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Abstract: We characterize disjointness of supercyclic operators which map a holomorphic function to a
partial sum of the Taylor expansion. In particular, we show that disjoint hypercyclicity equals disjoint
supercyclicity for families of Taylor-type operators. Moreover, we give a sufficient condition to yield the
disjoint supercyclicity for families of Taylor-type operators.
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1 Introduction

Let X, Y be two topological vector space over R or C. A sequence of linear and continuous operators Ty : X —
Y,n=1,2,...is said to be hypercyclic if there exists a vector x € X such that {T1x, T>x, ...} isdensein Y.
Such a vector x is called a hypercyclic vector for { Tn } nen. If the sequence { Ty } nen comes from the iterates of
asingle operator T: X - Y,i.e. T, = T",n=1,2,..., then T is called hypercyclic.

In 1974, Hilden and Wallen introduced in [1] the notion of supercyclicity. They showed that all unilateral
weighted backward shifts are supercyclic, but no vector is supercyclic for all unilateral weighted backward
shifts. Recall that a sequence of linear and continuous operators T, : X - Y, n = 1,2,... is said to be
supercyclic provided there exists a vector x € X such that {aTix, aT»x,... : a € C} is dense in Y. Such a
vector x is called a supercyclic vector for {Tn }en. Good sources of background information on hypercyclic
and supercyclic operators include [2-4].

In 2007, Bernal [5] independently introduced the disjointness of operators. Bés et al. investigated disjoint
hypercyclic operators in [6, 7], and disjoint mixing operators in [8]. For more results, see [9-11].

Definition 1.1. Letoo € NandX, Y1,Y>..., Y,, betopological vector space over K. Foreacho € {1,2,...,00}
consider a sequence of linear and continuous operators Ton : X — Y,,n € N. We say that the sequence
{Tsn}nen, 0 =1,2,...,00 are disjoint hypercyclic (respectively, disjoint supercyclic) if the sequence

(Trn(x), T2n(x), -+ Togn(X)) : X = Y1 x Yo x -+ x Yo

is hypercyclic (respectively, supercyclic), where Y1 x Y3 x --- x Yo, is assumed to be endowed with the product
topology.
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Obviously, by the definition, the following diagram holds true in the disjoint setting:
Disjoint hypercyclicity = Disjoint supercyclicity.

First, we introduce some standard notations and terminology. The set of holomorphic functions on a simply
connected domain 2 c C, to be denoted H({2), becomes a complete topological vector space under the
topology inherited by the uniform convergence on all the compact subsets of 2. Moreover, for any compact
set K c C, we denote

A(K) ={geH(K®): g is continuous on K},

M={KcC:K is compact set and K° connected set},
Mg ={KcC~Q:K is compact set and K° connected set}.
For a function g defined on K, we use the notation |g|x = sup|g(z)|. Now for every K ¢ M, and every
zeK

sequence of natural numbers { A, } ney We consider the sequence of operators:

Tg\é;o) tH(2) - A(K), n=1,2,...

F& (Co)

T (f)(2) = Z (z-¢)", n=1,2,...

Let T(CO) H(z) = Z A k|<°) (z-¢o)¥ denote the nth partial sum of the Taylor series of f with center (. f is said

to belong to the collectlon U($2, (o) of functions with universal Taylor series expansions around ¢, whenever
{T,(f") (f)(z):n=1,2,...} isdense in A(K), for every K ¢ M disjoint from (2. Nestoridis [12, 13] had shown
that the collection U ({2, () is a dense G5 subset of H(2), and U({2, (o) # @ for any simply connected domain
£ and any point (o € (2. Indeed, he proved that if the sequence {\n } neiy is unbounded then the corresponding
sequence of operators {T;ﬁ") Inen is hypercyclic. Costakis and Tsirivas [14] provided a new strong notion of
universality for Taylor series called doubly universal Taylor series. Chatzigiannakidou and Vlachou [15] dealt
with the existence of doubly universal Taylor series defined on simply connected domains with respect to any
center, which generalized the results of Costakis and Tsirivas for the unit disk. Moreover, Chatzigiannakidou
[16] studied some approximation properties of doubly universal Taylor series defined on a simply connected
domain (2.

In order to research the disjointness of hypercyclicy for families of Taylor-type operators directly, Vlachou
[17] introduced a class.

Definition 1.2 ([(17]). ¢ = 1, 2, ..., 0o, let {)\ff’)}ngN be a finite collection of sequences of natural numbers. If
for every choice of compact sets K1, Ks, ..., Ks, € M, the set

(@ 120, 12,0 snen)
is dense in A(K1) x A(K3) x -~ A(K4, ), we say that function f € H({2) belongs to the class
Ur(,:;ol? ({Agl)}neN’ {AgZ)}neNa ey {AgUO)}neN) .

