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Abstract: In this paper, we investigate some properties of points on quantales. It is proved that the two sided
prime elements are in one to one correspondence with points. By using points of quantales, we give the
concepts of p-spatial quantales, and some equivalent characterizations for P-spatial quantales are obtained.
It is shown that two sided quantale Q is a spatial quantale if and only if Q is a P-spatial quantale. Based on
a quantale Q, we introduce the de�nition of diameters. We also prove that the induced topology by diameter
coincides with the topology of the point spaces.
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1 Introduction
Quantale was proposed by Mulvey in 1986 to study the foundations of quantum logic and non-commutative
C*-algebras. The term quantale was coined as a combination of quantum logic and locale by Mulvey in [1].
Since quantale theory provides a powerfull tool in studying non-commutative structure, it has awide range of
applications, especially in studying linear logicwhich supports part of the foundation of theoretical computer
science [2-5]. It is known that quantales are one of the semantics of linear logic, a logic system developed by
Girard [6]. A systematic introduction of quantale theory can be found in book [7] written by Rosenthal in
1990. Following Mulvey, quantale theory has had a wide range of applications in computer science, logic,
topological, category, C*-algebras, fuzzy theory, roughness theory and so on [8-27].

A point in topological space is considered to be a point space embedded in a space, which corresponds
to a mapping from local to binary chain. The analogous term in commutative C*-algebras is a non-trivial
representation onto C, which is a pure state of the algebra. The points of quantales are studied mainly in
the context of C*-algebras [28]. A very precise way how to transfer properties of C*-algebras into terms of
quantales was introduced by Mulvey and Pelletier. In paper [29-31] Pultr extended the metric structure to
pontless spaces (frames or locales). The classical distance function is being replacedby thenotion of diameter
satisfying certain properties. Some good properties of diameter in locales are given. In this paper, we discuss
the points and diameters of quantales. For the notions and concepts not explained in this paper, refer to [32].

This paper is organized as follows: In Section 2, we review some facts about quantales and category
theory, which are needed in the sequel. In Section 3, we discuss some properties of points in quantales. We
prove that the set of all completed �les is isomorphic to the set of all points of quantales. The de�nition of
P-spatial is given and some equivalent characterizations for P-spatial quantales are obtained. In Section 4,
the de�nition of diameters of quantales is given. We prove that the induced topology by diameter coincides
with the topology of the point spaces. In Section 5, �nally, we give a summary of the paper.
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2 Preliminaries
De�nition 2.1 ([2]). A quantale is a complete lattice Q with an associative binary operation “&” satisfying:
a&(⋁

i∈I
bi) = ⋁

i∈I
(a&bi) and (⋁

i∈I
bi)&a = ⋁

i∈I
(bi&a) for all a, bi ∈ Q, where I is a set, 0 and 1 denote the smallest

element and the greatest element of Q, respectively. An element r ∈ Q is called right-sided if r&1 ≤ r. Similarly,
l ∈ Q is called left-sided if 1&l ≤ l. q ∈ Q is called two-sided if q&1 ≤ q, 1&q ≤ q. The sets of right and left-sided
elements will be denoted by R(Q), L(Q).

A subset K of Q is called a subquantale if K is closed under ∨ and &. Let Q and P, the function f ∶ Q → P is
called a homomorphism of quantales if f preserves ∨ and &.

De�nition 2.2 ([13,14,26]). Let Q be a quantale. A nonempty subset I ⊆ Q is called an ideal of Q if it satis�es
the following conditions:
(i) a ∨ b ∈ I for all a, b ∈ I;
(ii) for all a, b ∈ Q, if a ∈ I and b ≤ a, then b ∈ I;
(iii) for all a ∈ Q and x ∈ I, we have a&x ∈ I and x&a ∈ I.
Let Idl(Q) denote the set of all ideals of Q.

De�nition 2.3 ([13,14,26]). Let Q be a quantale. An ideal I of Q is called:
(i) a prime ideal if I ≠ Q and for all a, b ∈ Q, a&b ∈ I implies a ∈ I or b ∈ I;
(ii) a semi-prime ideal if a&a ∈ I implies a ∈ I for all a ∈ Q;
(iii) a primary ideal if I ≠ Q, and for all a, b ∈ Q, a&b ∈ I, a /∈ I imply bn ∈ I for some n > 0.

De�nition 2.4 ([13,14]). Let Q be a quantale. A nonempty subset F ⊆ Q is called a �le of Q if it satis�es the
following conditions:
(i) 0 /∈ F;
(ii) for all a, b ∈ Q, if a ∈ F and a ≤ b, then b ∈ F;
(iii) for all a, b ∈ F, we have a&b ∈ F.
Let Fil(Q) denote the set of all �les of Q.

De�nition 2.5 ([7]). Let Q be a quantale. A �le F of Q is called a prime �le if F ≠ Q and for all a, b ∈ Q, a∨b ∈ F
implies a ∈ F or b ∈ F.

De�nition 2.6 ([7]). Let Q be a quantale. An element p ∈ Q, p ≠ 1 is said to be a prime if r&l ≤ p⇒ r ≤ p or
l ≤ p for all r, l ∈ Q. The set of all primes elements is denoted by Pr(Q).

Theorem 2.7 ([7]). A quantale is spatial i� every element is a meet of primes.

