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Abstract: In this paper, we investigate some properties of points on quantales. It is proved that the two sided
prime elements are in one to one correspondence with points. By using points of quantales, we give the
concepts of p-spatial quantales, and some equivalent characterizations for P-spatial quantales are obtained.
It is shown that two sided quantale Q is a spatial quantale if and only if Q is a P-spatial quantale. Based on
a quantale Q, we introduce the definition of diameters. We also prove that the induced topology by diameter
coincides with the topology of the point spaces.
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1 Introduction

Quantale was proposed by Mulvey in 1986 to study the foundations of quantum logic and non-commutative
C*-algebras. The term quantale was coined as a combination of quantum logic and locale by Mulvey in [1].
Since quantale theory provides a powerfull tool in studying non-commutative structure, it has a wide range of
applications, especially in studying linear logic which supports part of the foundation of theoretical computer
science [2-5]. It is known that quantales are one of the semantics of linear logic, a logic system developed by
Girard [6]. A systematic introduction of quantale theory can be found in book [7] written by Rosenthal in
1990. Following Mulvey, quantale theory has had a wide range of applications in computer science, logic,
topological, category, C*-algebras, fuzzy theory, roughness theory and so on [8-27].

A point in topological space is considered to be a point space embedded in a space, which corresponds
to a mapping from local to binary chain. The analogous term in commutative C*-algebras is a non-trivial
representation onto C, which is a pure state of the algebra. The points of quantales are studied mainly in
the context of C*-algebras [28]. A very precise way how to transfer properties of C*-algebras into terms of
quantales was introduced by Mulvey and Pelletier. In paper [29-31] Pultr extended the metric structure to
pontless spaces (frames or locales). The classical distance function is being replaced by the notion of diameter
satisfying certain properties. Some good properties of diameter in locales are given. In this paper, we discuss
the points and diameters of quantales. For the notions and concepts not explained in this paper, refer to [32].

This paper is organized as follows: In Section 2, we review some facts about quantales and category
theory, which are needed in the sequel. In Section 3, we discuss some properties of points in quantales. We
prove that the set of all completed files is isomorphic to the set of all points of quantales. The definition of
P-spatial is given and some equivalent characterizations for P-spatial quantales are obtained. In Section 4,
the definition of diameters of quantales is given. We prove that the induced topology by diameter coincides
with the topology of the point spaces. In Section 5, finally, we give a summary of the paper.
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2 Preliminaries

Definition 2.1 ([2]). A quantale is a complete lattice Q with an associative binary operation “&” satisfying:
a&(\/ b;) = \VV/(a&b;) and (\ b;)&a = \/ (b;&a) forall a, b; € Q, where I is a set, 0 and 1 denote the smallest
iel iel iel iel

element and the greatest element of Q, respectively. An element r € Q is called right-sided if r&1 < r. Similarly,
l e Qis called left-sided if 1&l < L. q € Q is called two-sided if q&1 < q, 1&q < q. The sets of right and left-sided
elements will be denoted by R(Q), L(Q).

A subset K of Q is called a subquantale if K is closed under v and &. Let Q and P, the functionf : Q — P is
called a homomorphism of quantales if f preserves v and &.

Definition 2.2 ([13,14,26]). Let Q be a quantale. A nonempty subset I c Q is called an ideal of Q if it satisfies
the following conditions:

(iavbelforalla,bel;

(ii)foralla,b e Q,ifacIandb < a,thenb € I;

(iii) forall a € Q and x € I, we have a&x € I and x&a € I.

Let IdI(Q) denote the set of all ideals of Q.

Definition 2.3 ([13,14,26]). Let Q be a quantale. An ideal I of Q is called:

(i) a prime ideal if I + Q and forall a, b € Q, a&b € I impliesacIorb e I;

(ii) a semi-prime ideal if a&a € I implies a € I for all a € Q;

(iii) a primary ideal if I + Q, and foralla, b € Q, a&b € I, a ¢ I imply b" € I for some n > 0.

Definition 2.4 ([13,14]). Let Q be a quantale. A nonempty subset F c Q is called a file of Q if it satisfies the
following conditions:

()0 ¢ F;

@ii)foralla,b e Q,ifac Fanda < b, then b ¢ F;

(iii) forall a, b € F, we have a&b ¢ F.

