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Abstract: This paper is concerned with a compressible shear thickening fluid-particle interaction model for
the evolution of particles dispersed in a viscous non-Newtonian fluid. Taking the influence of non-Newtonian
gravitational potential into consideration, the existence and uniqueness of strong solutions are established.
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1 Introduction

We consider a compressible non-Newtonian fluid-particle interaction model which reads as follows

pt + (pu)x = 0’
p=2
(e + (ot pl =M+ ) = un], + (Pt = =nas - (6,0) € 21
- 1
(" 205 = g = o [ pan), W
2

ne+ (U= Dx)]x = 7xx

with the initial and boundary conditions

{(p’ u, 77)|[=0 = (PO; u0,770), XEQ; (2)
upn =0 =0, te[0,T],

and the no-flux condition for the density of particles
(nx +nPx)|o =0, te[0,T]. 3)

where p, u, n,P(p) = ap” denote the fluid density, velocity, the density of particle in the mixture and pressure
respectively, ¥ denotes the non-Newtonian gravitational potential and the given function é(x) denotes the
external potential. a > 0,v > 1,u1 > 0,p > 2,1 < g < 2, A > 0 is the viscosity coefficient and 8 # 0
is a constant. (2 is a one-dimensional bounded interval, for simplicity we only consider 2 = (0,1), 27 =
2 x[0, T].

In fact, there are extensive studies concerning the theory of strong and weak solutions for the multi-
dimensional fluid-particle interaction models for the newtonian case. In [1], Carrillo et al. discussed the
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global existence and asymptotic behavior of the weak solutions for a fluid-particle interaction model. Subse-
quently, Fang et al. [2] obtained the global classical solution in dimension one. In dimension three, Ballew
and Trivisa [3, 4] established the global existence of weak solutions and the existence of weakly dissipative
solutions under reasonable physical assumptions on the initial data. In addition, Constantin and Masmoudi
[5] obtained the global existence of weak solutions for a coupled incompressible fluid-particle interaction
model in 2D case followed the spirit of reference [6].

The non-Newtonian fluid is an important type of fluid because of its immense applications in many fields
of engineering fluid mechanics such as inks, paints, jet fuels etc., and biological fluids such as blood (see
[7]). Many researchers turned to the study of this type of fluid under different conditions both theoretically
and experimentally. For details, we refer the readers to [8-12] and the references therein. To our knowledge,
there seems to be a very few mathematical results for the case of the fluid-interaction model systems with non-
Newtonian gravitational potential. There are still no existence results to problem (1)-(3) whenp > 2,1 < g < 2
which describes that the motion of the compressible viscous isentropic gas flow is driven by a non-Newtonian
gravitational force.

We are interested in the existence and uniqueness of strong solutions on a one dimensional bounded
domain. The strong nonlinearity of (1) bring us new difficulties in getting the upper bound of p and the method
used in [2] is not suitable for us. Motivated by the work of Cho et al. [13, 14] on Navier-Stokes equations, we
establish local existence and uniqueness of strong solutions by the iteration techniques.

Throughout the paper we assume that a = A = 1. In the following sections, we will use simplified
notations for standard Sobolev spaces and Bochner spaces, such as L¥ = L¥ (2), Hj = Hy(£2), C(0, T; H) =
C(0, T; H(12)).

We state the definition of strong solution as follows:

Definition 1.1. The (p, u, ®,7) is called a strong solution to the initial boundary value problem (1)-(3), if the
following conditions are satisfied:
@
peL™(0, To; H' (), u e L=(0, To; WyP (2) n H*(2)),
neL=(0, Tx; H (2)), ¥ e L=(0, To; H*(22)), pr € L=(0, To; L*(£2)),
u € L*(0, To; Hy(£2)), W € L (0, ToH' (2)), /pur € L= (0, To; L*(2)),
e € L0, Ta; L2(2)), (2 + )T ux)x € L2(0, To; L2(2))
(i) For all p € L= (0, T+; H*(£2)), gt € L= (0, T+; L*(R2)), for a.e. t € (0, T), we have

t
f po(x, t)dx - f / (poe + pitpy) (X, s)dxds = / pop(x, 0)dx )
0 N

2 2

(iti) For all ¢ € L= (0, T+; WP (2) n H?(2)), ¢¢ € L*(0, T«; Hy(£2)), for a.e. t € (0, T), we have
t
[/)u¢(x’ t)dx—ff{pu2¢x—p%¢—k(u§+u1)p7ux</>x
2 0o N

