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Abstract: In this paper we study the entire solutions to a certain type of difference-differential equations.
We also give an affirmative answer to the conjecture of Zhang et al. In addition, our results improve and
complement earlier ones due to Yang-Laine, Latreuch, Liu-Lii et al. and references therein.
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1 Introduction and main results

In studying difference-differential equations in the complex plane C, it is always an interesting and quite
difficult problem to prove the existence or uniqueness of the entire or meromorphic solutions to a given
difference-differential equation. There have been many studies and results obtained lately that relate to
the existence or growth of the entire or meromorphic solutions of various types of difference or differential
equations, see, e.g., [1-9] and references therein.

Herein let f denote a non-constant meromorphic function and we assume that the reader is familiar
with the standard terminology and results of Nevanlinna theory such as the characteristic function T(r, f),
the proximity function m(r, f) and the counting function N(r,f) ( see, e.g., [10-12] ). However, for the
convenience of the reader, we shall repeat some notations needed below.

We call a meromorphic function « # 0, oo a small function with respect to f, if T(r, «) = S(r, f), where
S(r, f) denotes any quantity satisfying S(r,f) = o{T(r,f)} as r - oo, possibly outside a set of r of finite
linear measure. The order of f is

s log T(r, f)
p(f) —hrrrljgp “logr

>

and the hyper-order p, (f) is defined as

L loglog T(r, f)
pz(f)—hrrrim ogr "
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Definition 1.1. A difference polynomial, respectively, a difference-differential polynomial, in f is a finite sum of
difference products of f and its shifts, respectively, of products of f, derivatives of f and of their shifts, with all
the coefficients of these monomials being small functions of f .

Definition 1.2. Given a nonzero constant c, we define the difference operators by
Acf(2) = f(z +¢) - f(z) and Af(z) = Ac(AT'f(2)) (n 2 2).

For the sake of simplicity, we let Af(z) = f(z+1) - f(z) and A"f(z) = A(A"*f(2)) (n > 2) for the case c = 1
(see, e. g., [2,13] and [14]).

For the benefit of the readers, we shall give some related results. Yang and Laine considered the following
difference equation and proved:

Theorem A ([7]). A nonlinear difference equation
f2(z) +q(2)f(z+1) = csin bz,

where q is a non-constant polynomial and b, c € C \ {0}, does not admit entire solutions of finite order. If q is a
nonzero constant, then the above equation possesses three distinct entire solutions of finite order, provided that
b =3nwand q° = (-1)"**c?27 /4 for a nonzero integer n.

In 2014, Liu and Lii et al. proved the following result.

Theorem B ([15]). Let n > 4 be an integer, q be a polynomial, and p1, p>, a1, a2 be nonzero constants such
that a1 # o . If there exists some entire solution f of finite order to the following equation

f(2) + q(2) Af (2) = p1e™* + p2e®,

then q is a constant, and one of the following relations holds:
(1) f(z) = cie %, and c1(e“/" —1)q = ps, o1 = naa,
(2)f(z) = cze%z, and cz(e’lZ/" -1)q = p1, a2 = nay,
where c1, ¢, are constants satisfying ¢} = p1, ¢5 = p>.

Recently, Zhang et al. obtained the following result.

Theorem C ([16]). Let q be a polynomial, and p1, p2, a1, az be nonzero constants such that oy # «;. If f is an
entire solution of finite order to the following equation:

f2(2) + q(2) Af (2) = p1e™* + p2e™¥, (1)

then q is a constant, and one of the following relations holds:

@ T(r’f) = Nl)(r’ %) + S(T,f),

Q) f(z) =c1 exp(%z), and c1(exp(5) - 1)q = p2, 1 = 32,

() f(2) = c2exp(%§?), and c2(exp(%) - 1)q = p1, a2 = 3a1,

where Nl)(r, %) denotes the counting function corresponding to simple zeros of f, and c1, c, are constants

satisfying c3 = p1, ¢3 = pa.

Remark 1.3. In [16], the authors also gave an example to show that the case (1) occurs indeed.

