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Abstract: We characterize disjointness of supercyclic operators which map a holomorphic function to a
partial sum of the Taylor expansion. In particular, we show that disjoint hypercyclicity equals disjoint
supercyclicity for families of Taylor-type operators. Moreover, we give a su�cient condition to yield the
disjoint supercyclicity for families of Taylor-type operators.
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1 Introduction
Let X, Y be two topological vector space overR orC. A sequence of linear and continuous operators Tn ∶ X →
Y, n = 1, 2, . . . is said to be hypercyclic if there exists a vector x ∈ X such that {T1x, T2x, . . .} is dense in Y .
Such a vector x is called a hypercyclic vector for {Tn}n∈N. If the sequence {Tn}n∈N comes from the iterates of
a single operator T ∶ X → Y, i.e. Tn = Tn , n = 1, 2, . . . , then T is called hypercyclic.

In 1974, Hilden andWallen introduced in [1] the notion of supercyclicity. They showed that all unilateral
weighted backward shifts are supercyclic, but no vector is supercyclic for all unilateral weighted backward
shifts. Recall that a sequence of linear and continuous operators Tn ∶ X → Y, n = 1, 2, . . . is said to be
supercyclic provided there exists a vector x ∈ X such that {αT1x,αT2x, . . . ∶ α ∈ C} is dense in Y . Such a
vector x is called a supercyclic vector for {Tn}n∈N. Good sources of background information on hypercyclic
and supercyclic operators include [2–4].

In 2007, Bernal [5] independently introduced the disjointness of operators. Bès et al. investigated disjoint
hypercyclic operators in [6, 7], and disjoint mixing operators in [8]. For more results, see [9–11].

De�nition 1.1. Letσ0 ∈ Nand X, Y1, Y2 . . . , Yσ0 be topological vector space overK. For eachσ ∈ {1, 2, . . . , σ0}
consider a sequence of linear and continuous operators Tσ,n ∶ X → Yσ , n ∈ N. We say that the sequence
{Tσ,n}n∈N, σ = 1, 2, . . . , σ0 are disjoint hypercyclic (respectively, disjoint supercyclic) if the sequence

(T1,n(x), T2,n(x),⋯, Tσ0 ,n(x)) ∶ X → Y1 × Y2 ×⋯ × Yσ0

is hypercyclic (respectively, supercyclic), where Y1 × Y2 × ⋯ × Yσ0 is assumed to be endowed with the product
topology.
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Obviously, by the de�nition, the following diagram holds true in the disjoint setting:

Disjoint hypercyclicity⇒ Disjoint supercyclicity.

First, we introduce some standard notations and terminology. The set of holomorphic functions on a simply
connected domain Ω ⊂ C, to be denoted H(Ω), becomes a complete topological vector space under the
topology inherited by the uniform convergence on all the compact subsets of Ω. Moreover, for any compact
set K ⊂ C, we denote

A(K) = {g ∈ H(K0) ∶ g is continuous on K},

M= {K ⊂ C ∶ K is compact set and Kc connected set},

MΩ = {K ⊂ C ∖Ω ∶ K is compact set and Kc connected set}.

For a function g de�ned on K, we use the notation ∥g∥K = sup
z∈K
∣g(z)∣. Now for every K ∈ MΩ and every

sequence of natural numbers {λn}n∈N we consider the sequence of operators:

T(ζ0)λn
∶ H(Ω) → A(K), n = 1, 2, . . .

T(ζ0)λn
(f)(z) =

λn

∑
k=1

f (k)(ζ0)
k! (z − ζ0)k , n = 1, 2, . . .

Let T(ζ0)n (f)(z) =
n
∑
k=1

f (k)(ζ0)
k! (z−ζ0)k denote the nth partial sumof the Taylor series of f with center ζ0. f is said

to belong to the collection U(Ω, ζ0) of functions with universal Taylor series expansions around ζ0 whenever
{T(ζ0)n (f)(z) ∶ n = 1, 2, . . .} is dense inA(K), for every K ∈ M disjoint fromΩ. Nestoridis [12, 13] had shown
that the collectionU(Ω, ζ0) is a dense Gδ subset ofH(Ω), andU(Ω, ζ0) ≠ ∅ for any simply connected domain
Ω and any point ζ0 ∈ Ω. Indeed, he proved that if the sequence {λn}n∈N is unbounded then the corresponding
sequence of operators {T(ζ0)λn

}n∈N is hypercyclic. Costakis and Tsirivas [14] provided a new strong notion of
universality for Taylor series called doubly universal Taylor series. Chatzigiannakidou and Vlachou [15] dealt
with the existence of doubly universal Taylor series de�ned on simply connected domains with respect to any
center, which generalized the results of Costakis and Tsirivas for the unit disk. Moreover, Chatzigiannakidou
[16] studied some approximation properties of doubly universal Taylor series de�ned on a simply connected
domainΩ.

