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Abstract: This paper investigates the dynamic behavior analysis on the prey-predator model with ratio-
dependentMonod-Haldane response functionunder the homogeneousDirichlet boundary conditions,which
is used to simulate a class of biological system. Firstly, the su�cient and necessary conditions on existence
and non-existence of coexistence states of this model are discussed by comparison principle and �xed point
index theory. Secondly, taking a as amain bifurcation parameter, the structure of global bifurcation curve on
positive solutions is established by using global bifurcation theorem and properties of principal eigenvalue.
Finally, the stability of coexistence states is obtained by the eigenvalue perturbation theory ; the multiplicity
of coexistence states is investigated when a satis�es some condition by the �xed point index theory.
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1 Introduction
Population ecology is an important branch of ecology. Due to the complexity of ecological relations, mathe-
matical methods and results have been increasingly used in ecology and population ecology. In recent years,
due to the widespread application of biological models, such as predator-prey model in population ecology,
this �eld of research has gained increasing interest. However, the predator-preymodel is an important branch
of reaction-di�usion equations. The dynamic relationship between predator and their prey is one of the
dominant themes in ecology and mathematical ecology. During the last thirty years, the investigation on the
prey-predator models has been developed, andmore realistic models have been derived in view of laboratory
experiments. Moreover, the research on the prey-predator models [1–4] has been studied from various views
and interesting results have been obtained (see [5–8] and the references therein). For every speci�c prey-
predator model, we know that the functional response of the predator to the prey density is very important,
which represents the speci�c transformation rule of the two organisms. For example, the Holling I type
functional response in a predator-prey model was considered by Cheng et al. [9] and Zhang et al. [10, 11],
the Holling II type functional response was investigated by Wang and Wu [12], Zhu et al. [13] and Cui et
al. [14], the Holling Tanner type functional response was studied by Casal et al. [15] and Du et al. [16], the
Beddington-DeAngelis functional response was proposed by [17] and Guo and Wu [18]. In this paper, we are
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concerned with the prey-predator model with ratio-dependent Monod-Haldane response function [19, 20]
under the homogeneous Dirichlet boundary conditions as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∆u = u(a − u − bv
1+mu+lu2+kv ) x ∈ Ω,

−∆v = v(c − v + du
1+mu+lu2+kv ) x ∈ Ω,

u = v = 0 x ∈ ∂Ω,
(1)

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω. u and v stand for the densities of
prey and predators, respectively. The parameters a, b, c, d are assumed to be only positive constants. a and
c denote the intrinsic growth rate of prey u and predator v, respectively. b and d stand for capturing rate to
predator and conversion rate of prey captured by predator, respectively. Where f(u, v) = uv

1+mu+lu2+kv stands
for the Monod-Haldane response function with ratio-dependent, which not only has the characteristics of
Monod-Haldane reaction, but also has the characteristics of Beddington-DeAngelis functional response.
Thus, this response function can better simulate the transformation law of two species. In this paper, we
are concerned with the coexistence states on the prey-predator model with the response in this case m > 0,
k > 0 and l = 1 > 0; the speci�c model is as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∆u = u(a − u − bv
1+mu+u2+kv ), x ∈ Ω,

−∆v = v(c − v + du
1+mu+u2+kv ) , x ∈ Ω,

u = v = 0 , x ∈ ∂Ω,
(2)

where the coexistence state is a solution (u, v) of (2) satisfying u(x) > 0 and v(x) > 0 for all x ∈ Ω.
The rest of this paper is arranged as follows. In Section 2, the su�cient and necessary conditions on

existence and non-existence of coexistence states of (2) are discussed by the �xed point index theory. In
Section 3, taking a as a main bifurcation parameter, the structure of global bifurcation curve on coexistence
states is established by using global bifurcation theorem. In Section 4, the stability of coexistence states is
obtained by the eigenvalue perturbation theory; the multiplicity of coexistence stats of (2) is investigated
when a satis�es some condition by the �xed point index theory.

2 Coexistence
The goal of this section is to discuss the condition on existence and non-existence of coexistence states by
the �xed point index theory and properties of principal eigenvalue. In order to present the main results, we
introduce some basic conclusion and notations which refer to [21–23].

Suppose λ1(q) < λ2(q) ≤ λ3(q) ≤ ⋯ are all eigenvalues of the equation

−∆φ + q(x)φ = λφ, φ∣∂Ω = 0,

and q(x) ∈ C(Ω). And λ1(q) is simple and λ1(q) is strictly increasing which implies that q1 ≤ q2 and q1 /≡ q2

can deduce λ1(q1) < λ1(q2). Denote λi(0) by λi, and the eigenfunction corresponding to λ1 by φ1 with
normalization ∥φ1∥∞ = 1 and φ1 > 0 inΩ.

Consider the following problem

−∆u = ρu − u2, u∣∂Ω = 0,

let θρ ( θρ < ρ ) be unique positive solution as ρ > λ1. It is easy to see that the mapping ρ → θρ is strictly
increasing, continuously di�erentiable on (λ1, ∞) → C2(Ω) ∩ C0(Ω) such that θρ → 0 uniformly on Ω as
ρ→ λ1.

Hence, in the system (2) there exist two semi-trivial solutions (θa , 0) and (0, θc) when a, c > λ1. Next,
we present some a priori estimate by maximum principle (see [12, 24–28]). It’s proof will be omitted.
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Lemma 2.1. Any coexistence state (u, v) of (2) has a priori boundary, i.e.,

u ≤ a, v ≤ B ∶= c + ad
1 + am

.

