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Abstract:RandomDecentering Algorithm (RDA) on a undirected unweighted graph is de�ned and tested over
several concrete scale-free networks. RDA introduces ancillary nodes to the given network following basic
principles of minimal cost, density preservation, centrality reduction and randomness. First simulations
over scale-free networks show that RDA gives a signi�cant decreasing of both betweenness centrality and
closeness centrality and hence topological protection of network is improved. On the other hand, the
procedure is performed without signi�cant change of the density of connections of the given network. Thus
ancillae are not distinguible from real nodes (in a straightforward way) and hence network is obfuscated to
potential adversaries by our manipulation.
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1 Introduction
Network analysis [1] is a research �eld related to a wide range of scienti�c areas having roots in seminal
papers on social sciences [2–5] but also of increasing interest in Biology [6, 7], Engineering [8, 9], Finance
[10] or Computer Science and Security [11–13]. Networks are structures collecting a �xed number of objects
or entities called nodes together with relations between them called links. Hence algebraic structures like
graphs, directed graphs and their weighted versions [14] are fundamental tools to describe networks in
order to perform simulations and qualitative or quantitative analysis by means of statistical or numerical
procedures.

In addition to social or physical networks, like social work environments [15], transportation networks
[8, 9], supply systems [16, 17], we have technological networks, like the Internet [18] or data networks, whose
nodes are computers or virtual machines or email clients [11] and links represent the data exchange between
nodes.

Distributed computing over telecommunication networks, peer-to-peer �le sharing, online communities,
social networks or even virtual networks in the cloud are emerging topics of increasing interest in several
branches of applied mathematics which are essentially graph structures. This applies also to privacy con-
cerns related to data-analysis over graphs and networks including attack or fraud auditing techniques in
cybersecurity research [11].
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Privacy breaches in a network can be grouped into three categories [19]: 1) identity disclosure: the identity
of an individual who is associated with a node is revealed; 2) link disclosure: the sensitive relationships
between two individuals are disclosed; and 3) content disclosure: the sensitive data associatedwith eachnode
is compromised, e.g. the email message sent and/or received by the individuals in a email communication
network. A privacy-preserving system over graphs and networks should consider all of these issues.

Those issues imply the following challenges [19]:

Challenge 1. To model the knowledge and the capability of an adversary/attacker because any topological
structures of the graph can be exploited by the attacker to derive private information.

Challenge 2. To quantify the information as a function of several di�erent measures associated to the graph:
degree, centrality, betweenness, average path length, diameter, clustering coe�cient etc. Should we attempt to
modify these metrics? How?

Challenge 3. To de�ne graph-modi�cation algorithms that balance privacy and data utility. The nodes and
links of a graph are all correlated. Thus, the impact of a single change of an edge or a node can spread across
the whole network.

Challenge 4. To model the behavior of the participants involved in a network-based collaborative computing
environment.

Several privacy models, adversaries and graph-modi�cation algorithms have been proposed recently [20–22]
in order to face the challenges above. Note also that network recovery can be approached by similar methods
(see [23–25]). Unfortunately, it is unlikely to solve all problems in a single shot as protection against each type
of privacy branch requires di�erent techniques or even a combination of them [19].

In this work we focus on topological properties related to centrality in networks. Structural central
features of technological and communication networks are associated with their capacity to share and
broadcast information in a secure way.

To be speci�c, when the �ow of the information is condensed into a few amount of nodes, it is easier
to crash the network by removing or infecting some of those nodes before the system administrator detects
and stops the attack. Thus, networks with a few of such central nodes, called hubs, are more vulnerable to
targeted attacks [26, 27]. Our goal is to obtain suitable dynamic extensions to hide the central structure of the
network, so that it becomes less vulnerable to attacks.

Therefore, it’s necessary to know how principal or central a node is, and moreover, if a network has a
high level of centralization or not. Concepts of centrality and centralization measures are discussed in the
following sections. Note that there have been studies on hiding nodes in a network [28] but the focus therein
is not on centrality but on percolation threshold.

