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Abstract: This article is motivated by a problem posed by David A. Singer in 1999 and by the classical Euler
elastic curves. We study spacelike and timelike curves in the Lorentz-Minkowski plane L2 whose curvature
is expressed in terms of the Lorentzian pseudodistance to �xed geodesics. In this way, we get a complete
description of all the elastic curves in L2 and provide the Lorentzian versions of catenaries and grim-
reaper curves. We show several uniqueness results for them in terms of their geometric linear momentum.
In addition, we are able to get arc-length parametrizations of all the aforementioned curves and they are
depicted graphically.
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1 Introduction
The motivation of this article is the following problem posed by David A. Singer in [1]:

Can a plane curve be determined if its curvature is given in terms of its position?

Probably, themost interesting solution to this question corresponds to the classical Euler elastic curves (cf. [2]
for instance), whose curvature is proportional to one of the coordinate functions. Singer himself proved
(see Theorem 3.1 in [1]) that the problem of determining a curve α whose curvature is κ(r), where r is the
distance from the origin, is solvable by quadratures when rκ(r) is a continuous function. But even the
simple case κ(r) = r studied in [1], where elliptic integrals appear, illustrated the following fact: although
the corresponding di�erential equation is integrable by quadratures, it does not imply that the integrations
are easy to perform. There are many interesting papers devoted to studying particular cases on the proposed
problem of determiningα = (x, y) given κ = κ(r): for example [3–9]. In addition, the authors studied recently
the cases κ = κ(y) and κ = κ(r) in [10] and [11] respectively, for a large number of prescribed curvature
functions.

The aim of this paper is the study of Singer’s problem in the Lorentz-Minkowski plane; that is, to try to
determine those curves γ = (x, y) in L2 whose curvature κ depends on some given function κ = κ(x, y). We
must focus on spacelike and timelike curves, since the curvature κ is in general not well de�ned on lightlike
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points, and because lightlike curves in L2 are segments parallel to the straight lines determining the light
cone.When the ambient space isL2, our knowledge ismore restricted in comparisonwith the Euclidean case.
Even though the fundamental existence and uniqueness theorem, which states that a spacelike or timelike
curve is uniquely determined (up to Lorentzian transformations) by its curvature given as a function of its
arc-length, is still valid. Eventually, it is very di�cult to �nd the curve explicitly in practice and most cases
become elusive. In fact, we can only mention the articles [12, 13] in this line, both devoted to Sturmian spiral
curves. We should remark that although some families of space curves in the Lorentz-Minkowski space L3

(helices, Bertrand and Mannheim curves) are well studied as in Euclidean case, the papers in the pseudo-
Euclidean plane are limited, to our knowledge (see [14, 15] for example).

From a geometric-analytic point of view, we deal with the following case of Singer’s problem in the
Lorentzian setting (see Section 2 for details): For a unit speed parametrization of a spacelike or timelike curve
γ = (x, y) in L2, we prescribe its curvature with the analytic extrinsic condition κ = κ(y) or κ = κ(x).
Obviously, if one writes the curve γ as the graphs x = f(y) or y = f(x) locally, the above condition is
satis�ed. But we aim to study the problem from a di�erent point of view: We o�er a geometric interpretation
of these conditions on κ in terms of the Lorentzian pseudodistance to spacelike or timelike �xed geodesics,
andwould like to determine the analytic representation of the arc-length parametrization γ(s) explicitly and,
consequently, its intrinsic equation κ = κ(s).

Singer’s proof of the aforementioned Theorem 3.1 in [1] is based on giving such a curvature κ = κ(r)
an interpretation of a central potential in the plane and �nding the trajectories by the standard methods in
classical mechanics. On the other hand, since the curvature κ may be also interpreted as the tension that
γ receives at each point as a consequence of the way it is immersed in L2, we make use of the notion of
geometric linear momentum of γ when κ = κ(y) or κ = κ(x) in order to get two abstract integrability results
(Theorems 2.1 and 2.6) in the same spirit of Theorem 3.1 in [1]. We show that the problem of determining such
a curve is solvable by three quadratures if κ = κ(y) or κ = κ(x) is a continuous function. In addition, the
geometric linear momentum turns to be a primitive function of the curvature and determines uniquely such
a curve (up to translations in x-direction or in y-direction respectively). In general, one �nds great di�culties
(see Remark 2.5) in carrying out the computations inmost cases. Hencewe focus on �nding interesting curves
for which the required computations can be achieved explicitly, in terms of standard functions, and we pay
attention to identifying, computing and plotting such examples.

In this way, we are �rst successful in the complete description of all the spacelike and timelike elastic
curves in the Lorentz-Minkowski plane. Elastic curves in Euclidean plane were already classi�ed by Euler
in 1743. The classi�cation problem of elastic curves and its generalizations in real space forms has been
considered throughdi�erent approaches (see [16–20], etc.) But inL2 only the elastic Sturmian spirals recently
studied in [13]were known tous. In Section 3,we characterizemost of the spacelike and timelike elastic curves
in L2 —according to Singer’s problem— by the condition κ(y) = 2λy + µ, λ > 0, µ ∈ R, and this allows us
their explicit description by arc-length parametrizations in terms of Jacobi elliptic functions.

Moreover, we �nd out the Lorentzian versions of some interesting classical curves in the Euclidean
context. Speci�cally, we study the generatrix curves of the maximal catenoids of the �rst and the second
kind described in [21] in Section 4, which we will call Lorentzian catenaries. We also consider curves that
satisfy a translating-type soliton equation in Section 5, which we will call Lorentzian grim-reapers (see [22]).
We provide uniqueness results for both of them in terms of their geometric linear momentum (Corollaries 4.1,
5.1, 6.1, 6.2 and 6.3). We also generalize them by describing all the spacelike and timelike curves in L2 whose
curvature satis�es κ(y) = λ/y2, λ > 0, and κ(y) = λey, λ > 0.

