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Abstract: In this paper, we consider the square function

(S f)(x) =
⎛
⎜
⎝

∞

∫

0

∣(f ⊗ Φt) (x) ∣2
dt
t
⎞
⎟
⎠

1/2

associated with the Bessel di�erential operator Bt =
d2
dt2 +

(2α+1)
t

d
dt , α > −1/2, t > 0 on the half-line R+ =

[0,∞). The aim of this paper is to obtain the boundedness of this function in Lp,α, p > 1. Firstly, we proved
L2,α-boundedness by means of the Bessel-Plancherel theorem. Then, its weak-type (1, 1) and Lp,α, p > 1
boundedness are proved by taking into account vector-valued functions.
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1 Introduction
The classical square function is de�ned by

(Sf)(x) =
⎛
⎜
⎝

∞

∫

0

∣(f ∗ Φt) (x) ∣2
dt
t
⎞
⎟
⎠

1/2

,Φ ∈ S(Rn
)

where S(Rn
) is the Schwartz space consisting of in�nitely di�erentiable and rapidly decreasing functions,

∫
Rn
Φ(x)dx = 0 and Φt(x) = t−nΦ( x

t ), t > 0.

This function plays an important role in Fourier harmonic analysis, theory of functions and their
applications. It has direct connection with L2-estimates and Littlewood-Paley theory. Moreover, there are
a lot of diverse variants of square functions and their various applications (see, Daly and Phillips [7], Jones,
Ostrovskii and Rosenblatt [18], Kim [20], Aliev and Bayrakci [5], Keles and Bayrakci [19], etc.)

The Bessel di�erential operator Bt,

Bt =
d2

dt2
+

(2α + 1)
t

d
dt

, α > −1/2, t > 0
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and the Laplace-Bessel di�erential operator∆B,

∆B =
n−1
∑
k=1

∂2

∂x2k
+ (

∂2

∂x2n
+

(2α + 1)
xn

∂
∂xn

) , α > −1/2, xn > 0

are known as important technical tools in analysis and its applications.
The relevant Fourier-Bessel harmonic analysis, associated with the Bessel di�erential operator Bt (or the

Laplace-Bessel di�erential operator∆B) has been a research area for many mathematicians such as Levitan
[24, 25], Kipriyanov and Klyuchantsev [21], Trimeche [32], Lyakhov [26], Stempak [30], Gadjiev and Aliev [10,
11], Aliev and Bayrakci [3, 4], Aliev and Saglik [6], Ekincioglu and Serbetci [9], Hasanov [17], Guliyev [14–16],
and others.

The Bessel translation operator is one of the most important generalized translation operators on the
half-line R+ = [0,∞), [24, 32]. It is used while studying various problems connected with Bessel operators
(see, [22], [27] and bibliography therein).

In this paper, the square function associated with the Bessel di�erential operator Bt is introduced on
the half-line R+ = [0,∞) and its L2,α− boundedness by means of the Bessel-Plancherel theorem is proved.
Then, (1, 1)weak-type and Lp,α, 1 < p < ∞ boundedness of this function are obtained by taking into account
vector-valued functions. For this, some necessary de�nitions and auxiliary facts are given in Section 2. The
main results of the paper are formulated and proved in Section 3.

2 Preliminaries
Let R+ = [0,∞), C(R+) be the set of continuous functions on R+, C(k)(R+), the set of even k-times
di�erentiable functions on R+ and S(R) be the Schwartz space consisting of in�nitely di�erentiable and
rapidly decreasing functions on R and S+(R+) be the subspace of even functions on S(R).

For a �xed parameter α > −1/2, let Lp,α = Lp,α (R+) be the space of measurable functions f de�ned on
R+ and the norm

∥f∥p,α =
⎛
⎜
⎝

∞

∫

0

∣f(x)∣p x2α+1dx
⎞
⎟
⎠

1/p

, 1 ≤ p < ∞ (1)

is �nite. In the case p = ∞, we identify L∞ with C0, the corresponding space of continuous functions
vanishing at in�nity.