Let Fil(Q) denote the set of all files of Q.

Definition 2.5 ([7]). Let Q be a quantale. A file F of Q is called a prime file if F + Q and foralla,b € Q,avb ¢ F
impliesac Forb e F.

Definition 2.6 ([7]). Let Q be a quantale. An element p € Q, p # 1 is said to be a prime if r&l < p=r < p or
l<pforallr,le Q. The set of all primes elements is denoted by P,;(Q).

Theorem 2.7 ([7]). A quantale is spatial iff every element is a meet of primes.

Theorem 2.8 ([30]). If A and B are categories, then a functor F from A to B is a function that assigns to each
A-object A and a B-object F(A), to each A-morphism f : A — A’ and a B morphism F(f) : F(A) - F(A"), in
such a way that:

() F(fog)=F(f) o F(g); (ii) F(ida) = idF(a)-

3 The points of quantales

Definition 3.1 ([3,7]). Let Q and 2 = ({0, 1}, &) be quantales, a binary multiplication “&” of 2 satisfying:
1&1 =1, 0&1 = 1&0 = 0&0 = 0. A mapping f : Q — 2 is said to be a point if f is a epimorphism of quantales.
Let Pt(Q) denote the set of all points of Q.
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Remark 3.2, Letx € Q, Xy = {p ¢ Pt(Q) | p(a) = 1}.
(D) Zagp = Ya N Tpy o =2, 21 =PHQ), Tva = U Va

iel

(2)V p € Pt(Q), thenp~*(1) is a prime filter and p~* (0) is a prime ideal of Q. It is easy to prove that \/ p~*(0) €
Pr(Q), p'(0) =L (Vp~1(0)).
0, x<r,

(3) Define a mapping f : TPr(Q) — Pt(Q), r — pr(x) = {1 otherwise

all two sided prime elements of Q. It is easy to prove that f is a bijection.
(4)Letx e Q,andx e p (1), thenx" = \V{y ¢ Q| x&y = 0} e p1(0).

where TPr(Q) denotes the set of

Theorem 3.3. Let Q be a quantale, then:
()¢ :Q — P(Pt(Q)),V x € Q,¢(x) = Xx = {p € Pt(Q) | p(x) = 1} is a morphism of quantale.
(2) The set { Xy | x € Q} is a topology of Pt(Q), denoted by X.

Proof. (1) It is easy to verify that (P(Pt(Q)), n) is a quantale and the function 1) preserves v.

Leta+#ScQ,pePt(Q),thenpeyy(VS) <= p(VS)=1< V{p(s)|seS}=1«<=3s0¢€S, p(so) =
1 <= peu{y(s)|seS}, wehavey(vS) =u{y(s)]|seS}.

Letp e Pt(Q),V a,b e Q, thenp € y(a&b) — p(a&b) =1 <= p(a)&p(b) =1 <= p(a) =1, p(b) =
L= pey(a), pe(b) < pei(a)ny(b), We have )(a&b) = ¢ (a) n ¢ (b).

(2) It is easy to prove by definition of topology. O

Theorem 3.4. Let Q be a quantale, then:
(1) ¢: Q — P(TPr(Q)), vV x € Q, o(x) = {r e Pr(Q) | x £ r} is a homomorphism of quantale.
(2) The set {(x) | x € Q}is a topology of TPr(Q), denoted by 2(TPr(Q)).

Proof. Obviously, (P(Pr(Q)), n) is a quantale, the function ¢ preserves the empty set.

Let@+ScQ,rePr(Q),thenrep(VS) <= VSf{r<=3seS, s¢r—reu{p(s)]|seS}, thatis
e(VS) =ufe(s)|seS}

Letr € Pr(Q),Va,b e Q,wehaver e p(a&b) < a&b ¢ r==a f¢r,b¢tr<reyp(a), repl)
< rep(a)ne(b),thatis p(a&b) = ¢(a) n ¢(b). Therefore ¢ is a quantale homorphism.

