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Abstract: In this paper we study the entire solutions to a certain type of di�erence-di�erential equations.
We also give an a�rmative answer to the conjecture of Zhang et al. In addition, our results improve and
complement earlier ones due to Yang-Laine, Latreuch, Liu-Lü et al. and references therein.
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1 Introduction and main results
In studying di�erence-di�erential equations in the complex plane C, it is always an interesting and quite
di�cult problem to prove the existence or uniqueness of the entire or meromorphic solutions to a given
di�erence-di�erential equation. There have been many studies and results obtained lately that relate to
the existence or growth of the entire or meromorphic solutions of various types of di�erence or di�erential
equations, see, e.g., [1-9] and references therein.

Herein let f denote a non-constant meromorphic function and we assume that the reader is familiar
with the standard terminology and results of Nevanlinna theory such as the characteristic function T(r, f),
the proximity function m(r, f) and the counting function N(r, f) ( see, e.g., [10–12] ). However, for the
convenience of the reader, we shall repeat some notations needed below.

We call a meromorphic function α /≡ 0,∞ a small function with respect to f , if T(r,α) = S(r, f), where
S(r, f) denotes any quantity satisfying S(r, f) = o{T(r, f)} as r → ∞, possibly outside a set of r of �nite
linear measure. The order of f is

ρ(f) = lim sup
r→∞

log T(r, f)
log r ,

and the hyper-order ρ2(f) is de�ned as

ρ2(f) = lim sup
r→∞

log log T(r, f)
log r .

*Corresponding Author: Weiran Lü: College of Science, China University of Petroleum, Qingdao, Shandong, 266580, China,
E-mail: luwr@upc.edu.cn
Linlin Wu: College of Science, China University of Petroleum, Qingdao, Shandong, 266580, China, E-mail: 2528307075@qq.com
DandanWang: College of Science, China University of Petroleum, Qingdao, Shandong, 266580, China,
E-mail: 2609938362@qq.com
Chungchun Yang: Department of Mathematics, Nanjing University, Nanjing, Jiangsu, 210093, China,
E-mail: maccyang@163.com

https://doi.org/10.1515/math-2018-0071


The solutions of di�erence-di�erential equations | 807

De�nition 1.1. A di�erence polynomial, respectively, a di�erence-di�erential polynomial, in f is a �nite sum of
di�erence products of f and its shifts, respectively, of products of f , derivatives of f and of their shifts, with all
the coe�cients of these monomials being small functions of f .

De�nition 1.2. Given a nonzero constant c, we de�ne the di�erence operators by

∆c f(z) = f(z + c) − f(z) and ∆
n
c f(z) = ∆c(∆n−1

c f(z)) (n ≥ 2).

For the sake of simplicity, we let∆f(z) = f(z + 1) − f(z)and ∆n f(z) = ∆(∆n−1f(z)) (n ≥ 2) for the case c = 1
(see, e. g., [2, 13] and [14]).

For the bene�t of the readers, we shall give some related results. Yang and Laine considered the following
di�erence equation and proved:

Theorem A ([7]). A nonlinear di�erence equation

f 3(z) + q(z)f(z + 1) = c sin bz,

where q is a non-constant polynomial and b, c ∈ C∖{0}, does not admit entire solutions of �nite order. If q is a
nonzero constant, then the above equation possesses three distinct entire solutions of �nite order, provided that
b = 3nπ and q3 = (−1)n+1c227/4 for a nonzero integer n.

In 2014, Liu and Lü et al. proved the following result.

Theorem B ([15]). Let n ≥ 4 be an integer, q be a polynomial, and p1, p2,α1,α2 be nonzero constants such
that α1 ≠ α2. If there exists some entire solution f of �nite order to the following equation

f n(z) + q(z)∆f(z) = p1eα1z + p2eα2z ,

then q is a constant, and one of the following relations holds:
(1) f(z) = c1e

α1
n z , and c1(eα1/n − 1)q = p2, α1 = nα2,

(2) f(z) = c2e
α2
n z , and c2(eα2/n − 1)q = p1, α2 = nα1,

where c1, c2 are constants satisfying cn1 = p1, cn2 = p2.