Theorem 2.8 ([30]). If A and B are categories, then a functor F from A to B is a function that assigns to each
A-object A and a B-object F(A), to each A-morphism f ∶ A → A′ and a B morphism F(f) ∶ F(A) → F(A′), in
such a way that:
(i) F(f ○ g) = F(f) ○ F(g); (ii) F(idA) = idF(A).

3 The points of quantales
De�nition 3.1 ([3,7]). Let Q and 2 = ({0, 1}, &) be quantales, a binary multiplication “&” of 2 satisfying:
1&1 = 1, 0&1 = 1&0 = 0&0 = 0. A mapping f ∶ Q → 2 is said to be a point if f is a epimorphism of quantales.
Let Pt(Q) denote the set of all points of Q.
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Remark 3.2. Let x ∈ Q,Σx = {p ∈ Pt(Q) ∣ p(a) = 1}.
(1)Σa&b = Σa ∩Σb, Σ0 = ∅, Σ1 = Pt(Q), Σ⋁

i∈I
ai = ∪

i∈I
Σai .

(2)∀ p ∈ Pt(Q), then p−1(1) is a prime �lter and p−1(0) is a prime ideal of Q. It is easy to prove that⋁ p−1(0) ∈
Pr(Q), p−1(0) =↓ (⋁ p−1(0)).

(3) De�ne a mapping f ∶ TPr(Q) Ð→ Pt(Q), r z→ pr(x) = {
0, x ≤ r,
1, otherwise,

where TPr(Q) denotes the set of

all two sided prime elements of Q. It is easy to prove that f is a bijection.
(4) Let x ∈ Q, and x ∈ p−1(1), then xT = ⋁{y ∈ Q ∣ x&y = 0} ∈ p−1(0).

Theorem 3.3. Let Q be a quantale, then:
(1) ψ ∶ Q Ð→ P(Pt(Q)), ∀ x ∈ Q, ψ(x) = Σx = {p ∈ Pt(Q) ∣ p(x) = 1} is a morphism of quantale.
(2) The set {Σx ∣ x ∈ Q} is a topology of Pt(Q), denoted byΣQ.

Proof. (1) It is easy to verify that (P(Pt(Q)),∩) is a quantale and the function ψ preserves ∨.
Let∅ ≠ S ⊆ Q, p ∈ Pt(Q), then p ∈ ψ(⋁ S) ⇐⇒ p(⋁ S) = 1⇐⇒⋁{p(s) ∣ s ∈ S} = 1⇐⇒ ∃ s0 ∈ S, p(s0) =

1⇐⇒ p ∈ ∪{ψ(s) ∣ s ∈ S}, we have ψ(∨S) = ∪{ψ(s) ∣ s ∈ S}.
Let p ∈ Pt(Q), ∀ a, b ∈ Q, then p ∈ ψ(a&b) ⇐⇒ p(a&b) = 1⇐⇒ p(a)&p(b) = 1⇐⇒ p(a) = 1, p(b) =

1⇐⇒ p ∈ ψ(a), p ∈ ψ(b) ⇐⇒ p ∈ ψ(a) ∩ ψ(b), We have ψ(a&b) = ψ(a) ∩ ψ(b).
(2) It is easy to prove by de�nition of topology.

Theorem 3.4. Let Q be a quantale, then:
(1) ϕ ∶ Q Ð→ P(TPr(Q)), ∀ x ∈ Q, ϕ(x) = {r ∈ Pr(Q) ∣ x /≤ r} is a homomorphism of quantale.
(2) The set {ϕ(x) ∣ x ∈ Q}is a topology of TPr(Q), denoted byΩ(TPr(Q)).

Proof. Obviously, (P(Pr(Q)),∩) is a quantale, the function ϕ preserves the empty set.
Let ∅ ≠ S ⊆ Q, r ∈ Pr(Q), then r ∈ ϕ(⋁ S) ⇐⇒ ⋁ S /≤ r⇐⇒ ∃ s ∈ S, s /≤ r⇐⇒ r ∈ ∪{ϕ(s) ∣ s ∈ S}, that is

ϕ(⋁ S) = ∪{ϕ(s) ∣ s ∈ S}.
Let r ∈ Pr(Q), ∀ a, b ∈ Q, we have r ∈ ϕ(a&b) ⇐⇒ a&b /≤ r⇐⇒ a /≤ r, b /≤ r⇐⇒ r ∈ ϕ(a), r ∈ ϕ(b)

⇐⇒ r ∈ ϕ(a) ∩ ϕ(b), that is ϕ(a&b) = ϕ(a) ∩ ϕ(b). Therefore ϕ is a quantale homorphism.
(2) It is easy to prove by de�nition of topology.

De�nition 3.5. Let Q be a quantale, the topology space (Pt(Q),ΣQ) is called points space on Q.

Lemma 3.6. Let h ∶ Q Ð→ K be a quantale epimorphism, the map Σ(h) ∶ (Pt(K),ΣK) Ð→ (Pt(Q),ΣQ),
∀ f ∈ Pt(K),Σ(h)(f) = f ○ h, then ∀ x ∈ Q, such that (Σ(h))−1(Σx) = Σh(x).

Proof. Since (Σ(h))(f) ∈ Σx ⇔ (Σ(h))(f)(x) = 1⇔ f ∈ Σh(x), then f ○ h(x) = 1.

Lemma 3.7. Let h ∶ Q Ð→ K be a quantale epimorphism, then Σ(h) ∶ (Pt(K),ΣK) Ð→ (Pt(Q),ΣQ) is a
continuous map.