Denoted by Ts , s ∈ R+ the Bessel translation operator acts according to the law

Ts f(t) = cα
π

∫

0

f(
√
s2 − 2st cos ξ + t2)(sin ξ)2αdξ, (2)

where

cα =
⎛
⎜
⎝

π

∫

0

(sin ξ)2αdξ
⎞
⎟
⎠

−1

=
Γ (α + 1)

√
πΓ (α + 1

2)
(3)

and the following relations are known [25] :

Ts f(t) = T t f(s) ; TsTτ f(t) = TτTs f(t);
Ts f(t) = T−s f(−t) ; T0f(t) = f(t);

∞

∫

0

(Ts f(t)) g(t)t2α+1dt =
∞

∫

0

f(t)(Tsg(t))t2α+1dt. (4)

It is not di�cult to see the following inequality

∥Ts f∥
∞
≤ ∥f∥

∞
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that is, Ts is a continuous operator in C0. Moreover, for 1 ≤ p < ∞ and f ∈ S+(R+) it is shown that

∣Ts f(t)∣p ≤ Ts
(∣f(t)∣p). (5)

For this, we de�ne a measure on the [0, π] by dµ (ϕ) = cα (sinϕ)2α dϕ, where cα is de�ned by (3). By using
(2) and the Hölder inequality, we have

∣Ts f(t)∣ = ∣

π

∫

0

f (
√
s2 − 2st cos ξ + t2) dµ (ϕ) ∣

≤
⎛
⎜
⎝

π

∫

0

∣f (
√
s2 − 2st cos ξ + t2) ∣

pdµ (ϕ)
⎞
⎟
⎠

1/p
⎛
⎜
⎝

π

∫

0

dµ (ϕ)
⎞
⎟
⎠

1/q

= (Ts
(∣f(t)∣p))1/p , 1

p
+
1
q
= 1.

Further, by using (5) and (4) we obtain

∣∣Ts f ∣∣pp,α =

∞

∫

0

∣Ts f(t)∣p t2α+1dt ≤
∞

∫

0

Ts
(∣f(t)∣p) t2α+1dt (6)

=

∞

∫

0

∣f(t)∣p(Ts1) t2α+1dt =
∞

∫

0

∣f(t)∣p t2α+1dt

= ∣∣f ∣∣pp,α.

As S+(R+) is dense Lp,α for p < ∞, (6) stays valid for every function in f ∈ Lp,α.
Note that Ts, s ∈ R+ is closely connected with the Bessel di�erential operator

Bt =
d2

dt2
+

(2α + 1)
t

d
dt

, α > −1/2, t > 0.

It is known that the function u(t, s) = Ts f(t), f ∈ C2(R+) is the solution the following Cauchy problem, (see
[8, 25]):

{
Btu(t, s) = Bsu(t, s)

u(t, 0) = f(t) , ∂u
∂s (t, 0) = 0

.

The Bessel transform of order α > −1/2 of a function f ∈ L1,α is de�ned by

(Bf)(λ) =
∞

∫

0

f(t) jα(λt) t2α+1dt λ ≥ 0, (7)

and the inverse Bessel transform is given by the formula

B
−1

= 2αΓ(α + 1))−2B

where
jα(z) = 2αΓ (α + 1) z−αJα(z), (α > −1/2, 0 < z < ∞)

is the normalized Bessel function and Jα(z) is the Bessel function of the �rst kind. From the following integral
presentation for jα(t) (see[13], Eq. 8.411(8))

jα(t) =
Γ (α + 1)

√
πΓ (α + 1/2)

1

∫

−1

(1 − u2)
α−1/2

cos (tu) du (8)

we have
∣jα(t)∣ ≤ 1, t ∈ R (9)
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and the equality takes place only at t = 0. We also note that, by using (8) and the Riemann-Lebesgue Lemma,
we have

lim
λ→∞

(Bf)(λ) = 0.