Next, we give the �xed point index theory (see [29]). Let E be a Banach space. W ⊂ E is named a wedge if W
is the closed convex set and βW ⊂ W for all β ≥ 0. For y ∈ W, let Wy = {x ∈ E ∶ ∃r = r(x) > 0, s.t. y + rx ∈ W},
Sy = {x ∈ Wy ∶ −x ∈ Wy}, and E = W −W. Let T ∶ Wy → Wy be a compact linear operator on E. We claim that T
haspropertyαonWy if there exists t ∈ (0, 1) andω ∈ Wy∖Sy such thatω−tTω ∈ Sy . De�ne B+δ (y) = Bδ(y)∩W ,
∀δ > 0, y ∈ W. Let F ∶ B+δ (y) → W be a compact operator and y be an isolated �xed point of F. Denote F′ as
the Fréchet di�erentiable at y, then F′(y) ∶ Wy → Wy . The �xed point index of F at y relative toW is denoted
by indexW(F, y) throughout this paper. Now we give a general result on the �xed point index theory with
respect to the positive cone W (see [22, 23]).

Lemma 2.2 ([29, 30]). Suppose that I − L is invertible on Wy. Then the following conclusions hold.
(i) If L has property α on Wy, then indexW(F, y) = 0.
(ii) If L does not have propertyα onWy, then indexW(F, y) = (−1)σ, where σ is the sum of algebramultiplicities
of the eigenvalue of L which are greater than 1.

Let X = C1
0(Ω)⊕ C1

0(Ω), where C1
0(Ω) = {ω ∈ C1(Ω) ∶ ω∣∂Ω = 0}; W = K⊕K, where K = {ϕ ∈ C(Ω) ∶ ϕ(x) ≥

0}; D ∶= { (u, v) ∈ X ∶ u ≤ a + 1, v ≤ B + 1}; D′ ∶= (intD)⋂W .
De�ne Ft ∶ D′ → W as the following form:

Ft(u, v) = (−∆ + P)−1
⎛
⎜⎜
⎝

tu(a − u − bv
1 +mu + u2 + kv

) + Pu

tv(c − v + du
1 +mu + u2 + kv

) + Pv

⎞
⎟⎟
⎠
,

where t ∈ [0, 1] , P > max{a+ bB, c+ da
1+ma}. By Maximum Principle, we obtain that (−∆+ P)−1 is a compact

positive operator, Ft is complete continuous and Fréchet di�erentiable. Let F1 = F, then (2) has a coexistence
state in W if and only if Ft = F1 has a positive �xed point in D′.

If a > λ1 and c > λ1, (0, 0), (θa , 0) and (0, θc) are the non-negative �xed points of F. Hence,
indexW(F, (0, 0)), indexW(F, (θa , 0)) and indexW(F, (0, θc)) are well de�ned. By calculating, we can get
the Fréchet operator of F as follows:

(−∆ + P)−1
⎛
⎜⎜⎜
⎝

a − 2u − bv(1 − u2 + kv)
(1 +mu + u2 + kv)2 + P − bu(1 +mu + u2)

(1 +mu + u2 + kv)2

dv(1 − u2 + kv)
(1 +mu + u2 + kv)2 c − 2v + du(1 +mu + u2)

(1 +mu + u2 + kv)2 + P

⎞
⎟⎟⎟
⎠
.

Applying similar methods as in the proof of Lemma 2.1 and Lemma 2.2 in [12], we can easily establish the
following Lemmas by the �xed point index theory (see [24–28]). We omit the proof procedure.

Lemma 2.3. Assume a > λ1.
(i) degW(I − F, D′) = 1, here degW(I − F, D′) is the degree of T − F in D′ on W.
(ii) If c ≠ λ1, then index W(F, (0, 0)) = 0.
(iii) If c > λ1(− dθa

1+mθa+θ2
a
), then index W(F, (θa , 0)) = 0.

(iv) If c < λ1(− dθa
1+mθa+θ2

a
), then index W(F, (θa , 0)) = 1.

Lemma 2.4. Assume c > λ1.
(i) If a > λ1( bθc

1+kθc ), then indexW(F, (0, θc)) = 0.
(ii) If a < λ1( bθc

1+kθc ), then index W(F, (0, θc)) = 1.

In the following, some conditions on existence and non-existence of coexistence states of (2) are established
by comparison principle.
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Theorem 2.5. (i) If a ≤ λ1, then (2) does’t have any coexistence state; if a ≤ λ1 and c ≤ λ1, then (2) does’t exist
non-negative non-zero solution.
(ii) If c ≤ λ1 and for (2) there exists a coexistence state, then a > λ1, c + da

1+ma > λ1.
(iii) If c > λ1 and for (2) there exists a coexistence state, then a > λ1( bθc

1+mθa+θ2
a+kθc

).

Proof. (i) Suppose (u, v) is a coexistence state to (2), then (u, v) satis�es

−∆u = u(a − u − bv
1 +mu + u2 + kv

) x ∈ Ω, u = 0 x ∈ ∂Ω,

and a = λ1(u + bv
1+mu+u2+kv ) . With the aid of the comparison principle, we get a > λ1, a contradiction. We

suppose that (u, v) is a non-negative non-zero solution of (2). Obviously, u /≡ 0 and v ≡ 0, then a > λ1 by the
above proof. Similarly, we can deduce c > λ1 as u ≡ 0 and v /≡ 0, which derives a contradiction again.

(ii) Let (u, v) be a coexistence state of (2). By (i), we know that a > λ1, and (2) has the positive semi-trivial
solution θa. Due to

−∆u = u(a − u − bv
1 +mu + u2 + kv

) ≤ u(a − u) x ∈ Ω, u = 0 x ∈ ∂Ω,

u is a lower solution to (2). Owing to the uniqueness of θa, u ≤ θa. It follows that v meets

−∆v = v(c − v + du
1 +mu + u2 + kv

) x ∈ Ω, v = 0 x ∈ ∂Ω,

then 0 = λ1(−c + v − du
1+mu+u2+kv ) > λ1(−c − da

1+ma ), which gives the result.
(iii) Suppose (u, v) is a coexistence state of (2), then (2) has the unique positive solution θa with u ≤ θa .