Let Quante denote the category of quantales andepimorphisms, Topop denote thedual category of topology
spaces and continuous maps.

De�ne a map

Σ ∶ Quante Ð→ Topop

Q Ð→ (Pt(Q),ΣQ)

h ∶ Q Ð→ K Ð→ Σ(h) ∶ (Pt(K),ΣK) Ð→ (Pt(Q),ΣQ)

f z→ f ○ h.

Proof. It is easy to be veri�ed thatΣ is well de�ned by Lemmas 3.6 and 3.7.
(1) ∀ f ∈ Pt(Q), ∀ x ∈ Q, we haveΣ(idQ)(f)(x) = f ○ idQ(x) = f(x) = idΣPt(Q)(f)(x);
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(2) Let s ∶ Q Ð→ P and t ∶ P Ð→ H be quantale epimorphisms, then ∀ f ∈ ΣH, Σ(t ○ s)(f) = f ○ t ○ s =
(Σ(s) ○Σ(t))(f) = (Σ(t) ○op Σ(s))(f).

De�nition 3.8. Let Q be a quantale, F is a �le of Q. The �le F is called completed �le of Q if it satis�es the
following condition:⋁A ∈ F⇒ A ∩ F ≠ ∅. Let CFil(Q) denote the set of all completed �les of Q.

Theorem 3.9. Let Q be a two sided quantale. We de�ne amapϕ ∶ CFil(Q) Ð→ Pt(Q) such that∀ F ∈ CFil(Q),

∀ x ∈ Q, ϕ(F)(x) = {0, x /∈ F,
1, x ∈ F,

and ψ ∶ Pt(Q) Ð→ CFil(Q) such that ∀ f ∈ Pt(Q), ψ(f) = {x ∈ Q ∣ f(x) = 1},

then ϕ ○ ψ = idCFil(Q), ψ ○ ϕ = idPt(Q).

Proof. ∀ x, y ∈ Q, ∀ F ∈ CFil(Q). Obviously, ϕ(F) is onto map.

(i) ϕ(F)(x&y) = {0, x&y /∈ F,
1, x&y ∈ F,

= {
0, x /∈ F, y /∈ F,
1, x ∈ F, y ∈ F,

=ϕ(F)(x)&ϕ(F)(y).

(ii) ϕ(F)(⋁
i∈I
xi) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, ⋁
i∈I
xi /∈ F,

1, ⋁
i∈I
xi ∈ F,

= {
0, ∀ i ∈ I, xi /∈ F,
1, ∃ xi ∈ F,

=⋁
i∈I
ϕ(F)(xi).

Therefore the map ϕ is well de�ned.
∀ f ∈ Pt(Q), ψ(f) = {x ∈ Q ∣ f(x) = 1}, we have

(i) 0 /∈ ψ(f);
(ii) ∀ x1, x2 ∈ ψ(f), then f(x1&x2) = f(x1)&f(x2) = 1&1 = 1, thus x1&x2 ∈ ψ(f);
(iii) Let x ∈ ψ(f), y ∈ Q, and x ≤ y, then 1 = f(x) ≤ f(y), that is f(y) = 1;
(iv) ∀ A ⊆ ψ(f), and ⋁

a∈A
a ∈ ψ(f), then f( ⋁

a∈A
a) = ⋁

a∈A
f(a) = 1, there exists a0 ∈ A, such that f(a0) = 1, thus

a0 ∈ ψ(f), that is A ∩ ψ(f) ≠ ∅.
Hence, ψ(f) ∈ CFil(Q), the map ψ(f) is well de�ned.
In the following, we will prove ψ ○ ϕ = idCFil(Q) and ϕ ○ ψ = idPt(Q).
∀ F′ ∈ CFil(Q), then ψ ○ ϕ(F′) = ψ(ϕ(F′)) = {x ∈ Q ∣ ϕ(F′)(x) = 1}, ∀ x ∈ {x ∈ Q ∣ ϕ(F′)(x) = 1}, that

is ϕ(F′)(x) = 1, then x ∈ F′, therefore ψ ○ ϕ(F′) ⊆ F′. ∀ x ∈ F′, then ϕ(F′)(x) = 1, that is F′ ⊆ ψ ○ ϕ(F′),
therefore ψ ○ ϕ = idCFil(Q).

Conversely,∀ f ′ ∈ Pt(Q), ∀ x ∈ Q, thenϕ○ψ(f ′)(x) = {0, x /∈ ψ(f
′
),

1, x ∈ ψ(f ′),
= {

0, f ′(x) = 0,
1, f ′(x) = 1,

= f ′(x). Therefore

ϕ ○ ψ = idPt(Q).

Theorem 3.10. Let Q be a two sides quantale.∀ x ∈ Q. De�neΣ′
x = {F ∈ CFil(Q) ∣ x ∈ F}, then (CFil(Q),Σ′

Q =

{Σ′
x ∣ x ∈ Q}) is a topological spaces.

Proof. (i) SinceΣ′
0 = ∅,Σ′

1 = CFil(Q), then ∅, CFil(Q) ∈ {Σ′
x ∣ x ∈ Q};

(ii)Σ′
x&y = {F ∈ CFil(Q) ∣ x&y ∈ F} = {F ∈ CFil(Q) ∣ x ∈ F, y ∈ F} = Σ′

x ∩Σ
′
y;

(iii)Σ′
⋁
i∈I
xi = {F ∈ CFil(Q) ∣ ⋁i∈I

xi ∈ F} = ⋁
i∈I
⋃{F ∈ CFil(Q) ∣ xi ∈ F} = ∪

i∈I
Σ′
xi .