(2) It is easy to prove by definition of topology. O

Definition 3.5. Let Q be a quantale, the topology space (Pt(Q), Xq) is called points space on Q.

Lemma3.6. Let h : Q — K be a quantale epimorphism, the map X (h) : (Pt(K), Xx) — (Pt(Q), Xo),
V f e Pt(K), 2(h)(f) = f o h, then ¥ x € Q, such that (£(h)) ™" (Zx) = Zh(x)-

Proof. Since (¥ (h))(f) € Xx < (X(h))(f)(x) =1 < f € Xy, then fo h(x) = 1. O

Lemma3.7. Let h : Q — K be a quantale epimorphism, then X(h) : (Pt(K), Xx) — (Pt(Q),Xq) isa
continuous map.

Let Quant, denote the category of quantales and epimorphisms, Top°? denote the dual category of topology
spaces and continuous maps.

Define a map

X : Quante — Top®?

Q — (Pt(Q), Xq)

h:Q — K — 2(h): (Pt(K), ¥x) — (Pt(Q), Xq)
f—sfoh.

Proof. 1t is easy to be verified that X is well defined by Lemmas 3.6 and 3.7.
(1) V fePt(Q), V x € Q, we have X(idq)(f)(x) = f o idq(x) = f(x) = idx,,,, (f)(X);
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(2)Lets: Q — Pandt: P — H be quantale epimorphisms, then V f € Xy, X¥(tos)(f) =fotos =
(Z(s) o Z(1))(f) = (Z(t) o 2(s))(f). O

Definition 3.8. Let Q be a quantale, F is a file of Q. The file F is called completed file of Q if it satisfies the
following condition: \/ A € F = An F + @. Let CFil(Q) denote the set of all completed files of Q.

Theorem 3.9. Let Q be a two sided quantale. We define amap ¢ : CFil(Q) — Pt(Q) such that V F € CFil(Q),
VxeQ o(F)(x)= {?’iillj’ and v : Pt(Q) — CFil(Q) such thatV f € Pt(Q), v(f) = {x € Q| f(x) = 1},
then o v = idcri(q), ¥ © ¢ = idpy(q)-

Proof. V x,y € Q, V F € CFil(Q). Obviously, »(F) is onto map.

. |0, x&y ¢F, [0,x¢F,y¢F,
@iy T XX O XEDIER o 0)
O, VxitF, (6 viclx¢F
. N iel _ s s Xi s _ )
) o(P) (Y x) {1, T L YL
iel

Therefore the map ¢ is well defined.
V fePt(Q), v(f) ={xeQ|f(x) =1}, wehave
() 0 ¢ »(f)s
(i) V x1, x2 € ¥(f), then f(x1&x2) = f(x1)&F(x2) = 1&1 = 1, thus x1 &x; € ¢ (f);
(iii) Let x e 0(f), y € Q,and x < y, then 1 = f(x) < f(y), thatis f(y) = 1;
(iv) V A c ¢(f), and vAa € ¢(f), then f( vAa) = vAf(a) = 1, there exists ao € A, such that f(ao) = 1, thus
a0 € B(f), thatis A n o (f) * 2. -
Hence, ¢(f) € CFil(Q), the map 1 (f) is well defined.
In the following, we will prove ¢ o ¢ = idcrj(q) and ¢ o ¢ = idpy(q)-
¥ F' ¢ CFil(Q), then v o o(F') = ¢(o(F')) = {x e Q| o(F)(x) =1}, Vx e {xe Q| o(F)(x) = 1}, that
is p(F')(x) = 1, then x € F', therefore ¢ o o(F') c F'. V x € F', then o(F")(x) = 1, thatis F' c ¢ o p(F'),

therefore 1 o ¢ = idcri(q)-
Conversely, V f' € Pt(Q), ¥V x € Q, then pot(f')(x) = {?:i i ZE};/;: = {(1): ;,Eg z (1): = f'(x). Therefore
@ ot = idpy(q)- O

Theorem 3.10. Let Q be a two sides quantale. V x € Q. Define Xy = {F € CFil(Q) | x € F}, then (CFil(Q), ¥ =
{Z% | x € Q}) is a topological spaces.

