SPPAPo(T; E™). O

By Proposition 2.6 (i), Proposition 2.8 (i) and Lemma 3.1, we can easily obtain the following translation
invariance of SP-pseudo almost periodic functions. Here we omit the details.

Proposition 3.6. Let f ¢ S’ PAP(T;E"). Then f(- + ) € S’ PAP(T;E") for € II.
Proposition 3.7. (SPPAPo(T;E"), | - |s») is a Banach space.

Proof. By Proposition 2.8 (ii), we only need to prove the closedness of S” PAP,(T;E") in BSP (T;E"). In fact,
let {¢x} c SPPAPo(T;E") and ¢ € BSP(T;E") with |¢x — ¢|s» — O as k — oco. By Lemma 3.1, {N (¢x)} c
PAPy(T;R*) and

IN (k) =N () [loo < [N (bk = @)oo = 61 = Plls» — O as k — oo.

This implies A (¢) € PAPo(T;R*) since PAPo(T;R™") is a Banach space by Proposition 2.6 (ii). Hence ¢ ¢
SPPAPy(T; E") and SP PAPo(T; E") is closed. O

To prove the completeness of the space S PAP(T; E") we need the following lemma.
Lemma3.8. Iff = g+ ¢ € SPPAP(T;E"), then |g|ls» < |f]se-

Proof. Let Q(t) := N'(8)(t) - N (¢)(t), t € T. Then by (1),
QDI <N (g+¢) () =N(F)(t), teT.

This implies that |Q[c < |N(f)|s. On the other hand, N'(g) € AP(T;R") by Lemma 3.1, and clearly,
-N(¢) € PAPy(T;R). Then Q = N (g) - N(¢) € PAP(T;R). Thus, by [6, Theorem 4.2] and (1),

lgls> = IN(&)lee < [Qllo < IN(F)]loo = If 5o

Proposition 3.9. (SPPAP(T;E"), | - ||s») is a Banach space.
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Proof. 1t suffices to prove that S’PAP(T;E") is closed in BS? (T; E"). Let {fx} = {gx + ¢x} < SPPAP(T;E")
and f € BSP(T; E") with |fi — f|s» - Oas k — oo. Then |f - fi|s» - Oas k, j - oo. It follows from Lemma 3.8
that |gx — gjlse < |fk - fils» = 0 as k,j — oo. This together with Proposition 2.8 (ii) implies that there exists
g € SPAP(T; E") such that ||gi — g|s» — 0 as k — co. Meanwhile, by Lemma 3.8,

|6k = djllse = Ific = £ + 8 = Sills < |fic = fills» + |8k = §jlls» ~ O as k, j — oo,

which implies that ¢, — ¢ as k — oo for some ¢ € SPPAPo(T;E") by Proposition 3.7. Let f = g + ¢. Then
f € SPPAP(T;E") and f, — f as k — oo. That is S’ PAP(T;E") is closed in BSP (T; E"). O

3.3 PAP(T;E") c SPPAP(T;E")

We prove the seemingly simple but nontrivial result that PAP(T; E") c SPPAP(T;E") in this subsection.
For to € T, let
Ep={(t,s)eTxT:to<t<to+K,t<s<t+K},

Lemma3.10. (i) Epis Jordan A-measurable.
(ii) Iff : Ep — R is bounded continuous, then f is Riemann A-integrable over Ep, and

to+ K t+IC to+KC s to+2IC to+KC
/f(t,s)AsAt: f [f(t,s)AtAs+ / /f(t,s)AtAs. 2
to t to to to+C s-K

Proof. By a fundamental calculation, we can prove that Ep is Jordan A-measurable and f is Riemann A-
integrable over Ep. Here we omit the details, and we only prove that (2) holds. Let R = [to, to + K)T x [to, to +
2KC)r and F : R — R be defined as

t, ’ f t, E ’
I ((CORRICORY

0, if (t,s) e R\ Ep.
Then for ¢ € [¢to, to + K)1,

f(t,s), ifse[t,t+K)r,
0, ifse [to,t)TU[t+K:,to+2’C)’]r,

F(t,s) :{

and F(t,-) can only be discontinuous at t and ¢ + K since f : Ep — R is bounded continuous. It follows from
[20, Theorem 5.8] that F(t, -) is A-integrable on [to, to + 2K ). Thus, by [21, Theorem 2.15],

to+KCf to+2KK to+IC t+KC
f F(t,5)AtAs = f ( [ F(t,s)As)At: f [f(t,s)AsAt. 3)