ThereforeΣ′
Q = {Σ′

x ∣ x ∈ Q} is a topology on CFil(Q).
Let TQuant denote the category of the two sides quantales and quantale homomorphisms.
De�ne

Σ
′
∶ TQuant Ð→ Topop

Q Ð→ (CFil(Q),Σ′
Q)

f ∶ Q Ð→ K Ð→ Σ
′
(f) ∶ (CFil(K),Σ′

K) Ð→ (CFil(Q),Σ′
Q)

F z→ f−1(F).

Theorem 3.11. The mapΣ′
∶ Quant Ð→ Topop is a functor.
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Proof. Obviously, the map Σ′ is well de�ned. In what follows, we will prove that the map Σ′
(f) ∶ Σ′

(Y) →
Σ′
(X) is a quantale homomorphism with f is a contionous map.
(i) ∀ U1, U2 ∈ Ω(Y), thenΩ(f)(U1 ∩ U2) = f−1(U1 ∩ U2) = f−1(U1) ∩ f−1(U2) = Ω(f)(U1) ∩Ω(f)(U2);
(ii) ∀ {Ui}i∈I ⊆ Ω(Y), then Ω(f)(∪

i∈I
Ui) = f−1(∪

i∈I
Ui) = ∪

i∈I
f−1(Ui) = ∪

i∈I
Ω(f)(Ui),

Next, we check that the mapΣ′ preserves unit element and composition.
(i) ∀ X ∈ ob(Top), thenΩ(idX)(U) = id−1X (U) = U = idΩ(X)(U);
(ii) For any continous map f ∶ X Ð→ Y and g ∶ Y Ð→ Z, ∀ U ∈ Ω(X), then Ω(g ○ f)(U) = (g ○ f)−1(U) =

f−1 ○ g−1(U) = Ω(f) ○Ω(g)(U) = Ω(g) ○op Ω(f)(U).

De�nition 3.12. Let Q be a quantale. Q is called P-spatial quantale or su�cient points if the quantale
epimorphisms ψ ∶ Q Ð→ ΣQ, x z→ Σx is a injective function for all x ∈ Q.

Now, we shall give some charaterizations of P-spatial quantales. It is easy to prove that two sided quantale is
spatial if and only if Q is p-spatial.

Theorem 3.13. Let Q be a quantale. Then the following statements are equivalent:
(1) Q is a P-spatial quantale;
(2) if a, b ∈ Q, a /≤ b, then there exists an element p ∈ Pt(Q), such that p(a) = 1, p(b) = 0;
(3) if a, b ∈ Q, a /≤ b, then there exists an elemen r ∈ Pr(Q), such that a /≤ r, b ≤ r;
(4) for all a ∈ Q, a = ∧{p ∈ Q ∣ a ≤ p, p ∈ Pr(Q)}.

Proof. (1)⇒ (2) Let a, b ∈ Q, a /≤ b. Since Q is a P-spatial quantale, that is the map ψ ∶ Q Ð→ ΣQ is a one
to one map, then a /≤ b implies ψ(a) /⊆ ψ(b), there exists p ∈ Pt(Q) such that p ∈ ψ(a), p /∈ ψ(b). Thus
p(a) = 1, p(b) = 0.

(2)⇒ (3) Let a, b ∈ Q, a /≤ b. By (2), we have that there exists p ∈ Pt(Q), that is epimorphisms p ∶ Q Ð→ 2
such that p(a) = 1, p(b) = 0. By Remark 3.2, we have that ⋁ p−1(0) ∈ Pr(Q), and p−1(0) =↓ (⋁ p−1(0)),
then a /∈ p−1(0), b ∈ p−1(0), therefore a /≤ ⋁ p−1(0), b ≤ ⋁ p−1(0).

(3) ⇒ (1) Let a, b ∈ Q, a ≠ b. By (3), we have that there exists r ∈ Pr(Q), such that a /≤ r, b ≤ r. By
Remark 3.2, we have that ⋁ p−1r (0) = r, and p−1r (0) =↓ (⋁ p−1r (0)) =↓ r. Since a /≤ r, b ≤ r, then a /∈ p−1r (0),
b ∈ p−1r (0), that is pr(a) = 1, pr(b) = 0. Therefore pr ∈ ψ(a), pr /∈ ψ(b), that is ψ(a) ≠ ψ(b), then
ψ ∶ Q Ð→ ΣQ is a injection map. Thus Q is a P-spatial quantale.

(3)⇒ (4) Let a ∈ Q, denote a∗ = ⋀{r ∈ Pr(Q) ∣ a ≤ r}, then a ≤ a∗. Suppose a ≠ a∗, then there exists
r∗ ∈ TPr(Q), such that a∗ /≤ r∗, a ≤ r∗ by (3). Since r∗ ∈ TPr(Q), and a ≤ r∗, then a∗ ≤ r∗, this contradicts
the assumption that a∗ /≤ r∗. Thus a = a∗.