Similarly, c > λ1 implies the existence of positive solution θc of (2) with θc ≤ v. According to the samemethod
of (i), we directly obtain

a = λ1(u +
bv

1 +mu + u2 + kv
) > λ1(

bθc
(1 +mθa + θ2

a + kθc)
).

Since the function bv
1+mu+u2+kv has a minimum at u = θa and v = θc (for u ≤ θa and v ≥ θc). So the result

holds.

Theorem 2.6. (i) If c > λ1 and a > λ1( bθc
1+kθc ). Then (2) has at least a coexistence state.

(ii) Suppose c < λ1. Then (2) has a coexistence state if and only if a > λ1 and c > λ1(− dθa
1+mθa+θ2

a
).

Proof. (i) By Lemma 2.3-2.4 and the �xed point index theory, we have

degW(I − F, D) − indexW(f , (0, 0)) − indexW(f , (θa , 0)) − indexW(f , (0, θc)) = 1.

Then (2) has at least a coexistence state.
(ii) Firstly, we demonstrate the su�ciency. Due to c < λ1, (2) does’t have the solution of the form (0, v)

with v > 0. If a > λ1 and c > λ1(− dθa
1+mθa+θ2

a
), since c < λ1, by Lemma 2.4 and the �xed point index theory, we

get
degW(I − F, D) − indexW(f , (0, 0)) − indexW(f , (θa , 0)) = 1.

Hence (2) has at least a coexistence state.
Conversely, we suppose that (u, v) is a coexistence state of (2). Then a > λ1, and u < θa. Thanks to (u, v)

satis�es
−∆v = v(c − v + du

1 +mu + u2 + kv
) x ∈ Ω, v = 0 x ∈ ∂Ω.

Hence, 0 = λ1(−c + v − du
1+mu+u2+kv ) > λ1(−c − da

1+ma ).

Theorem 2.7. If one of the following two conditions holds, then (2) does’t have any non-negative non-zero
solution:
(i) b ≥ 1 +ma + a2 + kB and a ≤ c;
(ii) b < 1 +ma + a2 + kB and c − a ≥ (1 − b

(1+ma+a2+kB))B.
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Proof. (i) Assume that (u, v) is a coexistence state of (2) as b ≥ 1+ma+a2+ kB and a ≤ c. Note that u(x) ≤ a
by Lemma 2.1 and 1 +mu(x) + u2(x) + kv(x) > 0 in Ω̄. we get

0 = λ1 (−a + u + bv
1 +mu + u2 + kv

)

≥ λ1 (−c + v − du
1 +mu + u2 + kv

− v + bv
1 +mu + u2 + kv

+ u + du
1 +mu + u2 + kv

)

> λ1 (−c + v − du
1 +mu + u2 + kv

− (1 − b
1 +mu + u2 + kv

)v)

> λ1 (−c + v − du
1 +mu + u2 + kv

− (1 − b
1 +ma + a2 + kB

)v)

≥ λ1 (−c + v − du
1 +mu + u2 + kv

) .

Which deduces a contradiction.
(ii) Based on the proof of (i), thanks to the fact b < 1+ma + a2 + kB and c − a ≥ (1− b

(1+ma+a2+kB))B, we
can obtain the following inequality:

0 = λ1 (−a + u + bv
1 +mu + u2 + kv

)

> λ1 (−c + v − du
1 +mu + u2 + kv

− a + c − (1 − b
1 +ma + a2 + kB

)B)

≥ λ1 (−c + v − du
1 +mu + u2 + kv

) ,

which is a contradiction. The proof is completed.

3 Global bifurcation
The purpose of this section is to investigate a coexistence state bifurcates from the semi-trivial non-negative
branch {(0, θc , a)} depending on the change of the parameter a and c > λ1. Particularly, the structure of
global bifurcation curve on coexistence states is discussed by using global bifurcation theorem and property
of principal eigenvalue.

Throughout this paper, the principal eigenvalue of the following problem is denoted by ã ,

−∆φ + bθc
1 + kθc

φ = aφ, φ∣∂Ω = 0, (3)

and the corresponding eigenfunction is denoted by Φ with ∥Φ∥∞ = 1.
For convenience of the calculation, we do the following variable substitution, suppose ω = u, χ = v − θc,

then 0 ≤ ω ≤ θa , χ ≥ 0, and ω,χmeet
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∆ω = (a − bθc
1+kθc )ω + F1(ω,χ), x ∈ Ω,

−∆χ = (c − 2θc)χ + dθc
1+kθc ω + F2(ω,χ), x ∈ Ω,

ω = χ = 0, x ∈ ∂Ω,
(4)

here
F1(ω,χ) =

bωθc
1 + kθc

− bω(χ + θc)
(1 +mω + ω2 + k(χ + θc))

− ω2,

F2(ω,χ) =
dω(χ + θc)

(1 +mω + ω2 + k(χ + θc))
− dωθc

1 + kθc
− χ2.

It is easy to see that F = (F1, F2) is continuous, F(0, 0) = 0, and the Fréchet derivative D(ω,χ)F∣(0,0) = 0. The
inverse of −∆ is denoted by K. Then

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ω = aKω − bK( ωθc
1+kθc ) + KF1(ω,χ), x ∈ Ω,

χ = cKχ − 2K(χθc) + dK( ωθc
1+kθc ) + KF2(ω,χ), x ∈ Ω,

ω = χ = 0, x ∈ ∂Ω.
(5)
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Now we introduce the operator T ∶ R+ × X → X as follows:

T(a;ω,χ) =
⎛
⎝

aKω − bK( ωθc
1+kθc ) + KF1(ω,χ)

cKχ − 2K(χθc) + dK( ωθc
1+kθc ) + KF2(ω,χ)

⎞
⎠
.

Obviously, T(a;ω,χ) is a compact operator on X. De�ne G(a;ω,χ) = (ω,χ)T − T(a;ω,χ), then G is
continuous, and G(a; 0, 0) = 0. G(a;ω,χ) = 0 (0 ≤ ω ≤ θa , χ ≥ 0) if and only if (ω,χ + θc , a) is a positive
solution of (2).

