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Abstract: In this paper, we consider the square function

- 1/2
(SH() = ( JAGE |2‘”)
0

t

associated with the Bessel differential operator B; = ;—; + (2at+1) %, a > -1/2, t > 0 on the half-line R, =
[0, o). The aim of this paper is to obtain the boundedness of this function in Ly ., p > 1. Firstly, we proved
L, o-boundedness by means of the Bessel-Plancherel theorem. Then, its weak-type (1,1) and Lyo, p > 1

boundedness are proved by taking into account vector-valued functions.
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1 Introduction

The classical square function is defined by

- 1/2
(Sf)(X)=(f|(f*¢t)(X) |df) PSR
0

where S(R") is the Schwartz space consisting of infinitely differentiable and rapidly decreasing functions,
R!; ®(x)dx = 0and &¢(x) = t "®(%), t > 0.

This function plays an important role in Fourier harmonic analysis, theory of functions and their
applications. It has direct connection with L,-estimates and Littlewood-Paley theory. Moreover, there are
a lot of diverse variants of square functions and their various applications (see, Daly and Phillips [7], Jones,
Ostrovskii and Rosenblatt [18], Kim [20], Aliev and Bayrakci [5], Keles and Bayrakci [19], etc.)

The Bessel differential operator By,

iz (2a+1) d

B: = + ,
tTae t dt

a>-1/2,t>0
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and the Laplace-Bessel differential operator Ag,

ol 2 0> (2a+1) 9
AB_,;aX’Z(Jr(aX%Jan . , a>-1/2, x, >0

are known as important technical tools in analysis and its applications.

The relevant Fourier-Bessel harmonic analysis, associated with the Bessel differential operator B; (or the
Laplace-Bessel differential operator Ag) has been a research area for many mathematicians such as Levitan
[24, 25], Kipriyanov and Klyuchantsev [21], Trimeche [32], Lyakhov [26], Stempak [30], Gadjiev and Aliev [10,
11], Aliev and Bayrakci [3, 4], Aliev and Saglik [6], Ekincioglu and Serbetci [9], Hasanov [17], Guliyev [14-16],
and others.

The Bessel translation operator is one of the most important generalized translation operators on the
half-line R; = [0, o), [24, 32]. It is used while studying various problems connected with Bessel operators
(see, [22], [27] and bibliography therein).

In this paper, the square function associated with the Bessel differential operator By is introduced on
the half-line R, = [0, oo) and its L, o— boundedness by means of the Bessel-Plancherel theorem is proved.
Then, (1, 1) weak-typeand Lp,, 1 < p < co boundedness of this function are obtained by taking into account
vector-valued functions. For this, some necessary definitions and auxiliary facts are given in Section 2. The
main results of the paper are formulated and proved in Section 3.

2 Preliminaries

Let R, = [0,0), C(R;) be the set of continuous functions on R,, C%¥)(R,), the set of even k-times
differentiable functions on R, and S(R) be the Schwartz space consisting of infinitely differentiable and
rapidly decreasing functions on R and S* (R, ) be the subspace of even functions on S(R).

For a fixed parameter o > —-1/2, let Ly o = Lp,o (R+) be the space of measurable functions f defined on
R, and the norm

0o 1/p
Iflp,0 = (f FCOl Xza“dX) , 1<p<oo )
0

is finite. In the case p = oo, we identify L. with Co, the corresponding space of continuous functions
vanishing at infinity.
Denoted by T°, s € R, the Bessel translation operator acts according to the law

Tsf(t):caff(\/sz—Zstcos§+t2)(sin§)2ad§, )]
0

where )

o - ( / <sin5>“ds) - D ®

and the following relations are known [25] :

T°f(t) = T'f(s) ; T°TTf(t) = T"T°f(¢);
T°f(t) = TF(-t) s TOf(t) =F(t)s

[ (Trw)soeae - [ F(O(Tg(0)Ede. )
0

It is not difficult to see the following inequality

|T°f].. < Ifll
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that is, T° is a continuous operator in Co. Moreover, for 1 < p < co and f € S*(R.) it is shown that
IT°F(OF < T°(IF(O)F)- ©)

For this, we define a measure on the [0, 7] by du () = co (sin ©)2* dy, where c,, is defined by (3). By using
(2) and the Holder inequality, we have