Section 2 is devoted to some topics on centrality and centralization measures. Then section 3 describes
the e�ect on the underlying graph of introducing ancillary nodes to a given network; afterwards, in section 4
we propose our Random Decentralized Algorithm (RDA) to perform those dynamic extensions on networks.
In 5we provide several numerical simulations, test RDA and analyze numerical and graphical results in order
to establish some �nal conclusions and comments.

2 Graph centrality measures
From a computer science perspective, a network can be identi�ed with a graph G = (V , E), where V =
{v1, v2, . . . , vn} is the set of vertices or nodes and E ⊂ V × V is the set of links or edges; a pair (vi , vj) ∈ E
if and only if vertices vi and vj are connected. In this work we are interested in network structures with data
exchanges, where nodes are terminals or other connected computational devices. Therefore, two nodes are
linked if and only if they are connected and there is information exchange between them. Several approaches
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to technological communication networks could be modeled by graphs, but it is not within the scope of
this paper to cover all cases, so we are considering binary relations uniquely, which implies that underlying
graphs are undirected and unweighted. Also the graph will be assumed to have no isolated nodes nor loops.
We will call such networks simple networks. Finally, the networks will be assumed to be connected. We shall
refer to Brandes and Erlebach [1] for terminology and basic properties on Network Analysis.

An undirected graph G = (V , E) consists of two sets V, and E, such that V ≠ ∅ and E is a set of unordered
pairs of elements of V. A graph G is completely determined by its adjacency matrix A(G) = A = (aij), where
aij = 1⇔ (vi , vj) ∈ E and aij = 0⇔ (vi , vj) ∉ E. Symmetric 0-1 matrix A(G) contains relevant information
about the topology of the network, such as centralization, number of triangles, diameter of the network,
presence of cohesive clusters, bipartite character, randomness, etc. ([1, 5, 29]).

We brie�y discuss in this section some measures of centrality of a single node within a graph -point
centrality measures- and Freeman’s normalization procedure to measure the centrality of the graph taken
as a whole -network centralization measures-. Much work has been done on centrality properties and their
applications [30–32]. In this paperwe followFreeman [33]who in the seventies collected and formalized point
centrality and network centrality concepts.

De�nition 1. Degree point centrality computes the total amount of adjacencies (direct neighbors) of a node vk,
which corresponds to the sum of terms of row (or column) k of the adjacency matrix A.

CD(vk) =
n
∑
i=1

ak,i

Therefore, a node with high degree centrality is an important node of communication, due to its capacity
to have direct contact with a great number of nodes in the network. Nevertheless, a node could have high
degree, but be disconnected to other nodes if their neighbors have no links to others in the network. So, it is
central in a “local sense". To solve this limitation, we consider betweenness and closeness point centrality
measures, which take into account the connections of all the nodes in the network.

Betweenness point centrality quanti�es the ratio of geodesics (shortest paths) linking two nodes passing
through a third point vk with respect to all geodesics between them.

De�nition 2. If gi,j denotes the number of geodesics connecting vi , vj and gi,j(vk) the number of those shortest
paths passing trough vk, the betweenness index of vk is given by

CB(vk) =
n
∑
i<j

n
∑
j=1

gi,j(vk)
gi,j

A node with high value of betweenness is also a communication hub, having the capacity to control a
signi�cant part of the �ow of information in the network due to the great proportion of nodes communicated
through it.

De�nition 3. The closeness index of a node vk is given by

CC(vk) =
1

∑n
i=1 di,k

where di,k denotes the distance between nodes vi, and vk.

A node with high closeness is an important communication node, related to e�ciency [34] and minimal cost
in communication, due its proximity to other nodes in the network.

The three structural point centrality measures described above strongly depend on the network size and
have normalized versions. In section 5, we compute and plot thatmeasures for simulated networks and apply
Freeman’s normalization in order to compare centrality in networks removing network size e�ect.