Theorem 3.1. Suppose c > λ1. Then there exists a coexistence state of (4) (or (2)) bifurcate from the point
(ã; 0, θc), and ã = λ1( bθc

1+kθc ).

Remark 3.2. The proof of Theorem 3.1 refers to Theorem 2 in [19], more precisely, the bifurcation branch near
ã = λ1( bθc

1+kθc ) is determined by C1 continuous curve (a(s);φ(s),ϕ(s)) ∶ (−δ, δ) → R × Z, for some δ > 0 such
that

a(0) = ã, φ(0) = 0,ϕ(0) = 0, and (a(s);ω(s),χ(s)) = (a(s); (Φ + φ(s)), s(Ψ + ϕ(s)))

meets G(a(s);ω(s),χ(s)) = 0, here X = Z ⊕ span{(Φ, Ψ)}. Thus (a(s);U(s), V(s)) (∣s∣ < δ) is a bifurcation
solution of (4) (or (2) ), here U(s) = s(Φ + φ(s)), V(s) = θc + s(Ψ + ϕ(s)), Ψ = (−∆ − c + 2θc)−1( dθc

1+kθcΦ).

If 0 < s < δ, we can deduce that the positive solution of (2) nearby (ã; 0, θc) lies either on the branch
{(a; 0, θc) ∶ a ∈ R+} or on the branch {(a(s);U(s), V(s)) ∶ 0 < s < δ}.

De�ne T ∶ X × R → X as the compact continuously di�erentiable operator, and T(0, a) = 0. Let T be
T(u, a) = K(a)u + R(u, a), here K(a) is a linear compact operator and the Fréchet derivative Ru(0, 0) = 0.
Suppose x0 is an isolated �xed point of T, we denote the index of T at x0 by index(T, x0) = deg(I −
T, Uδ(x0), x0), here Uδ(x0) is a ball with center at x0, and x0 is the unique �xed point of T in Uδ(x0).
If I − T′(x0) is invertible, then x0 is an isolated �xed point of T, meanwhile, index(T, x0) = deg(I −
T, Uδ(x0), x0) = deg(I − T′(x0), Uδ(x0), 0).

If x0 = 0, then deg(I − K(a), Uδ(x0), 0) = (−1)σ , where σ is equal to the algebraic multiplicities of the
eigenvalue of K which is greater than one.

Next, we study the structure of global bifurcation curve on coexistence states, we will extend the local
bifurcation solution {(a(s);U(s), V(s)) ∶ 0 < s < δ} established by Theorem 3.1 to the global bifurcation
branch. For this purpose, we de�ne the following notation: P1 = {u ∈ C1

0(Ω̄) ∶ u(x) > 0, x ∈ Ω, ∂u
∂n < 0, x ∈

∂Ω}, P = {(u, v, a) ∈ X × R+ ∶ u, v ∈ P1}.

Theorem 3.3. If c > λ1, then the local bifurcation solution {(a(s);U(s), V(s)) ∶ 0 < s < δ} can be extended
to the global solution which is denoted by C and unbounded by going to in�nity in P.

Proof. De�ne

T′(a) ⋅ (ω,χ) = D(ω,χ)T(a; 0, 0) ⋅ (ω,χ)

= (aKω − bK( ωθc

1 + kθc
), cKχ − 2K(χθc) + dK ωθc

1 + kθc
).

Let µ ≥ 1 be an eigenvalue of T′(a). Then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−µ∆ω = (a − bθc
1+kθc )ω, x ∈ Ω,

−µ∆χ = (c − 2θc)χ + dθc
1+kθc ω, x ∈ Ω,

ω = χ = 0, x ∈ ∂Ω.

Obviously, ω /≡ 0, otherwise, ω ≡ 0, due to the fact that all eigenvalues of (−µ∆ − c + 2θc) are greater than 0,
so χ ≡ 0, a contradiction. Thus, a = ai(µ) is the eigenvalue of the following problem

−µ∆ω + bθc
1 + kθc

ω = aω, ω∣∂Ω = 0.
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So ai(µ) is increasing along with µ on [1,+∞) and can be ordered by

0 < a1(µ) < a2(µ) ≤ a3(µ) ≤ ⋯ →∞, a1(1) = ã.

Conversely, if µ ≥ 1, we demonstrate that all eigenvalues of (−µ∆ − c + 2θc) are greater than 0, then χ =
(−µ∆−c+2θc)−1( dθc

1+kθc ω). Hence, µ ≥ 1 is an eigenvalue of T′(a) if and only if a = ai(µ) for some i = 1, 2, ....
If a < ã, then a < a1(1) ≤ ai(µ) for any µ ≥ 1, i ≥ 1. It follows that T′(a) has no eigenvalue greater than

1, meanwhile, index(T(a; ⋅), 0) = 1 for a < ã.
If ã < a < a2(1), then a < ai(µ). Since a1(1) = ã for any µ ≥ 1, i ≥ 2, lim

µ→∞
a1(µ) = +∞, and a1(µ) is

increasing along with µ. Hence, there exists a unique µ1 > 1 such that a = a1(µ1). Thus N(µ1I − T′(a)) =
span{(ω,χ)}, dimN(µ1I − T′(a)) = 1, here ω > 0 is the principal eigenvalue of the following equation

µ1∆ω + (a − bθc
1 + kθc

)ω = 0, ω∣∂Ω = 0, (6)

here χ = (−µ1∆ − c + 2θc)−1( dθc
1+kθc ω).

Next, we shall demonstrate that R(µ1I − T′(a)) ∩ N(µ1I − T′(a)) = 0. As a matter of fact, suppose the
assertion is false , we may assume that (ω,χ) ∈ R(µ1I − T′(a)). Then there exists (ω,χ) ∈ X such that
(µ1I − T′(a))(ω,χ) = (ω,χ), i.e.,

µ1∆ω + (a − bθc
1 + kθc

)ω = ∆ω, ω∣∂Ω = 0.