Recently, Zhang et al. obtained the following result.

Theorem C ([16]). Let q be a polynomial, and p1, p2,α1,α2 be nonzero constants such that α1 ≠ α2. If f is an
entire solution of �nite order to the following equation:

f 3(z) + q(z)∆f(z) = p1eα1z + p2eα2z , (1)

then q is a constant, and one of the following relations holds:
(1) T(r, f) = N1)(r, 1f ) + S(r, f),
(2) f(z) = c1 exp(α1z

3 ), and c1(exp(α1
3 ) − 1)q = p2, α1 = 3α2,

(3) f(z) = c2 exp(α2z
3 ), and c2(exp(α2

3 ) − 1)q = p1, α2 = 3α1,
where N1)(r, 1f ) denotes the counting function corresponding to simple zeros of f , and c1, c2 are constants
satisfying c31 = p1, c32 = p2.

Remark 1.3. In [16], the authors also gave an example to show that the case (1) occurs indeed.

Example 1.4. Let f(z) = eπiz + e−πiz = 2i sin(πiz). Then f is a solution of the following equation:

f 3(z) + 3∆f(z) = e3πiz + e−3πiz .

Obviously, T(r, f) = N1)(r, 1f ) + S(r, f). Thus, the case (1) occurs indeed.
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Since in the above example α1 + α2 = 3πi + (−3πi) = 0, consequently, Zhang et al. posed the following
conjecture.

Conjecture 1.5 ([16]). If α1 ≠ α2, α1 + α2 ≠ 0, then the conclusion (1) of Theorem A is impossible. In fact, any
entire solution f of (1) must have 0 as its Picard exceptional value.

In 2017, Latreuch gave an a�rmative answer to Conjecture 1.5. In fact, he obtained the following result.

Theorem D ([17]). Let q be a polynomial, and p1, p2,α1,α2 be nonzero constants such that α1 ≠ α2 and α1 +
α2 ≠ 0. If f is an entire solution of �nite order of (1), then q is a constant, and one of the following relations
holds:
(1) f(z) = c1 exp(α1z

3 ), and c1(exp(α1
3 ) − 1)q = p2,α1 = 3α2;

(2) f(z) = c2 exp(α2z
3 ), and c2(exp(α2

3 ) − 1)q = p1,α2 = 3α1,
where c1, c2 are constants satisfying c31 = p1, c32 = p2. Furthermore, (1) does not have any entire solution of
in�nite order satis�es any one of the following conditions:
(3) ρ2(f) < 1;
(4) λ(f) < ρ(f) = ∞ and ρ2(f) < ∞,
here λ(f) denotes the exponent of convergence of zeros sequence of f .

In the present paper we continue discussing Conjecture 1.5. Moreover, our result will include several known
results for di�erence or di�erential equations obtained earlier as its special case. In fact,we consider a slightly
more general form of (1) and obtain the following result.

Theorem 1.6. Let L(z, f) denote a di�erence-di�erential polynomial in f of degree one with small functions as
its coe�cients such that L(z, 0) ≡ 0, and let p1, p2,α1,α2 be nonzero constants such that α1 ≠ α2. If f is an
entire solution with ρ2(f) < 1 to the following equation:

f 3 + L(z, f) = p1eα1z + p2eα2z , (2)

then one of the following relations holds:
(1) f(z) = c1 exp(α1z

3 ) + c2 exp(α2z
3 ), where c1 and c2 are two nonzero constants satisfying c31 = p1, c32 = p2

and α1 + α2 = 0;
(2) f 3(z) = (p1 − c1) exp(α1z), and L(z, f) = c1 exp(α1z) + p2 exp(α2z), where c1 is a constant;
(3) f 3(z) = (p2 − c2) exp(α2z), and L(z, f) = p1 exp(α1z) + c2 exp(α2z), where c2 is a constant.

From Theorem 1.6, we have

Corollary 1.7. Equation (2) does not have any entire solution f with ρ(f) = ∞ and ρ2(f) < 1.