Centrality network indexes (or centralization indexes) quantify the homogeneity of point centrality of all
the nodes in the network. Networks with high level of centralization have great di�erences between point
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centrality value of the most central point and the others. Networks with low level of centralization have
homogeneous point centrality values, which are around the value of the most central node.

De�nition 4 (cf. Freeman [33]). Freeman’s normalized indexes of network centralizationmeasures are de�ned
as follows:

CX =
∑n

i=1 C⋆X − CX(vi)
maxG∈Gn ∑n

i=1 C⋆X − CX(vi)

where CX(−) is a point centrality measure, C⋆X its value at the most central node and Gn is the set of networks of
size to n. Note that CX takes values between 0 and 1.

It is evident that from the point of view of degree, betweenness and closeness point centrality, the center of
the star is the most central node in all three cases. The star is the network in which the maximum value in
the denominator is reached.

Theorem 1. Degree-based centrality measures are computed as follows:
(i) Degree network centrality

CD =
∑n

i=1 (C⋆D − CD(vi))
(n − 1)(n − 2)

(ii) Betweenness network centrality

CB =
2∑n

i=1 (C⋆B − CB(vi))
(n − 1)2(n − 2)

(iii) Closeness network centrality

CC =
(2n − 3)∑n

i=1 (C⋆C − CC(vi))
(n − 2)

Proof. (i) and (ii) see Freeman [33]. (iii) is a slight modi�cation with respect to its counterpart Freeman’s
coe�cient. Considering point closeness centrality as CC(vi) = 1/∑ di,j it’s easy to proof that the maximum
value of∑n

i=1 C⋆C − CC(vi) is n−2
2n−3 .

3 Dynamic extensions
Hidingnetwork topology canbe important in order to protect node’s identity or other con�dencial parameters
[35]. Our goal in this paper is to hide information about the topology of a given network by adding ancillary
nodes. To be concise, given a network (�g. 1), we add a new node A6 and its connections to the remaining
nodes (�g. 2).

Note that this manipulation is cheap and possible in virtual environments where nodes are virtual
machines in a cloud.

Some topological properties may be directly shifted by means of such an operation because in particular
the characteristic polynomial of the graph and hence its roots (spectrum) are manipulated.

Note also that in such a dynamic enlargement both the number of ancillary nodes added as well as their
connections have to be decided.

De�nition 5. A dynamic enlargement of a graph G = (V , E) is a new graph Γ(G) = (V ′, E′)where V ′ ⊇ V and
E′ ⊇ E. We say that a dynamic enlargement is connected if Γ(G) is a connected graph.

We deal with adjacency matrices of simple and connected networks. Consequently, this matrices are binary
and symmetric, their diagonal entries are equal to zero and there does not exist a node permutation to get a
block decomposition of the adjacency matrix. In particular, matrices of above examples are:
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Fig. 1. Original Network
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Fig. 2. Extended Network
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A(G) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 0
1 0 1 1 0
0 1 0 0 1
1 1 0 0 1
0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

A(Γ(G)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 0 ⋆
1 0 1 1 0 ⋆
0 1 0 0 1 ⋆
1 1 0 0 1 ⋆
0 0 1 1 0 ⋆
⋆ ⋆ ⋆ ⋆ ⋆ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Dynamic enlargement with one ancilla gives the incidence matrix A(Γ(G)) where connections ⋆ have to be
decided.

4 The dynamic Random Decentering Algorithm (RDA)
Now we propose an algorithm transforming a given graph G into a dynamic enlargement Γ(G) of graph G
with the following principles:

Principle 1. Minimal cost. Algorithm does add one single ancillary node in each step. This minimizes the
manipulation cost in physical networks. However we can design a signi�cant number of ancillae by means of
running algorithm in a loop.