As we all know, the functions of the above class are disjoint hypercyclic vectors, so if we want to research
some characterizations of disjointness of hypercyclicity, we consider this class as empty or non-empty. It is
clear that the sequences of natural numbers {)\ﬁl") }nen play a key role in the study of this class. In this paper,
we require a special definition of {/\fl”) }nen called well ordered sequences.

Definition1.3. ¢ =1,2,..., 00, let {/\ff) tnen be a finite collection of sequences of natural numbers. We say
that these sequences are well ordered if

)\(0+1) ((7)
> lim sup _—

, 0=1,2,...,00- 1.
)\,(1 R

lim su
n P )\ng)
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Remark 1.4. Viachou [17] showed that there exists a rearrangement {)\f,’r(”)) }nen, Which is well ordered. Thus,
in this paper we assume that we have a well ordered finite collection of sequences of natural numbers {/\Sf) Fren-

Following the same path as [15], Vlachou [17] showed a necessary and sufficient condition for families of
taylor-type operators to be disjoint hypercyclic as follows:

Theorem 1.5. The class U®) ({Afll) }rens {Aﬁ,z) FneNs e« s {Aﬁ”") },,GN) is nonempty if and only if there exists a

mult
(o+1)

strictly increasing sequence of natural numbers { i } nen Such that nlgl; Af}n) = +o0 and lim :("(,) =400, 0=

n—oo
1,2,...,00 - 1.

Hn

Inspired by [17], we introduce another class to research the disjointness of supercyclicity for operators which
map a holomorphic function to a partial sum of the Taylor expansion.

Definition1.6. o = 1,2,..., 09, let {A,(f)}ngN be a finite collection of sequences of natural numbers. If for
every choice of compact sets K1, K», ..., Ky, € Mg, the set

{(aT<<°>(f),aT<<°>(f), o aT(C‘)))(f)) :neN,ae c}

)\Sll) )\SIZ) )\,(lao

is densein A(K1) x A(Kz) x ---A(Ks, ), we say that f € H(£2) belongs to the class
VD (8 hnett, I Yt oy DA hnen)

The paper is organized in the following manner: In section 2, we obtain that Disjoint hypercyclicity <—
Disjoint supercyclicity for families of taylor-type operators. In section 3, we provide a sufficient condition
to get the disjointness of supercyclic operators who map a holomorphic function to a partial sum of the Taylor
expansion.

2 disjoint hypercyclicity equals disjoint supercyclicity

In this section, we prove that Disjoint hypercyclicity <= Disjoint supercyclicity for families of taylor-
type operators. In order to prove the main theorem, we need some fundamental knowledge about thinness.

Definition 2.1 ([18, Chapter 5]). Let S be a subset of C and ¢ € C. Then S is non-thin at ¢ if ¢ € S\{¢} and if for
every subharmonic function u defined on a neighbourhood of &,

limsupu(z) = u(¢), zeS\{¢}.

z—&

Otherwise we say that S is thin at &.

Thinness is obviously a local property, i.e. S is non-thin at £ if and only if U n S is non-thin at ¢ for each open
neighbourhood U of ¢. If two sets are both thin at a particular point, so is their union.

Lemma 2.2 ([17, Lemma 2.2]). Let 2 c C be a simply connected domain. Then there exists an increasing
sequence of compact sets Ey, k = 1, 2, ... with the following properties:

(Exe Mg, k=1,2,...

(ii) U Ey is closed and non-thin at co.

Theorem 2.3. The following conditions are equivalent:
(i)The class ylc) ({A,(f) b nens {Af,z)}neN, cees {Af,”‘))}neN) is nonempty.

mult

(ii)The class v %) ({)\f,l)}neN, {A,Sz)}neN, e {)\E,UO)}neN) is nonempty.

mult
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(iii) there exists a strictly increasing sequence of natural numbers {pn } nen Such that hm )\( ) = +o0 and

)\(o+1)

lim )‘\"("U) =+400,0=1,2,...,00-1.

n—oo n

Proof. (i)=(ii): Noting that Disjoint Hypercyclicity= Disjoint Supercyclicity, we obtain the result easily.
(ii)=(iii): Choose an increasing sequence of compact sets E; as stated in Lemma 2.2. Since

V}Sﬁfl)t ({)\f,l)},,eN, {/\,(12)},161\;, cens {/\,(f")},,EN) + @, we may also fix a strictly increasing sequence of natural
numbers {ny }xey and {an, } ey such that for f € anffl)t ({A,(ll)}neN, {Agz)}neN, cees {A,(f")}neN) ,
1
an, T )\({, <%, ce{l,2,...,00} odd, 6y}