Proof. (i) Since X} = @, £1 = CFil(Q), then @, CFil(Q) € { ¥y | x € Q};
(ii) X3gy = {F € CFil(Q) | x&y e F} = {F € CFil(Q) | x € F, y e F} = Xy n X;
(iii) £/, = {F € CFil(Q) | Vx; € F} = V U{F € CFil(Q) | x;j € F} = 'UIE),Q..
iel iel iel L€
Therefore X, = {X} | x € Q} is a topology on CFil(Q).
Let TQuant denote the category of the two sides quantales and quantale homomorphisms.
Define

X" : TQuant — Top®?

Q — (CFil(Q), X)

f:Q— K — Z'(f): (CFil(K), £§) — (CFil(Q), 5b)
F—sfY(F). O

Theorem 3.11. The map X’ : Quant —> Top°? is a functor.
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Proof. Obviously, the map X’ is well defined. In what follows, we will prove that the map £'(f) : X'(Y) -
X' (X) is a quantale homomorphism with f is a contionous map.
() V U1, Uz € 2(Y), then 2(f) (U1 nU2) = f 1 (U1 nU,) = fH(U1) nfH(U2) = 2(F)(Ur) n 2(f)(U2);
(i) V {Ui}iar € 2(Y), then 2(F)(u Us) = F(0 U) = U (U3) = U () (V)
Next, we check that the map X’ preserves unit element and composition.
(i) V X € ob(Top), then 2(idx)(U) = idx" (U) = U = id(x)(U);
(ii) For any continousmap f : X — Yandg: Y — Z, V U € 2(X), then 2(g o f)(U) = (go )} (U) =
fog ' (U) = 2(f) o 2(8)(U) = 2(8) o 2(f)(U). H

Definition 3.12. Let Q be a quantale. Q is called P-spatial quantale or sufficient points if the quantale
epimorphisms ¢ : Q — X, x —> X is a injective function for all x € Q.

Now, we shall give some charaterizations of P-spatial quantales. It is easy to prove that two sided quantale is
spatial if and only if Q is p-spatial.

Theorem 3.13. Let Q be a quantale. Then the following statements are equivalent:

(1) Q is a P-spatial quantale;

(2)ifa, b € Q, a £ b, then there exists an element p € Pt(Q), such that p(a) =1, p(b) = 0;
(B)ifa,b € Q, a ¢ b, then there exists an elemenr € Pr(Q), suchthata £ r, b <r;

(W) forallac Q,a=n{peQ|a<p,pePr(Q)}.

Proof. (1)= (2) Leta,b € Q, a £ b. Since Q is a P-spatial quantale, that is the map 1) : Q — X is a one
to one map, then a £ b implies ¢)(a) ¢ ¢ (b), there exists p € Pt(Q) such that p € (a), p ¢ ¥(b). Thus
p(a)=1,p(b) =0.

(2= (3)Leta, b € Q, a £ b. By (2), we have that there exists p € Pt(Q), that is epimorphismsp : Q — 2
such that p(a) = 1, p(b) = 0. By Remark 3.2, we have that \/ p~*(0) € Pr(Q), and p~*(0) =} (Vp*(0)),
thena ¢ p~1(0), b e p~(0), therefore a £ \V p~1(0), b <V p~(0).

(3= (1) Leta,b € Q, a # b. By (3), we have that there exists r ¢ Pr(Q), suchthata £ r, b < r. By
Remark 3.2, we have that \/ p;(0) = r, and p;*(0) =} (Vp;*(0)) =} r.Sincea ¢£ r, b <r, then a ¢ p;*(0),
b € p;'(0), that is p,(a) = 1, p,(b) = 0. Therefore p, € v (a), pr ¢ ¥(b), thatis ¢»(a) = ¥(b), then
1 : Q — Xq is a injection map. Thus Q is a P-spatial quantale.

(3) = (4) Let a € Q, denote a* = A{r € Pr(Q) | a < r}, then a < a*. Suppose a # a*, then there exists
r* e TPr(Q), such that a* ¢ r*, a < r* by (3). Since r* € TPr(Q), and a < r*, then a* < r”, this contradicts
the assumption that a* ¢ r*. Thus a = a*.