In [23], we a�ord two other cases of Singer’s problem in the Lorentz-Minkowski plane: the spacelike and
timelike curves in L2 whose curvature depends on the Lorentzian pseudodistance from the origin, and those
ones whose curvature depends on the Lorentzian pseudodistance through the horizontal or vertical geodesic
to a �xed lightlike geodesic.
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2 Spacelike and timelike curves in Lorentz-Minkowski plane
We denote by L2 ∶= (R2, g = −dx2 + dy2) the Lorentz-Minkowski plane, where (x, y) are the rectangular
coordinates on L2. We say that a non-zero vector v ∈ L2 is spacelike if g(v, v) > 0, lightlike if g(v, v) = 0, and
timelike if g(v, v) < 0.

Let γ=(x, y)∶ I ⊆ R→ R2 be a curve. We say that γ = γ(t) is spacelike (resp. timelike) if the tangent vector
γ′(t) is spacelike (resp. timelike) for all t ∈ I. A point γ(t) is called a lightlike point if γ′(t) is a lightlike vector.
We study geometric properties of curves that have no lightlike points in this section, because the curvature is
not in general well de�ned at the lightlike points.

Hence, let γ = (x, y) be a spacelike (resp. timelike) curve parametrized by arc-length; that is,
g(γ̇(s), γ̇(s)) = 1 (resp. g(γ̇(s), γ̇(s)) = −1) ∀s ∈ I, where I is some interval in R. Here ˙ means derivation
with respect to s. We will say that γ = γ(s) is a unit-speed curve in both cases.

We de�ne the Frenet dihedron in such a way that the curvature κ has a sign and then it is only preserved
by direct rigid motions (see [14]): Let T = γ̇ = (ẋ, ẏ) be the tangent vector to the curve γ and we choose
N = γ̇⊥ = (ẏ, ẋ) as the corresponding normal vector. We remark that T and N have di�erent causal character.
Let g(T, T) = ε, with ε = 1 if γ is spacelike, and ε = −1 if γ is timelike. Then g(N, N) = −ε. The (signed)
curvature of γ is the function κ = κ(s) such that

Ṫ(s) = κ(s)N(s), (1)

where
κ(s) = −εg(Ṫ(s), N(s)) = ε(ẍẏ − ẋÿ). (2)

The Frenet equations of γ are given by (1) and

Ṅ(s) = κ(s)T(s). (3)

It is possible, as it happens in the Euclidean case, to obtain a parametrization by arc-length of the curve γ in
terms of integrals of the curvature. Speci�cally, any spacelike curve α(s) in L2 can be represented by

α(s) = (∫ sinhϕ(s)ds,∫ coshϕ(s)ds) , dϕ(s)
ds

= κ(s), (4)

and any timelike curve β(s) in L2 can be represented by

β(s) = (∫ coshφ(s)ds,∫ sinhφ(s)ds) , dφ(s)
ds

= κ(s). (5)

For example, up to a translation, any spacelike geodesic can be written as

αϕ0(s) = (sinhϕ0 s, coshϕ0 s), s ∈ R, ϕ0 ∈ R, (6)

and any timelike geodesic can be written as

βφ0(s) = (coshφ0 s, sinhφ0 s), s ∈ R, φ0 ∈ R. (7)

On the other hand, the transformation Rν ∶ L2 → L2, ν ∈ R, given by

Rν(x, y) = (cosh ν x + sinh ν y, sinh ν x + cosh ν y)

is an isometry of L2 that preserves the curvature of a curve γ and satis�es

Rν ○ αϕ0 = αϕ0+ν , Rν ○ βφ0 = βφ0+ν .

In this way, any spacelike geodesic is congruent to α0, i.e. the y-axis, and any timelike geodesic is congruent
to β0, i.e. the x-axis (see Figure 1).
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Fig. 1. Spacelike (blue) and timelike (red) geodesics in L2.

2.1 Curves in L2 such that κ = κ(y)

Given a spacelike or timelike curve γ = (x, y) inL2, we are �rst interested in the analytical condition κ = κ(y).
We look for its geometric interpretation. For this purpose, we de�ne the Lorentzian pseudodistance by

δ ∶ L2 × L2 → [0,+∞), δ(P, Q) =
√

∣g(
Ð→
PQ,

Ð→
PQ)∣.

We �x the timelike geodesic β0, i.e. the x-axis. Given an arbitrary point P = (x, y) ∈ L2, y ≠ 0, we consider all
the spacelike geodesics αm with slope m = cothϕ0, ∣m∣ > 1, passing through P, and let P′ = (x − y/m, 0) the
crossing point of αm and the x-axis (see Figure 2). Then:

0 < δ(P, P′)2 = (1 − 1
m2 ) y

2 = y2

cosh2 ϕ0
≤ y2

and the equality holds if and only if ϕ0 = 0, that is, αm is a vertical geodesic. Thus ∣y∣ is the maximum
Lorentzian pseudodistance through spacelike geodesics from P =(x, y) ∈ L2, y ≠ 0, to the timelike geodesic
given by the x-axis.

Fig. 2. Spacelike geodesics in L2 passing through P.

At a given point γ(s) = (x(s), y(s)) on the curve, the geometric linear momentum (with respect to the x-axis)
K is given by

K(s) = ẋ(s). (8)

In physical terms, using Noether’s Theorem, K may be interpreted as the linear momentum with respect to
the x-axis of a particle of unit mass with unit-speed and trajectory γ.