Moreover, from (9) we have

∣(Bf)(λ)∣ ≤
∞

∫

0

∣f(t)∣∣ jα(λt)∣ t2α+1dt ≤ ∣∣f ∣∣1,α

and thus ∣∣Bf ∣∣∞ ≤ ∣∣f ∣∣1,α is obtained.
The asymptotic formula for Jα(r) is as follows ([28]):

Jα(r) = O(r−1/2), r →∞. (10)

Then, the following asymptotic formula for jα(r) is obtained easily:

jα(r) = O(r−α−1/2), r →∞. (11)

The following Lemmas will be needed in proving the main results containing important properties of Bessel
transform.

Lemma 2.1 ([25]). Let f ∈ L1,α then

(Bf(at))(x) = a−2α−2 (Bf) ( x
a
) , a > 0.

Lemma 2.2 ([25], Bessel-Plancherel formula). Let f ∈ L1,α ∩ L2,α then

∣∣Bf ∣∣2,α = ∣∣f ∣∣2,α. (12)

The generalized convolution generated by the Bessel translation operator for f , g ∈ L1,α is de�ned by

(f ⊗ g)(s) =
∞

∫

0

Ts f(t)g(t) t2α+1dt. (13)

The convolution operation makes sense if the integral on the right-hand side of (13) is de�ned; in particular,
if f , g ∈ S+(R+), then the convolution f ⊗ g also belongs to S+(R+).

Now, we list some properties of generalized convolution as follows: (see details in [25])

f ⊗ g = g ⊗ f ,
(f ⊗ g) ⊗ h = f ⊗ (g ⊗ h),
B(f ⊗ g)(λ) = (Bf)(λ)(Bg)(λ). (14)

Further, by using (6) and the Hölder inequality it is not di�cult to prove the corresponding Young inequality

∣∣f ⊗ g∣∣p,α ≤ ∣∣f ∣∣1,α∣∣g∣∣p,α, f ∈ L1,α, g ∈ Lp,α, 1 ≤ p ≤ ∞.

3 Main results and proofs
In this part, the L2,α boundedness of the square function generated by the Bessel di�erential operator is
proved by Bessel-Plancherel formula, then its (1, 1)weak-type and Lp,α, 1 < p < ∞ boundedness is obtained
by using vector-valued functions.
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De�nition 3.1. Let Φ ∈ S+(R+) and
∞

∫
0
Φ(x)x2α+1dx = 0. The square function associated with the Bessel

di�erential operator is de�ned by

(S f)(x) =
⎛
⎜
⎝

∞

∫

0

∣(f ⊗ Φt) (x) ∣2
dt
t
⎞
⎟
⎠

1/2

(15)

where Φt(x) = t−2α−2Φ ( x
t ) , t > 0, α > − 1

2 .

An important trend in mathematical analysis and applications is to investigate convolution-type operators.
Convolution type square functionshavea verydirect connectionwith L2-estimates by thePlancherel theorem.

For this reason, we have proved L2,α-boundedness of the square function (15), associatedwith the Bessel
di�erential operator by using Bessel-Plancherel formula (12) in the following.

Theorem 3.2. Let the square function S f be de�ned as (15). If f ∈ L2,α then there is c > 0 such that

∣∣S f ∣∣2,α ≤ c∣∣f ∣∣2,α.

Proof. Firstly, let f ∈ S+(R+). By making use of the Fubini theorem and Bessel-Plancherel formula, we have

∣∣S f ∣∣22,α =

∞

∫

0

⎛
⎜
⎝

∞

∫

0

∣(f ⊗ Φt) (x) ∣2
dt
t
⎞
⎟
⎠
x2α+1dx

=

∞

∫

0

∞

∫

0

∣(f ⊗ Φt) (x) ∣2x2α+1dx
dt
t

=

∞

∫

0

∣∣f ⊗ Φt ∣∣
2
2,α

dt
t

=

∞

∫

0

∣∣B(f ⊗ Φt)∣∣
2
2,α

dt
t

=

∞

∫

0

∞

∫

0

∣B(f ⊗ Φt) (x) ∣2x2α+1dx
dt
t
.