Multiplying the above equation by ω, and integrating overΩ, by Green’s formula, we have

∫
Ω

ω∆ω = ∫
Ω

(µ1∆ω + aω − bωθc
1 + kθc

)ω

= ∫
Ω

(µ1∆ω + aω − bωθc
1 + kθc

)ω = 0.

Thus ∫Ω
1
µ1

(a − bθc
1+kθc )ω

2 = 0, a contradiction, which has proved the claim. Then the multiplicity of µ1 is one
and index(T(a; ⋅), 0) = −1 for ã < a < a2(1). With the aid of global bifurcation theory [23], we deduce that
there exists a continuum C0 of zero points of G(a;ω,χ) = 0 in R+ × X bifurcating from (ã; 0, 0) and all zero
points of G(a;ω,χ) nearby (ã; 0, 0) lie on the curve for which the existence was established by Theorem 3.1.

De�ne the maximal continuum C1 as C1 = C0 − {(a(s); s(Φ + φ(s)), s(Ψ + ϕ(s))) ∶ −δ < s < 0}, then C1

consists of the curve {(a(s); s(Φ+φ(s)), s(Ψ +ϕ(s))) ∶ −δ < s < 0} in the neighborhood of (ã; 0, 0). Suppose
C̃ = {(a; u, v) ∶ U = ω, V = θc +χ, (ω,χ) ∈ C1}. It follows that C̃ is the solution branch of (2) which bifurcates
from (ã; 0, θc) and keeps the positive near (ã; 0, θc) and C̃ ⊂ P. Thus, the continuum C̃ − {(ã; 0, θc)} must
satisfy one of the three alternatives:

(i) joining up with a bifurcation point of the form (ā; 0, θc), which I − T′(ā) is not invertible, ã ≠ ā.
(ii) joining up from (ã; 0, θc) to∞ in R × X.
(iii) containing points of the form (a; u, θc + v) and (a;−u, θc − v), here (u, v) ≠ (0, 0).

Nowwe claim that C̃−{(ã; 0, θc)} ⊂ P. Suppose C̃−{(ã; 0, θc)} /⊆ P, it follows that there exists (â; û, v̂) ∈ (C̃−
{(ã; 0, θc)}) ∩ ∂P and the sequence {(an; un , vn)} ⊂ C̃ ∩ P, un > 0, vn > 0 such that (an; un , vn) → (â; û, v̂)
as n → ∞. We can obtain that û ∈ ∂P1 or v̂ ∈ ∂P1. If û ∈ ∂P1, then û ≥ 0, x ∈ Ω. Thus, we �nd either x0 ∈ Ω
such that û(x0) = 0 or x0 ∈ ∂Ω such that ∂û

∂n ∣x0 = 0. Since û satis�es

−∆û = (â − û − bv̂
(1 +mû + û2 + kv̂))û, û∣∂Ω = 0.

By maximum principle, we can get û ≡ 0. Similarly, we can deduce that v̂ ≡ 0 for v̂ ∈ ∂P1.
Thus, we will investigate the following three cases:

(i) (û, v̂) ≡ (θâ , 0); (ii) (û, v̂) ≡ (0, θc); (iii) (û, v̂) ≡ (0, 0).
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(i) If (û, v̂) ≡ (θâ , 0), then (an; un , vn) → (â; θâ , 0) as n →∞. Set Vn = vn
∣∣vn ∣∣∞ , then Vn meets

−∆Vn = (c − vn +
dun

(1 +mun + u2
n + kvn)

)Vn , Vn ∣∂Ω = 0. (7)

With the aid of LP estimates and Sobolev embedding theorem, we deduce that there exists a convergent sub-
sequence of Vn, which be still denoted by Vn, it follows that Vn → V in C1

0(Ω) as n →∞, and V ≥ 0, /≡ 0, x ∈ Ω.
Taking the limit in (7) as n →∞, we get

−∆V = (c + dθâ
1 +mθâ + θ2

â
)V , V ∣∂Ω = 0.

By the maximum principle, we get V > 0, x ∈ Ω, which implies c = λ1(− dθâ
1+mθâ+θ2

â
). A contradiction to c > λ1.

(ii) If (û, v̂) ≡ (0, θc). Then (an; un , vn) → (â; 0, θc) as n →∞. Set Un = un
∣∣un ∣∣∞ , hence, Un meets

−∆Un = (an − un −
bvn

(1 +mun + u2
n + kvn)

)Un , Un ∣∂Ω = 0. (8)

Similarly, using LP estimates and Sobolev embedding theorem, we can get a convergent sub-sequence of Un,
which be still denoted by Un, then Un → U in C1

0(Ω) as n → ∞, and U ≥ 0, /≡ 0, x ∈ Ω. Taking limit in (8) by
n →∞, we get

−∆U = (â − bθc
1 + kθc

)U, U∣∂Ω = 0.

Due to maximum principle, we get U > 0, x ∈ Ω. Thus â = λ1( bθc
1+kθc ) . A contradiction to â ≠ ã.

(iii) If (û, v̂) ≡ (0, 0), then similarly as in the method from the case above, we also arrive at a contradic-
tion. Hence, C̃ − {(ã; 0, θc)} ⊂ P. It follows from Lemma 2.1 that 0 ≤ U ≤ a, θc ≤ V ≤ c + da

1+αa . With the
aid of LP estimates and Sobolev embedding theorem, we prove that there exists a constant M > 0 such that
∣∣U∣∣C1 ,∣∣V ∣∣C1 ≤ M. Then, the global bifurcation solution branch C̃ of positive solutions of (2) bifurcating at
(ã; 0, θc) contains points with a arbitrarily large in P.

4 Stability and multiplicity
The purpose of this section is to investigate the stability andmultiplicity of coexistence states of (2) bymeans
of eigenvalue perturbation theory and the �xed point index theory.