+ (P +1)éx + nPr}(x, s)dxds = [ pottod(x, 0)dx 5)
0

(iv) For all 9 € L™ (0, T+; H*(£2)), 9: € L= (0, T.H*(R2)), for a.e. t € (0, T), we have
t t
_ = - 1
0[ Qf || "™ Ix (x, s)dxds Of Qf 4rg(p 0 Q/;)(21)()19()(, 0)dxds (6)
(v) Forall ¢ € L= (0, T; H*(£2)), ¢t € L=(0, T+; L*(2)), for a.e. t € (0, T), we have

fmp(x, t)dx—ff[n(u—qﬁx)—nx]wx(x,s)dxds:fnow(x,o)dx @)
(9] 0o N (9]
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1.1 Main results

Theorem 1.2. Let ;1 > O be a positive constant and & CZ(Q), and assume that the initial data (po, uo, n0)
satisfy the following conditions

0 < po € H'(2), uo € Ho(12) N H*(2),m0 € H*(12)
and the compatibility condition
p—2 1
—[(Uéx + ,ul)p2 uOX]X + (P(PO) + 770)X +10Px = pg (8 + BPx), (8)
for some g € L*(£2). Then there exist a T € (0, +o0) and a unique strong solution (p, u, n) to (1)-(3) such that

peL™(0, To; H (2)), pe € L(0, T.; L2 (2)),

ueL(0, Ta; WoP (2) n H2(2)), u € L*(0, T3 Hy (2)),

n € L= (0, Tu; H*(2)),me € L=(0, T3 L*(2)), )
W e L(0, T.; H*(2)), W € L= (0, T.H' (2)),

o € L(0, Tu; L2(2)), (U2 + 1) "™ uy)x € L*(0, Tu; L2(2)).

2 A priori Estimates for Smooth Solutions

In this section, we will prove the local existence of strong solutions. By virtue of the continuity equation (1)1,
we deduce the conservation of mass

fp(t)dx:fpodx:: mo, (t>0,mo >0).
(9} 2

Provided that (p, u, n) is a smooth solution of (1)-(3) and po > &, where 0 < § « 1 is a positive number. We
denote by Mo = 1 + pu1 + pu7* + |polm + |g|12, and introduce an auxiliary function

Z(t) = Osupt(l +[u(S)lyre +p()|mr + Ine($)lez + n($)lan +[v/pue(s)|12)-
<s<
Then we estimate each term of Z(¢t) in terms of some integrals of Z(t), apply arguments of Gronwall-type and
thus prove that Z(t) is locally bounded.

2.1 Estimate for |u| .,
0

By using (1)1, we rewrite the (1), as

p=2
pU + putlx + pW — [ (Ux + 1) 2 x|+ (P+n)x = —ndx. (10)

Multiplying (10) by u;, integrating (by parts) over {27, we have

2 : % xUx =- X X X X X .
Qfrfp|u[| dde+Qfo(uX+“1) Uxuxedxds Q/T/(,ouu + pWx + Px + nx + nPx)urdxds (11)

We deal with each term as follows:

uZ

p=2 1 p=2 1d d o2

f(u,z(+p1)p2 uxuxtdx:if(u,zc+u1)p2 (ui)[dx:ia /(f(s+p1)p2 ds)dx
Q 0 R 0
ul u+piy 5 5 5

p=2 p=2 2 13 )4 P

S+pu1) 2 ds= ftZdt:— Uy +p1)2 =7 ] 2> =|ux]” — —ps

( ) p[( x T p)?—pg] pI 1 PR

0 H1
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—Qfoqutdxds:b[T/Puxtdxds:(iQT/ Puxdxds—QfoPtuxdxds.

Since from (1)1 we get

P¢ = —yPuy — Pyu (12)

- //(nx + 0y )urdxds = % ff(nx + n®x)udxds - ff(nx + ndx ) udxds
O 2r 2r

_ﬂ(nX+n¢X)tudXdS = f nt(ux—@xu)dXdS
27

27
=- //[ﬁx —n(u — Px)](ux — Pxu)xdxds.