R to to to t

On the other hand, for s € [to, to + K)T,

t,s), ifte]to, ,
F(t,s) = f(t,s), iftefto,s)r
0, ifte[s,to+K)r,
and for s € [to + K, to + 2K) T,
o, iftefty,s-K)r,
(t,S): 1 6[05 )T
f(t,S), iftE[S—’C,to-i—IC)qL

Similarly, we can get that for every s € [to, to + 2K)T, F(:, §) is A-integrable on [to, to + K)7. Thus, by [21,
Remark 2.16],

f F(t,5)AtAs = 72&( toj’CF(t, s)At) As

R to to
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to+iC s to+2K to+K
= / ff(t,S)AtAH f f f(t,s)AtAs.
to o to+IC s-K
This together with (3) leads to the conclusion. O

Proposition 3.11. PAP(T;E") c SPPAP(T;E").

Proof. Letf = g+¢ ¢ PAP(T; E") with g ¢ AP(T; E") and ¢ € PAPo(T; E"). Then f ¢ BSP(T; E"), AP(T;E") c
SPAP(T; E") by Proposition 2.8 (iii), and we need only to prove that ¢ € PAPo(T;E"),i.e. N (¢) € PAPo(T; R).
In fact,letg > Owith1/p+1/q =1, forfixed tp e Tand m e N,

1

to+miC to+miC »
ﬁ / N(¢)<t>Ats(mK)31( / (Nw)(t))ut)

to+mIiC t+/C p
( L / /|¢(5)|”A5At)

mk?
to t

b1 1 to+mIC t+1C P
<9l ( [/ ¢<s>AsAt)

mK?
to t
B 1 m-1 to+K t+K %
:|¢”g°(mic2 > f f|¢(s+il€)|AsAt)
=0 7 %
Meanwhile, by Lemma 3.10 and the fact that |¢| + |¢(- + K)| € PAPo(T; R"),
1 m—1 to+IC t+IC ‘
D) f f|¢(s+lK)\AsAt
=0 7 %
1 m-1 to+kC s to+2IC to+KC
=—= f|¢>(s+il€)|AtAs+ f / lp(s +iKC)|AtAs
mK. i=0 to to to+KC s-KC

=0 to+IC

1 m-1 to+KC to+2IC
< — |p(s +iK)|As + |6(s +iK)|As
mK { ( tof f

to+miC

:mllc f (lp(s)] + (s + K)|)As

to

-0 asm — +oo.

Then

to+miC

1
s f N(p)(t)At -0 asm — +oo.

to

This implies that A'(¢) € PAPo(T; R). O

3.4 Composition theorems

We will use the following SP-Lipschitz condition for f € SPAP(T x E"; E"):
(H) There exists a constant Ly > 0 such that for any x,y ¢ BS?(T;E") and t € T,

NFCxE) =FEyON@) < LN (x=y)(0).
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Remark 3.12. Obviously, (H) implies that |f(-,x(-)) —= f(-,¥(:))|s» < L¢|x — y|s». Moreover, f satisfies (H) if
f(t, x) is Lipschitz continuous in x € E" uniformly in t € T, i.e. |f(t,x) - f(t,y)| < L|x - y| for every x,y € E",
t € T and some constant L.

Theorem 3.13. Assume that f € SPAP(T xE"; E") satisfies (H), and u € S’AP(T; E") with u(T) compact. Then
f(,u(’)) e SPAP(T; E").

Proof. By (H),
IFCou)) = f(0) s < Leulso.
Then
IFCouC))lse < If (5 0) s + Le[uflsp < oo.
That is
f(,u(")) e BS?(T; E"). (4)

Since m is compact, for € > 0, there exist finite open balls Oy, k = 1, 2, ..., m, with center uy € m and
radius siLf such that u(T) ¢ UM, Ox. Set By := {s € T : u(s) € Oy}, k = 1,2,...,m. Then T = U, By.
Moreover, let E; := By, Ej := By N (U{‘z‘f Bi),k=2,...,m. ThenE;nE;=gfori+jand T = ULy Ex. Define a
step function &t : T — E" by @i(s) := uy, s € Ex, k=1,2,...,m. Itis clear that |u(s) - @i(s)| < i foralls eT.
Then by (H), for r € N3L; T(f(-, ux), i)

G+ ul)) = FCul)ls
SWC+mul) - fC+ma() s + IFC+7,u()) =G uC) lse + 1 G 2()) = FGul)[se