Example 1.4. Let f(z) = ™ + e" ™ = 2isin(riz). Then f is a solution of the following equation:
£2(z) +3Af(z) =™ 4 7372,

Obviously, T(r, f) = Nyy(r, %) +S(r, f). Thus, the case (1) occurs indeed.
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Since in the above example a1 + a; = 37i + (-3#i) = 0, consequently, Zhang et al. posed the following
conjecture.

Conjecture 1.5 ([16]). If a1 # a2, a1 + a; # 0, then the conclusion (1) of Theorem A is impossible. In fact, any
entire solution f of (1) must have 0 as its Picard exceptional value.

In 2017, Latreuch gave an affirmative answer to Conjecture 1.5. In fact, he obtained the following result.

Theorem D ([17]). Let q be a polynomial, and p1, p2, a1, a2 be nonzero constants such that oy + oz and oy +
az # 0. If f is an entire solution of finite order of (1), then q is a constant, and one of the following relations
holds:

(1) f(z) = crexp(%%), and c1(exp(F) - 1)q = p2, 1 = 33

(2)f(z) = caexp(%2), and c2(exp(F) - 1)q = p1, o2 = 3a1,

where c1, ¢, are constants satisfying c{ = p1, c% = p,. Furthermore, (1) does not have any entire solution of
infinite order satisfies any one of the following conditions:

B)p2(f) <15

A X(f) < p(f) = oo and p2(f) < oo,

here \(f) denotes the exponent of convergence of zeros sequence of f.

In the present paper we continue discussing Conjecture 1.5. Moreover, our result will include several known
results for difference or differential equations obtained earlier as its special case. In fact, we consider a slightly
more general form of (1) and obtain the following result.

Theorem 1.6. Let L(z, f) denote a difference-differential polynomial in f of degree one with small functions as
its coefficients such that L(z,0) = 0, and let p1, p2, a1, oz be nonzero constants such that a; + «y. If f is an
entire solution with p,(f) < 1 to the following equation:

£’ +L(z.f) = p1e™ + pre®?, #)
then one of the following relations holds:
Df(z) =c1 exp(ale) +C exp(%), where c1 and c, are two nonzero constants satisfying ci = p1, c% =p2
and o1 + o = 03
) f3(z) = (p1 - c1) exp(aaz), and L(z, f) = c1 exp(a1z) + p2 exp(azz), where c1 is a constant;
(3)f(z) = (p2 - c2) exp(2z), and L(z, f) = p1 exp(a1z) + c2 exp(azz), where c; is a constant.

From Theorem 1.6, we have
Corollary 1.7. Equation (2) does not have any entire solution f with p(f) = co and p2(f) < 1.

Remark 1.8. Itis obvious from Theorem 1.6 that the above conjecture is true. We also point out that if an entire
function solution f in Theorem 1.6 is replaced by a meromorphic solution with N(r, f) = S(r, f), the conclusion
of Theorem 1.6 still holds.

Remark 1.9. Lemma 2.2 (in section 2) is crucial to the proofs of our main results. However, it may be false if the
condition “ p2(f) < 1 "isviolated. There is no difficulty in showing that f (z) = exp(exp(z)) is a counterexample.
Now one may raise the questions: what will happen if we delete the condition p, (f) < 1in Theorem 1.6, Corollary
1.7 and so on?

2 Some lemmas

In order to prove Theorem 1.6, we need the following results.
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Lemma 2.1 ([18]). Let m, n be positive integers satisfying % + % < 1. Then there are no transcendental entire
solutions of f and g satisfy the following equation

a(2)f(2)" + b(z)g(2)" = 1, B)

with a, b being small functions of f, and g, respectively.

Lemma 2.2 ([19]). Let f be a transcendental meromorphic function of hyper-order p>(f) < 1. Then for ¢ € C,

we have £ )
zZ+C
m(r, & ):S(r,f), )

outside of a possible exceptional set with finite logarithmic measure.

Remark 2.3. The following result is the analogue of the logarithmic derivatives lemma [10, 11] for the difference-
differential polynomials of a meromorphic function f. It can be proved by applying Lemma 2.2 and the logarith-
mic derivatives lemma with a similar reasoning as in [19-21] and stated as follows.