Given that γ is unit-speed, that is, −ẋ2 + ẏ2 = ε, and (8), we easily obtain that

ds = dy√
ε + ẋ2

= dy√
K2 + ε

, dx = Kds. (9)

Thus, given K = K(y) as an explicit function, looking at (9) one may attempt to compute y(s) and x(s) in
three steps: integrate to get s = s(y), invert to get y = y(s) and integrate to get x = x(s).
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In addition, we have that the curvature κ satis�es (1) and (3), i.e. ẍ = κẏ. Taking into account (8), we
deduce that dK

ds = κẏ and, since we are assuming that κ = κ(y), we �nally arrive at

dK = κ(y)dy, (10)

that is,K = K(y) can be interpreted as an anti-derivative of κ(y).
As a summary, we have proved the following result in the spirit of Theorem 3.1 in [1].

Theorem 2.1. Let κ = κ(y) be a continuous function. Then the problem of determining locally a spacelike or
timelike curve in L2 whose curvature is κ(y) with geometric linear momentum K(y) satisfying (10) —∣y∣ being
the (non constant) maximum Lorentzian pseudodistance through spacelike geodesics to the x-axis— is solvable
by quadratures considering the unit speed curve (x(s), y(s)), where y(s) and x(s) are obtained through (9)
after inverting s = s(y). Such a curve is uniquely determined byK(y) up to a translation in the x-direction (and
a translation of the arc parameter s).

Remark 2.2. If we prescribe κ = κ(y), the method described in Theorem 2.1 clearly implies the computation of
three quadratures, following the sequence:
(i) Anti-derivative of κ(y):

∫ κ(y)dy = K(y).

(ii) Arc-length parameter s of (x(s), y(s)) in terms of y:

s = s(y) = ∫
dy√

K(y)2 + ε
,

whereK(y)2 + ε > 0, and inverting s = s(y) to get y = y(s).
(iii) First coordinate of (x(s), y(s)) in terms of s:

x(s) = ∫ K(y(s))ds.

We note that we get a one-parameter family of curves inL2 satisfying κ = κ(y) according to the geometric linear
momentum chosen in (i). It will distinguish geometrically the curves inside the same family by their relative
position with respect to the x-axis. We remark that we can recover κ fromK simply by means of κ(y) = dK/dy.

We show two illustrative examples applying steps (i)-(iii) in Remark 2.2:

Example 2.3 (κ ≡ 0). Then K ≡ c ∈ R, s = ∫ dy/
√
c2 + ε = y/

√
c2 + ε, c2 + ε > 0. So y(s) =

√
c2 + ε s and

x(s) = c s, s ∈ R. If ε = 1, we write K ≡ c ∶= sinhϕ0 and then we arrive at the spacelike geodesics αϕ0 . We
observe that c = 0 = ϕ0 corresponds to the y-axis. If ε = −1, we write K ≡ c ∶= coshφ0 and then we arrive at the
timelike geodesics βφ0 . We note that c = 1⇔ φ0 = 0 corresponds to the x-axis. See Figure 1.

Example 2.4 (κ≡k0>0). Now K(y) = k0y + c, c ∈ R. Thus s = ∫ dy/
√

(k0y + c)2 + ε. If ε = 1, then s =
arcsinh(k0y + c)/k0, y(s) = (sinh(k0s) − c)/k0 and x(s) = cosh(k0s)/k0. If ε = −1, then s = arccosh(k0y +
c)/k0, y(s) = (cosh(k0s) − c)/k0 and x(s) = sinh(k0s)/k0. They correspond respectively to spacelike and
timelike pseudocircles in L2 of radius 1/k0 (see Figure 3). When c = 0, we obtain the branches of x2 − y2 = ε/k20
with positive curvature k0, that are asymptotic to the light cone of L2.

Remark 2.5. The main di�culties one can �nd carrying on the strategy described in Theorem 2.1 (or in
Remark 2.2) to determine a curve (x, y) in L2 whose curvature is κ = κ(y) are the following:
1. The integration of s = s(y): Even in the case when K(y) were polynomial, the integral is not necessarily

elementary. For example, when K(y) is a quadratic polynomial, it can be solved using Jacobian elliptic
functions (see [24]). We will study such curves in Section 3.

2. The previous integration gives us s = s(y); it is not always possible to obtain explicitly y = y(s), what is
necessary to determine the curve.
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Fig. 3. Spacelike (blue) and timelike (red) pseudocircles in L2 with constant positive curvature.

3. Even knowing explicitly y = y(s), the integration to get x(s)may be impossible to perform using elementary
or known functions.

2.2 Curves in L2 such that κ = κ(x)

Given a spacelike or timelike curve γ = (x, y) in L2, we are now interested in the analytical condition κ =
κ(x) and we search for its geometric interpretation using again the Lorentzian pseudodistance δ. We �x the
spacelike geodesic α0, i.e. the y-axis. Given an arbitrary point P = (x, y) ∈ L2, x ≠ 0, we consider all the
timelike geodesics βm with slope m = tanhφ0, ∣m∣ < 1, passing through P, and let P′ = (0, y − mx) the
crossing point of βm and the y-axis (see Figure 4). Then:

0 > −δ(P, P′)2 = (m2 − 1)x2 = − x2

cosh2 φ0
≥ −x2

and the equality holds if and only if φ0 = 0, that is, βm is a horizontal geodesic. Thus ∣x∣ is now the maximum
Lorentzian pseudodistance through timelike geodesics from P = (x, y) ∈ L2, x ≠ 0, to the spacelike geodesic
given by the y-axis.

Fig. 4. Timelike geodesics in L2 passing through P.