1
t+IC

i 1 s arenPas]
< 2Ly u|sp+stg$(,c f F(s+7.4(s)) ~ £ (5. 4(s)) As)

1

<Z+SUP(11C§: f |f(s+r,uk)—f(s,uk)|PAs)

teT —
¢ k’l[t,t+IC)TnEk

3 e

< -

m

€
+ +T,U) (U <—+m- ==
k;”f( i) — fludsr < o am =5

o

Notice that G := MLy T(f (-, ux), 75;) N T(u, 2%) is relatively dense by [22, Lemma 4.9]. Thus, for = € G, by (H),

IfFC+7u+7)) = fCul)) s
<IfCHmuC+m) = fCrmul) s + [fC+mul) =G ul)ls

<Llu(+m) -uls + 5 <c.

This implies that G < T(f(-,u(:)),e), and T(f(-,u(:)),e) is relatively dense. Therefore, f(-,u(:)) ¢
SPAP(T; E™). O

Theorem 3.14. Letf = g+ ¢ € SSPAP(T x E"; E") and u = x +y € S’ PAP(T; E") with x(T) compact. Assume
that f and g satisfy (H) with Lipschitz constants Ly and Lg, respectively. Then f(-, u(-)) € S"PAP(T; E").

Proof. LetI;(t) = g(t,x(t)), L(t) = f(t,u(t)) — f(t,x(t)) and Is(t) = ¢(t, x(t)), t € T. Then
f(t,u(t)) =Li(t) + L(t) + I5(t), teT.

By Theorem 3.13, we have I; € SPAP(T;E"). So it suffices to prove that I, Is € S’ PAPy(T; E").
Since f satisfies (H) with Ly,

IL20se = 1f (s u()) = FCx()) s < LefJu = x[[so = Le[ly[se < oo.
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which implies that BS? (T; E"). Moreover, since y € S’ PAPy(T; E"), for given to € T,

to+r to+r

= [ NE)s)as= o ] NG u() = £ x()))()As

tofr fo

1

to+r

—j;fN(y)(s)As»O, asr — +oo.

This shows that I, € SPPAPo(T; E").

By the same arguments as to get (4), we can get Is € BS?(T;E"). Since x(T) is compact, for any ¢ > 0,
as the proof of Theorem 3.13, we can find x; € x(T),E; c T,i =1,2,...,land X : T — E" such that x(s) :=
xi,se€E,i=1,2,...,LEnEj=gfori+jT= ULlEi, and |x(s) - X(s)| < m for all s € T. Since
#(+, x) € SPPAPo(T;E™) for every x € E", there exists ro > 0 such that forr > ro, 1 <i<,

to+r

[ N (6 x))(8)As < o s

Note that ¢ satisfies (H) with L¢ + Lg since f and g satisfy (H) with Ly and Lg, respectively, then by (H) and (5),
forr > ro,

= [ N@Cx@at
<o [ NG = 06RO OAt 5 [ N6l 2O (0AL
<o ](Lf+Lg)N(X (AL + o f f b(s, x)Pas | At
[tt+l€)—mE,

to+r

% il fN(¢(-,xi))(t)At<s.

IN

This yields that I3 € SPPAPo(T; E"). O

By Proposition 2.5, x(T) is compact for x e AP(T; E"). Then by Theorem 3.11 and 3.14, we have the following
corollary.

Corollary 3.15. Letf =g+ ¢ € SPPAP(T x E"; E") and u € PAP(T; E"). Assume that f and g satisfy (H). Then
f(,u(-)) e SSPAP(T; E").

4 Dynamic equations

4.1 Exponential functions

A function p : T — R is called regressive provided 1 + u(t)p(t) # O for all t € T". The set of all regressive
and rd-continuous functions p : T — R will be denoted by R = R(T) = R(T;R). We define the set R* =
RY(T;R) = {peR:1+u(t)p(t) >0forte T}. The set of all regressive functions on time scales forms an
Abelian group under the addition @ defined by p ® g £ p + g + (t) pq. Meanwhile, the additive inverse in this

. p
group is denoted by ep £ —————.
1+ pu(t)p
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Definition 4.1 ([2]). If p € R then the exponential function is defined by

t
ep(t,5) :exp( / sMT)(p(r))Ar),
S
for s, t € T, with the cylinder transformation

1

—Log(1+hz), ifh+0,
§h(z):{h g(1+hz), if

z, ifh:Oy

where Log is the principal logarithm.