Or

Substituting the above into (11), we obtain
: 1
[ IWauds)ds + o [ ux(e)Pax
b
0 Q
sC+f|Pux|dx+ [[(|puuxut|+|pwxut|+|'yPu,2(|+|quux\)dxds
Q 2

+ ff (|nxuxx| + [P lx| + |17Xq§xxu|+|nuuxx|+|v7uzq§xx|+|nudixux|
Q7

+ [Prthx| + [nPxPrxtt] + [nPyuix|)dxds.

Using Young’s inequality, we obtain
t
[ Wauds)lids + us (O,
0

t
<C+ Cf (Il [l x| 2o + pleoe B |£ + [Ploe x|y + [Px|o2 utl e utx] o
0
2
+ [l [tz + [meloz [uxlee + x| fule + [nloe[ulpe [ + [n]z= |u|z~

b
+ [lzee [l |tx|ie + [lLe [Uxx|r2 + |nlLe ]z + ]z [ux|ze )ds + CIP(8)[7;" . (13)

On the other hand, multiplying (1); by ¥ and integrating over (2, we get

f 0| %dx = — f (104|920 ) dx = —4mg( f pdx - mo f wdx)
2 2 2

0

1 1
< 8mgmMo|¥|p~ < 8wgMo|Wx|La < a|¢x|‘L’q + B(Sw.gmo)p

Then we have
[ [@y|?dx < C(mp), 1<q<2.
Q

Differentiating (1)3; with respect to x, multiplying it by ¥, and integrating over (2, we have

/(lWx‘q_sz)x!pxde:—4ngpx!pxdx.
2 2

By virtue of

J s = [ (" [(a - 209 + 0 1w
0 n
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>C / 0T 202 dx > |92 -
(9]

> C|WXX|Z;2|WXX|]%2 2> C‘WXX|ZZ

and
lrg f plidx < C f |oxl [l < Cloal?s + CI%, < Cloal?s + C(2)] Tl
Q Q
Therefore,
Wralpz < CZ (2). (14)
We deal with the term of |uxx| 2. Notice that
p=2
2

[ + 1) 5w |2 g0y -
Then
|wxx| < Clpus + putty + px + (P + n)x + n®y|.
Taking the above inequality by L? norm, we get
|uxx|r2 < Clpue + puux + p@x + (P + n)x + ndx|12
< C(\p\L%MI\/ﬁusz + |plreeulres [ux|rz + |plr2 [Pxx|r2 + [Px|r2 + [nx|r2 + [nlr2|@x|r2)-
Hence, we deduce that
|2 < CZP*GH3) (). (15)
Moreover, using (1)1, we have

t
0

P(O)]7T sf|P(t)|2dx:/|P(O)|2dx+f%(/P(s)zdx)ds
(9] 2 2

t
< [ |P(O)[*dx +2 P(s)vp" (= pxu — puy)dxds
[rovaf ]

9]

t
<C+C [ Plu=Ip}=" ol [uslurds
0

t
<C(1+ f Z(s)ds). (16)
0
Combining (13)-(16), yields
t t ,
f|\/ﬁut(s)|fz(s)ds+\ux(t)|€p gC(1+/Zmax(?27+3)(s)ds), 17)
0 0

where C is a positive constant, depending only on M.

2.2 Estimate for |p|m
From (1)s, taking it by L? norm, we get

x|z < [me + (n(U = Px) )x12
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< [melez + ez [ulze + Cliclzz + [nlg [ux]ze + Clula
< CZ*(t). (18)

Multiplying (1)1 by p, integrating over {2, we have

1d
Ea_/\ﬂ|2d5+/(/)u)xpdx=0-
9 2

Integrating by parts, using Sobolev inequality, we deduce that

d
SO < [ lusllolPdx < el (19)
9]

Differentiating (1), with respect to x, and multiplying it by px, integrating over (2, using Sobolev inequality,
we have

d 3
a]|PX|2dX:_f[EUX(PX)2+PPX“XX](t)dX
Q Q

2
< Cl|ux|z=|px|zz + |plre=|px|r2 [Uxx|r2 ]

< Clpli [z (20)