Remark 1.8. It is obvious from Theorem 1.6 that the above conjecture is true. We also point out that if an entire
function solution f in Theorem 1.6 is replaced by a meromorphic solution with N(r, f) = S(r, f), the conclusion
of Theorem 1.6 still holds.

Remark 1.9. Lemma 2.2 (in section 2) is crucial to the proofs of our main results. However, it may be false if the
condition “ ρ2(f) < 1 " is violated. There is no di�culty in showing that f(z) = exp(exp(z)) is a counterexample.
Now onemay raise the questions: what will happen if we delete the condition ρ2(f) < 1 in Theorem 1.6, Corollary
1.7 and so on?

2 Some lemmas
In order to prove Theorem 1.6, we need the following results.



The solutions of di�erence-di�erential equations | 809

Lemma 2.1 ([18]). Let m, n be positive integers satisfying 1
m + 1

n < 1. Then there are no transcendental entire
solutions of f and g satisfy the following equation

a(z)f(z)n + b(z)g(z)m = 1, (3)

with a, b being small functions of f , and g, respectively.

Lemma 2.2 ([19]). Let f be a transcendental meromorphic function of hyper-order ρ2(f) < 1. Then for c ∈ C,
we have

m(r, f(z + c)
f(z) ) = S(r, f), (4)

outside of a possible exceptional set with �nite logarithmic measure.

Remark 2.3. The following result is the analogue of the logarithmic derivatives lemma [10, 11] for the di�erence-
di�erential polynomials of a meromorphic function f . It can be proved by applying Lemma 2.2 and the logarith-
mic derivatives lemma with a similar reasoning as in [19–21] and stated as follows.

Lemma 2.4. Let f be a transcendental meromorphic function with ρ2(f) < 1. Given L(z, f) as to Theorem 1.6,
then for any positive integer k, we have

m(r, L(z, f)
f(z) ) +m(r, L

(k)(z, f)
f(z) ) = S(r, f), (5)

outside of a possible exceptional set with �nite logarithmic measure.

Lemma 2.5 ([12], Theorem 1.55). Let g1, g2,⋯, gp be transcendental meromorphic functions satisfying
Θ(∞, gj) = 1 (j = 1, 2,⋯, p). If ∑p

j=1 ajgj = 1, then for aj ∈ C ∖ {0} (j = 1, 2,⋯, p), we have ∑p
j=1 δ(0, gj) ≤

p − 1.

Remark 2.6. By the samemethods as in the proof of Theorem 1.55 used in [12], we also point out that if nonzero
constants a1, a2,⋯, ap are replaced by small functions of g1, g2,⋯, gp , the conclusion of Lemma 2.5 still holds.

Lemma 2.7 ([22]). Suppose that f is a transcendental meromorphic function, a, b, c and d are small functions
of f such that acd /≡ 0. If

af 2 + b� ′ + c(f ′)2 = d,

then
c(b2 − 4ac)d

′

d
+ b(b2 − 4ac) − c(b2 − 4ac)′ + (b2 − 4ac)c′ = 0.

Lemma 2.8 ([23]). Assume that c ∈ C is a nonzero constant, α is a non-constant meromorphic function. Then
the di�erential equation f 2 + (cf (n))2 = α has no transcendental meromorphic solutions satisfying T(r,α) =
S(r, f).

Lemma 2.9 ([12]). Assume that f is a meromorphic function. Then for all irreducible rational functions in f ,

R(z, f) =
Σ

p
i=0ai f

i

Σ
q
j=0bj f j

,

with meromorphic coe�cients ai , bj satisfying

T(r, ai) = S(r, f), i = 0,⋯, p, T(r, bj) = S(r, f), j = 0,⋯, q,

the characteristic function of R(z, f) satis�es

T(r, R(z, f)) = d T(r, f) + S(r, f),

where d = max(p, q).
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3 Proof of Theorem 1.6
Suppose that f is an entire solution with ρ2(f) < 1 to (2). Obviously, f is a transcendental function. For the
simplicity, we replace f(z), f ′(z) and L(z, f) by f , f ′ and L, respectively.