Taking into account (14) and then using Fubini theorem, we get

∣∣S f ∣∣22,α =

∞

∫

0

∞

∫

0

∣(Bf)(x)∣2∣(BΦt)(x)∣2x2α+1dx
dt
t

=

∞

∫

0

∣(Bf)(x)∣2
⎛
⎜
⎝

∞

∫

0

∣(BΦt)(x)∣2
dt
t
⎞
⎟
⎠
x2α+1dx. (16)

Since Φt(x) = t−2α−2Φ ( x
t ), then using Lemma 1, we have

(BΦt)(x) = t−2α−2(BΦ( x
t
))

= t−2α−2t2α+2(BΦ)(tx)
= (BΦ)(tx).

Thus
∞

∫

0

∣(BΦt)(x)∣2
dt
t
=

∞

∫

0

∣(BΦ)(tx)∣2 dt
t

(set τ = tx )
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=

∞

∫

0

∣(BΦ)(τ)∣
2 dτ
τ
.

By taking this into account in the formula (16) and using (12) we have

∣∣S f ∣∣22,α = c
∞

∫

0

∣(Bf)(x)∣2x2α+1dx

= c∣∣f ∣∣22,α (17)

where c =
∞

∫
0
∣(BΦ)(τ)∣2

dτ
τ
. Let us show that c < ∞.

∞

∫

0

∣(BΦ)(τ)∣
2 dτ
τ

=

1

∫

0

∣(BΦ)(τ)∣
2 dτ
τ
+

∞

∫

1

∣(BΦ)(τ)∣
2 dτ
τ

= I1 + I2.

Firstly, let us estimate I1. Since
∞

∫
0
Φ(x)x2α+1dx = 0, we have

∣(BΦ)(τ)∣ ≤

∞

∫

0

∣Φ(t)∣ ∣jα(τ t) − 1∣ t2α+1dt

and taking into account (8) for the normalized Bessel function jα(t) we get

∣jα(τ t) − 1∣ ≤
Γ (α + 1)

√
πΓ (α + 1/2)

1

∫

−1

(1 − u2)
α−1/2

∣ cos (τ tu) − 1∣ du

=
2Γ (α + 1)

√
πΓ (α + 1/2)

1

∫

−1

(1 − u2)
α−1/2

sin2 (τ tu2 ) du

≤ c1t2τ2.

Therefore,

∣(BΦ)(τ)∣ ≤ c1τ2
∞

∫

0

∣Φ(t)∣t2α+3dt = c2τ2

and

I1 =
1

∫

0

∣(BΦ)(τ)∣
2 dτ
τ

= c22
1

∫

0

τ
4 dτ
τ

= c3 < ∞.

Now we estimate I2. For this, we need the following asymptotic formula for jα(r), (cf.(11)):

∣jα(u)∣ ≤
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

c4, 0 < u ≤ 1
c5

uα+ 1
2
, u > 1

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

≤
c6

uα+ 1
2
, c6 = max{c4, c5}.

Hence

∣(BΦ)(τ)∣ ≤

∞

∫

0

∣Φ(t)∣ ∣jα(τ t)∣ t2α+1dt

≤

∞

∫

0

∣Φ(t)∣ c6
τα+

1
2 tα+ 1

2
t2α+1dt

=
c7
τα+

1
2
, α > −1/2
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and we have

I2 =
∞

∫

1

∣(BΦ)(τ)∣
2 dτ
τ

≤ c7
∞

∫

1

1
τ2α+1

dτ
τ

= c8 < ∞.

For arbitrary f ∈ L2,α, we will take into account that the Schwartz space S+(R+) is dense in L2,α. Namely, let
(fn) be a sequence of functions in S+(R+), which converges to f in L2,α-norm.