(4)= (3) Leta,b € Q, a = b, by (4) we have b = A{r € Pr(Q) | b < r}, then there exists r* € {r ¢ Pr(Q) |
b <r},suchthata £ r*, otherwise Vre {r e Pr(Q) | b<r},thena <r,thusa < {re Pr(Q) | b <r} = b, this
contradicts the assumption that a ¢ b, therefore a £ r*, b < r*. O

Theorem 3.14. Let Q be a quantale, K is a frame, f : Q — K is left adjointof g : K — Q, (f < g).IfKisa
spatial frame (P-spatial quantale) and f is a onto map, the map f is a quantale homomorphism if and only if g
preserve the prime elements.

Proof. 1t is easy to verify that f preserves arbitrary sups. Next we check if f preserves the operation &. Since
K is spatial frame, then for all x, y € K, we have

fOx&y) = N{rePr(k) |f(x&y) <7},
= N\f{rePr(k) | x&y <g(n)},
= A({rePr(k)|x<g(r)}u{rePr(k)|y<g(n}),
=A\{rePr(k) [f(x) <ryu{rePr(k) |f(y) <r}),
=fOO A f(y).

Hence f is a quantale homomorphism.
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Conversely, let f be a quantale homomorphism, r € Pr(K), then g(r) # 1. Otherwise, g(r) = 1, then
r>fog(r)=f(1) = 1. Therefore r = 1, this is in contradiction with r € Pr(K).

Let x,y € Q, and x&y < g(r). Since f - g, then f(x)&f(y) = f(x&y) < r. Because K is a prime element
of K, then f(x) < ror f(y) < r. Therefore g(r) is a prime element of Q, that is the map g preserves prime
elements. O

4 The diameters of quantale

In this section, we introduce the concept of diametric quantale, which extends the metric structure to
quantale. The classical distance function is here being replaced by the notion of diameter satisfying certain
properties. We give the respective characterizations in the terms of diametric quantales.

Definition 4.1. The set C is called a conver of q quantale Q provided that C ¢ Q and vC = 1.

Definition 4.2. A diameter on a quantale Q is a mapping d : Q — R* u {0} (where R* u {0} is the set of
nonegative reals) satisfying:

(1) d(0) = 0;

(iDa<b=d(a)<d(b);

(iii) a&b # 0 = d(a v b) < d(a) + d(b);

(iv) V e > 0, theset U = {x € Q| d(x) < ¢} is a cover of Q.

Sometimes we will drop condition (iv). In such a case, we will note that d is a prediameter.

Definition 4.3.

(*) A diameter is said to be a star diameter if for each x € Q,and Y ¢ Q suchthat Vy € Y, x&y # 0, then
d(xvVY)<d(x)+Sup{d(s)+d(t)|s,teY, s=t}.

(M) A diameter is said to be a metric diameter if for each x € Q, ¥ € > O, there are y, z € Q such that y, z < x,
and d(y),d(z) <e d(x) <d(yvz) +e.

It is easy to check that (M) implies (+). If C is a cover of a quantale Q and x € Q, we denote Cx = \/{c € C |
c&x # 0}.

Remark 4.4. (1) Let {x; }ic1 be a family of quantale Q, C is a cover of a quantale Q, then Cy/ x, = V Cx;.
iel iel

(2) Let C be a cover of a quantale Q. Defined C : Q — Q for ¥V x € Q, C(x) = Cx, then C preserves v.

Definition 4.5. Let Q be a quantale, d be a diameter of Q, i(d) = {U? | ¢ > 0, € € R} is a family covers of Q.
Let o2 be the right adjoin of US. If ¥ x € Q, x = \/ a%x. We say that the diameter d is compatible.

>0

Ifx >\ ofx for x € Q, we say that d is week compatile.
e>0

Let f : Q —> P be a quantale epimorphism, d is prediameter of Q. We define d(y) = inf{d(x) | y < f(x)}.

Theorem 4.6. Let f : Q — P be a quantale epimorphism, d is a prediameter (diameter, *-diameter), then d
is a prediameter (diameter, x-diameter).

Proof. Firstly, we prove d is a prediameter of P.