Principle 2. Topological properties preservation. Density case. Enlargements should have similar topo-
logical features to original networks. Nevertheless, topological measures are related one with another. It is
not possible to preserve more than one of them with the extension process. For example, average degree ⟨k⟩
and density d are widely used to analyze the connectivity of a network. Nevertheless ⟨k⟩ = d(n − 1). Thus an
algorithm preserving ⟨k⟩ returns sparse networks with small density values, while if d is preserved, ⟨k⟩ increases
proportionally to (n − 1) . In this work, we propose dynamic enlargements Γ(G) having similar density of
connections to G.

Principle 3. Centrality and centralization reduction. Distribution of centralities in network Γ(G) should
be more homogeneous than in network G hence centralization of network decreases each time algorithm is
performed.

Principle 4. Algorithm protection. Dynamic enlargement links should be obtained by a random process.
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Notations used in the sequel are detailed next: A is the adjacencymatrix of original graph G = (V , E), n = #V
is the size of matrix A, m = 1

2∥A∥1 is the number of edges, and parameter p is the proportion of ancillae we
add.

We will obtain a succession of dynamic extensions A = A(0), A(1), ..., A(pn) of the original graph to
reach the number of required ancillae; parameters n(t),m(t) are referred to the correspondent extension
with n = n(0), m = m(0). We also use the notation∆m(t) = m(t) −m(t − 1) for the number of links we add
in the step A(t − 1) → A(t). Requirements we stated for our algorithm yield the following equalities related
to the parameters:

Principle 1 implies
n(t) = n(t − 1) + 1

then, by recurrence
n(t) = n(0) + t (1)

Principle 2 establishes that
2m(0)

n(0) (n(0) − 1) = 2m(t)
n(t) (n(t) − 1)

It follows that
m(t) = m(0)(n(0) + t) (n(0) + t − 1)

n(0) (n(0) − 1)
thus, the number of links added in each step ∆m(t) = m(t) − m(t − 1) can be approximated by the nearest
integer to the quotient

2m(0) (n(0) + t − 1)
n(0) (n(0) − 1) (2)

On the other hand, to follow principles 3 and 4, a multinomial distribution law is applied. A new ancillary
node links to a previous node vi with probability

pi =
1/di
∑j 1/dj

i = 1, 2, . . . , n(t − 1) (3)

at each step t.
In order to avoid multilinks we apply this probability model step by step, recalculating probabilities pi

after each selection (no replacement probability model).
We provide a self-explain pseudocode of RDA (see Algorithm 1). After performing RDA algorithm we

obtain all the adjacency matrices of the successive dynamic extensions and its basic topological properties
(size, number or links and node degrees).

The following sections are devoted to obtaining experimental results. The centrality measures of the
enlarged networks will be computed and plotted as functions of the number of added nodes. It is worth to
remark here that original graphs are chosen to be scale-free graphs randomly obtained by BA algorithm.

5 Experiments
In this section section we carry out dynamic extensions over simulated networks and analyze numerical
changes on centrality and centralization measures and their relations. We have conducted the experiments
on simulated data that closely model technological data networks we are interested in.

5.1 Real world networks. Scale-free

Several models to generate real world networks have been proposed since the 50’s [36–41]. Paul Erdós and
Alfred Rényimodeled randomnetworks, characterized by having nodeswith approximately the same degree,
showing low level of centralization and being robust against target attacks but vulnerable to random attacks.
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Algorithm 1. Random Decentering Algorithm RDA
Require: A = A(0) incidence matrix
Require: p > 0 proportion of ancillary nodes
Ensure: t number of steps and A(t) dynamic enlargement of A(0) following principles 1-4.
1: n(0) ← n and t ← 0
2: while i ≤ n(0) do

3: d(0; i) =
n(0)
∑
k=1

A(0; k, i)

4: end while

5: m(0) = 1
2

n(0)
∑
i=1

d(0; i)