From the "triangle inequality" (∣∣u∣∣2,α − ∣∣v∣∣2,α)2 ≤ ∣∣u − v∣∣22,α, we have

((Sfn)(x) − (Sfm)(x))2 = ((

∞

∫

0

∣(fn ⊗ Φt)(x)∣2
dt
t
)
1/2

− (

∞

∫

0

∣(fm ⊗ Φt)(x)∣2
dt
t
)
1/2

)
2

≤

∞

∫

0

∣((fn ⊗ Φt) − (fm ⊗ Φt) )(x)∣2
dt
t

=

∞

∫

0

∣((fn − fm) ⊗ Φt)∣
2 dt
t
.

and

∣(Sfn(x) − (Sfm)(x)∣ ≤ (

∞

∫

0

∣((fn − fm) ⊗ Φt)∣
2 dt
t
)
1/2

= S(fn − fm)(x).

Hence, by (3.17) we get
∣∣Sfn − Sfm ∣∣2,α ≤ ∣∣S(fn − fm)∣∣2,α ≤ c∣∣fn − fm ∣∣2,α.

This shows that the sequence (Sfn) converges to (Sf) in L2,α−norm. Thus

∣∣Sf ∣∣2,α ≤ c∣∣f ∣∣2,α , ∀ f ∈ L2,α

and the proof is complete.

Now, taking into account vector-valued functions spaces, we will obtain Lp,α (R+), 1 < p < ∞ boundedness
of the square function associated with the Bessel di�erential operator.

For this, necessary de�nitions and theorems are given below. The �rst theorem is well known as the
Marcikiewicz interpolation theorem for the vector-valued functions. The other theorem is the extension of
Benedek-Calderon-Panzone principle.

Let H be a seperable Hilbert space. We say that a function f de�ned on R+ = [0,∞) and with values in
H is measurable if the scalar valued function (f(x), h) is measurable for every h in H, where (, ) denotes
the inner product of H and h denotes an arbitrary vector of H. Throughout the text, the absolute value ∣.∣H
denotes the norm in H. Moreover, let H1 and H2 be two seperable Hilbert spaces, and B(H1,H2) denote the
Banach spaces of bounded linear operators A from H1 to H2 endowed with the norm

∣A∣B(H1 ,H2) = ∣A∣ = sup
h∈H1

(
∣Ah∣H2

∣h∣H1

) .

Let Lp,α (R+,H) be the space of measurable functions f(x) from R+ to H with the norm

∥f∥Lp,α(R+ ,H) = ∣∣f ∣∣p,α =
⎛
⎜
⎝

∞

∫

0

∣f(x)∣pH x2α+1dx
⎞
⎟
⎠

1/p

, 1 ≤ p < ∞

is �nite. If p = ∞, then the norm
∥f∥L∞(R+ ,H) = ess sup

x∈Rn
∣f(x)∣H

is �nite, (see for details, [28]; p.27-30, [29]; p.45-46 [31]; p.307-309).
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Theorem 3.3 ([31], Theorem 2.1, p.307). Let be A a sublinear operator de�ned on L0∞ (R+,H1) , i.e., com-
pactly supported, bounded H1-valued functions, with values in M (R+,H2) , i,e., the space of measurable,
H2−valued function. Suppose in addition that for f ∈ L0∞ (R+,H1)

λ∣ {∣Af ∣H2 > λ} ∣ ≤ c1∣∣f ∣∣1,α

and
λ
r
∣ {∣Af ∣H2 > λ} ∣ ≤ crr ∣∣f ∣∣rr,α,

where c1 and cr are independent of λ and f . Then for each 1 < p < r, we have that Af ∈ Lp,α(R+,H2)whenever
f ∈ Lp,α(R+,H1) and there is a constant c = c1,r,p independent of f such that ∣∣Af ∣∣p,α ≤ c∣∣f ∣∣p,α.

Theorem 3.4 ([31], Theorem 2.2, p.307). Suppose a linear operator A de�ned in L0∞ (R+,H1) andwith values
in M (R+,H2) veri�es

λ
r
∣ {∣Af ∣H2 > λ} ∣ ≤ cr1∣∣f ∣∣rr,α, some r > 1

and if f has support in B(x0, R) and integral 0, then there are constants c2, c3 > 1 independent of f so that

∫

Rn/B(x0 ,c2R)

∣Af(x)∣H2dx ≤ c3∣∣f ∣∣1,α. (18)

Then
λ∣ {∣Af ∣H2 > λ} ∣ ≤ c∣∣f ∣∣1,α.

