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Abstract: A simple graph G = (V , E) admits an H-covering, if every edge in E(G) belongs to a subgraph
of G isomorphic to H. A graph G admitting an H-covering is called an (a, d)-H-antimagic if there exists a
bijective function f ∶ V(G) ∪ E(G) → {1, 2, . . . , ∣V(G)∣ + ∣E(G)∣} such that for all subgraphs H′ isomorphic
to H the sums∑v∈V(H′) f(v) +∑e∈E(H′) f(e) form an arithmetic sequence {a, a + d, . . . , a + (t − 1)d}, where
a > 0 and d ≥ 0 are integers and t is the number of all subgraphs of G isomorphic to H. Moreover, if the
vertices are labeled with numbers 1, 2, . . . , ∣V(G)∣ the graph is called super. In this paper we deal with super
cycle-antimagicness of subdivided graphs. We also prove that the subdivided wheel admits an (a, d)-cycle-
antimagic labeling for some d.
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1 Introduction
Let G = (V , E) be a �nite simple graph with the vertex set V(G) and the edge set E(G). An edge-covering of
G is a family of subgraphs H1,H2, . . . ,Ht such that each edge of E belongs to at least one of the subgraphs
Hi, i = 1, 2, . . . , t. Then it is said that G admits an (H1,H2, . . . ,Ht)-(edge) covering. If every subgraph Hi is
isomorphic to a given graphH, then the graph G admits anH-covering. A bijective function f ∶ V(G)∪E(G) →
{1, 2, . . . , ∣V(G)∣+∣E(G)∣} is an (a, d)-H-antimagic labeling of a graph G admitting an H-coveringwhenever,
for all subgraphs H′ isomorphic to H, the H′-weights

wtf (H′) = ∑
v∈V(H′)

f(v) + ∑
e∈E(H′)

f(e)

form an arithmetic progression a, a + d, . . . , a +(t −1)d, where a > 0 and d ≥ 0 are two integers, and t is the
number of all subgraphs of G isomorphic to H. Such a labeling is called super if the smallest possible labels
appear on the vertices. A graph that admits a (super) (a, d)-H-antimagic labeling is called (super) (a, d)-H-
antimagic. For d = 0 it is called H-magic and H-supermagic, respectively.
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The H-(super)magic labelings were �rst studied by Gutiérrez and Lladó [1] as an extension of the edge-
magic and super edge-magic labelings introduced by Kotzig and Rosa [2] and Enomoto, Lladó, Nakamigawa
and Ringel [3], respectively. In [1] are considered star-(super)magic and path-(super)magic labelings of some
connected graphs and it is proved that the path Pn and the cycle Cn are Ph-supermagic for some h. Lladó and
Moragas [4] studied the cycle-(super)magic behavior of several classes of connected graphs. They proved that
wheels, windmills, books and prisms are Ch-magic for some h. Maryati, Salman, Baskoro, Ryan and Miller
[5] and also Salman, Ngurah and Izzati [6] proved that certain families of trees are path-supermagic. Ngurah,
Salman and Susilowati [7] proved that chains, wheels, triangles, ladders and grids are cycle-supermagic.
Maryati, Salman and Baskoro [8] investigated the G-supermagicness of a disjoint union of c copies of a graph
G and showed that the disjoint union of any paths is cPh-supermagic for some c and h.

The (a, d)-H-antimagic labeling was introduced by Inayah, Salman and Simanjuntak [9]. In [10] there
are investigated the super (a, d)-H-antimagic labelings for some shackles of a connected graph H. In [11]
was proved that wheels are cycle-antimagic. In [12] it was shoved that if a graph G admits a (super) (a, d)-H-
antimagic labeling, where d = ∣E(H)∣ − ∣V(H)∣, then the disjoint union of m copies of the graph G, denoted
by mG, admits a (super) (b, d)-H-antimagic labeling as well. Rizvi, et al. [13] proved the disjoint union of
isomorphic copies of fans, triangular ladders, ladders, wheels, and graphs obtained by joining a star K1,n