We now make a similar study to the one made in the preceding section. At a given point γ(s) = (x(s), y(s))
on the curve, the geometric linear momentum (respect to the y-axis)K is given by

K(s) = ẏ(s). (11)

In physical terms, using Noether’s Theorem, K may be interpreted as the linear momentum with respect to
the y-axis of a particle of unit mass with unit-speed and trajectory γ.

Using that γ is unit-speed, that is, −ẋ2 + ẏ2 = ε, and (11), we easily obtain that

ds = dx√
ẏ2 − ε

= dx√
K2 − ε

, dy = Kds. (12)
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Thus, given K = K(x) as an explicit function, looking at (12) one may attempt to compute x(s) and y(s) in
three steps: integrate to get s = s(x), invert to get x = x(s) and integrate to get y = y(s).

In addition, we have that the curvature κ satis�es (1) and (3), i.e. ÿ = κẋ. Taking into account (11), we
deduce that dK

ds = κẋ and, since we are assuming that κ = κ(x), we �nally arrive at

dK = κ(x)dx, (13)

that is,K = K(x) can be interpreted as an anti-derivative of κ(x).
As a summary, we have proved the following result, dual in a certain sense to Theorem 2.1

Theorem 2.6. Let κ = κ(x) be a continuous function. Then the problem of determining locally a spacelike or
timelike curve in L2 whose curvature is κ(x) with geometric linear momentum K(x) satisfying (13) —∣x∣ being
the (non constant) maximum Lorentzian pseudodistance through timelike geodesics to the y-axis— is solvable
by quadratures considering the unit speed curve (x(s), y(s)), where x(s) and y(s) are obtained through (12)
after inverting s = s(x). Such a curve is uniquely determined byK(x) up to a translation in the y-direction (and
a translation of the arc parameter s).

Remark 2.7. The duality between Theorems 2.1 and 2.6 is explained thanks to the following observation: If
γ = (x, y) is a spacelike (resp. timelike) curve in L2 such that κ = κ(y), then γ̂ = (y, x) is a timelike (resp.
spacelike) curve in L2 such that κ = κ(x).

3 Elastic curves in the Lorentz-Minkowski plane
A unit speed spacelike or timelike curve γ in L2 is said to be an elastica under tension σ (see [25]) if it satis�es
the di�erential equation

2κ̈ − κ3 − σκ = 0, (14)

for some value of σ ∈ R. They are critical points of the elastic energy functional ∫γ(κ
2 + σ)ds acting on

curves inL2 with suitable boundary conditions. If σ = 0, then γ is called a free elastica. The possible constant
solutions of (14) are the trivial solution κ ≡ 0 and κ ≡

√
−σ, σ < 0.

Multiplying (14) by 2κ̇ and integration allow us to introduce the energy E ∈ R of an elastica:

E ∶= κ̇2 − 1
4
κ
4 − σ

2
κ
2. (15)

If E = σ2/4, (15) reduces to κ̇2 = (κ2/2 + σ/2)2, whose solutions are given by κ(s) = ±
√
σ tan(

√
σs/2), if

σ > 0; κ(s) = ±2/s, if σ = 0; and κ(s) = ±
√
−σ coth(

√
−σs/2), if σ < 0. These special elasticae (see Figure 5)

can be easily integrated using (4) and (5). They are studied in Section 6 of [23].

Fig. 5. Special elastic curves σ = 1, 0,−1 (blue, spacelike; red, timelike).
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In this section we will study those spacelike and timelike curves in L2 satisfying

κ(y) = 2ay + b, a ≠ 0, b ∈ R, (16)

andwewill show its close relationshipwith the elastic curves ofL2. Following Theorem 2.1, wemust consider
the geometric linear momentum K(y) = ay2 + by + c, c ∈ R. In the following result, we show that we are
studying precisely elastic curves.

Proposition 3.1. Let γ be a spacelike or timelike curve in L2.
(i) If the curvature of γ is given by (16) with geometric linear momentumK(y) = ay2 + by + c, a ≠ 0, b, c ∈ R,

then γ is an elastica under tension σ = 4ac − b2 and energy E = 4εa2 + σ2/4 (where ε = 1 if γ is spacelike
and ε = −1 if γ is timelike).

(ii) If γ is an elastica under tension σ and energy E, with E ≠ σ2/4, then the curvature of γ is given by (16).

Proof. Without restrictionwe can consider γ parametrizedby arc-length.Assume�rst thatK(y) = ay2+by+c,
a ≠ 0, b, c ∈ R. In order γ to be an elastica, we must check that κ given by (16) satis�es (14) or (15). We have
that κ̇2 = 4a2 ẏ2 and (9) implies that ẏ2 = K2 + ε = (ay2 + bc + c)2 + ε. By substituting y = (κ − b)/2a, it is a
long exercise to check (15) taking σ = 4ac − b2 and E = 4εa2 + σ2/4. We observe that E − σ2/4 ≠ 0.

Conversely, assume that γ is an elastica under tension σ and energy E. We write locally γ as a graph
x = x(y) and then κ = κ(y) obviously. Using Theorem 2.1, κ̇2 = κ′(y)2 ẏ2 = K′′(y)2(K(y)2 + ε). Then (15)
translates into

(K(y)2 + ε)K′′(y)2 = K′(y)4/4 + σK′(y)2/2 + E. (17)

If E ≠ σ2/4, we can de�ne a2 = E−σ2/4
4ε by considering ε = ±1 according to the sign of E−σ2/4. In addition, we

can take b, c ∈ R such that σ = 4ac − b2. After a long straightforward computation, it is not di�cult to check
now thatK(y) = ay2 + by + c satis�es (17), what �nishes the proof.