Set X1 = [C2,α(Ω̄) × C2,α(Ω̄) ∩ X], Y = [Cα(Ω̄) × Cα(Ω̄), here 0 < α < 1. i ∶ X1 → Y is the inclusion
mapping. Since L1 is the linearized operator at (ã; 0, θc) of (2), according to the proof of Theorem 3.1, we get
N(L1) =span{(Φ, Ψ)}, Codim R(L1) = 1, and R(L0) = {(u, v) ∈ X ∶ ∫Ω uΦdx = 0}. Due to i(Φ, Ψ) ∈ R(L1), it
follows from [31] that 0 is an i−simple eigenvalue of L1.

Lemma 4.1. 0 is the eigenvalue of L1 with the largest real part, and all the other eigenvalues of L1 lie in the left
half complex plane.

Proof. The proof of Lemma 4.1 can be found in [9, 18, 24, 26], here we omit it.

Let L(u(s), v(s), a(s)) and L(a; 0, θc) be the linearized operators of (2) at (u(s), v(s), a(s)), (a; 0, θc),
respectively. Applying the linearized stability theory (see [31, 32]), we can obtain the following result.

Lemma 4.2. There exists C1−function: a → (M(a), γ(a)) and s → (N(s), π(s)), which are de�ned by the
mapping from the neighborhood of ã and 0 into X1 × R, respectively, satisfying the forms γ(ã) = π(0) = 0,
M(ã) = N(0) = (Φ, Ψ) and

L(a; 0, θc)M(a) = γ(a)M(a), for ∣a − ã∣ ≪ 1,
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L(u(s), v(s), a(s))N(s) = π(s)N(s), for ∣s∣ ≪ 1,

where M(a) = (φ1(a), φ2(a)), N(s) = (ϕ1(a)ϕ2(a)). Meanwhile, γ′(ã) ≠ 0, furthermore, for ∣s∣ ≪ 1, π(s) ≠
0, π(s) and −sa′(s)γ′(ã) have the same sign, where γ′(ã) is the derivative of γ(a) at a = ã, and a′(s) is the
derivative of a(s) on the point s.

Lemma 4.3. γ′(ã) > 0.

Proof. By calculating L(a; 0, θc)M(a) = γ(a)M(a), for ∣a − ã∣ ≪ 1, we have
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆φ1 + (a − bθc
1+kθc )φ1 = γ(a)φ1, x ∈ Ω,

∆φ2 + (c − 2θc)φ2 + dθc
1+kθc φ1 = γ(a)φ2, x ∈ Ω,

φ1 = φ2 = 0, x ∈ ∂Ω.

Note that ∣a − ã∣ ≪ 1, then ∣γ(a)∣ ≪ 1. Obviously, φ1 /≡ 0, otherwise, φ1 ≡ 0, then φ2 ≡ 0, a contradiction.
Thus γ(a) is an eigenvalue of (∆ + (a − bθc

1+kθc )I). So Φ > 0, implies φ1 = φ1(a) > 0 as ∣a − ã∣ ≪ 1. It follows
that γ(a) is the principal eigenvalue of (∆+(a− bθc

1+kθc )I), and γ(a) is increasing alongwith a for ∣a− ã∣ ≪ 1.
Meanwhile, γ′(ã) ≠ 0. Thus γ′(ã) > 0.

Lemma 4.4. a′(0) satis�es

a′(0)∫
Ω

Φ
2dx = ∫

Ω

(1 − bmθc
(1 + kθc)2 )Φ

3dx + ∫
Ω

bΨ
(1 + kθc)2Φ

2dx.

Proof. By substituting (u(s), v(s), a(s)) into (2), di�erentiating on s, and let s = 0, we get

−∆φ′(0) = (ã − bθc
1 + kθc

)φ′(0) + [a′(0) − Φ − b Ψ −mθcΦ
(1 + kθc)2 ]Φ,

where φ′(0) is the derivative of φ on the point s = 0.
Multiplying the above equation by Φ, and applying Green’s formula and the de�nition of Φ, we obtain

a′(0)∫
Ω

Φ
2dx = ∫

Ω

(1 − bmθc
(1 + kθc)2 )Φ

3dx + ∫
Ω

bΨ
(1 + kθc)2Φ

2dx.

Taking the advantage of Lemma 4.1-Lemma 4.4, we directly derive the following theorem.

Theorem 4.5. Let σ = ∫Ω(1 − bmθc
(1+kθc)2 )Φ3dx + ∫Ω

bΨ
(1+kθc)2Φ

2dx. If σ > 0, then local bifurcation solution
(u(s), v(s)) is stable; if σ < 0, then local bifurcation solution (u(s), v(s)) is unstable.

Remark 4.6. In section 2, by the su�cient condition and necessary condition on coexistence states of (2) es-
tablished in Theorem 2.5-2.6, we �nd that there exists a gap between a > λ1( bθc

1+kθc ) and a > λ1( bθc
(1+mθa+θ2

a+kθc)
)

as c > λ1.

In the following, we shall investigate the multiplicity of coexistence states in the gap.

Theorem 4.7. Suppose that c > λ1 and ∫Ω(1 − bmθc
(1+kθc)2 )Φ3dx < 0. If there exists a su�ciently small ε > 0 and

d ≪ 1, then coexistence state (u(s), v(s)) is non-degenerate and unstable for a ∈ (ã − ε, ã), moreover, (2) has
at least two coexistence states.