Now let H1 = R+ and H2 = L2,α(R+, dtt ), α > −1/2 be the Hilbert space of square integrable functions on the
half-line with respect to the measure dt

t and the norm

∣ϕ∣H2 =
⎛
⎜
⎝

∞

∫

0

∣ϕ(t)∣2 dt
t
⎞
⎟
⎠

1/2

.

Since Φ ∈ S+(R+) and
∞

∫
0
Φ(x)x2α+1dx = 0 then we de�ne K(x) to be the H2-valued function given by

K(x) = t−2α−2Φ(
x
t
) = Φt(x).

So, the square function associated with the Bessel di�erential operator (S f)(x) is the linear operator
(Af)(x) = (f ⊗ K) (x) and Af takes its values in H2.

Thus, the condition (18) is equivalent to the following inequality

∫

x≥2y

∣TyK(x) − K(x)∣H2x
2α+1dx ≤ c, y ∈ R+. (19)

Now let us calculate (19). For this, since Φ ∈ S+(R+), we take

∣Φ(x)∣ ≤ c (1 + x)−(q+θ) , q = 2α + 2, θ > 0 and ∣Φt(x)∣ ≤
ctθ

(1 + x)(q+θ)

and for 0 < ε < min{θ, q} by using Hölder inequality we have

∫

x≥2y

∣TyK(x) − K(x)∣H2x
2α+1dx = ∫

x≥2y

x−
ε+q
2 ∣Ty

Φt(x) − Φt(x)∣H2 x
ε+q
2 x2α+1dx

≤
⎛
⎜
⎝
∫

x≥2y

x−(ε+q)x2α+1dx
⎞
⎟
⎠

1/2
⎛
⎜
⎝
∫

x≥2y

∣Ty
Φt(x) − Φt(x)∣2H2x

ε+qx2α+1dx
⎞
⎟
⎠

1/2
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≤ cy−
ε
2
⎛
⎜
⎝
∫

x≥2y

xε+q
⎛
⎜
⎝

∞

∫

0

∣Ty
Φt(x) − Φt(x)∣2

dt
t
⎞
⎟
⎠
x2α+1dx

⎞
⎟
⎠

1/2

≤ cy−
ε
2
⎛
⎜
⎝

∞

∫

0

t−2q
⎛
⎜
⎝
∫

x≥2y

xε+q ∣T
y
t Φ(

x
t
) − Φ(

x
t
)∣
2x2α+1dx

⎞
⎟
⎠

dt
t
⎞
⎟
⎠

1/2

.

Since
∣T

y
t Φ(

x
t
) − Φ(

x
t
)∣ ≤ c ( t

x
)
q+ε

then we get
∫

x≥2y

∣TyK(x) − K(x)∣H2x
2α+1dx

≤ cy−
ε
2
⎛
⎜
⎝

∞

∫

0

t−q+ε
⎛
⎜
⎝

∞

∫

0

∣T
y
t Φ(

x
t
) − Φ(

x
t
)∣x2α+1dx

⎞
⎟
⎠

dt
t
⎞
⎟
⎠

1/2

≤ cy−
ε
2
⎛
⎜
⎝

∞

∫

0

t−q+ε(tq2∣∣Φt ∣∣1,α)
dt
t
⎞
⎟
⎠

1/2

≤ cy−
ε
2
⎛
⎜
⎝

y

∫

0

tε−1dt +
∞

∫
y

dt
tε+1

⎞
⎟
⎠

1/2

≤ cy−
ε
2 y

ε
2 = c.

Finally, by using Theorem 3.4, we see that the square function associated with the Bessel di�erential
operator S f is of weak-type (1, 1) and since we have already veri�ed the L2,α (R+)-boundedness then by the
Marcinkiewicz interpolation theorem for the vector-valued functions, (Theorem 3.3) Sf is also of type (p, p),
1 < p < 2 and consequently, by a simple duality argument S f is of type (p, p), 1 < p < ∞.
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