6: while t < pn do
7: t ← t + 1
8: n(t) ← n(t) + 1
9: ∆m(t) = [ 2m(0)n(t−1)

n(0)(n(0)−1)]
10: choose ∆m(t) elements without replacement {k1, ..., k∆m(t)} ⊂ {1, ..., n(t − 1)} with probabilities

p(t, i) = 1/d(t−1,i)
∑n+t−1

i=1 1/d(t−1,i)
11: A(t; i, j) = A(t − 1, i, j) for i, j = 1, ..., n(t − 1)
12: if k ∈ {k1, ..., k∆m(t)} then
13: A(t; n(t), k) = A(t; k, n(t)) = 1
14: d(t, i) = d(t − 1, i) + 1
15: else
16: A(t; n(t), k) = A(t; k, n(t)) = 0
17: d(t, i) = d(t − 1, i)
18: end if
19: d(t, n(t)) = ∆m(t)
20: end while
21: return A(t); d(t, i); n(t);m(t) i = 1, . . . , n(t) t = 0, . . . , np

On the other hand, scale free networks have a few nodes with a great number of connections (called hubs),
whereas most nodes have small degree. Networks with this characteristics might appear in complex and
computational networks, have high level of centralization and are more vulnerable to coordinated attacks
than to random threats.

5.2 Simulation data

Simulated data of our experiment were eventually obtained by BA scale free algorithm [37] with SFNG m-�le
of MATLAB. We carried out BA simulations and obtained networks with di�erent size but similar density we
call “original networks". Random Decentralized Algorithm (RDA) was applied with di�erent percentage p of
ancillary points added. We shall refer to the dynamic extensions as “extended networks" at each algorithm
step t. Degree point centrality index was obtained for single nodes in all the networks, original and extended
anddegree distribution plotswere also performed. Finally, network centrality indexeswere obtained together
with their evolution graphs over all the algorithm steps from 0% to 100% of ancillary nodes added.

Six original networks were randomly obtained by BA algorithm and several sizes n=40, 80, 100, 150,
200, 250. Parameters were selected in order to get networks with similar density d ≈ 0.1. RDA algorithm
was performed for each original matrix A with proportion p = 1 (100% of ancillary nodes added). Finally,
sequences ofmatricesA(t)were stored from t = 0 (adjacencymatrix of the original network) to t = [p∗n(0)] =
n(0).
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5.3 Results

In order to compare the point degree distribution for original and extended networks, frequency plots were
performed for 25% and %75 of ancillary nodes added (�gs. 3, 4). While original scale-free networks �t
to decreasing exponential shapes, extended networks show right displacement and tendency to converge
towards bell shapes, typical for random networks, witch are robust to target attacks.

Fig. 3. Frequency plots for point degree with 25% of nodes added

Centralization measures were computed for all original and extended matrices A(t). As we have mentioned
before, all measures have been normalized. Consequently, potential network-size e�ect has been removed.
This reveals that centralization decreases as t incerases. Table 1 contains absolute values of degree, between-
ness and closeness centralization measures respectively.

As we remarked above, original simulated networks were randomly obtained by BA algorithm. In spite of
the randomcharacter of BA algorithm, networks obtained byRDAhave similar centralization values of degree
(varying between 0.304 and 0.387) and closeness (between 0.272 and 0.417). Nevertheless, betweenness
network centrality tends to decrease when n increases (from 0.071 and 0.448). On the one hand, the range
of variation of betweenness values is greater in general for this index [4] than the others. Furthermore, the
inherent nature of BA algorithm tends to get short paths between nodes if seeds have small size compared
to the �nal size of the scale free network. This fact implies that nodes have low point betweenness centrality
and the same occurs with betweenness network index.
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Fig. 4. Frequency plots for point degree with 75% of nodes added

Table 1. Absolute values of degree network centrality (CD), betweenness network centrality (CB) and closeness network
centrality (CC) for the original simulated networks and extended networks with 0%, 25%, 50%, 75% and 100% of ancillary
points.