(i) By the definition of d, we have that d(0) = inf{d(x) | 0 < f(x)} = 0;

(ii) Let a, b € Q, and a < b, then d(a) = inf{d(x) | a < f(x)}, d(b) = inf{d(y) | b < f(y)}. Since
a<b<f(y),thend(a)<d(b).

(iii) Let a, b € P, and a&b # 0, then d(a v b) = inf{d(x) | av b < f(x)}, d(a) = inf{d(y) | a < f(y)},
d(b) =inf{d(z) | b < f(2)}.
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Since inf{d(y) | a < f(y)} + inf{d(2) | b < f(2)} = inf{d(y) +d(2) | a < f(y), b < f(2)},disa
prediameter of P, and a < f(¥), b < f(z). 0 # a&b, a&b < f(y&z), then f(y&z) # 0, and y&z # 0. We have
d(yvz)<d(y)+d(z),avb<f(y)vf(z)=f(yvz).Thusd(av b) <d(a) +d(b).

If d is a diameter of Q, we can prove that UY = {x € Q | d(x) < ¢} for ¢ > 0 is a cover of Q. Since f(1) = 1,
then f(V UY) = 1,and d(y) < ¢, d(f(y)) <e. Hence 1 = f(\V U4) = Vf(U?) < v UY, thatis \V UY = 1.

Secondly, we can show that d is a »-diameter when d is a *-diameter of P.

LetaeP,BcP,andV b e B, a&b # 0, then d(a) = inf{d(x) | a < f(x)}, d(b) = inf{d(y) | b < f(y)}.
By the definition of infimum, for all € > 0, there exist xq4, x; € Q, such that d(x,) < a(a) +e d(xp) < a(b) +¢,
a < f(xa), b < f(xp), then 0 + a&b < f(xa&xp), av VB < f(xq Vv (bvab)), Therefore d(a v \/ B) <

d(xqv (b\e/BXb)) <d(xq) +Sup{d(xs)+d(xt) |s#t, s,t e B} <d(a)+Sup{d(s)+d(t)|s+t,s,teB}+3e

Thus d is a *-diameter of P. O

Theorem 4.7. Let Q be a quantale, d is a diameter on Q, f : Q — P is a epimorphism. For allp € P, ¥ ¢ > 0,

we define d.(p) = {q € Q| q e UZ, f(q)&p 0}, ¢e(p) = V Pe(p). We have:
(1) Let Q be a idempotent quantale, and ¥V q € Uf,f(q) + 0, then ¢(f(q)) > g;
(2) pc(A) = V ¢e(a) forall A c P;

acA

B)Ifp < f(q), then ¢(p) < UZ(q).

Proof. (1) V q < UZ, f(q) # 0, then ¢c(f(q)) = V&(f(q)) = V{x ¢ U | f(x)&f(q) # 0}. Since Qisa
idempotent quantale, and f(g) # 0, then ¢.(f(q)) > g.
(2) V A c P, then

pe(VA) = \/D(vA) =\/{q € Q| f(q)&(VA) # 0}
=\V{geQ] (\/A(f(q)&a)) #0}

=\V{geQ|3acA, f(q)&a +0}
=V V{a<Q|f(q)&a+0}

acA

= \/A\/{q €Q[f(q)&a +0}
= \/ @c(a).

acA
(3) Since ¢c(p) = VOc(p) = V{q ¢ U | f(¢)&p + 0}, and Ulq = V{x € Q| d(x) < ¢ x&q + 0}. let
A={qeQ|f(@)&p +0},B={xeQ|d(x)<e x&q + 0}.V q ¢ A,and q € U?, f(q)&p + 0O, then
0+ f(q)&p < f(g&q). We can see that qg&q # 0, thus g € B, that is ¢(p) < Ulq. O

Theorem 4.8. Let Q and P be quantales, f : Q —> P be an epimorphism. d be induced by a compatible
diameter d, then d is compatible.