Proof. Firstly, we will demonstrate the coexistence state (u(s), v(s)) is non-degenerate and unstable. To
this end, we only need to prove that there exists a su�ciently small ε > 0 such that any coexistence state
(u(s), v(s)) of (2) is non-degenerate for a ∈ (ã − ε, ã), and the linearized eigenvalue problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∆ξ − [a(s) − 2u(s) − bv(s)(1−u(s)2
+kv(s))

(1+mu(s)+u(s)2+kv(s))2 ]ξ + bu(s)(1+mu(s)+u(s)2
)

(1+mu(s)+u(s)2+kv(s))2 η = µξ, x ∈ Ω,
−∆η − [c − 2v(s) + du(s)(1+mu(s)+u(s)2

)

(1+mu(s)+u(s)2+kv(s))2 ]η − dv(s)(1−u(s)2
+kv(s))

(1+mu(s)+u(s)2+kv(s))2 = µη, x ∈ Ω,
ξ = η = 0, x ∈ ∂Ω

(9)
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has a unique eigenvalue µ∗ and Re(µ∗) < 0 with algebra multiplicity one.
Let {εi > 0} and {di > 0} be sequences which converge to 0 by i →∞. Owing to a = ã + a′(0)s + O(s2),

we can get the sequence {εi > 0} and {ai} yield ai ∈ (ã − εi , ã) and si → 0 as i → ∞. It is easy to see that
(ui , vi) is one solution of (2). Hence, the corresponding linearized problem (9) can be written in the following
form:

Li (
ξi

ηi
) = µi (

ξi

ηi
)and Li = (M

11
i M12

i
M21

i M22
i

) ,

where (ξi , ηi) /≡ (0, 0) and
M11

i = −∆ − [ai − 2ui − bvi(1−u2
i +kvi)

(1+mui+u2
i +kvi)2 ], M12

i = bui(1+mui+u2
i )

(1+mui+u2
i +kvi)2 ,

M21
i = − dvi(1−u2

i +kvi)
(1+mui+u2

i +kvi)2 , M22
i = −∆ − [c − 2vi + dui(1+mui+u2

i )

(1+mui+u2
i +kvi)2 ].

Observe that, as i →∞, Li (
ξi

ηi
) converges to

L0 ( ξ
η
) = (−∆ξ − (ã − bθc

1+kθc )ξ 0
0 −∆η − (c − 2θc)η

) .

It follows that 0 is a simple eigenvalue of L0 with the corresponding eigenfunction (ξ, η)T = (Φ, 0)T . Mean-
while, all the other eigenvalues of L0 are positive and keep away from 0. Furthermore, using perturbation
theory [31, 33], for large i, the operator Li has a unique eigenvalue µi which is close to zero. Moreover, all
other eigenvalues of Li have positive real parts and keep away from 0. Because µi is simple real eigenvalue
which tends to zero, we denote the corresponding eigenfunction by (ξi , ηi)T which satis�es (ξi , ηi) → (Φ, 0)
as i →∞.

Now we claim that Reµi < 0 for large i. Multiplying Φ on the �rst equation of Li(ξi , ηi)T = µi(ξi , ηi)T and
integrating overΩ, we obtain

−∫
Ω

Φ∆ξi − ∫
Ω

(ai − 2ui −
bvi(1 − u2

i + kvi)
(1 +mui + u2

i + kvi)2 )Φξi + ∫
Ω

bui(1 +mui + u2
i )Φηi

(1 +mui + u2
i + kvi)2 = ∫

Ω

µiΦξi . (10)

Multiplying two sides of the �rst equation of (2) with (a, u, v) = (ai , ui , vi) by ξi and integrating, we obtain

−∫
Ω

ξi∆ui − ∫
Ω

(ai − ui −
bvi

1 +mui + u2
i + kvi

)uiξi = 0.

Taking ui = siΦ + O(s2
i ) into the above equation we have

−∫
Ω

Φ∆ξi − ∫
Ω

ξiΦ(ai − ui −
bvi

1 +mui + u2
i + kvi

) + O(s2
i ) = 0. (11)

By combining (10) and (11), we obtain

∫
Ω

[1 − bvi(m + 2ui)
(1 +mui + u2

i + kvi)2 ]uiΦξi + ∫
Ω

bui(1 +mui + u2
i )Φηi

(1 +mui + u2
i + kvi)2 = ∫

Ω

µiΦξi .

Notice that (ui , vi) = (siΦ + O(s2
i ), θc + siΨdi + O(s2

i )), where Ψdi stands for Ψ de�ned in Remark 3.2. Thus,
dividing the above equation by si and taking the limit, we get

lim
i→∞

µi
si

= ∫
Ω

(1 − bmθc
(1 + kθc)2 )Φ

3/∫
Ω

Φ
2 < 0,

which results in Reµi < 0 for large i. Hence, our claim is illustrated.
Finally, using similarmethodas in [25],wewill demonstrate the remainingpart of Theorem4.7. In order to

apply reduction to absurdity, we suppose that there exists a unique coexistence state (ũ, ṽ) for (2), then (ũ, ṽ)
must be bifurcated from (0, θc), since there exists a coexistence state near ã. Thus, (ũ, ṽ) is non-degenerate,
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and the corresponding linearized problem has a unique eigenvalue µ̃ with algebra multiplicity one which
satis�es Reµ̃ < 0. The above fact implies that I−F′(ũ, ṽ) is invertible and does not have property α onW(ũ,ṽ),
hence index(F, (ũ, ṽ)) = (−1)1 = −1 by Lemma 2.2(ii). Thus, according to Lemma 2.3-2.4 and the �xed point
index theory, we get

1 = indexW(F, D)) = indexW(F, (0, 0)) + indexW(F, (θa , 0))

+indexW(F, (0, θc)) + indexW(F, (ũ, ṽ)) = 0 + 0 + 1 − 1 = 0,

which leads to a contradiction. Thus, the proof is completed.

Remark 4.8. The proof of Theorem 4.7 implies that the multiplicity of (2) can be obtained easily as m ≥ 0. Due
to a′(0) < 0 for a su�ciently small d, and ∫Ω(1− bmθc

(1+kθc)2 )Φ3 < 0, it is easy to see that a = a(s) ∈ (λ1, ã). From
Theorem 2.5(i), we know that there is no coexistence state of (2) if a ≤ λ1( bθc

(1+mθa+θ2
a+kθc)

) as m ≥ 0, c > λ1.
As a result, we have demonstrated that there exist at least two coexistence states for a ∈ (a∗, ã) and some
a∗ ∈ (λ1( bθc

(1+mθa+θ2
a+kθc)

), λ1( bθc
1+kθc )).