From (19)and (20), by Gronwall’s inequality, it follows that

t t
sup |p(t)| < |polin exp{C/|uxx|des} gCexp(CfZmax(§+1’3)(s)ds). 1)
o<t<T
- 0 0

Besides, by using (1)1, we can also get the following estimates:

Ipe(O)z2 < px(6)]z [u() = + [p(0) = [ux ()12 < CZ*(2). (22)

2.3 Estimate for |n¢|;> and |n|m

Multiplying (1)4 by 7, integrating the resulting equation over {27, using the boundary conditions (3), Young’s
inequality, we have

t
1
Of me(s)liads + S (O < fo (] + In@one]dxds

t t t
1
<7 [ )liads+C [ usdbrlnfinds+C [ nfin+C
0 0 0
1 t t
sZf|nx(s)|fzds+C(1+fZ4(t)ds). 23)
0 0

Multiplying (1)4 by ¢, integrating (by parts) over 27, using the boundary conditions (3), Young’s inequality,
we have

t
1
[ ims)ids + SO < [[ 1n(u-@x)mddxds
0 Qr

<

I

t t t
f\nxt(s)|fzds+cf|n|,2{1\ux|fpds+cf|n|§1ds+c
0 0 0
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<

I

t t
f|nxt(s)|izds+c(l+fZ4(t)ds). 4)
0 0

Differentiating (1), with respect to t, multiplying the resulting equation by 7, integrating (by parts) over {27,
we get

t
1
O] mee()[F2dls + S ne(E) = fo (n(u - x))enuedxds

< Cor [ (meun + Inebene] + ipaten] + lpuend yxds
Q7

t
<C(1+ f(lml%zlluxliv + [nelZ2 + x|z el 22 + 0| [ne| 2 ) dx)
0

t t
1 1
w5 [ lmelt+ 5 [ el
0 0

t
<C(1+ f 72776 (5)ds). (25)
0
Combining (23)-(25), we get
t t
i + el + [ (il + el + ) ()ds < €1+ [ 27 (5)ds). (26)
0 0

2.4 Estimate for |\/pug|;-

Differentiating equation (10) with respect to ¢, multiplying the result equation by u;, and integrating it over
2 with respect to x, we have

1d p=2
2dt9fp|u[|2dx+9[[(u,2(+m)pz ux]tuxtdx

S /[(pu)x(uf + UxUt + Uyly) — puxuf — pWxtt — (P +m)eUxe — nePxute]dx. 27
2

Note that

p=2 = p=2
[(ui + 1) 7 w] ue = (u + 1) 7 (D= 1) (Ui + pia e > 1 Uy

Combining (12), (27) can be rewritten into

1d

2 2
—— u dx+/ Uyxt|“dx
2at J plul |uxe|

2
<2 [ plullucusedx + [ plulusuddx + [ plulutecluddx
2 2 2

v [ pluluslluldx + [ pludluldx + [ plu#xlfusldx

(9] 2 2
+ [ plusluePax+ [ slPluusddx+ [ Plfulluxdx
(9] (9] (9]

12
+ [ nlluxdlax+ [ indixudax + [ p@eluddx = Y1 (28)
2 o 2 =1
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By using Sobolev inequality, H6lder inequality and Young’s inequality, (14),(15), we estimate each term of I;
as follows

1 1
IL =2 / plul[uel[uxeldx < 2|l [ulo= [\/pute] 2 [uuxe 1> < CZ° (£) + ;quz\iz
9]

1
I = [ plulluueldx < |olfulss sl [ /puele < €2° ()
2

_ 2 3 2 max(2+5,7)
I = | plul"|uxx|[ueldx < |p|fe [U|Lo [Uxx|r2[\/pUe] 2 < CZ7700 (1)
7]

1
I = f plul? el [ttxeldx < [olzee ol utx] 2 el 12 < CZ°(E) + 7\uxt|fz
Q

1 q
I = [ plullsel e < Joffc o= Bsclal e < €25 ()
(9]