Lemma 2.4. Let f be a transcendental meromorphic function with p,(f) < 1. Given L(z, f) as to Theorem 1.6,
then for any positive integer k, we have

L(z.f) LY (z,f)
(r () )+ m(r f(2)

outside of a possible exceptional set with finite logarithmic measure.

)=S0, 5)

Lemma 2.5 ([12], Theorem 1.55). Let g1,82,,8p be transcendental meromorphic functions satisfying
O(o0,8) =1(j=1,2,-,p). Ifzﬁf’=1 ajgj = 1, thenfora; « C~ {0} (j = 1,2,--,p), we have Z}”zl 5(0, gj) <
p-1.

Remark 2.6. By the same methods as in the proof of Theorem 1.55 used in [12], we also point out that if nonzero
constants a1, az, -+, ap are replaced by small functions of g1, g2, -+, 8p, the conclusion of Lemma 2.5 still holds.

Lemma 2.7 ([22]). Suppose that f is a transcendental meromorphic function, a, b, ¢ and d are small functions
of f such that acd # 0. If

af’ + bff +c(f')* = d,
then ,
2 d 2 2 7 2 ;-
c(b” - 4ac)g +b(b” - 4ac) - c(b” - 4ac) + (b° - 4ac)c =0.

Lemma 2.8 ([23]). Assume that c € C is a nonzero constant, « is a non-constant meromorphic function. Then
the differential equation f* + (cf™)? = « has no transcendental meromorphic solutions satisfying T(r,a) =

S(r.f).
Lemma 2.9 ([12]). Assume that f is a meromorphic function. Then for all irreducible rational functions in f,

S oaif'

R(Z7f) = Z]g:objfj,

with meromorphic coefficients a;, bj satisfying
T(rs al) = S(ryf)s i = O’ "'3p: T(rs b]) = S(rsf)a j = O’ Ty qa
the characteristic function of R(z, f) satisfies

T(Y,R(Z,f)) = dT(r’f) +S(r’f)’

where d = max(p, q).
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3 Proof of Theorem 1.6

Suppose that f is an entire solution with p,(f) < 1 to (2). Obviously, f is a transcendental function. For the
simplicity, we replace f(z), f'(z) and L(z, f) by f, f' and L, respectively.
By differentiating both sides of (2), we obtain

3F2f + L = a1pre™? + azp,e™. (6)
Combining (2) and (6) yields
()c2f3 +042L—3f2f,—L, = (az —al)plealz. (7)

By differentiating (7) again, we derive that

3a2f2f' + OQL, — 6f(f,)2 - 3f2f” - L” = al(az - al)pleo‘lz. (8)
It follows from (7) and (8) that
f@z T(Zsf)r (9)
where
¢ = araaf” = 3(a1 + ax)ff +6(f) + 3", (10)

T(z,f) = —arcaLl + (1 + a2)L' - L".
Two cases will now be considered below, depending on whether or not ¢ vanishes identically.
If ¢ = 0, then (9) shows that T(z, f) = 0, namely
L" — (a1 +a2)L" + L = 0. (11)
Further, the general solution of (11) is given by
L =c1e™? + ce*??, (12)
where ¢; and c; are constants. Thus, (2) and (12) would give
£ = (p1-c1)e™ + (p2 - c2)e. (13)

We claim that p1 = ¢1 or p, = 2. Assume now, contrary on the assertion, that p; # ¢; and p» + c,. We rewrite
(13) as
( e “f )3 _ ( , [P1-C1 e(al—az)z/3)3 1
P2 -C2 p2-C2 ’
which contradicts Lemma 2.1. Hence, p1 = ¢1 or p> = ¢». In this case, we can derive the conclusions (2) and (3).
In the following, we will consider the case ¢ # 0. In this case, (9) gives

_T(f)
1)

Since T(z, f) is a difference-differential polynomial in f of degree 1, and L(z,0) = 0, it follows from (14),
Lemma 2.4 and the lemma on the logarithmic derivatives that m(r, ») = S(r,f). Note that ¢ is an entire
function, so T(r, ») = m(r, ¢) = S(r, ), which means that ¢ is a small function of f.