Finally, we study the stability of any positive solutions (if exists) as the parameter a, b, c belong to some
domain.

Theorem 4.9. If a > λ1, c > λ1, then there exists some su�ciently small B̃ > 0 such that any coexistence state
of (2) (if exists) is non-degenerate and stable for b ≤ B̃.

Proof. Let ṽ be a positive solution of the following equation

−∆v = v(b − v − dθa
1 +mθa + lθ2

a + kv
) x ∈ Ω, v∣∂Ω = 0.

Hence, we need only demonstrate that the linearized problem of (2) has no the real part of eigenvalue.
By reduction to absurdity, we suppose that the positive solution (ui , vi) of (2) is either non-degenerate or
unstable. Suppose the sequence bi meets bi → 0 with i ≥ 1, then there exists µi such that Reµi ≤ 0, and
the corresponding eigenfunction (ξi , ηi) ≠ (0, 0) with ∥ξi∥2 + ∥ηi∥2 = 1 satisfying the following linearized
problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∆ξi − [a − 2ui − bvi(1−u2
i +kvi)

(1+mui+u2
i +kvi)2 ]ξi +

bui(1+mui+u2
i )

(1+mui+u2
i +kvi)2 ηi = µξi , x ∈ Ω,

−∆ηi − [c − 2vi + dui(1+mui+u2
i )

(1+mui+u2
i +kvi)2 ]ηi −

dvi(1−u2
i +kvi)

(1+mui+u2
i +kvi)2 = µηi , x ∈ Ω,

ξi = ηi = 0, x ∈ ∂Ω

(12)

Multiplying two sides of (12) with ξi , ηi), respectively, and integrating on Ω, it follows from Divergence
theorem that

µi = ∫
Ω

∣∇ξi ∣2dx − ∫
Ω

[a − 2ui −
bvi(1 − u2

i + kvi)
(1 +mui + u2

i + kvi)2 ]∣ξi ∣
2dx + ∫

Ω

bui(1 +mui + u2
i )

(1 +mui + u2
i + kvi)2 ηi ξ̄idx

+∫
Ω

∣∇ηi ∣2dx − ∫
Ω

[c − 2vi +
dui(1 +mui + u2

i )
(1 +mui + u2

i + kvi)2 ]∣ηi ∣
2dx − ∫

Ω

dvi(1 − u2
i + kvi)

(1 +mui + u2
i + kvi)2 ξiη̄idx,

where ξ̄i and η̄i are the complex conjugates of ξi and ηi. According to the above equation, we can deduce that
Re(µi) and Im(µi) are bounded, so we suppose that µi → µ with Re(µ) ≤ 0. Meanwhile, (ξi , ηi) → (ξ, η),
bi → 0 as i →∞. Then (12) converges to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∆ξ − (a − 2θa)ξ = µξ, x ∈ Ω,
−∆η − [c − 2ṽ + dθa(1+mθa+θ2

a)

(1+mθa+θ2
a+kṽ)2 ]ηi − dṽ(1−θ2

a+kṽ)
(1+mθa+θ2

a+kṽ)2 = µη, x ∈ Ω.
ξ = η = 0, x ∈ ∂Ω

(13)
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It follows that µ must be real number with µ ≤ 0. Suppose ξ /≡ 0, one can deduce that µ is an eigenvalue of
the equation

−∆φ + (−a + 2θa)φ = µφ, x ∈ Ω, φ∣∂Ω = 0,

Then µ ≥ λ1(−a + 2θa), since λ1(−a + 2θa) > λ1(−a + θa) = 0, hence µ ≤ 0, a contradiction.
Suppose ξ ≡ 0, then η /≡ 0. By the second equation of (13), we get

−∆η − [c − 2ṽ + dθa(1 +mθa + θ2
a)

(1 +mθa + θ2
a + kṽ)2 ]ηi = µη, x ∈ Ω.η∣∂Ω = 0.

Observe that η /≡ 0, we obtain µ = λ1[−c+2ṽ− dθa(1+mθa+θ2
a)

(1+mθa+θ2
a+kṽ)2 ]. Set g(x, v) = c− v+ dθa

(1+mθa+θ2
a+kṽ)

, then gv < 0.
Hence,

λ1(−g(x, ṽ)) < λ1(−g(x, ṽ) − λ1(−ṽgv(x, ṽ))) = λ1[−c + 2ṽ − dθa(1 +mθa + θ2
a)

(1 +mθa + θ2
a + kṽ)2 ] = µ.

Notice that λ1(−g(x, ṽ)) = 0, so µ > 0, a contradiction.

5 Conclusion
This paper considers dynamic behavior of the prey-predator model with ratio-dependent Monod-Haldane
response function under homogeneous Dirichlet boundary conditions. We come to the following conclusion.
Firstly, the su�cient and necessary conditions on existence and non-existence of coexistence states of (2) are
proved by the �xed point index theory, see Theorems 2.5, 2.6 and 2.7, which determine the conditions for the
coexistence of two species of organisms. Secondly, taking a as a main bifurcation parameter, the structure
of global bifurcation curve on coexistence states is established by global bifurcation theorem and property
of principal eigenvalue, see Theorems 3.1 and 3.3, which show the global coexistence state of two species of
organisms by controlling the change of the parameter a. Finally, the stability of coexistence states is obtained
by the eigenvalue perturbation theory, see Theorems 4.5 and 4.9; the multiplicity of coexistence states to (2)
is obtained when a ∈ (a∗, ã) by the �xed point index theory, see Theorem 4.7, which show that two species
of organisms have two coexistence states when the parameter satisfying some condition.
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