(4)⇒ (3) Let a, b ∈ Q, a ≠ b, by (4) we have b = ⋀{r ∈ Pr(Q) ∣ b ≤ r}, then there exists r∗ ∈ {r ∈ Pr(Q) ∣
b ≤ r}, such that a /≤ r∗, otherwise ∀ r ∈ {r ∈ Pr(Q) ∣ b ≤ r}, then a ≤ r, thus a ≤ {r ∈ Pr(Q) ∣ b ≤ r} = b, this
contradicts the assumption that a /≤ b, therefore a /≤ r∗, b ≤ r∗.

Theorem 3.14. Let Q be a quantale, K is a frame, f ∶ Q Ð→ K is left adjoint of g ∶ K Ð→ Q, (f ⊣ g). If K is a
spatial frame (P-spatial quantale) and f is a onto map, the map f is a quantale homomorphism if and only if g
preserve the prime elements.

Proof. It is easy to verify that f preserves arbitrary sups. Next we check if f preserves the operation &. Since
K is spatial frame, then for all x, y ∈ K, we have

f(x&y) = ⋀{r ∈ Pr(k) ∣ f(x&y) ≤ r},
= ⋀{r ∈ Pr(k) ∣ x&y ≤ g(r)},
= ⋀({r ∈ Pr(k) ∣ x ≤ g(r)} ∪ {r ∈ Pr(k) ∣ y ≤ g(r)}),
= ⋀({r ∈ Pr(k) ∣ f(x) ≤ r} ∪ {r ∈ Pr(k) ∣ f(y) ≤ r}),
= f(x) ∧ f(y).

Hence f is a quantale homomorphism.
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Conversely, let f be a quantale homomorphism, r ∈ Pr(K), then g(r) ≠ 1. Otherwise, g(r) = 1, then
r ≥ f ○ g(r) = f(1) = 1. Therefore r = 1, this is in contradiction with r ∈ Pr(K).

Let x, y ∈ Q, and x&y ≤ g(r). Since f ⊣ g, then f(x)&f(y) = f(x&y) ≤ r. Because K is a prime element
of K, then f(x) ≤ r or f(y) ≤ r. Therefore g(r) is a prime element of Q, that is the map g preserves prime
elements.

4 The diameters of quantale
In this section, we introduce the concept of diametric quantale, which extends the metric structure to
quantale. The classical distance function is here being replaced by the notion of diameter satisfying certain
properties. We give the respective characterizations in the terms of diametric quantales.

De�nition 4.1. The set C is called a conver of q quantale Q provided that C ⊆ Q and ∨C = 1.

De�nition 4.2. A diameter on a quantale Q is a mapping d ∶ Q Ð→ R+ ∪ {0} (where R+ ∪ {0} is the set of
nonegative reals) satisfying:
(i) d(0) = 0;
(ii) a ≤ b⇒ d(a) ≤ d(b);
(iii) a&b ≠ 0⇒ d(a ∨ b) ≤ d(a) + d(b);
(iv) ∀ ε > 0, the set Ud

ε = {x ∈ Q ∣ d(x) < ε} is a cover of Q.

Sometimes we will drop condition (iv). In such a case, we will note that d is a prediameter.

De�nition 4.3.
(∗) A diameter is said to be a star diameter if for each x ∈ Q, and Y ⊆ Q such that ∀ y ∈ Y, x&y ≠ 0, then

d(x ∨⋁ Y) ≤ d(x) + Sup{d(s) + d(t) ∣ s, t ∈ Y , s ≠ t}.
(M)A diameter is said to be a metric diameter if for each x ∈ Q, ∀ ε > 0, there are y, z ∈ Q such that y, z ≤ x,

and d(y), d(z) < ε, d(x) < d(y ∨ z) + ε.

It is easy to check that (M) implies (∗). If C is a cover of a quantale Q and x ∈ Q, we denote Cx = ⋁{c ∈ C ∣
c&x ≠ 0}.

Remark 4.4. (1) Let {xi}i∈I be a family of quantale Q, C is a cover of a quantale Q, then C⋁
i∈I
xi = ⋁

i∈I
Cxi .

(2) Let C be a cover of a quantale Q. De�ned C ∶ Q Ð→ Q for ∀ x ∈ Q, C(x) = Cx, then C preserves ∨.

De�nition 4.5. Let Q be a quantale, d be a diameter of Q, µ(d) = {Ud
ε ∣ ε > 0, ε ∈ R} is a family covers of Q.

Let αdε be the right adjoin of Ud
ε . If ∀ x ∈ Q, x = ⋁

ε>0
αdε x. We say that the diameter d is compatible.

If x ≥ ⋁
ε>0

αdε x for x ∈ Q, we say that d is week compatile.

Let f ∶ Q Ð→ P be a quantale epimorphism, d is prediameter of Q. We de�ne d(y) = inf{d(x) ∣ y ≤ f(x)}.

Theorem 4.6. Let f ∶ Q Ð→ P be a quantale epimorphism, d is a prediameter (diameter, ∗-diameter), then d
is a prediameter (diameter, ∗-diameter).