By di�erentiating both sides of (2), we obtain

3f 2f ′ + L′ = α1p1eα1z + α2p2eα2z . (6)

Combining (2) and (6) yields

α2f 3 + α2L − 3f 2f ′ − L′ = (α2 − α1)p1eα1z . (7)

By di�erentiating (7) again, we derive that

3α2f 2f ′ + α2L′ − 6f(f ′)2 − 3f 2f ′′ − L′′ = α1(α2 − α1)p1eα1z . (8)

It follows from (7) and (8) that
fϕ = T(z, f), (9)

where
ϕ = α1α2f 2 − 3(α1 + α2)� ′ + 6(f ′)2 + 3� ′′, (10)

T(z, f) = −α1α2L + (α1 + α2)L′ − L′′.

Two cases will now be considered below, depending on whether or not ϕ vanishes identically.
If ϕ ≡ 0, then (9) shows that T(z, f) ≡ 0, namely

L′′ − (α1 + α2)L′ + α1α2L = 0. (11)

Further, the general solution of (11) is given by

L = c1eα1z + c2eα2z , (12)

where c1 and c2 are constants. Thus, (2) and (12) would give

f 3 = (p1 − c1)eα1z + (p2 − c2)eα2z . (13)

We claim that p1 = c1 or p2 = c2. Assume now, contrary on the assertion, that p1 ≠ c1 and p2 ≠ c2. We rewrite
(13) as

( e−α2z/3f
3
√p2 − c2

)
3
− ( 3

√
p1 − c1
p2 − c2

e(α1−α2)z/3)
3
= 1,

which contradicts Lemma 2.1. Hence, p1 = c1 or p2 = c2. In this case,we canderive the conclusions (2) and (3).
In the following, we will consider the case ϕ /≡ 0. In this case, (9) gives

ϕ(z) = T(z, f)
f(z) . (14)

Since T(z, f) is a di�erence-di�erential polynomial in f of degree 1, and L(z, 0) ≡ 0, it follows from (14),
Lemma 2.4 and the lemma on the logarithmic derivatives that m(r,ϕ) = S(r, f). Note that ϕ is an entire
function, so T(r,ϕ) = m(r,ϕ) = S(r, f), which means that ϕ is a small function of f .

Now, we rewrite (10) as
ϕ

f 2
= α1α2 − 3(α1 + α2)

f ′

f
+ 6( f

′

f
)2 + 3 f

′′

f
. (15)

Applying the lemma on the logarithmic derivatives to (15), we �nd m(r, ϕf 2 ) = S(r, f). Since ϕ is a small
function of f , one can get m(r, 1f ) = S(r, f). Thus, the �rst fundamental theorem implies T(r, f) = N(r, 1f ) +
S(r, f).
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On the other hand, by (10) again, we have N(2(r, 1/f) = S(r, f), and

T(r, f) = N1)(r,
1
f
) + S(r, f), (16)

where N1)(r, 1f ) denotes the counting function corresponding to simple zeros of f . Di�erentiating (10) yields

ϕ
′ = 2α1α2� ′ − 3(α1 + α2)[� ′′ + (f ′)2] + 15f ′f ′′ + 3� ′′′. (17)

For brevity, in the following, we assume that z0 is a simple zero of f , and we can assume, without loss of
generality, by (16) that ψ(z0) ≠ 0, ∞, where ψ is any non-vanishing small function of f . Thus, (10) enables
us to deduce the following fact

ϕ(z0) = 6(f ′(z0))2. (18)

Now, we are ready to present ϕ′ /≡ 0. Suppose, contrary to our assertion, that ϕ′ ≡ 0, namely, ϕ is a constant,
say A.

If z0 is a zero of f ′(z) −
√
A/6, then we set

h(z) =
f ′(z) −

√
A/6

f(z) . (19)

Trivially, h /≡ 0. Then by the lemma on the logarithmic derivatives, the factsm(r, 1/f) = S(r, f), N(2(r, 1/f) =
S(r, f) and (18), we have T(r, h) = S(r, f).