T = | [ £V - 2stcose+ ) du(v)]
0

- 1/p 4 » 1/q
< /|f(\/52—25tc086+t2)|”du(s@)) (fduw))
0 0

1 1
= (T(F(OP)MP, =+ = =1.
(T°(F(OF)) A
Further, by using (5) and (4) we obtain
1T = [ ITFOF €% at< [ T(FOF) £ at ®)
0 0

:jolf(t)|p(Tsl)t2a+1dt:foo|f(t)|p 2o+ gy
0 0

= [Ifllp.a-

As S*(R.) is dense Ly, for p < oo, (6) stays valid for every functionin f € Lp 4.
Note that T*, s € R, is closely connected with the Bessel differential operator

i2+(2a+1)£

B: )
t7ae t dt

a>-1/2, t>0.
It is known that the function u(t, s) = T5f(t), f € C*(R.) is the solution the following Cauchy problem, (see
[8, 25]):
Biu(t,s) = Bsu(t,s)
u(t,0)=f(t), % (t,0)=0"

The Bessel transform of order « > —1/2 of a function f € L1 , is defined by
(Bf)()) = f F(B) ja (M) £¥dt A0, @)
0

and the inverse Bessel transform is given by the formula
B'=2T(a+1))°B
where
ja(2) =2°T (a+ 1)z a(2), (a>-1/2, 0<z< o)

is the normalized Bessel function and J, (z) is the Bessel function of the first kind. From the following integral
presentation for j. (t) (see[13], Eq. 8.411(8))

I'(a+1)

=T 1 (1 - uz)ml/2 cos (tu) du (8
Vil (a+1/2) 4

Ja(t) =

we have
ia(t)] <1, teR 9)
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and the equality takes place only at t = 0. We also note that, by using (8) and the Riemann-Lebesgue Lemma,
we have

lim (Bf)(A) = 0.

Moreover, from (9) we have

(BOM < [ O] €7 dt < [f1.0
0

and thus ||Bf||e < [|f]|1,« is obtained.
The asymptotic formula for ], (r) is as follows ([28]):

Ja(r)=0(r™?), 1> . (10)
Then, the following asymptotic formula for j.(r) is obtained easily:
ja(r) =0 ?), 1> oo, (11)

The following Lemmas will be needed in proving the main results containing important properties of Bessel
transform.

Lemma 2.1 ([25]). Let f € L1,o then
(Bf(@t)(0) a7 (B (%), a>o.
Lemma 2.2 ([25], Bessel-Plancherel formula). Let f € L1,o N L3, then
1Bfll2,a = [fll2,a- (12)

The generalized convolution generated by the Bessel translation operator for f, g € L1, is defined by
Fog)(s) - [ TROg®) £ dt. (13)
0

The convolution operation makes sense if the integral on the right-hand side of (13) is defined; in particular,
iff, g € S*(R+), then the convolution f ® g also belongs to S* (R ).
Now, we list some properties of generalized convolution as follows: (see details in [25])

feog=gof,
(feg)eh=fe(g®h),
B(f®g)(\) = (Bf)(N)(Bg)(N)- (14)

Further, by using (6) and the Holder inequality it is not difficult to prove the corresponding Young inequality

If @ gllp,o < [Ifll1,allgllpos f€Li,ar §€Lpas 1<p<oo.

3 Main results and proofs

In this part, the L,,, boundedness of the square function generated by the Bessel differential operator is
proved by Bessel-Plancherel formula, thenits (1, 1) weak-type and Ly, », 1 < p < co boundedness is obtained
by using vector-valued functions.
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Definition3.1. Let & ¢ S*(R") and [ #(x)x***'dx = 0. The square function associated with the Bessel
0
differential operator is defined by

1/2
(SH() - ( [1Fee) |2‘”) (15)

where $¢(x) =t >* 7@ (%), t>0,a> -1

An important trend in mathematical analysis and applications is to investigate convolution-type operators.
Convolution type square functions have a very direct connection with L, -estimates by the Plancherel theorem.

For this reason, we have proved L, -boundedness of the square function (15), associated with the Bessel
differential operator by using Bessel-Plancherel formula (12) in the following.