with K1, and also disjoint union of non-isomorphic copies of ladders and fans are cycle-supermagic.
In this paper wewill discuss a super cycle-atimagicness of subdivided graphs.We show that the property

to be super (a, d)-H-antimagic is hereditary according to the operation of subdivision of edges.We prove that
if a graph G is super cycle-antimagic then the subdivided graph S(G) also admits a super cycle-antimagic
labeling. Moreover, we show that the subdivided wheel is super (a, d)-cycle-antimagic for wide range of
di�erences.

2 Subdivided graphs
Let us consider the graph S(G) obtained by subdividing some edges of a graph G, thus by inserting some
new vertices to the original graph G. Equivalently, the graph S(G) can by obtained from G by replacing some
edges of G by paths. The topic of subdivided graphs has been widely studied in recent years, for example see
[14].

Let G be a graph admitting H-covering given by t subgraphs H1,H2, . . . ,Ht isomorphic to H. Let us
consider the subgraphs SG(Hi), i = 1, 2, . . . , t, corresponding to Hi in S(G). If these subgraphs are all
isomorphic to a graph, let us denote it by the symbol SG(H), then the graph S(G) admits SG(H)-covering.

The next theorem shows that the property of being super (a, d)-H-antimagic is hereditary according to
the operation of subdivision of edges.

Theorem 2.1. Let G be a super (a, d)-H-antimagic graph and let Hi, i = 1, 2, . . . , t, be all subgraphs of G
isomorphic to H. If SG(Hi), i = 1, 2, . . . , t, are all subgraphs of S(G) isomorphic to SG(H) then the graph S(G)
is a super (b, d)-S(H)-antimagic graph.

Proof. Let G be a super (a, d)-H-antimagic graph and let Hi, i = 1, 2, . . . , t, be all subgraphs of G isomorphic
to H. Let f be a super (a, d)-H-antimagic labeling of G, thus f ∶ V(G) ∪ E(G) → {1, 2, . . . , ∣V(G)∣ + ∣E(G)∣}
such that the vertices of G are labeled with numbers 1, 2, . . . , ∣V(G)∣ and the weights of subgraphs Hi, i =
1, 2, . . . , t,

wtf (Hi) = ∑
v∈V(Hi)

f(v) + ∑
e∈E(Hi)

f(e)

form an arithmetic progression a, a + d, . . . , a + (t − 1)d, where a > 0 and d ≥ 0 are two integers, i.e.,

{wtf (Hi) ∶ i = 1, 2, . . . , t} = {a, a + d, . . . , a + (t − 1)d}. (1)
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Let us consider the graph S(G) obtained from G by inserting p new vertices, say v1, v2, . . . , vp, to the edges
of G. Let SG(Hi), i = 1, 2, . . . , t, be all subgraphs of S(G) isomorphic to SG(H). Then S(G) admits the SG(H)-
covering. Let r denote the number of new vertices inserted to every subgraph SG(Hi), i = 1, 2, . . . , t.

We de�ne a labeling g of S(G) in the following way

g(v) =
⎧⎪⎪⎨⎪⎪⎩

f(v), if v ∈ V(G),
∣V(G)∣ + j, if v = vj, j = 1, 2, . . . , p.

Evidently, the vertices of S(G) are labeled with distinct numbers 1, 2, . . . , ∣V(G)∣ + p.
Let us choose an orientation of edges in G. According to this orientation we orient the edges in S(G). To

an arc uv in G there will correspond the oriented path Puv with initial vertex u and terminal vertex v in S(G).
The arcs of S(G) we label such that

g(uw) =
⎧⎪⎪⎨⎪⎪⎩

f(uv) + p, if u ∈ V(G) and uw is an arc on Puv,
∣V(G)∣ + ∣E(G)∣ + 2p + 1 − j, if u = vj, j = 1, 2, . . . , p.