By (19), we therefore have

f ′ = hf +
√
A/6, f ′′ = (h′ + h2)f + h

√
A
6 . (20)

Substituting (20) into (10) yields

[α1α2 − 3(α1 + α2)h + 3h′ + 9h2]f = 3[(α1 + α2) − 5h]
√

A
6 ,

which implies
α1 + α2 ≡ 5h, α1α2 − 3(α1 + α2)h + 9h2 ≡ 0.

Thereby we have
h = α1 + α2

5 = α1

3 , or h = α1 + α2
5 = α2

3 . (21)

Thus, (19) and (21) would give

f(z) = B
h
ehz − 1

h

√
A
6 , (22)

where B is a nonzero constant.
On the other hand, substituting (22) into (2), it follows by Lemma 2.5 that 1

h

√
A
6 = 0. This, however,

contradicts (16), and thus ϕ′ /≡ 0.
Using the same way as above, ϕ′ /≡ 0 is also obtained by setting

h̵(z) =
f ′(z) +

√
A/6

f(z)

assuming that f ′(z0) +
√
A/6 = 0.

Moreover, (17) gives
ϕ
′(z0) = [−3(α1 + α2)(f ′)2 + 15f ′f ′′](z0) = 0. (23)

In order to prove Theorem 1.6, we discuss two cases below:

Case 1. [2ϕ′ + (α1 + α2)ϕ]f ′ − 5ϕf ′′ ≡ 0.
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In this case, let us write it in the following form

f ′′ = [25
ϕ′

ϕ
+ 1
5(α1 + α2)]f ′ ∶= sf ′, (24)

and consequently
f ′′′ = (s′ + s2)f ′. (25)

Substituting (24) and (25) into (17), we then immediately derive

α1α2ϕ
′f = [2α1α2ϕ − 3(α1 + α2)sϕ + 3(s′ + s2)ϕ + 3(α1 + α2)ϕ′ − 3sϕ′]f ′,

which is impossible by (16) and the facts that the coe�cients ϕ′ (/≡ 0), 2α1α2ϕ−3(α1 +α2)sϕ+3(s′ + s2)ϕ+
3(α1 + α2)ϕ′ − 3sϕ′ are small functions of f . So, this case can not occur.

Case 2. [2ϕ′ + (α1 + α2)ϕ]f ′ − 5ϕf ′′ /≡ 0.
Obviously, in this case, by (18), (23) and f ′(z0) ≠ 0, we then see that z0 is a zero of the function [2ϕ′ +

(α1 + α2)ϕ]f ′ − 5ϕf ′′.
Accordingly, we set

φ(z) = [2ϕ′(z) + (α1 + α2)ϕ(z)]f ′(z) − 5ϕf ′′(z)
f(z) . (26)

Then by the lemma on the logarithmic derivatives, the facts N(2(r, 1/f) = S(r, f), m(r, 1/f) = S(r, f), and
(17), we have T(r, φ) = S(r, f). Thereby, from (26), we obtain

f ′′ = [25
ϕ′

ϕ
+ 1
5(α1 + α2)]f ′ −

φ

5ϕ f ∶= sf ′ + tf . (27)

Trivially, s, t are small functions of f .
By (10) and (27), we have

af 2 + b� ′ + 6(f ′)2 = ϕ, (28)

where a = α1α2 + 3t, b = 3[s − (α1 + α2)].
In the following, we consider two subcases.

Subcase 2.1 Suppose that a ≡ 0. In this case, (28) becomes

(bf + 6f ′)f ′ = ϕ,

which gives
f ′ = ϕ1eβ , bf + 6f ′ = ϕ2e−β , (29)

where β, ϕ1 and ϕ2 are entire functions such that ϕ1ϕ2 = ϕ.
Trivially, in this case, b /≡ 0, and it follows by (29) that

f = ϕ2e−β − 6ϕ1eβ
b

. (30)

Thus, by (29) and (30), we have

[ϕ1 + 6(
ϕ1

b
)′ + 6ϕ1

b
β
′]e2β = (ϕ2

b
)′ − ϕ2

b
β
′,

which shows that
(ϕ2
b

)′ − ϕ2
b
β
′ ≡ 0. (31)