Definition 4.2 ([2]). A matrix-valued function A : T — R™" is called regressive if I + u(t)A(t) is invertible for
all t € T", and the class of all such regressive and rd-continuous functions is denoted, similarly to the scalar
case, by R = R(T) = R(T; R™™).

Definition 4.3 ([2]). Let to € T and A € R(T;R™"). The unique matrix-valued solution of the initial value
problem (IVP)

X2(6) = A(DOX(1), X(to) =1, (6)
where I denotes the n x n identity matrix, is called the matrix exponential function (at t), which is denoted by
ea(-, to).

We note that the existence and uniqueness of IVP (6) can be obtained by [2, Theorem 5.8].

Lemma 4.4 ([2]). Lett,s ¢ T.
@ ep(t,t)=1,ea(t, t)=1.
(i) ep(o(t),s) = (1+u(t)p(t))ep(t,s).
(iii) ep(t,s)ep(s,r)=ep(t, 1), ea(t,s)ea(s,r) =ea(t,r).

Lemma 4.5. Leta > 0 be a constant and t, s € T.
(i) eoca(t,s)<1lift>s.
(i) eca(t+7,5+7)=ecalt,s)forrell.
(iii) There exists N > 0 such that (t — s)eca(t,s) < N fort > s.
(iv) Forto €T, eca(to, -) is increasing on (—oo, to]r.
(v) The series Y721 esa(t, o(t) — (j — 1)K) converges uniformly for t € T. Moreover, for all t € T,

1
- . 177“, T:R,
Yeea(t,o(t) - (j-1)K) <Ag:=4 -~ € 1
=t 2+aﬂ+?, T+ R,
o

where i := sup u(t).
teT
Proof. (i) is obvious. (ii) can be readily obtained by the fact that u(t + 7) = u(t) forall t € Tand 7 € 1. If
T =R, (t-5)eca(t,s) = (t-s)e ™) < L Thatis (iii) holds with N = L If T # R, let {t;};er, I < N, be all
right-scattered points in T. By [13, Theorem 5.2],

eea(t,s):exp([(—a)dr— > Log(1+apu(t;))

s, tie[s,t)r

— g~an([s:01) # < ¥’ @)
tie[s,t)r L+au(t) tie[s,t)r 1+ap(t;)

where p; denotes the Lebesgue measure. For ¢ > s, there exists a unique nss € Nsuch thatt € [s+(ns—-1)KC, s+
ns k). Let to € T be right-scattered, then for every n € Z, to + nK is right-scattered and u(to + nkC) = pu(to).
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Moreover, for s € T, [s,s + (nts — 1)K)r contains ngs — 1 right-scattered points with form to + nC. Denote
I' =1+ au(to) for the convenient of writing. Then by (7),

1
(t-s)eca(t,s) <nik —_—
tie[s,s+(ns—1)IC) 1+ au(ti)
1 nis—1 B ICFl_l/lnF
< n[sIC —_— = n[s]CFI Nt < -
1+ ap(to) Inr

So (iii) holds with N = Kr*~//In 1,
(iv) can be verified easily by the definition.

IfT=R,forteT,
1

Zeea(t o(t) - (j- 1)K) _Ze—a() 1) _ e

j=1 j=1
That is (v) holds for T = R.If T # R, then K > i = sup u(t) > 0, and it is easy to see that there exists a

right-scattered point o such that u(tp) = . In add1t1on for teTandj>3,[t,o(t) - (j— 1)K)r contains at
least j — 2 right-scattered points with forms to + n¢/C, n¢ € Z, pu(to + nekC) = p(to) = 1, and

eca(t,o(t) = (= 1)K) < (eea(o(to), to) Y = (1 + ajp)*”.
Then forany t € T,
S ecaltso(t) - (- 1)K) < eoalt, o(6)) + ecalt, o(t) ) + S (1 + )
j=1 j=3

1 1
<(l+ap)+1+—=2+ap+—.
ap ap

That is (v) holds for T # R. O
Lemma 4.6. Assume that A € R(T; R™") is almost periodic and
lea(t,s)|| < Ceon(t,s), t=s, (8)

where C and « are positive real numbers. Let M = (1 + oK) C>N with N the constant in Lemma 4.5 (iii), and for
>0,
Y(e)={rell:|ea(t+r,0(s)+r)—ea(t,o(s))| <e, t,seT,t>0(s)}.

Then T(A,e/M) c T(e), which implies that T (¢) is relatively dense in I1.