The edges are labeledwith distinct numbers from the set ∣V(G)∣+p+1, ∣V(G)∣+p+2, . . . , ∣V(G)∣+∣E(G)∣+2p.
Now we evaluate the weights of subgraphs SG(Hi), i = 1, 2, . . . , t, under the labeling g. Immediately using
the structure of the subgraph SG(Hi) and the de�nition of the labeling g we get

wtg(SG(Hi)) = ∑
v∈V(G(Hi))

g(v) + ∑
e∈E(G(Hi))

g(e)

= ∑
v∈V(Hi)

g(v) + ∑
vj∈V(G(Hi))

g(vj) + ∑
e∈E(P(uv)),
uv∈E(Hi)

g(e)

= ∑
v∈V(Hi)

f(v) + ∑
vj∈V(G(Hi))

(∣V(G)∣ + j) + ∑
e∈E(Hi)

(f(e) + p)

+ ∑
vj∈V(G(Hi))

(∣V(G)∣ + ∣E(G)∣ + 2p + 1 − j)

= ∑
v∈V(Hi)

f(v) + ∑
e∈E(Hi)

f(e) + ∣E(Hi)∣p + (2∣V(G)∣ + ∣E(G)∣ + 2p + 1)r

=wtf (Hi) + ∣E(Hi)∣p + (2∣V(G)∣ + ∣E(G)∣ + 2p + 1)r.

As ∣E(Hi)∣ = ∣E(H)∣ for i = 1, 2, . . . , twe obtain that the weights of SG(Hi) depend on the weights of Hi which
form an arithmetic sequencewith a di�erence d, see (1). This implies that the set of weights SG(Hi) also forms
an arithmetic sequences with the di�erence d and the initial term a + ∣E(H)∣p + (2∣V(G)∣ + ∣E(G)∣ +2p +1)r.
This concludes the proof.

Combining Theorem 2.1 with some results on (a, d)-cycle-antimagic graphs we immediately obtain new
classes of graphs that are (b, d)-cycle-antimagic. Note, that it is not needed to consider only regular sub-
divisions of graphs.

3 Subdivided wheels
A wheelWn is a graph obtained by joining a single vertex to all vertices of a cycle on n vertices. The vertex of
degree n is called the central vertex, or the hub vertex, and the remaining vertices are called the rim vertices.
The edges adjacent to the central vertex are called spokes and the remaining edges are called rim edges. Let
us denote by the symbolWn(r, s) the graph obtained by inserting r, r ≥ 0, new vertices to every rim edge and
s, s ≥ 0, new vertices to every spoke in the wheel Wn. Note, that the graph isomorphic to subdivided wheel
Wn(r, 0) is also known as the Jahangir graph Jn,r+1.

In [11] it was proved that wheels are cycle-antimagic.
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Theorem 3.1 ([11]). Let k and n ≥ 3 be positive integers. The wheel Wn is super (a, 1)-Ck-antimagic for every
k = 3, 4, . . . , n − 1, n + 1.

Immediately using Theorem 2.1 we obtain that subdivided wheels admit cycle-antimagic labeling with
di�erence 1.

Corollary 3.2. Let k, n ≥ 3, r ≥ 0, s ≥ 0 be integers. The subdividedwheel Wn(r, s) is super (a, 1)-Ck+(k−2)r+2s-
antimagic for every k = 3, 4, . . . , n − 1, n + 1.

In the next theorem we will deal with the cycle-antimagicness of the subdivided wheel Wn(1, 1). We prove
that this graph admits a super (a, d)-C6-antimagic labeling for d ∈ {0, 1, . . . , 5}.

Theorem 3.3. The subdivided wheel Wn(1, 1), n ≥ 3, is super (a, d)-C6-antimagic for d ∈ {0, 1, . . . , 5}.