1
ankT/(\‘Zﬁz(f)—l < oe{L2,..., 00} even. ®)
Ey
Clearly lim A(”) = +oo for every ¢ € {1,2,...,00}. If not, T(C") must have finite terms and
V,(nfjlt ({A(l)}neN, {\n 2)},,6N, cee, {Af,"")},,eN) = @, which would beacontradlction, nan;lo )\fj:) = +oo is proved.
(o+1)
Next, we prove the claim lim =2~ = +oc0, 0 =1,2,...,00—1.Suppose on the contrary that there exists
n—oo )\E,’n)
(m+1)
no such sequence. Thus, there exists m € {1, 2, ..., 0o} such that limsup )\(’") < +00. As was mentioned in
k— oo M
Remark 1.4, {/\f,”) }ken 1s well-ordered, hence,
(m+1) (m)
lim sup > limsup 7,
koo ,\§1k> koo ASTHD)
o) A

which implies that for some constant C > 0, /\ —45- < Cand —
Nk 03
Now define two sets, I = {k e N : )\("’”) > )\(m)} J={keN: /\(m) > /\(m”)} At least one of the above
sets is infinite. Without loss of generahty, we assume that I is 1nﬁn1te.

Let px(z) be defined by

—y < C.

A

p@) = () (T8 D@ - TR OE)

z-Co
where k € I, R = dist(£25, (o).

(m+1)
Obviously, —- < Cand /\(m“) > )\,(1;") give that

"k
deg(pi) <A™ <l

Let E = (Ukeny Ex) N D(Co, 2R)€. Then E is closed and non-thin at co. Let z € E. Then for large enough k, z € Ej
and |z - {o| > 2R. By (1) and (2), since I is infinite and k large enough, we obtain k € I and thus

R )\(m)
o (ank| )

e 2

< —.
(m)
2

T(Co) T(Co)

+ ‘O‘nk‘

Ipi| <

1

. (m) 1 . . .
Hence limsup |p| " < (3)¢ < 1. Moreover, if I' c E is a continuum (compact, connected but not a

kGI,k—>oo
1

(m .
singleton) we have lim sup | py|| ;A"k < (%)E < 1. Therefore, by Theorem 1 of [19], we conclude that for k € I,

kel ,k— oo
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Pr — 0 compactly on C. Let ¢ € 042 with |€ - (o| = R, then from the above

o\
(%) pr(€) - 0,kel. 3)

But

£= G\

(522) " PO = an TS0, (DO - an TR (@), e L.
Thus

£\

(522)™ 1) < font@ 0 -1+ fonr@en]
< g -0,

which contradicts (3).
Now we prove the case J is infinite, we set

(m+1)
R\ () ()
n(@=(-) (ank T8 (@) - o T (N(2) ) ke,
Then following the same argument as I is infinite, we arrive at contradiction.

(iii)=(i): Obviously, this result is due to Theorem 1.5. O

3 A sufficient condition for disjoint supercyclicity

In this section, we present a sufficient condition to imply the disjointness of supercyclicity for Taylor-type
operators, which is different from Theorem 2.3.

Definition 3.1. Let h, : U - C,n = 1, 2, ... be a sequence of continuous functions defined on an open set U
1

and on be a sequence of positive integers. If for every compact set K c U the sequence |hn|g" is bounded, we
say that the sequence hy, is {on } —locally bounded.

Any continuous function f can be approximated uniformly on a compact subset K of C by polynomials
provided that C\ K is connected and f extends to be holomorphic on a neighbourhood of K. Ransford [18] gave
a somewhat stonger version of this result called Bernstin-walsh Theorem. Vlachou [17] generalized Bernstin-
walsh Theorem. On this basis, we give minor modifications. Though the proof is similar to the above two
papers, for the convenience of the reader we give the details of the proof. Write deg(p) as the degree of a
polynomial p. Note that d-, (f, K) = inf{||f — p||x : deg(p) < n}.

Proposition 3.2. Let K € M and {fn}nen be a {on}—locally bounded sequence of holomorphic functions on
an open neighbourhood U of K. If for any sequence of natural numbers {t, }ney With lim 7, = +oo, for some
n—oo

constant Co > 0 such that ;—'; > Cop, then there exists a constant C > 1 such that
lim sup dTn(fn,K)fln < Co,
n
where
9 = Sup(Cw\UeXp(_g(Cm\K(zy 00))’ lf C(I() > 0;
0, if c(K)=0.