244 1 2
Ig = / plul[x||uxe|dx < |plre [ULe [Prox|p2[uxe|2 < CZa 7 () + ;|uxt|LZ
7)

p
I = [ pluudax < fusli|y/pucls < €272 (¢)
2

1
Iy - f 1Pl el dx < CIPli urlusliele < CZ272(6) + = futel
(9]

1
I = [ 1Pxlullusedx < Palgzul el < €277 (8) + = el
2

1
ho = [ Indluseldx < lndialutelzz < €2 (8) + = el
(9]
1
I = f [1e] [ ®x][ue|dx < |melpz ||z [uel < CZ7(E) + 7|uxtlfz
2

1
I = [ pellueldx < Clolj= Wseluz | /puls
2

where C is a positive constant, depending only on Mp.
Next, we deal with the term |@y|;2 of I1,. Differentiating (1); with respect to ¢, multiplying it by ¥,
integrating over (2 and using Young’s inequality, we obtain

f (104|920 ) Wyedx = —limg / peldx.
(9] (9]

By virtue of

f (0] 97 205 ) e = f (1974 (q - 2)@2 + w2 w2 dx
2 2
>C / ]I 2 0 dx > w922 |0 22
(9]

> ClWxx| % el

and
g f peldx < C / Ipel|Zeldx < Clpels + Cloel < ClorlZs + C(&) e,
2 2

_pC-0)
then |Wy|. < CZ* = (t). Therefore,

1 4+P(Z*‘I)
I = [ ploslluldx < Clofi[@seluz /s < 2775 (8).
(%}
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Substituting I;(j = 1, 2, ..., 12) into (28), and integrating over (r, t) c (0, T) on the time variable, we have

t t
|\/ﬁut(t)|fz+[|uxt|%z(s)ds§\\/ﬁut(r)ﬁz+C[Zmax(27p+4’8)(s)ds. (29)

To obtain the estimate of |/puc(t)|;., we need to estimate lirr(l) |\/put(7)|7.. Multiplying (10) by u; and
T —>
integrating over (2, we have

_ p=2 2
fplutldeS2f(p|u|2|ux|2+p@x|2+p = [z + 1) 7 ux] + (P4 m)x + 0 )dx.
2 (%

According to the smoothness of (p, u, n), we obtain

. - p=2 2
lmg)f (plulluxl? + plol? + p7' = [(ux + p12) 7 ux] + (P+n)x + 0| )dx
(%

_ p=2 2
= f(pIHO\Z\uo)(IZ+po|Wx|2+pol|—[(u(23x+m) Z Uox ]+ (Po +no)x +no®x| )dx
2

< |pol= [uol = [ox|z2 + ol |Px|7> + |gl7> + Bl®x|72 < C.

Therefore, taking a limit on 7 in (29), as 7 — 0, we conclude that

t t
/e (£)[2: + f e (s)ds < C(1 + f 77 (GH48) (5)ds), (30)
0 0

where C is a positive constant, depending only on Mo.
Combining the estimates of (15), (18), (21), (22), (17), (26), (30) and the definition of Z(t), we con-
clude that
t
Z(t) < Cexp(C / 77448 (5)ds), (31)
0

where C, E are positive constants, depending only on My. This means that there exist a time T; > 0 and a
constant C > 0, such that

€ss OS}II; (ol + |u|Wé,an2 +[nlez + ez + |\/pudiz + |pelr2)
<t<Ily

T,

# [ /Al + sl + e + il + el )ds < C. (32)
0

3 Proof of the Main Theorem

In this section, our proof will be based on the usual iteration argument and some ideas developed in [13, 14].
Precisely, we construct the approximate solutions, by using the iterative scheme, inductively, as follows: first
define u° = 0 and assuming that u*~! was defined for k > 1, let p, u*, n* be the unique smooth solution to
the following problems:

k k. k-1 k. k-1
pt+pxt +puy =0

k. k k. k-1 k k. k k =2 k k k

purtpu lux+pu7x_[((ux)2+ﬂl) 2 ux]x+Px+77x:—’f] Dy
kg2, k k

(|g/x|q WX)X:l”Tg(p _mO)

k k, k-1 k
n + (77 (u _QSX))X = Txx
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with the initial and boundary conditions
kK k Kk
(p(’u 51 )|t:0:(PO’UO,770)
k k, k
Ulon=(nx+1 Px)on =0

with the process, the nonlinear coupled system has been deduced into a sequence of decoupled problems
and each problem admits a smooth solution. And the following estimates hold