Proof. Let us denote the vertices and edges of Wn(1, 1) such that

V(Wn(1, 1)) ={c, vi , ui ,wi ∶ i = 1, 2, . . . , n},
E(Wn(1, 1)) ={cwi ,wivi , viui , uivi+1 ∶ i = 1, 2, . . . , n},

where the indices are taken modulo n.
For d = 1 the result follows from Corollary 3.2. For d ∈ {0, 2, 3, 4, 5} we de�ne a total labeling gd ∶

V(Wn(1, 1)) ∪ E(Wn(1, 1)) → {1, 2, . . . , 7n + 1} in the following way.

gd(c) = 1, for d = 0, 2, 3, 4, 5,

g0(wi) =
⎧⎪⎪⎨⎪⎪⎩

2, for i = 1,
n + 3 − i, for 2 ≤ i ≤ n,

g0(ui) = 3n + 2 − 2i, for 1 ≤ i ≤ n,

g0(vi) =
⎧⎪⎪⎨⎪⎪⎩

n − 1 + 2i, for 2 ≤ i ≤ n,
3n + 1, for i = 1,

g0(cwi) = 3n + 1 + i, for 1 ≤ i ≤ n,

g0(wivi) =
⎧⎪⎪⎨⎪⎪⎩

5n + 1 + i, for 1 ≤ i ≤ n − 1,
5n + 1, for i = n,

g0(viui) =
⎧⎪⎪⎨⎪⎪⎩

6n + 3 − i, for 2 ≤ i ≤ n,
5n + 2, for i = 1,

g0(uivi+1) =
⎧⎪⎪⎨⎪⎪⎩

6n + 3 + i, for 1 ≤ i ≤ n − 2,
5n + 3 + i, for n − 1 ≤ i ≤ n,

g2(wi) = 3n + 2 − i, for 1 ≤ i ≤ n,
g2(ui) = 1 + 2i, for 1 ≤ i ≤ n,
g2(vi) = 2i, for 1 ≤ i ≤ n,

g2(cwi) = 4n + 2 − i, for 1 ≤ i ≤ n,
g2(wivi) = 5n + 2 − i, for 1 ≤ i ≤ n,

g2(viui) =
⎧⎪⎪⎨⎪⎪⎩

5n + 2 + i, for 1 ≤ i ≤ n − 1,
5n + 2, for i = n,

g2(uivi+1) = 6n + 1 + i, for 1 ≤ i ≤ n,

g3(wi) =
⎧⎪⎪⎨⎪⎪⎩

2, for i = 1,
n + 3 − i, for 2 ≤ i ≤ n,
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g3(ui) = 3n + 2 − i, for 1 ≤ i ≤ n,