In order to research the disjointness of hypercyclicy for families of Taylor-type operators directly, Vlachou
[17] introduced a class.

De�nition 1.2 ([17]). σ = 1, 2, . . . , σ0, let {λ(σ)n }n∈N be a �nite collection of sequences of natural numbers. If
for every choice of compact sets K1, K2, . . . , Kσ0 ∈ MΩ the set

{(T(ζ0)
λ(1)n
(f), T(ζ0)

λ(2)n
(f), . . . , T(ζ0)

λ
(σ0)
n
(f)) ∶ n ∈ N}

is dense inA(K1) ×A(K2) × ⋯A(Kσ0), we say that function f ∈ H(Ω) belongs to the class

U(σ0)
mult ({λ

(1)
n }n∈N, {λ(2)n }n∈N, . . . , {λ(σ0)

n }n∈N) .

As we all know, the functions of the above class are disjoint hypercyclic vectors, so if we want to research
some characterizations of disjointness of hypercyclicity, we consider this class as empty or non-empty. It is
clear that the sequences of natural numbers {λ(σ)n }n∈N play a key role in the study of this class. In this paper,
we require a special de�nition of {λ(σ)n }n∈N called well ordered sequences.

De�nition 1.3. σ = 1, 2, . . . , σ0, let {λ(σ)n }n∈N be a �nite collection of sequences of natural numbers. We say
that these sequences are well ordered if

lim sup
n

λ
(σ+1)
n

λ
(σ)
n

≥ lim sup
n

λ
(σ)
n

λ
(σ+1)
n

, σ = 1, 2, . . . , σ0 − 1.
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Remark 1.4. Vlachou [17] showed that there exists a rearrangement {λ(π(σ))n }n∈N, which is well ordered. Thus,
in this paper we assume that we have awell ordered �nite collection of sequences of natural numbers {λ(σ)n }n∈N.

Following the same path as [15], Vlachou [17] showed a necessary and su�cient condition for families of
taylor-type operators to be disjoint hypercyclic as follows:

Theorem 1.5. The class U(ζ0)mult ({λ
(1)
n }n∈N, {λ(2)n }n∈N, . . . , {λ(σ0)

n }n∈N) is nonempty if and only if there exists a

strictly increasing sequence of natural numbers {µn}n∈N such that lim
n→∞

λ
(1)
µn = +∞ and lim

n→∞

λ(σ+1)µn

λ(σ)µn
= +∞, σ =

1, 2, . . . , σ0 − 1.

Inspired by [17], we introduce another class to research the disjointness of supercyclicity for operators which
map a holomorphic function to a partial sum of the Taylor expansion.

De�nition 1.6. σ = 1, 2, . . . , σ0, let {λ(σ)n }n∈N be a �nite collection of sequences of natural numbers. If for
every choice of compact sets K1, K2, . . . , Kσ0 ∈ MΩ the set

{(αT(ζ0)
λ(1)n
(f),αT(ζ0)

λ(2)n
(f), . . . ,αT(ζ0)

λ
(σ0)
n
(f)) ∶ n ∈ N,α ∈ C}

is dense inA(K1) ×A(K2) × ⋯A(Kσ0), we say that f ∈ H(Ω) belongs to the class

V(ζ0)mult ({λ
(1)
n }n∈N, {λ(2)n }n∈N, . . . , {λ(σ0)

n }n∈N) .

The paper is organized in the following manner: In section 2, we obtain that Disjoint hypercyclicity ⇐⇒
Disjoint supercyclicity for families of taylor-type operators. In section 3, we provide a su�cient condition
to get the disjointness of supercyclic operators whomap a holomorphic function to a partial sum of the Taylor
expansion.

2 disjoint hypercyclicity equals disjoint supercyclicity
In this section, we prove that Disjoint hypercyclicity ⇐⇒ Disjoint supercyclicity for families of taylor-
type operators. In order to prove the main theorem, we need some fundamental knowledge about thinness.