Theorem 3.2. Let the square function Sf be defined as (15). If f € L, , then there is ¢ > 0 such that
ISfll2,a < clIf]l2,a-
Proof. Firstly, let f € S*(R.). By making use of the Fubini theorem and Bessel-Plancherel formula, we have

||$f%,a:f(f|(f®q§t)(x)|2dt) K20 gy

0
[ 16 @20 ) Pxtax
0

/
dt
- [Irooig.
0
r dt
= [ I8¢ e a0t
0

- [ [ B¢ e e tax
0o 0

Taking into account (14) and then using Fubini theorem, we get

ISf113.0 = ff|(Bf)(X)| 1(Bo) (022 dx L dt

/ (B ( / <B@><x>|2dt) X dx. (16)

Since &¢(x) = t >*7*¢ (%), then using Lemma 1, we have

(Bo)(x) = €272 (Ba(D))
_ t—Za—2t2a+2 (B@)(tX)
= (B®)(tx).
Thus

Zdt 2dl’

[ (Be)(0) [ (B)(t)]

(setr = tx)
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[ (Bo) )P

By taking this into account in the formula (16) and using (12) we have

||8f||2a *C/|(Bf)(x)|2 2a+1

= clfllz.a

where ¢ = [ |(Bq5)(7)|2@. Let us show that ¢ < co.
0 T

dr dr
[|(qu)( P f\(B@)( i /|<qu)< P
= Il + Iz.
Firstly, let us estimate I;. Since [ &(x)x***'dx = 0, we have
0
\(Béﬁ)(f)lﬁflé(t)llia(ft)*lltzo‘”dt
0
and taking into account (8) for the normalized Bessel function j (t) we get
rla+1) [ 12
[e% 2\~
|]a(7't) 1| S m (1 u ) |COS (Ttu) - 1| du
2r(a+l) [ 1/2 tu
(6% 2\~ . 2T
= 1- —)d
VAl (a+1/2) ) (1-w)" "sin ( 2 ) !

< C1t27'2.
Therefore,

((Bo)D)|<err? [ a(O)|e"dt = car’

0

and

1
117[\(545)( )|Zﬁ—c§f7‘*ﬂ:c3<oo
0

T

Now we estimate I. For this, we need the following asymptotic formula for j.(r), (cf.(11)):

cs, O<ux<l1 Ce
o (u)| < Cs . ou>1 S
u

—7F, C¢ =MaX{Cs4,Cs57 .
S uaJr%’ 6 { 4y 5}
2

Hence

I(B’@)(T)ISflé(t)llia(ft)\tza“dt

IN

C
[ o) — oo ae

7_Ot+ 3 t()t+ 3

|
Q
\%
|
[uny
~
N

— 735

17)
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and we have

T

r 1 d
Iz—[\w@)( P cer [T <o,
1

For arbitrary f € L,,,, we will take into account that the Schwartz space S* (R, ) is dense in L;,,. Namely, let
(fn) be a sequence of functions in S* (R, ), which converges to f in L o-norm.
From the "triangle inequality" (||ul|2.a — |[V||2.a)? < |Ju - V||3.o, we have

()00~ (510 = (| (@20 ()P 212 / (fm @ 2021122

< [ U020~ (we3) 0P

0

/\((fn ~fmy o 20P L.

and

(SFa 00~ (S (01 < [ 1~ i) @ 0P )7 = S(Fu — ) (1),
0

Hence, by (3.17) we get
ISfn = Sfmll2,0 < ||S(fn = fm)l|2,a < C|lfn = |2,

This shows that the sequence (Sf,) converges to (Sf) in L, —norm. Thus

||Sf‘|2,a < CHf”Z,oz ) Vf € LZ,(x

and the proof is complete. O

Now, taking into account vector-valued functions spaces, we will obtain L  (R+), 1 < p < oo boundedness
of the square function associated with the Bessel differential operator.

For this, necessary definitions and theorems are given below. The first theorem is well known as the
Marcikiewicz interpolation theorem for the vector-valued functions. The other theorem is the extension of
Benedek-Calderon-Panzone principle.