k k
€ss sup (|P | + |u |W1PmHz + |77 g2 + |77t|L2 + [V pkug |2 + |pe )
0<t<Ty
T,
k k k k k
o [ OVPub R+ s + s + e + s < C, )
0

where C is a generic constant depending only on My, but independent of k.
In addition, we first find pk from the initial problem

pe+u ks =0, and  peo = po
with smooth function u*~!, obviously, there is a unique solution p* to the above problem and also by a
standard argument, we could obtain that

p(x,t) > sexp[ - / lux (., s)|r=ds] > 0, forall ¢e (0, Ty).
0

Next, we have to prove that the approximate solution ( pk ,uk, nk) converges to a solution to the original
problem (1) in a strong sense. To this end, let us define

ﬁk+1 _ pk+1 _ pk, ﬂk+1 _ uk+1 _ uk’ g[_/k+1 ![/k+1 !Z/k, —k+1 k+1 _ 77k’

then we can verify that the functions 5+, #**!, 7**! satisfy the system of equations
—k+1 +( —k+1 k) + (pku )x — 0 (34)
k+1 - k+1 klkkl k+1 k+1 kN2 =2k
P iy ([((u+)+u)2u+]—[((ux) +p1) 2 Uxlx)
_ k+1(ut " ukuﬁ i Wk+1) (Pk+1 P )x +p (u W-)l(wl) _ 7-bl:Jrl _kH@x (35)
(|d—/k+1|q 2 k+l (|d—/ |q Zw )X —47Tg-k+l (36)
it (' )x+(77k+1(u —Bx))x =y (37)

Multiplying (34) by 5<*1, integrating over 2 and using Young’s inequality, we obtain

d | k12 k412 k) sk g kel
i < 13 ke + 10" 88216 2
k _k ~k+1,2
< C|uxx|L2‘p +1| + C<|p |H1| +1|L2 + <|ux|L2
_k _
< Celd MR + Cluklze, (38)

where C, is a positive constant, depending on Mo and ¢ forall £ < T; and k > 1.
Multiplying (35) by i "+, integrating over (2 and using Young’s inequality, we obtain

1d p=2 p=2 _
pa ] o [ ™ ) T = [ +100) T k)i e
0
~k k k. k k =k k ki =k ky =k, k= k
< c[ (17l ] ™ DL+ [P = PR 1|

+ |p ||Wk+1Huk+l| + |nk+1||uk+l| + |nk+1¢XHuk+l|)dX. (39)
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Let ,
o(s) = (s + )7 s,
then - .
o' () = (824 1) T8) = (24 ) T (0~ DS + ) 2,7

We estimate the second term of (39) as follows

f (LCUE) 4 ) T ™ = () + ) 5 ], )

[f (0uk 1 (1 - 0)ub)dojakt Pdx > f\uk“z

Similarly, multiplying (36) by #**+!

[ Qw20 = (0] i = 4mg [ 70 ax,
2

, integrating over 2, we get

(]
since
f [|Ll7,f+l|q_2&17,lf+1 _ |y./i<|q—2u7;<]g-7)l(<+1dx
(7]
1
= (q-1) [ ([ om 4 (1-0)rki o) (2 ) dx
2 0
and
1 1 1
k+1 kig-2
0T 4 (1 - )wk| de:[ do
Of . i S lowrt + (1 - 9)wk
1
> [ do = .
J (o + ) (| + o)) 29
Then
k+1 q-2 k k+1 1 k+1
e - dx > [ (@)’
Qf[ %12 (M ()1 + [T (8|1 )27

That means (41) turns into

f(wk+1) dX< C|pk+1 12}

Substituting (40) and (42) into (39), using Young’s inequality, yields

7/ k+1|uk+1|2dx+f|uk+12
dt

< C(|pk+1‘L2|uX[|L2|uk+1 k+1 k+1 —k+1 k+1

k
|2 +1p +1|

|22 [¥x

|2 |ux|LP |uxx|L2 x|z + 1P |2 |t

K K K K
[P = Yt o+ ] ILzlv 8|2 e [ 12+ [ e [0 o2

k+1 k+1 k+1

+7 |elux [ + 17 |L2\u |L2)

< Bg(t)‘pk+1 2 4 C(| / uk 2 + |7]k+1 2 )+ C|uk+1|iz’

where B (t) = C(1 + luk (t)]2.), for all t < T and k > 1. Using (33) we derive

f B¢(s)ds < C+Ct.
0
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(40)

(41)

dx.