Obviously, (31) gives log ϕ2
b = β + C, where C is a constant. Therefore, eβ is a small function of f , this shows

that f ′ is also a small function of f . The contradiction T(r, f) = S(r, f) now follows by (30).
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Subcase 2.2 a /≡ 0. In this case, applying Lemma 2.7 to (28), we immediately get the following equation

6(b2 − 24a)ϕ
′

ϕ
+ b(b2 − 24a) − 6(b2 − 24a)′ ≡ 0. (32)

Now, we consider two cases.
Firstly, assume that b2 − 24a /≡ 0.
Note that b = 6

5
ϕ′

ϕ − 12
5 (α1 + α2), and we then rewrite (32) as

11
5
ϕ′

ϕ
− 12

5 (α1 + α2) =
(b2 − 24a)′
b2 − 24a .

By integrating the above equation, we have

11 logϕ − 12(α1 + α2)z = 5 log(b2 − 24a) + logD, (33)

where D is a constant. Obviously, (33) gives ϕ11 = D(b2 −24a)5e12(α1+α2)z . If α1 +α2 ≠ 0, then eα1z , eα2z are
also two small functions of f because ϕ and b2 − 24a are small functions of f . Rewrite (2) as

f 2 = −L
f
+ p1eα1z + p2eα2z

f
.

Then
2m(r, f) = m(r, f 2) = m(r,−L

f
+ p1eα1z + p2eα2z

f
)

≤ m(r, 1
f
) + S(r, f) = S(r, f),

which is a contradiction, since f is an entire function. Therefore, α1 + α2 = 0.
Combining (2) and (6) yields

α1f 3 + α1L − 3f 2f ′ − L′ = (α1 − α2)p2eα2z . (34)

It follows by (7), (34) and α1 + α2 = 0 that

f 4[−α21f 2 + 9(f ′)2] = 2α21Lf 3 − 6L′f 2f ′ + (α1L)2 − (L′)2 − 4α21p1p2. (35)

Obviously, P4(f) ∶= 2α21Lf 3 − 6L′f 2f ′ + (α1L)2 − (L′)2 − 4α21p1p2 is a di�erence-di�erential polynomial of f ,
and its total degree at most 4.

If P4(f) ≡ 0, it follows from (35) that 9(f ′)2 − α21f 2 ≡ 0, and then f ′ = ±α1
3 f . Substituting the above

expression into (10), we arrive at ϕ ≡ 0, a contradiction. Therefore, P4(f) /≡ 0. Set β = 9(f ′)2 − α21f 2. In this
case, we rewrite (35) as

β = P4(f)
f 4

,

which, Lemma 2.4 and the fact that we have proved m(r, 1f ) = S(r, f) must show that m(r, β) = S(r, f), i.e.
β is a small function of f . Moreover, from Lemma 2.8, it is easy to see that β is a constant. By di�erentiating
both sides of β = 9(f ′)2 − α21f 2, we get

f ′′ − (α13 )2f = 0. (36)

It follows from (36) that
f(z) = c1e

α1
3 z + c2e−

α1
3 z , (37)

where c1, c2 are constants. By (37) and (2), we have c31 = p1, c32 = p2. Conclusion (1) has consequently been
proved.

Now, we assume that b2 − 24a ≡ 0.
By making use of (28), we have 6(f ′ + b

12 f)
2 = ϕ, which shows that γ ∶= f ′ + b

12 f is a small function of f .
Thus, f ′′ = ( b2

144 −
b′
12)f + γ

′ − b
12γ.
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Substituting two above expressions into (10), we obtain

[α1α2 +
b
4 (α1 + α2) +

b2

144 −
b′

4 ]f 2 + [−3(α1 + α2)γ − bγ + 3(γ′ − b′

12γ)]f = ϕ. (38)

Using (38) and Lemma 2.9, we therefore have

α1α2 +
b
4 (α1 + α2) +

b2

144 −
b′

4 ≡ 0,

−3(α1 + α2)γ − bγ + 3(γ′ − b′

12γ) ≡ 0 and ϕ ≡ 0.

This contradicts ϕ /≡ 0.
Thus, we �nish the proof of Theorem 1.6.
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