g3(vi) =
⎧⎪⎪⎨⎪⎪⎩

2n + 1, for i = 1,
n + i, for 2 ≤ i ≤ n,

g3(cwi) =
⎧⎪⎪⎨⎪⎪⎩

4n + 1, for i = 1,
3n + i, for 2 ≤ i ≤ n,

g3(wivi) =
⎧⎪⎪⎨⎪⎪⎩

4n + 2, for i = 1,
5n + 3 − i, for 2 ≤ i ≤ n,

g3(viui) = 5n + 2i, for 1 ≤ i ≤ n,
g3(uivi+1) = 5n + 2i + 1, for 1 ≤ i ≤ n,

g4(wi) =
⎧⎪⎪⎨⎪⎪⎩

2, for i = 1,
n + 3 − i, for 2 ≤ i ≤ n,

g4(ui) = n + 2i, for 1 ≤ i ≤ n,

g4(vi) =
⎧⎪⎪⎨⎪⎪⎩

3n + 1, for i = 1,
n − 1 + 2i, for 2 ≤ i ≤ n,

g4(cwi) = 3n + 1 + i, for 1 ≤ i ≤ n,

g4(wivi) =
⎧⎪⎪⎨⎪⎪⎩

5n + 1 − i, for 1 ≤ i ≤ n − 1,
5n + 1, for i = n,

g4(viui) =
⎧⎪⎪⎨⎪⎪⎩

5n + 2, for i = 1,
6n + 3 − i, for 2 ≤ i ≤ n,

g4(uivi+1) =
⎧⎪⎪⎨⎪⎪⎩

6n + 3 + i, for 1 ≤ i ≤ n − 2,
5n + 3 + i, for n − 1 ≤ i ≤ n,

g5(wi) =
⎧⎪⎪⎨⎪⎪⎩

2, for i = 1,
n + 3 − i, for 2 ≤ i ≤ n,

g5(vi) =
⎧⎪⎪⎨⎪⎪⎩

2n + 1, for i = 1,
n + i, for 2 ≤ i ≤ n,

g5(ui) = 2n + 1 + i, for 1 ≤ i ≤ n,

g5(cwi) =
⎧⎪⎪⎨⎪⎪⎩

3n + i, for 2 ≤ i ≤ n,
4n + 1, for i = 1,

g5(wivi) =
⎧⎪⎪⎨⎪⎪⎩

4n + 2, for i = 1,
5n + 3 − i, for 2 ≤ i ≤ n,

g5(viui) = 5n + 2i, for 1 ≤ i ≤ n,
g5(uivi+1) = 5n + 2i + 1, for 1 ≤ i ≤ n.

We denote by the symbol Ci
6, 1 ≤ i ≤ n, the 6-cycle such that Ci

6 = cwiuiviui+1 wi+1, where the index i is taken
modulo n. Under the labeling gd, the weights of Ci

6 are as follows.

wtg(Ci
6) =g(c) + g(wi) + g(ui) + g(vi) + g(ui+1) + g(wi+1) + g(cwi) + g(wiui)

+ g(uivi) + g(viui+1) + g(ui+1wi+1) + g(wi+1c).

It is a simple mathematical exercise to prove that for every i, 1 ≤ i ≤ n, the 6-cycle-weights are:

wtg0(C
i
6) = 35n + 18, for 1 ≤ i ≤ n,
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wtg2(C
i
6) =
⎧⎪⎪⎨⎪⎪⎩

36n + 17, for i = 1,
34n + 15 + 2i, for 2 ≤ i ≤ n,

wtg3(C
i
6) = 33n + 16 + 3i, for 1 ≤ i ≤ n,

wtg4(C
i
6) = 33n + 16 + 4i, for 1 ≤ i ≤ n,

wtg5(C
i
6) = 32n + 15 + 5i, for 1 ≤ i ≤ n.

Hence the weights of cycles C6 form an arithmetic sequence with di�erences d = 0, 2, 3, 4, 5, respectively.
This concludes the proof.

Combining Theorem 2.1 and Theorem 3.3 we immediately obtain the following result.

Theorem 3.4. The subdivided wheel Wn(r, s), n ≥ 3, r ≥ 1 and s ≥ 1 is super (a, d)-Cr+2s+3-antimagic for
d ∈ {0, 1, 2, 3, 4, 5}.

In the next section we will deal with the subdivided wheel Wn(r, 0), n ≥ 3, r ≥ 1. Let us denote the vertices
and the edges of Wn(r, 0) such that

V(Wn(r, 0)) ={c, vi , uij ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ r}

E(Wn(r, 0)) ={cvi , viui1 ∶ 1 ≤ i ≤ n} ∪ {uirvi+1 1 ≤ i ≤ n − 1} ∪ {unr v1}

∪ {uijuij+1 ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ r − 1}.

The subdivided wheelWn(r, 0), n ≥ 3, r ≥ 1, has n vertices of degree 3, nr vertices of degree 2 and one vertex
of degree n. The size of Wn(r, 0) is n(r + 2).

The subdivided wheelWn(r, 0) admits the Cr+3-covering consisting of n cycles Cr+3. Let us denote these
cycles by the symbols Ci

r+3, i = 1, 2, . . . , n, such that Ci
r+3 = cviui1ui2 . . . uir vi+1.