Proof. The proof is divided into two cases.
Case 1: c(K) > 0. I is a closed contour in U \ K which winds once around each point of K and zero times
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round each point of C \ U. Since lim 7, = +o0, we can choose n large enough to ensure 7, > 2. Thus we can

n—oo

consider a Fekete polynomial g, of degree 7, for K, for w € K define

_ fa(z2)  gr,(w) —4gr,(2)
pn(w) = % 4 (2) - dz.

Obviously, deg(pn) < ™ — 1. Cauchy’s integral formula gives

_ 1 rfu®) -4n(w)
A T AR

and hence,

W) e lgnlx

dr (fn,K) < - < ; - s
Ui K < [fo = Pl 2r  dist(I',K) mingr|q-,(2)]

where [(I") is the length of I" and dist(I", K) is the distance of I" from K.
Since fy is {on}-locally bounded, there exists a positive constant A > 1 such that |fs|p < A%". In
addition, according to the proof of Theorem 6.3.1 in [18], we see that

)

lanlk

lim su -

P (mlnzeF |-, (2)]
where o = supz6 r exp(-gc., \K(z, 00)).
ForA= < ACo let C = ACo clearly

limsup d-, (fn, K)?ln < Ca.
n

Case 2:c(K) = 0. Let (Ky)»1 be a decreasing sequence of non-polar compact subsets of U, with connected
complements, such that lim,._, ., Kx = K. Let §; denote the corresponding numbers defined in the theorem, as
shown in case 1
limsupd-, (fn, K) = <lim sup d-, (fn, Ki) < Cby.
n n

Now we prove that lim;_, ., 6x = 0. Define the function

he(2) = 8Cnki (2, 0) — 8ok, (2, 0), if ze CNKy;
k logc(K1) —logc(Ky), if z=oo.

Thus (hy)k»1 is an increasing sequence of harmonic functions on z € C \ K; and hy(o0) — oo, Harnack’s
Theorem implies that hy — oo locally uniformly on C \ K;. In particular gc_k, (2, o) — oo uniformly on
Coo \ U, which shows that limy._, ., 6y = 0. O

For convenience, we define v = C6 in the following.

Theorem3.3. Foro = 1,2,...,00 — 1, let AE,”) be a finite collection of well-ordered sequences of natural
numbers. If lim )\21) = +oo and /\,(f+1) > )\f,”), moreover, lim |6|’\3“)|~y\’\'<1m) = 0 for every |B| < 1. then the
class . .

VL (8 hnetts I Yt -+ o5 DA Jnen)

is a G5 and dense subset of H({2).
Proof. Suppose {fj};en is an enumeration of polynomials with rational coefficients. In view of [13], there exists

a sequence of compact sets { Km } men in Mg, such that for every K € M, is contained in some Ky. For a € C
and every choice of positive integers s, n, m, and j, let

. 1
E({ma}ﬁl,{]a}z‘;ps,n,a):{feHm):HaT(E‘;% . <s,o:1,z,...,<o}.

meo
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An application of Mergelyan’s Theorem shows that

Vr(nﬁfl)t ({Agl)}nd\l: {ASIZ)}HGN, v {/\SIUO)}HGN)

= N N NUUE{moI2, io)o2sss.m,a).

{mo37% {io}g, § M acC

o=1

Therefore, by Baire’s Category Theorem, it is sufficient to prove that

UUE{mo}22, {io}to2,s,n,a) is dense in H(12).

n aeC

Choose g € H(2), ¢ > 0 and a compact subset L of 2. Without loss of generality, we may assume that L has
connected complement, (o € L°. For every || < 1, Runge’s Theorem implies that we may fix a polynomial p
such that:

lg-plr < % )

150~ fi s, < - )

Moreover, we fix two open and disjoint sets Uy, U, with L c Uy and u?° Ky, c Uy . Let U = (U1 - (o) u (U2 -
), K=(L~¢o)u (Km, —Co)-

Next, our proof is divided into two steps:
Step 1. For o > 2, we will construct a sequence of polynomials {Q,(f’)}neN via a finite induction with the
following properties:

(1) deg(Q) < A(7.

@ {80\ (z-¢0)} = OonlL.

B)8p(z) + X QP (- 60) ~f;, (2), > _Oo0nKn,.

We define a function f;, as

fn(z) - /67)\,(10’1)‘%-"(2), if Z € U2 _ (0;
0, if ze Uy (.

where |
g :{fia(z+Co)—5P(Z+Co)—k§:2 80 (2), if o>3;
fi,(z+¢0) - Bp(z+ ), if o=2.