Proof. Firstly, we prove d is a prediameter of P.
(i) By the de�nition of d, we have that d(0) = inf{d(x) ∣ 0 ≤ f(x)} = 0;
(ii) Let a, b ∈ Q, and a ≤ b, then d(a) = inf{d(x) ∣ a ≤ f(x)}, d(b) = inf{d(y) ∣ b ≤ f(y)}. Since

a ≤ b ≤ f(y), then d(a) ≤ d(b).
(iii) Let a, b ∈ P, and a&b ≠ 0, then d(a ∨ b) = inf{d(x) ∣ a ∨ b ≤ f(x)}, d(a) = inf{d(y) ∣ a ≤ f(y)},

d(b) = inf{d(z) ∣ b ≤ f(z)}.
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Since inf{d(y) ∣ a ≤ f(y)} + inf{d(z) ∣ b ≤ f(z)} = inf{d(y) + d(z) ∣ a ≤ f(y), b ≤ f(z)}, d is a
prediameter of P, and a ≤ f(y), b ≤ f(z). 0 ≠ a&b, a&b ≤ f(y&z), then f(y&z) ≠ 0, and y&z ≠ 0. We have
d(y ∨ z) ≤ d(y) + d(z), a ∨ b ≤ f(y) ∨ f(z) = f(y ∨ z). Thus d(a ∨ b) ≤ d(a) + d(b).

If d is a diameter of Q, we can prove that Ud
ε = {x ∈ Q ∣ d(x) < ε} for ε > 0 is a cover of Q. Since f(1) = 1,

then f(⋁Ud
ε ) = 1, and d(y) < ε, d(f(y)) < ε. Hence 1 = f(⋁Ud

ε ) = ⋁ f(Ud
ε ) ≤ ⋁Ud

ε , that is⋁Ud
ε = 1.

Secondly, we can show that d is a ∗-diameter when d is a ∗-diameter of P.
Let a ∈ P, B ⊆ P, and ∀ b ∈ B, a&b ≠ 0, then d(a) = inf{d(x) ∣ a ≤ f(x)}, d(b) = inf{d(y) ∣ b ≤ f(y)}.

By the de�nition of in�mum, for all ε > 0, there exist xa , xb ∈ Q, such that d(xa) < d(a)+ ε, d(xb) < d(b)+ ε,
a ≤ f(xa), b ≤ f(xb), then 0 ≠ a&b ≤ f(xa&xb), a ∨ ⋁B ≤ f(xa ∨ ( ⋁

b∈B
xb)), Therefore d(a ∨ ⋁B) ≤

d(xa ∨( ⋁
b∈B

xb)) ≤ d(xa)+ Sup{d(xs)+ d(xt) ∣ s ≠ t, s, t ∈ B} < d(a)+ Sup{d(s)+ d(t) ∣ s ≠ t, s, t ∈ B}+3ε.

Thus d is a ∗-diameter of P.

Theorem 4.7. Let Q be a quantale, d is a diameter on Q, f ∶ Q Ð→ P is a epimorphism. For all p ∈ P, ∀ ε > 0,
we de�ne Φε(p) = {q ∈ Q ∣ q ∈ Ud

ε , f(q)&p ≠ 0}, φε(p) = ⋁Φε(p). We have:
(1) Let Q be a idempotent quantale, and ∀ q ∈ Ud

ε , f(q) ≠ 0, then φε(f(q)) ≥ q;
(2) φε(A) = ⋁

a∈A
φε(a) for all A ⊆ P;

(3) If p ≤ f(q), then φε(p) ≤ Ud
ε (q).

Proof. (1) ∀ q ∈ Ud
ε , f(q) ≠ 0, then φε(f(q)) = ⋁Φε(f(q)) = ⋁{x ∈ Ud

ε ∣ f(x)&f(q) ≠ 0}. Since Q is a
idempotent quantale, and f(q) ≠ 0, then φε(f(q)) ≥ q.

(2) ∀ A ⊆ P, then

φε(⋁A) = ⋁Φε(∨A) = ⋁{q ∈ Q ∣ f(q)&(∨A) ≠ 0}
= ⋁{q ∈ Q ∣ (⋁

a∈A
(f(q)&a)) ≠ 0}

= ⋁{q ∈ Q ∣ ∃ a ∈ A, f(q)&a ≠ 0}
= ⋁ ⋁

a∈A
{q ∈ Q ∣ f(q)&a ≠ 0}

= ⋁
a∈A
⋁{q ∈ Q ∣ f(q)&a ≠ 0}

= ⋁
a∈A

Φε(a).

(3) Since φε(p) = ⋁Φε(p) = ⋁{q ∈ Ud
ε ∣ f(q)&p ≠ 0}, and Ud

ε q = ⋁{x ∈ Q ∣ d(x) < ε, x&q ≠ 0}. let
A = {q ∈ Q ∣ f(q)&p ≠ 0}, B = {x ∈ Q ∣ d(x) < ε, x&q ≠ 0}. ∀ q ∈ A, and q ∈ Ud

ε , f(q)&p ≠ 0, then
0 ≠ f(q)&p ≤ f(q&q). We can see that q&q ≠ 0, thus q ∈ B, that is φε(p) ≤ Ud

ε q.

Theorem 4.8. Let Q and P be quantales, f ∶ Q Ð→ P be an epimorphism. d be induced by a compatible
diameter d, then d is compatible.