The following theorem shows the existence of a super (a, d)-Cr+3-antimagic labeling for Wn(r, 0) for
every odd di�erence form 1 up to 2r − 3.

Theorem 3.5. The subdivided wheel Wn(r, 0), n ≥ 3, r ≥ 1, is super (a, d)-Cr+3-antimagic for d = 1 when
r = 1 and for d ≡ 1 (mod 2), 1 ≤ d ≤ 2r − 3 when r ≥ 1.

Proof. For r = 1 the result follows from Corollary 3.2. Let r ≥ 2 and let d be an odd positive integer, 1 ≤ d ≤
2r − 3. Let fd ∶ V(Wn(r, 0)) ∪ E(Wn(r, 0)) → {1, 2, . . . , n(2r + 3) + 1} be a labeling ofWn(r, 0), n ≥ 3, r ≥ 2,
de�ned in the following way.

fd(c) =1,
fd(vi) =1 + i, for 1 ≤ i ≤ n,

fd(uij) =jn + 1 + i, for 1 ≤ i ≤ n, 1 ≤ j ≤ r,
fd(unr v1) =2nr + 3n + 1,

fd(uirvi+1) =2nr + 2n + 1 + i, for 1 ≤ i ≤ n − 1,

fd(uijuij+1) =nr + 3n + jn + 2 − i, for 1 ≤ i ≤ n, 1 ≤ j ≤ r − (d + 1)/2,

fd(uijuij+1) =nr + 2n + 1 + i + jn, for 1 ≤ i ≤ n, r − (d − 1)/2 ≤ j ≤ r − 1,

fd(viui1) =nr + 3n + 2 − i, for 1 ≤ i ≤ n,
fd(cvi) =nr + 2n + 2 − i, for 1 ≤ i ≤ n.

It is easy to see that fd is a bijection as

fd(c) = 1,
{fd(vi) ∶ 1 ≤ i ≤ n} = {2, 3, . . . , n + 1},
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{fd(uij) ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ r} = {n + 2, n + 3, . . . , nr + n + 1},
fd(unr v1) = 2nr + 3n + 1,

{fd(uirvi+1) ∶ 1 ≤ i ≤ n − 1} = {2nr + 2n + 2, 2nr + 2n + 3, . . . , 2nr + 3n},

{fd(uijuij+1) ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ r − (d + 1)/2}7 = {nr + 3n + 2, nr + 3n + 3,
. . . , 2nr + 3n − n(d − 1)/2 + 1},

{fd(uijuij+1) ∶ 1 ≤ i ≤ n, r − (d − 1)/2 ≤ j ≤ r − 1} = {2nr + 3n − n(d − 1)/2
+ 2, 2nr + 3n − n(d − 1)/2 + 3, . . . , 2nr + 2n + 1},

{fd(viui1) ∶ 1 ≤ i ≤ n} = {nr + 2n + 2, nr + 2n + 3, . . . , nr + 3n + 1},
{fd(cvi) ∶ 1 ≤ i ≤ n} = {nr + n + 2, nr + n + 3, . . . , nr + 2n + 1}.

Under the labeling fd the weights of cycles Ci
r+3, i = 1, 2, . . . , n − 1, are as follows.

wtfd(C
i
r+3) = ∑

v∈V(Cir+3)
fd(v) + ∑

e∈E(Cir+3)
fd(e) = fd(c) + fd(vi) + fd(vi+1)

+
r
∑
j=1

fd(uij) + fd(cvi) + fd(cvi+1) + fd(viui1) +
r−1
∑
j=1

fd(uijuij+1)

+ fd(uirvi+1) = 1 + (1 + i) + (1 + (i + 1)) +
r
∑
j=1
(jn + 1 + i)

+ (nr + 2n + 2 − i) + (nr + 2n + 2 − (i + 1)) + (nr + 3n + 2 − i)

+
r−(d+1)/2
∑
j=1

(nr + 3n + jn + 2 − i)

+
r−1
∑

j=r−(d−1)/2
(nr + 2n + 1 + i + jn) + (2nr + 2n + 1 + i)

=2nr2 + 7nr + 7n + 3r + 9 − (d+1)(n+1)2 + di.