Proof. Fore > O, letr € T(A,e/M) and U(t,0(s)) := ea(t +1,0(s) + 1) — ea(t,o(s)). Differentiate U with

respect to t and denote by 5 aA U the partial derivative, then
(;A—lt] =A(t+r)es(t+r,s+r)—A(t)es(t,o(s))
A

=AUt o(s)) + (A(t +1) - A(t))ea(t +1,0(s) +1).

Note that U(o(s), o(s)) = 0, then by the variation of constants formula ([2, Theorem 5.24]),

U(t,o(s)) = f ea(t,a(r))(A(r+1)—-A(7))ea(r +1,0(5) +1)AT.
o(s)

Therefore, by (8), Lemma 4.4, 4.5 and the fact that u(7) < K, 7 € T, for ¢, s € T with ¢ > o(s),

[U(t, o(s))] < f lea(t,a(w)[I(A(7 +1) = A())[lea(r +1,0(s) + 1) | AT
o(s)
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S

c f eoa(t,o(r))eoalr +1,0(s) + 1) Ar
(s)

[oa

£ Cean(tias)) £ eca (. o(r))Ar

- = Cesa(t,a(s)) [(1+o¢u(7'))AT
o(s)

< %czu +aK)(t - a(s))esalt, o(s))

< %Cz(l-kalC)N:E.

This implies that T(A, /M) c T'(¢), and Y(¢) is relatively dense in I7. O

4.2 Dynamic equations with delay

As an application of the results obtained in the above sections, we consider the following nonlinear dynamic
equation with delay:
x3(6) = A(Ox(D) + f(tx(t-w)), teT, ©)
where A(t) is an nxn almost periodic matrix function, w € I7,w > Oand f € S’ PAP(TxE™; E")nC(TxE"; E").
To consider (9), we first consider its corresponding linear equation:
X2 (t) = A()x(t) +f(t), teT, (10)

where f = g + ¢ € S"PAP(T;E") n C(T; E").

Lemma 4.7. Assume that A € R(T;R™") with (8) satisfied. Then (10) admits a unique bounded continuous

solution u(t) given by
t

u(t):feA(t,a(s))f(s)As, teT. (1)
Proof. ForteT,j> 1, by Hélder inequality,
t-(-1K t—(-1)K i/p
lf(S)IAssiC”q( [ If(S)I”AS) = KN(F)(t - JK) < KIf |5 12
K K
Then by (8), (11) and Lemma 4.5 (iv), (v), for t € T,
o t=(-DK
()] <3 f lea(t, a(s))|If(s)|As
=i
W tU-DK
<cy [ ecaltio(s)f(s)las
=i
- t-G-1K
<CYeealt,a()-(i-1K) [ If(s)las
j=1 K
< CAK|f|lse -

Thus u is well defined and bounded continuous. Moreover, by Lemma 4.4, fix to € T,

u(t):feA(t,o(s))f(s)As:eA(t, to)feA(to,a(s))f(s)As.
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Then by Lemma 4.4 and [2, Theorem 5.3 (iii)],
t
w?(t) = At)ea(t, to) [ ealto o())f(5)As + eao (), to)ea(to, o(IF() = A(u(t) + £(1),

which implies that u is a solution of (10). Assume that v : T — E" is another bounded solution of (10). For
r € T, by the variation of constants formula ([2, Theorem 5.24]),

t

v(t):eA(t,r)v(r)+feA(t,a(s))f(s)As, teT.

.
Since v is bounded, (8) implies that e4 (¢, r)v(r) - 0 asr — —oo. Letting r — —oo,

t

v(6) = [ ealt,a(s)f(s)As = u(t).

—oo

That is the bounded solution of (10) is unique. O

Theorem 4.8. Assume that A € R(T; R™") is almost periodic and (8) holds. Then (10) admits a unique pseudo
almost periodic solution u(t) given by (11).

Proof. By Lemma 4.7, it suffices to prove that u € PAP(T;E"). In fact, for t € T, let

u(t)= [ ealt,o(s)f(5)as = 3 uy(0),
oo j=1

where
t—(-1)K
w0 = [ ealt,o(s)f(s)as
tjK
t-(j-1)K t-(-1)K
- ealt,o()g(®)as+ [ ea(t,o(s))é(s)As
tjKC tjKC

= Lp}'(t)+’t/J]‘(t), ]GN

Fore > 0, it follows from [22, Lemma 4.9] that T (A, m) NT (g, 75 ) is relatively dense in I7. Denote

€ €
o -7 (e )T (5 20):

where 7" the one given in Lemma 4.6. Then G is relatively dense in I7 by Lemma 4.6. Let 7 € G1, t, s € T with
t>o(s),

lea(t+7,0(s+7))g(s+7)—ea(t,o(s))g(s)|

<lea(t+r,o(s) +7) —ea(t,o(s))llg(s + )|+ [ea(t, o(s))[lg(s +7) - g(s)|

elg(s+71)|
< Sk + gl * Ceonlt:o(®)g(s + ) ~&(s)|

elg(s +7)|

< 2]C(1+ HgHsv) + C\g(s+7')—g(s)|.