Given γ = (x, y) satisfying (16) with a > 0 without restriction, we take γ̂ =
√
a(x, y + b/2a) and then, up to a

translation in the y-direction and a dilation, we can only a�ord the condition

κ(y) = 2y. (18)

The trivial solution κ ≡ 0 to (14) corresponds in (18) to the x-axis y ≡ 0.
Following the strategy described in Remark 2.2, we can control the spacelike or timelike curves

(x(s), y(s)) in L2 satisfying (18) with geometric linear momentumK(y) = y2 + c, c ∈ R, by means of

s = s(y) = ∫
dy√

y4 + 2cy2 + c2 + ε
(19)

and
x(s) = ∫ (y(s)2 + c)ds (20)

with c ∈ R. The integrations of (19) and (20) involve Jacobi elliptic functions and elliptic integrals.

3.1 Spacelike elastic curves in the Lorentz-Minkowski plane

We take ε = 1 and put c = sinh η, η ∈ R. Then these spacelike elastic curves will have energy E = 4cosh2 η
(see Proposition 3.1). Now (19) is rewritten as

s = s(y) = ∫
dy√

(y2 + sinh η + i)(y2 + sinh η − i)
. (21)

After a long computation, using formulas 225.00 and 129.04 of [24] and abbreviating cη ∶= cosh η, we �nally
get that

yη(s)=
√cη cs(

√cη s, kη)nd(
√cη s, kη), k2η =

1 − tanh η
2

(22)
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with s ∈ (2mK(kη)/
√
cη , 2(m + 1)K(kη)/

√
cη), m ∈ N, that is expressed in terms of the Jacobian elliptic

functions cs(⋅, kη) and nd(⋅, kη) of modulus kη, where K(kη) denotes the complete elliptic integral of the
�rst kind of modulus kη (see [24]). Using (22) in (20), formula 361.20 of [24] leads to

xη(s) = (sη + cη)s + (23)
√cη (cn(

√cη s, kη) (k2η sd(
√cη s, kη) − ds(

√cη s, kη)) − 2E(
√cη s, kη)) ,

where sη ∶= sinh η and cn(⋅, kη), sd(⋅, kη) and ds(⋅, kη) are Jacobian elliptic functions and E(⋅, kη) denotes
the elliptic integral of the second kind of modulus kη (see [24]). We remark that, using (18), the intrinsic
equations of the curves αη = (xη , yη), η ∈ R (see Figure 6), are given by

κη(s) = 2
√cη cs(

√cη s, kη)nd(
√cη s, kη).

Fig. 6. Spacelike elastic curves αη (η = 0, 1.5,−1.5).

3.2 Timelike elastic curves in the Lorentz-Minkowski plane

When we take ε = −1 in (19), we have that

s = s(y) = ∫
dy√

y4 + 2cy2 + c2 − 1
(24)

and then we must distinguish �ve cases:

1. c = 1, i.e.K(y) = y2 + 1.
2. c = −1, i.e.K(y) = y2 − 1.
3. c > 1; put c ∶= cosh2 δ, δ > 0, and soK(y) = y2 + cosh2 δ.
4. ∣c∣ < 1: put c ∶= sinψ, −π/2 < ψ < π/2, and soK(y) = y2 + sinψ.
5. c < −1: put c ∶= − cosh2 τ , τ > 0, and soK(y) = y2 − cosh2 τ .

3.2.1 Timelike elastic curves in L2 withK(y) = y2 ± 1

In these cases, (24) becomes elementary and both of them produce timelike elastic curves with null energy
(see Proposition 3.1). A straightforward computation, using (24) and (20), provides us the only (up to transla-
tions in the x-direction) timelike elastic curve (x1(s)), y1(s)with geometric linear momentumK(y) = y2 +1
(see Figure 7, left), given by

y1(s) = −
√
2

sinh(
√
2s)

, x1(s) = s −
√
2coth(

√
2s), s ≠ 0,
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and the only (up to translations in the x-direction) timelike elastic curve (x−1(s)), y−1(s) with geometric
linear momentumK(y) = y2 − 1 (see Figure 7, right), given by

y−1(s) = ±
√
2

cos(
√
2s)

, x−1(s) =
√
2 tan(

√
2s) − s, ∣s∣ < π

2
√
2
.

Using (18), the intrinsic equations of these curves are given by

κ1(s) = −
2
√
2

sinh(
√
2s)

, κ−1(s) =
∓2

√
2

cos(
√
2s)

,

respectively.

Fig. 7. Timelike elastic curves withK(y) = y2 ± 1.

3.2.2 Timelike elastic curves in L2 withK(y) = y2 + cosh2 δ, δ > 0

Since c = cosh2 δ in this case, these timelike elastic curves will have energy E = 4 sinh2 δ(cosh2 δ + 1) > 0
(see Proposition 3.1) and we can write (24) simply as

s = s(y) = ∫
dy√

(y2 + sinh2 δ)(y2 + cosh2 δ + 1)
. (25)

Using formula 221.00 of [24] and abbreviating cδ ∶= cosh δ and sδ ∶= sinh δ, we obtain that

yδ(s) = sδ tn(
√
c2δ + 1 s, kδ), k

2
δ =

2
1 + cosh2 δ

, (26)

with s ∈ ((2m − 1)K(kδ)/
√
c2δ + 1, (2m + 1)K(kδ)/

√
c2δ + 1) , m ∈ N, that is expressed in terms of the

Jacobian elliptic function tn(⋅, kδ) of modulus kδ, where K(kδ) denotes the complete elliptic integral of the
�rst kind of modulus kδ (see [24]). Using (26) in (20), formula 316.02 of [24] leads to

xδ(s) = c2δs +
√
c2δ + 1(dn(

√
c2δ + 1 s, kδ) (27)

tn(
√
c2δ + 1 s, kδ) − E(

√
c2δ + 1 s, kδ)) ,

where dn(⋅, kδ) is a Jacobian elliptic function and E(⋅, kδ) denotes the elliptic integral of the second kind of
modulus kδ (see [24]). We point out that, using (18), the intrinsic equations of the curves βδ = (xδ , yδ), δ > 0
(see Figure 8), are given by

κδ(s) = 2sδ tn(
√
c2δ + 1 s, kδ).
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Fig. 8. Timelike elastic curves βδ (δ = 0.5, 1, 1.5).