Proof. Let d(u) = inf{d(a) | u < f(a)} < ¢, u&f(a?)(x) + 0, then there exists v € Q, such that d(v) < ¢,
u < f(v). Since 0 * u&f (a?)(x) < f(v)&f () (x) = f(v&d(x)), then f(v&ad(x)) # 0, so that v&a?(x) = 0.
Thus v&(V{y € Q | Ufy <x}) # 0, thatis (V{v&y |y € Q, Ugy <x})#0,then3yp€Q, Ufyo < x, v&yo # 0,
therefore v < x. Thus u < f(v) < f(x), Ug(fag(x)) < f(x), then fal(x) < ag(f(x)). We have that V p € P,
there exists x € Q such that p = f(x), then p = f(x) < f( \/0 adx) = vof(afx) < voagf(x) = \/0 agp. O

Definition 4.9. Let (Q, d), (P, d") be prediametric quantales, and f : Q — P be a quantale homomorphism. If
d'(p) < eforall p € P, there exists an element q € Q, such that d(q) < ¢, p < f(q), the quantale homomorphism
f is called contractive.

Theorem 4.10. Let (Q, d), (P,d"), (K,d") be prediametric quantales and f be a quantale homomorphism.
Consider the following statements:
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O f:(Q,d) — (P,d") is a contractive homomorphism;
() V¥ e>0,x¢Q,wehave U o f(x) < f(UIX);

(3)V e>0,xeQ,wehavefoad(x) < ozg'f(x).

That (1) = (2) < (3).

Proof. Firstly, we will prove the implication (1) = (2).

Letp ¢ U?l and p&f(x) # 0. Since f is a contractive homomorphism, we have that there exists ¢’ € Q,
suchthat d(q") <, p <f(q").But p&f(x) # 0, then 0 # p&f(x) < f(q")&f(x) = f(q'&x), which implies that
f(q'&x) # 0, q'&x # 0. Thus

USF(x) = \/{p e P| d'(p) < e p&f(x) 0}
<{f(q)eP|qeQ, d(q)<e q&x +0}
= f(\{g<€Q|d(q) <e, q&x#0}) = f(UL(x)).

(2) = (3) Lete > 0,x € Q, then foad(x) = f(V{q € Q| Ulq < x}) = V{f(q) | U%q < x, q € Q}, and
odf(x) =\V{p e P| UL p <f(x)}.

Let p € P,and d'(p) < ¢, p&f(q) # 0. By(2), we have U f(q) < f(Ulq), then p < f(Ulq) = f(V{y € Q|
d(y) < e, y&q # 0}) < f(x). Thus V{p € P | d'(p) < ¢, p&f(q) # O} < f(x), which implies UZ f(q) < f(x),
thereforef (ad(x)) < ad f(x).

(3) = (2) Since U? — o4, then UY f(x) < f(U%X) < f(x) < a?f(UZ (x)). But f(x) < f(alU%) <
af’f(ng), which implies Uf’f(x) < f(U%). O

Lemma 4.11. Let (Q, d) be a diametric quantale, and d be a compatible diameter, 3 : Q — 2 is a quantale
epimorphism. Let a, b € Q, 8(a) = 1, then thereis a e > 0, such that for all b € Q with d(b) < e either 3(b) =0
orb<a.

Proof. Since 1 = B(a) = B(V od(a)) = V B(al(a)), then there exists ¢ > 0, such that 3(a%(a)) = 1. Let
>0 >0

d(b) < ¢, and b ¢ a, then b&al(a) = 0. Otherwise, if b&a?(a) + 0, that is b&(V{x € Q | Ulx < a}) =
V{b&x ¢ Q | U4(x) < a} # 0, then there exists x ¢ Q, such that U(x) < a, b&x # 0, then b < a, but this
contradicts the assumption that b ¢ a. Thus b&a%(a) = 0, and 0 = 3(b&a(a)) = B(b)&B(ad(a)), then
B(b) = 0. Since 3(b) # 0, then 3(b) = 1, that is 3(b)&B(al(a)) = B(b&ad(a)) = 1, then b&al(a) # 0,
Therefore b < a. O

Let (Q, d) be a diametric quantale, d be a compatible diameter. Pt(Q) denotes the collection of all points
of Q.