Moreover, the weight of the cycle Cn
r+3 we get

wtfd(C
n
r+3) = ∑

v∈V(Cnr+3)
fd(v) + ∑

e∈E(Cnr+3)
fd(e) = fd(c) + fd(vn) + fd(v1)

+
r
∑
j=1

fd(unj ) + fd(cvn) + fd(cv1) + fd(vnun1) +
r−1
∑
j=1

fd(unj unj+1)

+ fd(unr v1) = 1 + (1 + n) + 2 +
r
∑
j=1
(jn + 1 + n) + (nr + n + 2)

+ (nr + 2n + 1) + (nr + 2n + 2) +
r−(d+1)/2
∑
j=1

(nr + 2n + jn + 2)

+
r−1
∑

j=r−(d−1)/2
(nr + 3n + 1 + jn) + (2nr + 3n + 1)

=2nr2 + 7nr + 6n + 3r + 9 − (d+1)(n+1)2 .

This proves that fd is a super (a, d)-Cr+3-antimagic labeling of Wn(r, 0) for d ≡ 1 (mod 2), 1 ≤ d ≤ 2r − 3
and a = 2nr2 + 7nr + 6n + 3r + 9 − (d + 1)(n + 1)/2.

In the next theorem we prove that the graph Wn(r, 0) admits super (a, d)-Cr+3-antimagic labelings also for
even di�erences.

Theorem 3.6. The subdivided wheel Wn(r, 0), r ≥ 1, is super (a, d)-Cr+3-antimagic for d = 0 when r = 1,
n ≥ 5 and for d ≡ 0 (mod 2), 0 ≤ d ≤ 2r − 4 when r ≥ 2, n ≥ 3.
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Proof. Lladó and Moragas [4] proved that the wheel Wn, n ≥ 5 odd, is (a, 0)-C3-antimagic. From Corollary
3.2 we obtain that Wn(r, 0), n ≥ 5, r ≥ 1, is super (b, 0)-Cr+3-antimagic.

Let r ≥ 2, n ≥ 3 be positive integers. Let d be an even integer, 0 ≤ d ≤ 2r − 4. Let fd ∶ V(Wn(r, 0)) ∪
E(Wn(r, 0)) → {1, 2, . . . , n(2r +3) +1} be a labeling ofWn(r, 0), n ≥ 3, r ≥ 1, de�ned in the following way.

gd(c) =1,
gd(vi) =2i, for 1 ≤ i ≤ n,

gd(ui1) =2n − 2i + 3, for 1 ≤ i ≤ n,

gd(uij) =jn + 1 + i, for 1 ≤ i ≤ n, 2 ≤ j ≤ r,
gd(unr v1) =nr + n + 2,

gd(uirvi+1) =nr + 2n + 2 − i, for 1 ≤ i ≤ n − 1,

gd(uijuij+1) =2nr + n + 1 + i − jn, for 1 ≤ i ≤ n, 1 ≤ j ≤ (1 + d/2),

gd(uijuij+1) =2nr + 2n − jn + 2 − i, for 1 ≤ i ≤ n, (2 + d/2) ≤ j ≤ r − 1,

gd(viui1) =2nr + 2n + 1 − i, for 1 ≤ i ≤ n − 1,
gd(vnun1) =2nr + 2n + 1,
gd(cvi) =2nr + 3n + 2 − i, for 1 ≤ i ≤ n.