3.2.3 Timelike elastic curves in L2 withK(y) = y2 + sinψ, ∣ψ∣ < π/2

As c = sinψ in this case, these timelike elastic curves will have energy E = −4cos2 ψ < 0 (see Proposition 3.1)
and (24) can be written as

s = s(y) = ∫
dy√

(y2 + sinψ + 1)(y2 + sinψ − 1)
. (28)

Using formula 211.00 of [24] and abbreviating sψ ∶= sinψ, we deduce that

yψ(s) =
√
1 − sψ nc(

√
2 s, kψ), k2ψ = 1 + sinψ

2
, (29)

with s ∈ ((2m − 1)K(kψ)/
√
2, (2m + 1)K(kψ)/

√
2) , m ∈ N, that is expressed in termsof the Jacobian elliptic

function nc(⋅, kψ) of modulus kψ, where K(kψ) denotes the complete elliptic integral of the �rst kind of
modulus kψ (see [24]). Using (29) in (20), formula 313.02 of [24] leads to

xψ(s) = s +
√
2 (dn(

√
2 s, kψ) tn(

√
2 s, kψ) − E(

√
2 s, kψ)) , (30)

where dn(⋅, kψ) and tn(⋅, kψ) are Jacobian elliptic function and E(⋅, kψ) denotes the elliptic integral of the
second kind of modulus kψ (see [24]). We point out that, using (18), the intrinsic equations of the curves
βψ = (xψ , yψ), ∣ψ∣ < π/2 (see Figure 9), are given by

κψ(s) = 2
√
1 − sψ nc(

√
2 s, kψ).

Fig. 9. Timelike elastic curves βψ (ψ = −π/4, 0, π/6).
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3.2.4 Timelike elastic curves in L2 withK(y) = y2 − cosh2 τ , τ > 0

When c = − cosh2 τ , these timelike elastic curves will have energy E = 4 sinh2 τ(cosh2 τ + 1) > 0 (see
Proposition 3.1) and we can write (24) simply as

s = s(y) = ∫
dy√

(y2 − sinh2 τ)(y2 − (cosh2 δ + 1))
. (31)

Using formula 216.00 of [24] and abbreviating cτ ∶= cosh τ , after a long straightforward computationwe arrive
at

yτ (s) =
√
1 + c2τ dc(

√
1 + c2τ s, kτ ), k2τ =

sinh2 τ
1 + cosh2 τ

(32)

with s ∈ ((2m − 1)K(kτ )/
√
1 + c2τ , (2m + 1)K(kτ )/

√
1 + c2τ) , m ∈ N, that is expressed in terms of the

Jacobian elliptic function dc(⋅, kτ ) of modulus kτ , where K(kτ ) denotes the complete elliptic integral of the
�rst kind of modulus kτ (see [24]). Using (32) in (20), formula 321.02 of [24] leads to

xτ (s)= s+
√
1+c2τ (dn(

√
1+c2τ s, kτ ) tn(

√
1+c2τ s, kτ )−E(

√
1+c2τ s, kτ )) , (33)

where dn(⋅, kτ ) and tn(⋅, kτ ) are Jacobian elliptic function and E(⋅, kτ ) denotes the elliptic integral of the
second kind of modulus kτ (see [24]). We point out that, using (18), the intrinsic equations of the curves
βτ = (xτ , yτ ), τ > 0 (see Figure 10), are given by

κτ (s) = 2
√
1 + c2τ dc(

√
1 + c2τ s, kτ ).

Fig. 10. Timelike elastic curves βτ (τ = 1, 2, 3).

4 Curves in L2 such that κ(y) = λ/y2, λ > 0

In this section we will study those spacelike and timelike curves in L2 satisfying

κ(y) = λ/y2, λ > 0, (34)

andwewill show that some of them can be considered as Lorentzian versions of catenaries inL2 (see Section
4 in [10]). Given γ = (x, y) satisfying (34), if we take γ̂ = 1

λ(x, y) then, up to a dilation, we can only a�ord the
condition

κ(y) = 1/y2, (35)

with y ≠ 0. Following Theorem 2.1, we must consider the geometric linear momentumK(y) = c − 1/y, c ∈ R.
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4.1 CaseK(y)=−1/y. Lorentzian catenaries

We follow the steps described in Remark 2.2 and so

s = ∫
dy√

1/y2 + ε
= ∫

y dy√
1 + εy2

= ε
√
1 + εy2.

Then s2 = 1 + εy2, and hence

ε = 1 ∶ y(s) = ±
√
s2 − 1, ∣s∣ > 1; ε = −1 ∶ y(s) = ±

√
1 − s2, ∣s∣ < 1.

Consequently, recalling thatK(y) = −1/y, we get:

ε = 1 ∶ x(s) = ∓arccosh s, s > 1; ε = −1 ∶ x(s) = ∓arcsin s, ∣s∣ < 1.

We arrive at the graphs y = − sinh x, x ∈ R, at the spacelike case ε = 1, and y = ± cos x, ∣x∣ < π/2, at the
timelike case ε = −1 (see Figure 11). Using (35), their intrinsic equations are given by κ(s) = 1

s2−1 , s > 1, and
κ(s) = 1

1−s2 , ∣s∣ < 1, respectively.

Fig. 11. Curves withK(y) = −1/y; spacelike (left), timelike (right).