Moreover, let oy = )\ﬁ,"_l) and 7, = /\fla) and a compact set K c U, — Co.
First of all, we prove o = 2 case. Note that

Ul = |55 (24 o) = Bpz+ o)) |

(&)
<\ = c,
18]

where ¢ = |fj, = BP|z,¢,- SO {fn}nen is {on}-locally bounded. By Proposition 3.2, it follows that there exists
~ > 0 such that
limsupdr, (fn, K) ™ <.
n

This implies that we can fix a sequence of polynomials p, with degree less or equal to 7, so that

Ifn = Bonlk < (7)™, (6)

for n sufficiently large.
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Define the function Qﬁz)(z) by Q,(f)(z) 6’\( )pn(z). Then deg(Q,(f)) < M. Property (1) can be
obtained. By (6), we have

|50 - 0)|, <161 18Pl
<18 18P - fulk

A(l) )\(2)
<1BIM ()

N7 Ivl’\'ﬁm) = 0, we obtain Property (2).

Using lim |g]
n—oo
On the other hand,

Jop@) + 502z~ ) - (2] - |

fiu(z+ o) = Bp(z + ) ~BOV ()

) HﬂA'('l)(fn(Z) = Bpn(2))

mZ_CO
A AP
<™ ()™

So Property (3) can be obtained.

Secondly, in the case o — 1(o > 3), we assume there exist polynomials {Q,(ffl) }neny With properties (1),
(2) and (3).

Thirdly, we will show o(o > 3) case. Since { BQS,"_” (z- (0)} . 0, it follows that for n large enough,

o-1
H > BQ(") (2) <1.Letd, = deg( > Qﬁ,k) (z)), since for every n, dn < Aﬁ,ﬂ_l), Bernstein’s Lemma (a) of
L=Go k=2
[18] ylelds
o-1 dn
Z [3Qr(1k)(z) < e50(2:%) Z ,BQ(k) (Z) < egu(z,w),
k=2 L—Go

for D = Coo — (L — ¢o) and z € D\{oo}. The compact set L — ¢p is non-polar since it contains an open disk of
center 0. The function e#*(>>) is bounded and continuous on K. Define A = max,x [e%*(>**)| + 1, we obtain

-1)

‘,BZQ(I‘)(Z) <A%< AT 2,

Hence, by the definition of f,,, we see that

Ifallz < (18D (c+A"™),

where ¢ = |fj, - p[g,,- Similarly to o = 2, we can fix a sequence of polynomials p, with degree less or equal
to m such that:

[fn = BPnlk < (’Y)T", n2nop. )

We set Q47 (2) = 5A5071)pn(z), so the degree of the terms of Q%7 is at most A{”.
Using inequality (7), we have

|50 z- )], < 181" I18pall-c,

(o-1)
<18 (18Pn ~ falk
A= A
<M ()

and

Hﬁp(Z) £ 350 (2 - ) - £, (2)
k=2 K
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o-1
fi. (24 G0) = Bp(z + ©0) = 3 5O (2) - QL7 (2)
k=2

K, —Co

il HW’” (fa(2) - Bpa(2))

ng _CO
(o-1)

A A(@)
SN OO

(o+1)
P

Applying lim |3 K = 0 to the above two inequalities, Property (2) and (3) can be obtained.

Thus, we have constructed a sequence of polynomials {Q,(f’) }nen Via a finite induction with the above three

properties.

Step 2.Now, we will show that there exists f € Uy Unec E ({Mo}72,, {jo }72,, S, n, @) such that |[f - g <e.
If o = 1, we define f(z) = p(z). Inequality (4) shows |f — g|. < e. Since nll)n;lo A =t o0 and p is fixed as

(o)

mentioned above, Aﬁ,}) > deg(p) obviously. It follows that T/\ﬁl)

(f) = p. Therefore, inequality (5) yields

1
HM«o)(f) ~fi| =18 filg,, <~

As,l) K, S
Otherwise, if o > 2, let f(z) = p(z) + % Qf,’f) (z - ¢o) for a suitable choice of n; € N. Combining Property (2)
k=2
with (4),
09
If-gle<lp-gli+|> QW (z-co)| <2lp-glL<e,
k=2 L

for n; large enough.
Property (1) implies that deg(QSl”) ) < Aﬁ”). On the other hand, p is fixed as mentioned above and lim )\f,l) =
n—oo

+00, ALY 5 A (D) hence, Tf\f‘;)) (f) = f. Therefore,

7 1
[r@n-s], -|pe-Ssee-w-ne| <k
n me k=2 K,
for n; large enough, which used Property (3). This completes the proof of the theorem. O
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