The labeling gd is a bijection. Under the labeling gd the weights of cycles Ci
r+3, i = 1, 2, . . . , n − 1, are the

following.

wtgd(C
i
r+3) = ∑

v∈V(Cir+3)
gd(v) + ∑

e∈E(Cir+3)
gd(e) = gd(c) + gd(vi) + gd(vi+1)

+
r
∑
j=1

gd(uij) + gd(cvi) + gd(cvi+1) + gd(viui1) +
r−1
∑
j=1

gd(uijuij+1)

+ gd(uirvi+1) = 1 + 2i + 2(i + 1) + (2n − 2i + 3)

+
r
∑
j=2
(jn + 1 + i) + (2nr + 3n + 2 − i) + (2nr + 3n + 2 − (i + 1))

+ (2nr + 2n + 1 − i) +
1+d/2
∑
j=1
(2nr + n + 1 + i − jn)

+
r−1
∑

j=2+d/2
(2nr + 2n − jn + 2 − i) + (nr + 2n + 2 − i)

=2nr2 + 8nr + 8n + 3r + 8 − d(n+1)
2 + di.

For the weight of the cycle Cn
r+3 we obtain:

wtgd(C
n
r+3) = ∑

v∈V(Cnr+3)
gd(v) + ∑

e∈E(Cnr+3)
gd(e) = gd(c) + gd(vn) + gd(v1)

+
r
∑
j=1

gd(unj ) + gd(cvn) + gd(cv1) + gd(vnun1) +
r−1
∑
j=1

gd(unj unj+1)

+ gd(unr v1) = 1 + 2n + 2 + 3 +
r
∑
j=2
(jn + 1 + n) + (2nr + 2n + 2)

+ (2nr + 3n + 1) + (2nr + 2n + 1) +
1+d/2
∑
j=1
(2nr + 2n + 1 − jn)

+
r−1
∑

j=2+d/2
(2nr + n + 2 − jn) + (nr + n + 2)

=2nr2 + 8nr + 8n + 3r + 8 + nd
2 − d

2 .
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We showed that gd is a super (a, d)-Cr+3-antimagic labeling of Wn(r, 0) for d ≡ 0 (mod 2), 0 ≤ d ≤ 2r − 4
and a = 2nr2 + 8nr + 8n + 3r + 8 − dn/2 + d/2.

Combining Theorem 3.5 and Theorem 3.6 we immediately obtain that the subdivided wheel Wn(r, 0), n ≥ 5,
is cycle-antimagic for wide range of di�erences.

Theorem 3.7. The subdivided wheel Wn(r, 0), n ≥ 5, is super (a, d)-Cr+3-antimagic for 0 ≤ d ≤ 1 when r = 1
and for 0 ≤ d ≤ 2r − 3 when r ≥ 2.

Moreover, using Theorem 2.1, we can extend this result also for subdividedwheels inwhich not only rim edges
but also spokes are subdivided.

Theorem 3.8. The subdivided wheel Wn(r, s), n ≥ 5, r ≥ 1, s ≥ 0, is super (a, d)-Cr+2s+3-antimagic for 0 ≤
d ≤ 1 when r = 1 and for 0 ≤ d ≤ 2r − 3 when r ≥ 2.

4 Conclusion
In the present paper we showed that the property to be super (a, d)-H-antimagic is hereditary according to
the operationof subdivisionof edges.Weproved that if a graphG is super cycle-antimagic then the subdivided
graph S(G) also admits a super cycle-antimagic labeling.

This indicates that it is important to study the antimagic properties of graphs with simple structures
which allows us to get result for large graphs. Recently, large graphs have attracted a lot of attention, see [15].
However, the interesting question is whether, for a given graph, it is possible to extend the set of di�erences
also for cases not covered by the general result. It means to �nd a di�erence d such that the subdivided graph
S(G) is super cycle-antimagic with the di�erence d but the corresponding graph G is not.

Another interesting directions for further investigation is to deal with the non-uniform subdivision and
to �nd another graph operations that are hereditary according to being cycle-antimagic, or in general H-
antimagic.
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