Let H be a seperable Hilbert space. We say that a function f defined on R, = [0, c0) and with values in
H is measurable if the scalar valued function (f(x), h) is measurable for every h in H, where (, ) denotes
the inner product of H and h denotes an arbitrary vector of H. Throughout the text, the absolute value |.|y
denotes the norm in H. Moreover, let H; and H, be two seperable Hilbert spaces, and B(H1, H») denote the
Banach spaces of bounded linear operators A from H; to H, endowed with the norm

|Ah|n, )
|hm,

|A|B(H1,H2) = |A‘ Squ(

Let Lp,o (R4, H) be the space of measurable functions f(x) from R, to H with the norm

oo 1/p
2a+1
11, . iy =||fp,a=( [ IrGol dx) , 1<p<oo
0

is finite. If p = oo, then the norm
Ifll;. r, iy = €sssup [f () |u
xeRn

is finite, (see for details, [28]; p.27-30, [29]; p.45-46 [31]; p.307-309).
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Theorem 3.3 ([31], Theorem 2.1, p.307). Let be A a sublinear operator defined on L%, (R+, H1), i.e., com-
pactly supported, bounded H,-valued functions, with values in M (R, H2), i.e., the space of measurable,
H,-valued function. Suppose in addition that for f ¢ Lo (R4, H1)

A{[AflH, > A} < erllfll0
and
NT{IAf 1, > A} < crllfllr,an
where ¢y and c; are independent of A and f. Then foreach 1 < p < r, we have that Af € Ly (R4, H>) whenever

feLpa(Ry,H1) and thereis a constant ¢ = c1,,p independent of f such that || Af||p,o < c||fllp,a-

Theorem 3.4 ([31], Theorem 2.2, p.307). Suppose a linear operator A defined in L%, (R4, Hy) and with values
in M (R, Hy) verifies
N{|Aflu, > A} | < cillfllr.a, some r>1

and if f has support in B(xo, R) and integral 0, then there are constants c,, c3 > 1 independent of f so that
[Af(x)|n, dx < c3lfl[1,0 (18)
R"/B(x0,c2R)

Then
M AIAflH, > At < cllflla-

Now let H; = R; and H; = Ly, (R4, % ), a > —1/2 be the Hilbert space of square integrable functions on the
half-line with respect to the measure % and the norm

- 1/2
e, = ( / |so<t)|2df) .
0

Since @ € S*(R*) and [ &(x)x***'dx = 0 then we define K(x) to be the H,-valued function given by
0

K(x) = £ 2972 (%) - B.(x).

So, the square function associated with the Bessel differential operator (Sf)(x) is the linear operator
(Af)(x) = (f ® K) (x) and Af takes its values in H,.
Thus, the condition (18) is equivalent to the following inequality

f ITK(x) - K(O)mx**dx <c, yeR,. (19)
x>2y
Now let us calculate (19). For this, since ¢ € S*(R"), we take

ct?

—(q+9) -
[2(x)| < c(1+x) , §=2a+2,0>0 and |[§:(x)| < (112

and for O < e < min {6, g} by using Holder inequality we have

[ IPKG) - K@)l dx = [ 5T P00 - @ (0l x T dx
x22y x22y

1/2 1/2
< ([ X(E*Q)X2a+1dx) (f |Ty¢t(x) _@t(x)|%lzxe+qxza+1dx

>2y >2y
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- 1/2
<cy? X<t f T & (x) - @t(x)\zdt xX*“dx
>2y 0
oo 1/2
cort| [ | [xriac) - eGP ax %
0 >2y
Since fra+
y X X €
Ted(Z)-d(=)|<c|=
Tie(h) - 2D <c(3)
then we get
f ITVK(x) - K(x)|m, x> dx
x=2y
1/2
<oy t‘”e f|T o(%) - o5y dx %
1/2 y -
<cy | [ T2 <cy i | [ ttdt dt
s (2|21, a) scy + el
0 y
<cy iy

Finally, by using Theorem 3.4, we see that the square function associated with the Bessel differential
operator Sf is of weak-type (1, 1) and since we have already verified the L, , (R )-boundedness then by the
Marcinkiewicz interpolation theorem for the vector-valued functions, (Theorem 3.3) Sf is also of type (p, p),
1 < p < 2 and consequently, by a simple duality argument Sf is of type (p,p), 1 < p < oc.
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