On the other hand, Kobayashi introduced in [21], by studying maximal rotation surfaces in L3 ∶= (R3,−dx2 +
dy2 + dz2), a couple of catenoids. Speci�cally, Example 2.5 in [21] presents (up to dilations) the catenoid of
the �rst kind by the equation y2 + z2 − sinh2 x = 0 and we can deduce the equation x2 − z2 = cos2 y for the
catenoid of the second kind given (up to dilations) in Example 2.6 in [21] (see Figure 12).

Fig. 12. Catenoid of the �rst kind (left) and the second kind (right) in L3.

The generatrix curves (in a certain sense) of both catenoids will be referred as Lorentzian catenaries. Specif-
ically, we call the graph y = − sinh x, x ∈ R, the Lorentzian catenary of the �rst kind, and the bigraph
x = ± cos y, ∣y∣ < π/2, the Lorentzian catenary of the second kind. As a summary of this section, taking into
account Remark 2.7, we conclude with the following geometric characterization of them.
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Corollary 4.1.
(i) The Lorentzian catenary of the �rst kind y = − sinh x, x ∈ R, is the only spacelike curve (up to translations

in the x-direction) in L2 with geometric linear momentumK(y) = −1/y.
(ii) The Lorentzian catenary of the second kind x = ± cos y, ∣y∣ < π/2, is the only spacelike curve (up to

translations in the y-direction) in L2 with geometric linear momentumK(x) = −1/x.

4.2 CaseK(y) = c − 1/y, c ≠ 0

When c ≠ 0, it is di�cult to get the arc parameter s as a function of y; however, we can eliminate ds using
parts (ii) and (iii) in Remark 2.2, obtaining

x = x(y) = ∫
(cy − 1)dy√

P(y)
, P(y) = (c2 + ε)y2 − 2cy + 1.

If c = 0, we easily recover the Lorentzian catenaries studied in the previous section. If c ≠ 0, we distinguish
the following cases according to the expression of polynomial P(y):

1. Spacelike case (ε = 1),K(y) = c − 1/y:

x = 1
c2 + 1

(c
√

(c2 + 1)y2 − 2cy + 1 − 1√
c2 + 1

arcsinh((c2 + 1)y − c)) .

We notice that if c = 0 above, we recover x = −arcsinh y (see Figure 13).

Fig. 13. Curves withK(y) = c − 1/y; spacelike c ≤ 0 (left), spacelike c ≥ 0 (right).

2. Timelike case (ε = −1):
(a) K(y) = 1 − 1/y (see Figure 14):

x = (2 − y)
√
1 − 2y

3
, y < 1/2.

(b) K(y) = −1 − 1/y (see Figure 14):

x = −(2 + y)
√
1 + 2y

3
, y > −1/2.

(c) K(y) = c − 1/y, ∣c∣ > 1:

x = 1
c2 − 1

(c
√

(c2 − 1)y2 − 2cy + 1+

+ 1√
c2 − 1

log (2(
√
c2 − 1

√
(c2 − 1)y2 − 2cy + 1 + (c2 − 1)y − c))) .

(d) K(y) = c − 1/y, ∣c∣ < 1:

x = 1
c2 − 1

(c
√

(c2 − 1)y2 − 2cy + 1 − 1√
1 − c2

arcsin((c2 − 1)y − c)) .
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Fig. 14. Timelike curves withK(y) = 1 − 1/y (left) andK(y) = −1 − 1/y (right).

5 Curves in L2 such that κ(y) = λey, λ > 0

In this section we will study those spacelike and timelike curves in L2 satisfying

κ(y) = λey , λ > 0, (36)

andwewill introducewhat can be considered the Lorentzian versions of grim-reaper curves inL2 (see Section
7 in [10]). Given γ = (x, y) satisfying (36), if we take γ̂ = (x, y + logλ) then, up to a translation, we can only
consider the condition

κ(y) = ey . (37)

Following Theorem 2.1, we deal with the geometric linear momentumK(y) = ey + c, c ∈ R.

5.1 CaseK(y)=ey. Lorentzian grim-reapers

Following the steps in Remark 2.2, putting u = ey, we have that

s = ∫
dy√
e2y + ε

= ∫
du

u
√
u2 + ε

.

Hence:
ε = 1 ∶ y(s) = log(− csch s), s < 0; ε = −1 ∶ y(s) = log sec s, ∣s∣ < π/2.

Consequently, recalling thatK(y) = ey, we obtain:

ε = 1 ∶ x(s) = − log tanh(−s/2), s < 0;

ε = −1 ∶ x(s) = log(sec s + tan s), ∣s∣ < π/2.

A straightforward computation leads us to the graphs y = log(sinh x), x > 0, at the spacelike case ε = 1, and
y = log(cosh x), x ∈ R, at the timelike case ε = −1 (see Figure 15). Using (37), their intrinsic equations are
given by κ(s) = − csch s, s < 0, and κ(s) = sec s, ∣s∣ < π/2, respectively.

It is straightforward to check that both curves satisfy the translating-type soliton equation κ =
g((0, 1), N). Hence we have obtained in this section (see also Section 7.1 in [10]) Lorentzian versions of the
grim-reaper curves of Euclidean plane. We will simply call them Lorentzian grim-reapers. As a summary, we
conclude with the following geometric characterization of them.

Corollary 5.1.
(i) The Lorentzian grim-reaper y = log(sinh x), x > 0, is the only spacelike curve (up to translations in the

x-direction) in L2 with geometric linear momentumK(y) = ey.
(ii) The Lorentzian grim-reaper y = log(cosh x), x ∈ R, is the only timelike curve (up to translations in the

x-direction) in L2 with geometric linear momentumK(y) = ey.
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Fig. 15. Curves withK(y) = ey; spacelike (left), timelike (right).