Now, we rewrite (10) as

¢(2) (14)

fi; :a1a2—3(a1+a2)j%+6(j%)2+3f7. (15)
Applying the lemma on the logarithmic derivatives to (15), we find m(r, f%) = S(r,f). Since ¢ is a small
function of f, one can get m(r, ;) = S(r, f). Thus, the first fundamental theorem implies T(r, f) = N(r, ;) +

S(r.f).
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On the other hand, by (10) again, we have N(,(r, 1/f) = S(r, f), and
1
T(r,f)=N1>(h]7)+S(r,f), (16)
where Ny (r, %) denotes the counting function corresponding to simple zeros of f. Differentiating (10) yields

¢ =2a100ff = 3(a1 +)[ff + (f)2] + 15 f" + 3fF". (17)

For brevity, in the following, we assume that z, is a simple zero of f, and we can assume, without loss of
generality, by (16) that ¢(zo) # 0, co, where 4 is any non-vanishing small function of f. Thus, (10) enables
us to deduce the following fact

(20) = 6(f'(20))*. (18)

Now, we are ready to present ¢’ # 0. Suppose, contrary to our assertion, that ¢’ = 0, namely, ¢ is a constant,
say A.
If zo is a zero of f'(z) — \/A/6, then we set

hz - L2 - VATE
f(2)
Trivially, h # 0. Then by the lemma on the logarithmic derivatives, the facts m(r, 1/f) = S(r, f), N (r, 1/f) =
S(r,f) and (18), we have T(r, h) = S(r, f).
By (19), we therefore have

19)

f = hf +\/AJ6, f”:(h’+h2)f+h\/§. (20)
Substituting (20) into (10) yields

[OzloQ - 3(041 + Ocz)h + 3h, + 9h2]f = 3[(041 + OQ) - Sh]\/g,

which implies
a1+a;=5h, arax-3(a1+a2)h+ 9k’ = 0.

Thereby we have

a1 + a2 [e 71 a1 + Qo (&%)

h:T:?, or h:T:?. (21)
Thus, (19) and (21) would give
_ Bz 1 /A
f(Z) - h € h 6 ’ (22)

where B is a nonzero constant.

On the other hand, substituting (22) into (2), it follows by Lemma 2.5 that %\/% = 0. This, however,
contradicts (16), and thus ¢’ # 0.

Using the same way as above, ¢’ # 0 is also obtained by setting

ey LT

assuming that f'(zo) + /A/6 = 0.
Moreover, (17) gives
¢'(z0) = [-3(a1 +a2)(f')* + 15f'f"(20) = 0. (23)

In order to prove Theorem 1.6, we discuss two cases below:

Case 1. [2¢" + (a1 + a2)p]f - 5¢f" = 0.
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In this case, let us write it in the following form

4
=128+ Zaa + an)lf = of s (24)
5¢ 5
and consequently
"= (s +s*)f. (25)

Substituting (24) and (25) into (17), we then immediately derive

araap'f = [2a100p —3(a1 + a2)Sp + 3(5' + Sz)go +3(a1 + ozz)gol - BScp/]f/,
which is impossible by (16) and the facts that the coefficients ¢’ (# 0), 20120 — 3 (a1 +a2)sp +3(s" +5%) o +
3(a1 +a2)¢’ — 35y’ are small functions of f. So, this case can not occur.

Case2. [2¢" + (a1 +a2)@]f = 5¢f" #£0.

Obviously, in this case, by (18), (23) and f'(zo) # 0, we then see that zo is a zero of the function [2¢" +
(a1 +a2)plf = 5¢f".

Accordingly, we set
[2¢/(2) + (1 + a2)e(D)]f (2) - 5f"(2) -

f(z) '

Then by the lemma on the logarithmic derivatives, the facts N, (r, 1/f) = S(r,f), m(r,1/f) = S(r,f), and
(17), we have T(r, ¢) = S(r, f). Thereby, from (26), we obtain

¢(z) =

if = sf’ +tf. (27)

f” - [gﬁ + %(al +Ozz)]f’ - 50

5¢

Trivially, s, t are small functions of f.
By (10) and (27), we have
af’ + bff + 6(f')* = ¢, (28)

where a = a10 + 3t, b= 3[5 - (051 + 042)].
In the following, we consider two subcases.