Now by the same calculation of (12), we can get for j € N,

it +7) = @i (0)]
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t-(G-1)K
(ea(t+7,0(s+71))g(s+7)—ea(t,o(s))g(s)) As

t—jK
t-(j-1)K t-(j-1)K
€
e g(s+7)As+C f g(s+7)-g(s)|As
K(1+[sls) 4 g(s+7)| ' g(s+7)-g(s)]
—jKc t-jKC
eKlgls»
S——>——+CK|g(-+7) -
K1+ |gls) *IECTT 8l
€ g
< 5+CK2CIC =e.

This implies that G1 c T(yj, ). Then T(yj, ) is relatively dense in IT and ¢; is almost periodic for j € N.
Meanwhile, by Lemma 4.5 (iv), forje Nand t € T,

eoal(t,o(t) - (j-1)K) <egalt,o(t)) =1+ au(t) <1+ aj.

Then by (8) and the same calculation of (12),

t-(j-1)K
wiols [ leatt.o(s))llo(s)|as
t—jKC
t-(G-1)K
<c [ ecaltia(s)lé(s)|As
t—jiC
t-(-1)K
< Ceoalt,a(t) - (- 1K) [ |o(s)|4s
t—jKC
< C(1+af) KN (9)(t - JK),

which implies that v; € BC(T; E"). Notice that ¢ € S’ PAPo(T; E"). Thus for a fixed tp € T,

to+r to+r

. 1 _ . 1 .
Jlim f [4(OIAt < C(1+ )k lim o fN(qu)(t—]lC)At:O.
to—r to—r

Hence v € PAPo(T; E") and u; = ¢; + ¢); € PAP(T; E"). Consequently, u € PAP(T;E"). O

Remark 4.9. When T = R, u(t) = O forallt € T and hence A € R automatically. Then Theorem 4.8 is an
extension of [19, Theorem 3.2] to time scales.

For nonlinear dynamics equation (9), we have the following result.

Theorem 4.10. Assume that A € R(T; R™") with (8) satisfied, and f = g + ¢ € SP’PAP(T x E"; E") n C(T x
E"; E") with f and g satisfying (H) with Lipschitz constants Ly and Lg, respectively. Then (9) has a unique pseudo
almost periodic solution u satisfying

u(t):/eA(t,a(s))f(s,u(s—w))As, teT, (13)

provided that CKLf Ao, < 1, where )\ is as in Lemma 4.5.

Proof. Let ¢ ¢ PAP(T;E"). It follows from Proposition 2.6 (i) and Corollary 3.15 that f(-, (- — w)) €
SPPAP(T;E"). Let
t

T()(t) ::feA(t,cr(s))f(s,np(s—w))As, teT.

—oo
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Then T(y) € PAP(T; E") by Theorem 4.8. That is T : PAP(T; E") — PAP(T; E"). By (H), (8), Lemma 4.5 and
the same calculation of (12), for ¢, 8 € PAP(T; E"), t € T,

t
IT(sD)(f)—T(9)(t)ISfIIeA(t,J(S))IIIf(S,w(S—w))—f(S,9(S—W))\AS

o -G-DK
<C) eoa(t, a(s))If (s, p(s —w)) - f(s,0(s —w))|As
=Sk
- t—(-1)K
<CY eoa(t,o(t) - (j-1)K) f (s, (s —w)) = f(s,0(s -w))|As
j=1 =K
<CKk ieea(t,a(t) —U-DRNFC (- —w)) =f( 00— w)))(t-IK)
j=1
< CKLy i eca(t,o(t) - (- DN (p(- -w) = 0(- —w))(t - JK)
j=1

< CKLfAa @ = 0] oo

This implies that

IT(p) = T(0) oo < CKLsAa ] = 0] co-

Thus T is a contraction operator since CKLfA, < 1, and then T has a unique fixed point u € PAP(T;E"). This
means that (9) has a unique pseudo almost periodic solution u satisfying (13). O
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