CD CB CC
n 0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
40 0.359 0.270 0.205 0.160 0.126 0.448 0.327 0.208 0.141 0.094 0.417 0.360 0.304 0.255 0.211
80 0.319 0.237 0.188 0.147 0.122 0.177 0.105 0.061 0.036 0.026 0.371 0.309 0.255 0.208 0.177
100 0.324 0.241 0.183 0.142 0.117 0.160 0.086 0.047 0.027 0.018 0.361 0.276 0.218 0.171 0.137
150 0.299 0.221 0.171 0.144 0.123 0.073 0.037 0.022 0.014 0.010 0.284 0.210 0.156 0.122 0.097
200 0.304 0.225 0.174 0.141 0.116 0.063 0.031 0.017 0.011 0.007 0.272 0.193 0.138 0.104 0.079
250 0.387 0.294 0.228 0.184 0.150 0.071 0.036 0.019 0.012 0.008 0.314 0.220 0.159 0.120 0.094

In order to analyze variations of centralization measures as a function of t, relative values of centralization
indexes were obtained (table 2) and evolution plots were obtained in each case (�gs. 5, 6 and 7). Values with
0% of ancillary points added are reference values and hence omitted in this table.
RDA gets signi�cant increasing values of centralization indexes in all cases. CC and CB tend to decrease faster
for original networks with a large size while CD does not. On the other hand, RDA shows greater variation of
relative values of CB. With 25% of nodes added, CD and CC have a decrease between 70% and 86%, and
between 50% and 72%. If 50% of ancillary nodes are added to the networks with RDA, the percentage of
decrease varies between 50% and 72% for CD and CC, while CB decreases between 27% and 46%. The
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Table 2. Relative values of degree network centrality (CD), betweenness network centrality (CB) and closeness network
centrality (CC) for the original simulated networks and extended networks with 25%, 50%, 75% and 100% of ancillary points.

CD CB CCC
n 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%
40 75.199 57.214 44.452 35.204 72.894 46.382 31.351 21.031 86.366 72.771 61.099 50.517
80 74.399 59.116 46.125 38.406 59.126 34.445 20.133 14.405 83.275 68.708 56.011 47.798
100 74.316 56.491 43.864 36.056 53.971 29.660 17.188 11.477 76.319 60.404 47.387 37.978
150 73.734 57.178 48.012 41.164 51.381 29.629 19.740 14.104 73.950 55.104 42.982 34.000
200 73.833 57.170 46.260 38.111 70.937 50.933 38.404 29.053 70.937 50.933 38.404 29.053
250 76.000 59.011 47.501 38.869 70.073 50.478 38.297 29.960 70.073 50.478 38.297 29.960

Fig. 5. Relative Degree network centrality

greatest variation is observed with 100% of nodes added, 36% to 50% for CD and CC and 11% to 21% for
betweenness CB.

6 Conclusions
In this paperwegive analgorithm thatmodi�es the character of a given scale-freenetworkbymeans of adding
ancillary nodes.

First experimental results show decreasing values of network centralization measures. This provides a
possible tool for protecting communication networks from vulnerabilities exploiting topology of underlying
graph, and consequently RDA provides an answer to Challenge 1 and Challenge 2.

It remains to face Challenge 3 by estimating the consequences of each single change in terms of data
preserving. Note that RDA algorithm improve node‘s privacy becouse centrality decreases and therefore
principal nodes are hiddenwithin new ancillary nodes. However, more experiments are needed in the future.
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Fig. 6. Relative Closeness network centrality

Wenote once again that a dynamic treatment like RDA is cheap to implement on networks of virtualmachines
in the cloud, but its implementation on cyber-physical environments needs previous study in order to
evaluate the cost of introducing each ancillary node and each ancillary link.

Some pending tasks are (1) to get, if possible, a true random network from a scale-free one by means
of adding ancillary nodes; (2) to compute e�ectively how many ancillary nodes are necessary to hide main
properties of original network; (3) to perform experiments of order 10n nodes, n = 4, 5, .. in order to check
our procedure in real world networks.
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