Proof. Let d(u) = inf{d(a) ∣ u ≤ f(a)} < ε, u&f(αdε)(x) ≠ 0, then there exists v ∈ Q, such that d(v) < ε,
u ≤ f(v). Since 0 ≠ u&f(αdε)(x) ≤ f(v)&f(αdε)(x) = f(v&αdε(x)), then f(v&αdε(x)) ≠ 0, so that v&αdε(x) ≠ 0.
Thus v&(⋁{y ∈ Q ∣ Ud

ε y ≤ x}) ≠ 0, that is (⋁{v&y ∣ y ∈ Q, Ud
ε y ≤ x}) ≠ 0, then ∃ y0 ∈ Q, Ud

ε y0 ≤ x, v&y0 ≠ 0,
therefore v ≤ x. Thus u ≤ f(v) ≤ f(x), Ud

ε(fαdε(x)) ≤ f(x), then fαdε(x) ≤ αdε(f(x)). We have that ∀ p ∈ P,
there exists x ∈ Q such that p = f(x), then p = f(x) ≤ f( ⋁

ε>0
αdε x) = ⋁

ε>0
f(αdε x) ≤ ⋁

ε>0
αdε f(x) = ⋁

ε>0
αdεp.

De�nition 4.9. Let (Q, d), (P, d′) be prediametric quantales, and f ∶ Q Ð→ P be a quantale homomorphism. If
d′(p) < ε for all p ∈ P, there exists an element q ∈ Q, such that d(q) < ε, p ≤ f(q), the quantale homomorphism
f is called contractive.

Theorem 4.10. Let (Q, d), (P, d′), (K, d′′) be prediametric quantales and f be a quantale homomorphism.
Consider the following statements:
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(1) f ∶ (Q, d) Ð→ (P, d′) is a contractive homomorphism;
(2) ∀ ε > 0, x ∈ Q, we have Ud′

ε ○ f(x) ≤ f(Ud
ε x);

(3) ∀ ε > 0, x ∈ Q, we have f ○ αdε(x) ≤ αd
′

ε f(x).
That (1) Ô⇒ (2) ⇐⇒ (3).

Proof. Firstly, we will prove the implication (1) Ô⇒ (2).
Let p ∈ Ud′

ε and p&f(x) ≠ 0. Since f is a contractive homomorphism, we have that there exists q′ ∈ Q,
such that d(q′) < ε, p ≤ f(q′). But p&f(x) ≠ 0, then 0 ≠ p&f(x) ≤ f(q′)&f(x) = f(q′&x), which implies that
f(q′&x) ≠ 0, q′&x ≠ 0. Thus

Ud′
ε f(x) = ⋁{p ∈ P ∣ d′(p) < ε p&f(x) ≠ 0}

≤ {f(q) ∈ P ∣ q ∈ Q, d(q) < ε, q&x ≠ 0}
= f(⋁{q ∈ Q ∣ d(q) < ε, q&x ≠ 0}) = f(Ud

ε (x)).

(2) Ô⇒ (3) Let ε > 0, x ∈ Q, then f ○ αdε(x) = f(⋁{q ∈ Q ∣ Ud
ε q ≤ x}) = ⋁{f(q) ∣ Ud

ε q ≤ x, q ∈ Q}, and
αd

′

ε f(x) = ⋁{p ∈ P ∣ Ud′
ε p ≤ f(x)}.

Let p ∈ P, and d′(p) < ε, p&f(q) ≠ 0. By(2), we have Ud′
ε f(q) ≤ f(Ud

ε q), then p ≤ f(Ud
ε q) = f(⋁{y ∈ Q ∣

d(y) < ε, y&q ≠ 0}) ≤ f(x). Thus ⋁{p ∈ P ∣ d′(p) < ε, p&f(q) ≠ 0} ≤ f(x), which implies Ud′
ε f(q) ≤ f(x),

thereforef(αdε(x)) ≤ αd
′

ε f(x).
(3) Ô⇒ (2) Since Ud

ε ⊣ α
d
ε , then Ud′

ε f(x) ≤ f(Ud
ε x) ⇐⇒ f(x) ≤ αdε f(Ud′

ε (x)). But f(x) ≤ f(αdεUd
ε x) ≤

αd
′

ε f(Ud
ε x), which implies Ud′

ε f(x) ≤ f(Ud
ε x).

Lemma 4.11. Let (Q, d) be a diametric quantale, and d be a compatible diameter, β ∶ Q Ð→ 2 is a quantale
epimorphism. Let a, b ∈ Q, β(a) = 1, then there is a ε > 0, such that for all b ∈ Q with d(b) < ε either β(b) = 0
or b ≤ a.

Proof. Since 1 = β(a) = β( ⋁
ε>0

αdε(a)) = ⋁
ε>0

β(αdε(a)), then there exists ε > 0, such that β(αdε(a)) = 1. Let

d(b) < ε, and b /≤ a, then b&αdε(a) = 0. Otherwise, if b&αdε(a) ≠ 0, that is b&(⋁{x ∈ Q ∣ Ud
ε x ≤ a}) =

⋁{b&x ∈ Q ∣ Ud
ε (x) ≤ a} ≠ 0, then there exists x ∈ Q, such that Ud

ε (x) ≤ a, b&x ≠ 0, then b ≤ a, but this
contradicts the assumption that b /≤ a. Thus b&αdε(a) = 0, and 0 = β(b&αdε(a)) = β(b)&β(αdε(a)), then
β(b) = 0. Since β(b) ≠ 0, then β(b) = 1, that is β(b)&β(αdε(a)) = β(b&αdε(a)) = 1, then b&αdε(a) ≠ 0,
Therefore b ≤ a.

Let (Q, d) be a diametric quantale, d be a compatible diameter. Pt(Q) denotes the collection of all points
of Q.