5.2 CaseK(y) = ey + c, c ≠ 0

When c ≠ 0, it is longer and more di�cult to get the arc parameter s as a function of y; however, we can
eliminate ds using parts (ii) and (iii) in Remark 2.2. Putting u = ey, we obtain:

x = x(y) = ∫
(u + c)du
u
√
P(u)

, P(u) = u2 + 2cu + c2 + ε.

If c = 0, we recover the Lorentzian grim-reaper curves studied in the previous section. If c ≠ 0, we distinguish
the following cases according to the expression of polynomial P(u):

1. Spacelike case (ε = 1),K(y) = ey + c:

x = arcsinh(ey + c) − c√
c2 + 1

arcsinh (c + (c2 + 1)e−y) .

We notice that if c = 0 above, we recover the graph y = log(sinh x) (see Figure 16).

Fig. 16. Curves withK(y) = ey + c; spacelike c ≤ 0 (left), spacelike c ≥ 0 (right).

2. Timelike case (ε = −1):
(a) K(y) = ey + 1: (see Figure 17)

x = 2 log(
√
ey +

√
ey + 2) −

√
1 + 2e−y , y ∈ R.

(b) K(y) = ey − 1: (see Figure 17):

x = 2 log(
√
ey +

√
ey − 2) −

√
1 − 2e−y , y > log2.

(c) K(y) = ey + c, ∣c∣ > 1:

x = log (2(
√
P(ey) + ey + c)) − c√

c2 − 1
log (2e−y(

√
c2 − 1

√
P(ey) + cey + c2 − 1))
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(d) K(y) = ey + c, ∣c∣ < 1:

x = log (2(
√
P(ey) + ey + c)) + c√

1 − c2
arcsin (c + (c2 − 1)e−y) .

Fig. 17. Timelike curves withK(y) = ey + 1 (left) andK(y) = ey − 1 (right).

6 Other integrable curves in L2

The aim of this section is to collect some interesting curves in L2 that can be easily determined by their
geometric linear momentum, following the strategy described in Theorem 2.1 and Remark 2.2.

6.1 Timelike curves in L2 such that κ(y)=csch2 y

In this case, being y ≠ 0, we only consider the geometric linear momentumK(y)=− coth y. Then:

s = ∫
dy√

coth2 y − 1
= ±∫ sinh y dy = ± cosh y.

Thus:
y(s) = ±arccosh s, s > 1,

and
x(s) = −∫ coth y(s)ds = ∓∫

s ds√
s2 − 1

= ∓
√
s2 − 1, s > 1.

We arrive at the graph x = − sinh y, y ∈ R, whose intrinsic equation is (using that κ(y) = csch2 y) given by
κ(s) = 1

s2−1 , s > 1. We get a similar expression to the Lorentzian catenary of the �rst kind (see Section 4.1)
and, taking into account Remark 2.7, we conclude this new characterization.

Corollary 6.1. The Lorentzian catenary of the �rst kind y = − sinh x, x ∈ R, is the only spacelike curve (up to
translations in the y-direction) in L2 with geometric linear momentumK(x) = − coth x.

6.2 Spacelike curves in L2 such that κ(y) = sec2 y

Considering ∣y∣ < π/2, we only a�ord the caseK(y) = tan y, since then:

s = ∫
dy√

tan2 y + 1
= ±∫ cos y dy = ± sin y.
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Thus:
y(s) = ±arcsin s, ∣s∣ < 1,

and
x(s) = ∫ tan y(s)ds = ±∫

s ds√
1 − s2

= ∓
√
1 − s2, ∣s∣ < 1.

We obtain the graph x = ∓ cos y, ∣y∣ < π/2, whose intrinsic equation is (using that κ(y) = sec2 y) given by
κ(s) = 1

1−s2 , ∣s∣ < 1. We arrive at the same expression as for the Lorentzian catenary of the second kind (see
Section 4.1) and we deduce this new uniqueness result.

Corollary 6.2. The Lorentzian catenary of the second kind x = ± cos y, ∣y∣ < π/2, is the only spacelike curve
(up to translations in the x-direction) in L2 with geometric linear momentumK(y) = tan y.

6.3 Timelike curves in L2 such that κ(y) = sinh y

If we takeK(y) = cosh y, we have:

s = ∫
dy√

cosh2 y − 1
= ∫

dy
sinh y

dy = log(tanh(y/2)).

Thus:
y(s) = 2arctanh es , s < 0,

and
x(s) = ∫ cosh y(s)ds = −∫ coth s ds = − log (sinh(−s)) , s < 0.

After a straightforward computation, we arrive at the graph x = log sinh y, y > 0, whose intrinsic equation
is (using that κ(y) = sinh y) given by κ(s) = − csch s, s < 0. We get a similar expression to the spacelike
Lorentzian grim-reaper (see Section 5.1) and,making use of Remark 2.7, we deduce this new characterization.

Corollary 6.3. The Lorentzian grim-reaper y = log(sinh x), x > 0, is the only spacelike curve (up to translations
in the y-direction) in L2 with geometric linear momentumK(x) = cosh x.

6.4 Spacelike curves in L2 such that κ(y) = cosh y

We only consider the caseK(y) = sinh y. Then:

s = ∫
dy

sinh2 +1
= ∫

dy
cosh y

= 2arctan ey .

Thus it is easy to obtain
y(s) = log (tan(s/2)) , ∣s∣ < π

and
x(s) = log(2csc s), ∣s∣ < π.

Using that κ(y) = cosh y, its intrinsic equation is given by κ(s) = csc s, ∣s∣ < π (see Figure 18).
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Fig. 18. Spacelike curve withK(y) = sinh y.
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