Define: pg : Pt(Q) x Pt(Q) — R u {0}, pa(&,n) = inf{d(a) | a € Q, &(a) = n(a) = 1}, for all
5’ 77 € Pt(Q)'

Theorem 4.12. Let (Q, d) be a diameteric quantale, and 1&1 # 0, d be a compatible diameter, then py is a
metric on Pt(Q) and the induced topology coincides with the topology Xq = {X4 | a € Q} of Pt(Q), Xa = {£ |
£(a)=1}.

Proof. (1) For every element ¢, n € Pt(Q), it is easy to verify that p4(¢, n) > 0.

(2) Since \V U? = 1 forall e > 0, then V ¢ € Pt(Q), pa(&, €) = inf{d(a) | £(a) = 1}, hence p4(¢&, ¢) = 0. For
all ¢,m € Pt(Q), e > 0, we have py(¢,m) = inf{d(a) | £(a) =n(a) =1} = 0.1f ¢(a) = 1, there is an element
b € Q, such that d(b) < ¢, and £(b) = n(b) = 1. Thus b < a, therefore n(a) = 1. The symmetry is obvious. If
n(a) =1,then ¢(a) = 1. Thus € = 7.

(3)Forall &, 1 € Pt(Q), pa(&,n) = pa(n, £) is obvious.

(4) For all ¢, n, § € Pt(Q), in the following, we will prove that ps(&,n) < pa(€, ) + pa(a,n).

LetA={aeQ|&(a)=n(a)=1},B={beQ[&(h) =0(b)=1},C={ceQ|i(c)=n(c) =1},

VbeB, VceCé&bve)=£eb)ve(e)=1vE(c)=1,n(bvc)=n(b)vn(c)=1vn(b) =1, then
b v c e A. Suppose b&c = 0, then 0 = £(b&c) = £(b)&&(c) = 1&1, but this contradicts the fact 1&1 # 0. From
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Definition 4.2(iii), we have d(b v ¢) < d(b) + d(c), then inf{d(a) | £&(a) = n(a) = 1} < inf{d(b) | £&(b) =
5(b) = 1} +inf{d(c) | 6(c) =n(c) = 1} = inf{d(b) + d(c) | £&(b) = §(b) = 1, §(c) = n(c) = 1}, thatis
pa(&,m) < pa(&,8) + pa(8,n). Thus p, is a metric on Pt(Q). Therefore (Pt(Q), pq) is a metric space.

In the following, we will prove the induced topology (Pt(Q), 7,,,) as pgq coincides with the topology X =
{Za|ac Q) of PH(Q), Ta = {¢] £(a) = 1}.

VaeA,VEe X, then £(a) = 1. By Lemma 4.11, there exists an ¢ > 0. If p;(£,7) < €, we have an
element b € Q, such that £(b) = n(b) = 1, and d(b) < ¢ then b < a. Thus n(a) = 1, thatisn € g,
Ee{nePt(Q)|pa(&n) <€} c Xy Hence Xg € 7p,.

Conversely, for all £ € Pt(Q), Ve > O,weputa = v{b € Q | d(b) < ¢, &b) = 1}. Forall n € X,
there exists b € Q, such that d(b) < ¢, and &£(b) = n(b) = 1. Therefore py(&,n) < d(b) < e. If pg(&,n) <6
then there exists an element b ¢ B, such that n(b) = £(b) = 1, d(b) < e. Thus b < a, n(a) = 1. Hence
Ya=4{n|pa(&,n) < e} =BL(¢).Since U= U{B(u) |ue U} = VUEa“ =Xy q forallUer,, then U € g,

ue

uel

therefore 7, ¢ Xg. O

IN

5 Conclusion

The term quantale was coined as a combination of quantum logic and locale by Mulvey. Since quantale theory
provides a powerful tool in noncommutative structures, it has a wide range of applications. In this paper, we
discussed some properties of points on quantales. We proved that the set of all completed files is isomorphic
to all points of quantales, and showed that two sided prime elements and points of quantales are in one to
one correspondence. Furthermore, a functor from the category of the two sided quantales to the dual category
of the topology was constructed. We introduced the definition of P-spatial quantales, and some equivalent
characterizations for P-spatial quantales were given. The definition of diameter on frame was generalized to
quantales. Finally, we proved that the topology induced by diameter coincides with the topology of the point
spaces.
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