Subcase 2.1 Suppose that a = 0. In this case, (28) becomes
(bf + 6f)f =,

which gives
f'=p1e?, bf+6f =pre”, (29)

where 3, 1 and ¢, are entire functions such that 12 = .
Trivially, in this case, b # 0, and it follows by (29) that

fo 028l -6 1‘76“”1‘*6 . (30)
Thus, by (29) and (30), we have
Lor +6(%) + 67581 = (1) - 26,
which shows that
(5 - 28 =o0. G1)

Obviously, (31) gives log % = B + C, where C is a constant. Therefore, e? is a small function of f, this shows
that f’ is also a small function of f. The contradiction T(r, f) = S(r, f) now follows by (30).
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Subcase 2.2 a # 0. In this case, applying Lemma 2.7 to (28), we immediately get the following equation
U4
6(b% - 24a) 2 + b(b® - 24a) - 6(b* - 24a)’ = 0. (32)
®

Now, we consider two cases.
Firstly, assume that b* — 24a # 0.

Note that b = %% - 15—2(a1 + az), and we then rewrite (32) as

By integrating the above equation, we have

11log ¢ — 12(a1 + a2)z = 5log(b” - 24a) +log D, (33)
where D is a constant. Obviously, (33) gives '! = D(b? - 24a)°e!?(“1*%2)? f o, + o, # 0, then e, *?* are
also two small functions of f because ¢ and b? — 24a are small functions of f. Rewrite (2) as

fz _ _£ plealz +p2ea22
f f

Then
L pie®? + pre™*

fr f
<m(r, %) +S8(r,f) =S(r.f),

2m(r,f) = m(r,f*) = m(r, - )

which is a contradiction, since f is an entire function. Therefore, o + a» = 0.
Combining (2) and (6) yields

a1f3 +(11L—3f2f’—L, = (Oq —az)pzeazz. (34)
It follows by (7), (34) and o + a> = O that
FiT-0if? +9(f")*] = 201Lf* - 6L'F*f' + (anL)’ - (L')* - 4aip1p>. (35)

Obviously, Py (f) := 203 Lf°> — 6L'f*f" + (a1L)* - (L')? - 4aip1p, is a difference-differential polynomial of f,
and its total degree at most 4.

If P4(f) = 0, it follows from (35) that 9(f')® — oif* = 0, and then f’ = + 5 f. Substituting the above
expression into (10), we arrive at ¢ = 0, a contradiction. Therefore, P,(f) # 0. Set 8 = 9(f")? - o2f>. In this
case, we rewrite (35) as

P4(f)
B= [
which, Lemma 2.4 and the fact that we have proved m(r, 1%) = S(r, f) must show that m(r, 8) = S(r,f), i.e.

B is a small function of f. Moreover, from Lemma 2.8, it is easy to see that 3 is a constant. By differentiating
both sides of 8 = 9(f')? — a2f?, we get

- (3)f=0. 36)

It follows from (36) that

f(z) = cle%lz + cze_%lz, (37)
where ¢, ¢, are constants. By (37) and (2), we have ¢ = p1, ¢3 = p,. Conclusion (1) has consequently been
proved.

Now, we assume that b? — 24a = 0.
By making use of (28), we have 6(f' + 2 f)* = o, which shows that vy := f' + -2 f is a small function of f.

. _ b b
Thus,f”: m—ﬁ)f‘f"}/—ﬁ’)/.
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Substituting two above expressions into (10), we obtain

b b2 / , bl
[z + Z(al +an)+ Tah "~ Z]fz +[-3(cr +a2)y-by+3(y - ﬁ’y)]f = . (38)

Using (38) and Lemma 2.9, we therefore have

2 /
a1a2+%(a1+a2)+%4—%50,

A
-3(a1 +@2)y - by +3(y - %’y) =0 and ¢=0.

This contradicts ¢ # 0.
Thus, we finish the proof of Theorem 1.6.
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