De�ne: ρd ∶ Pt(Q) × Pt(Q) Ð→ R+ ∪ {0}, ρd(ξ, η) = inf{d(a) ∣ a ∈ Q, ξ(a) = η(a) = 1}, for all
ξ, η ∈ Pt(Q).

Theorem 4.12. Let (Q, d) be a diameteric quantale, and 1&1 ≠ 0, d be a compatible diameter, then ρd is a
metric on Pt(Q) and the induced topology coincides with the topology ΣQ = {Σa ∣ a ∈ Q} of Pt(Q), Σa = {ξ ∣

ξ(a) = 1}.

Proof. (1) For every element ξ, η ∈ Pt(Q), it is easy to verify that ρd(ξ, η) ≥ 0.
(2) Since⋁Ud

ε = 1 for all ε > 0, then ∀ ξ ∈ Pt(Q), ρd(ξ, ξ) = inf{d(a) ∣ ξ(a) = 1}, hence ρd(ξ, ξ) = 0. For
all ξ, η ∈ Pt(Q), ε > 0, we have ρd(ξ, η) = inf{d(a) ∣ ξ(a) = η(a) = 1} = 0. If ξ(a) = 1, there is an element
b ∈ Q, such that d(b) < ε, and ξ(b) = η(b) = 1. Thus b ≤ a, therefore η(a) = 1. The symmetry is obvious. If
η(a) = 1, then ξ(a) = 1. Thus ξ = η.

(3) For all ξ, η ∈ Pt(Q), ρd(ξ, η) = ρd(η, ξ) is obvious.
(4) For all ξ, η, δ ∈ Pt(Q), in the following, we will prove that ρd(ξ, η) ≤ ρd(ξ, σ) + ρd(σ, η).
Let A = {a ∈ Q ∣ ξ(a) = η(a) = 1}, B = {b ∈ Q ∣ ξ(b) = δ(b) = 1}, C = {c ∈ Q ∣ δ(c) = η(c) = 1},
∀ b ∈ B, ∀ c ∈ C, ξ(b ∨ c) = ξ(b) ∨ ξ(c) = 1 ∨ ξ(c) = 1, η(b ∨ c) = η(b) ∨ η(c) = 1 ∨ η(b) = 1, then

b ∨ c ∈ A. Suppose b&c = 0, then 0 = ξ(b&c) = ξ(b)&ξ(c) = 1&1, but this contradicts the fact 1&1 ≠ 0. From
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De�nition 4.2(iii), we have d(b ∨ c) ≤ d(b) + d(c), then inf{d(a) ∣ ξ(a) = η(a) = 1} ≤ inf{d(b) ∣ ξ(b) =
δ(b) = 1} + inf{d(c) ∣ δ(c) = η(c) = 1} = inf{d(b) + d(c) ∣ ξ(b) = δ(b) = 1, δ(c) = η(c) = 1}, that is
ρd(ξ, η) ≤ ρd(ξ, δ) + ρd(δ, η). Thus ρd is a metric on Pt(Q). Therefore (Pt(Q), ρd) is a metric space.

In the following, we will prove the induced topology (Pt(Q), τρd ) as ρd coincides with the topologyΣQ =

{Σa ∣ a ∈ Q} of Pt(Q),Σa = {ξ ∣ ξ(a) = 1}.
∀ a ∈ A, ∀ ξ ∈ Σa, then ξ(a) = 1. By Lemma 4.11, there exists an ε > 0. If ρd(ξ, η) < ε, we have an

element b ∈ Q, such that ξ(b) = η(b) = 1, and d(b) ≤ ε, then b ≤ a. Thus η(a) = 1, that is η ∈ Σa,
ξ ∈ {η ∈ Pt(Q) ∣ ρd(ξ, η) < ε} ⊆ Σa. HenceΣQ ⊆ τρd .

Conversely, for all ξ ∈ Pt(Q), ∀ ε > 0, we put a = ∨{b ∈ Q ∣ d(b) < ε, ξ(b) = 1}. For all η ∈ Σa,
there exists b ∈ Q, such that d(b) < ε, and ξ(b) = η(b) = 1. Therefore ρd(ξ, η) ≤ d(b) < ε. If ρd(ξ, η) < ε,
then there exists an element b ∈ B, such that η(b) = ξ(b) = 1, d(b) < ε. Thus b ≤ a, η(a) = 1. Hence
Σa = {η ∣ ρd(ξ, η) < ε} = Bρdε (ξ). Since U = ⋃{Bρdε (u) ∣ u ∈ U} = ⋁

u∈U
Σau = Σ⋁

u∈U
au for all U ∈ τρd , then U ∈ ΣQ,

therefore τρd ⊆ ΣQ.

5 Conclusion
The termquantalewas coined as a combination of quantum logic and locale byMulvey. Since quantale theory
provides a powerful tool in noncommutative structures, it has a wide range of applications. In this paper, we
discussed some properties of points on quantales. We proved that the set of all completed �les is isomorphic
to all points of quantales, and showed that two sided prime elements and points of quantales are in one to
one correspondence. Furthermore, a functor from the category of the two sided quantales to the dual category
of the topology was constructed. We introduced the de�nition of P-spatial quantales, and some equivalent
characterizations for P-spatial quantales were given. The de�nition of diameter on frame was generalized to
quantales. Finally, we proved that the topology induced by diameter coincides with the topology of the point
spaces.
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