(42)

(43)
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Multiplying (37) by 7!, integrating over (2, using (33) and Young’s inequality, we have

Zdtf‘ k+1|2dx+f|nk+l|2dx

< [ 7 - 74 + [ (I 1)l lx

k+1 k+1 k+1 k+1|

L 2|u = Dxre= x| +|77x|L2|u L= [z + |"7 |L°°|ux|L2|77

k12 L2, clakz. (44)

< i
<Celn

LZ
2 + (i
Collecting (38), (43) and (44), we obtain

-k k k k k
217 O + WA O 7 OR:) + 17 (O + 7

<Ec(OF O + OV ka2 + Cel 5 + ¢laxli, (45)

where E(t) depends only on B(t) and C¢, forall t < T1 and k > 1. Using (33), we have

t
[ Ec(s)as < c+cct.
0

Integrating (45) over (0, t) c (0, T1) with respect to t, using Gronwall’s inequality, we have

Ol + V1 a (O + 17 (O] + / 7 (6)[Lads + / i [f2ds

< Cexp(Ct) ] (Voka(s)F: + |k (s)[F:)ds. (46)
0

From the above recursive relation, choose ¢ > 0and 0 < T, < Ty such that Cexp(C¢T+) < 5 L, using Gronwall’s
inequality, we deduce that

K

S[sup (|60 + VR 1a T (6] + 17 (6)]7de

k=1 0<t<T,
f @ (O + [ AT (OlFae] < “7)

Since all of the constants do not depend on 4, as k — oo, we conclude that sequence ( o<, uk, nk) converges to
a limit ( pé, u5, 775) in the following convergence

p—p° in L%(0, T.;L*(Q)), (48)
u—u’ in L0, T.;L*(R2)) nL*(0, T.; Hy(2)), (49)
n—n" in L=(0, T+;L*(2)) n L*(0, T.; H(2)), (50)

and there also holds

€ess OS?I; (|P g + |u |W1PnHz + |77 g2 + |77t |2 + |V poug |L2 + |Pt |z2)
<t<T;

[ (VA W1+ el + |l + Il 2 + el )ds < . (51

For each small § > 0, let pg =J5 * po + 8, Js is a mollifier on §2, and ug € Hé((Z) n HZ(Q) is a smooth solution
of the boundary value problem

{ [(@B0)? +) ]+ (PUp3) +18), +a = (461 (8" + 522), 52
u6(0) = ug(1) =0,
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where g° € C5° and satisfies |g°];2 < |g]r2, 51i%1+ lg° - gl = 0.
We deduce that ( p5, u’, 175) is a solution of the following initial boundary value problem

pt + (Pu)x = 09

p=2
(pu)e + (pu”)x + pB = A[ (i + 1) 7 U]+ (P +0)x = —nx,

- 1
(sl = 4 (o = o | e,
Q

ne + (n(u = Dx))x = Nxxs

5 5 5
(p’ u, n)‘f=0 = (PO’ Uop, 770)’
Ulon =Plon = (x + 1Px)|ss2 = 0,

wherepgzé,p>2,1<q<2.

By the proof of Lemma 2.3 in [11], there exists a subsequence {ug"} of {ug}, as ; — 0",ud - uo in H3(02)n
H* (), —(|ug§(|p‘2ug’;()x — —(JuoxP"*uox)x in L*(£2), Hence, uo satisfies the compatibility condition (8) of
Theorem 1.2. By virtue of the lower semi-continuity of various norms, we deduce that (p, u, n) satisfies the
following uniform estimate

€ss OSFF} (g + |u|w;-PmHz +[nlg2 + |melre + [/puelr2 +|pelr2)
<t<Ty

T,
+ [ (AUl + el + sl + Il + el 2)ds < €, (53
0

where C is a positive constant, depending only on M.
The uniqueness of solution can be obtained by the same method as the above proof of convergence, we
omit the details here. This completes the proof.
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