De�nition 2.1 ([18, Chapter 5]). Let S be a subset of C and ξ ∈ C. Then S is non-thin at ξ if ξ ∈ S/{ξ} and if for
every subharmonic function u de�ned on a neighbourhood of ξ,

lim sup
z→ξ

u(z) = u(ξ), z ∈ S/{ξ}.

Otherwise we say that S is thin at ξ.

Thinness is obviously a local property, i.e. S is non-thin at ξ if and only if U ∩ S is non-thin at ξ for each open
neighbourhood U of ξ. If two sets are both thin at a particular point, so is their union.

Lemma 2.2 ([17, Lemma 2.2]). Let Ω ⊂ C be a simply connected domain. Then there exists an increasing
sequence of compact sets Ek , k = 1, 2, . . . with the following properties:
(i) Ek ∈ MΩ , k = 1, 2, . . .
(ii) ∪kEk is closed and non-thin at∞.

Theorem 2.3. The following conditions are equivalent:
(i)The class U(ζ0)mult ({λ

(1)
n }n∈N, {λ(2)n }n∈N, . . . , {λ(σ0)

n }n∈N) is nonempty.

(ii)The class V(ζ0)mult ({λ
(1)
n }n∈N, {λ(2)n }n∈N, . . . , {λ(σ0)

n }n∈N) is nonempty.
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(iii) there exists a strictly increasing sequence of natural numbers {µn}n∈N such that lim
n→∞

λ
(1)
µn = +∞ and

lim
n→∞

λ(σ+1)µn

λ(σ)µn
= +∞, σ = 1, 2, . . . , σ0 − 1.

Proof. (i)⇒(ii): Noting that Disjoint Hypercyclicity⇒ Disjoint Supercyclicity, we obtain the result easily.
(ii)⇒(iii): Choose an increasing sequence of compact sets Ek as stated in Lemma 2.2. Since

V(ζ0)mult ({λ
(1)
n }n∈N, {λ(2)n }n∈N, . . . , {λ(σ0)

n }n∈N) ≠ ∅, we may also �x a strictly increasing sequence of natural

numbers {nk}k∈N and {αnk}k∈N such that for f ∈ V(ζ0)mult ({λ
(1)
n }n∈N, {λ(2)n }n∈N, . . . , {λ(σ0)

n }n∈N) ,

∥αnkT
(σ0)

λ(σ)nk

(f)∥
Ek

< 1
k
, σ ∈ {1, 2, . . . , σ0} odd, (1)

∥αnkT
(σ0)

λ(σ)nk

(f) − 1∥
Ek

< 1
k
, σ ∈ {1, 2, . . . , σ0} even. (2)

Clearly lim
k→∞

λ
(σ)
nk = +∞ for every σ ∈ {1, 2, . . . , σ0}. If not, T(ζ0)

λ(σ)n
must have �nite terms and

V(ζ0)mult ({λ
(1)
n }n∈N, {λ(2)n }n∈N, . . . , {λ(σ0)

n }n∈N) = ∅, which would be a contradiction, lim
n→∞

λ
(σ)
µn = +∞ is proved.

Next, we prove the claim lim
n→∞

λ(σ+1)µn

λ(σ)µn
= +∞, σ = 1, 2, . . . , σ0−1. Suppose on the contrary that there exists

no such sequence. Thus, there exists m ∈ {1, 2, . . . , σ0} such that lim sup
k→∞

λ(m+1)nk

λ(m)nk

< +∞. As was mentioned in

Remark 1.4, {λ(σ)n }k∈N is well-ordered, hence,

lim sup
k→∞

λ
(m+1)
nk

λ
(m)
nk

≥ lim sup
k→∞

λ
(m)
nk

λ
(m+1)
nk

,

which implies that for some constant C > 0,
λ(m+1)nk

λ(m)nk

< C and
λ(m)nk

λ(m+1)nk

< C.

Now de�ne two sets, I = {k ∈ N ∶ λ(m+1)nk ≥ λ(m)nk }, J = {k ∈ N ∶ λ(m)nk ≥ λ(m+1)nk }. At least one of the above
sets is in�nite. Without loss of generality, we assume that I is in�nite.
Let pk(z) be de�ned by

pk(z) = (
R

z − ζ0
)
λ(m)nk (αnkT

(ζ0)

λ(m+1)nk

(f)(z) − αnkT
(ζ0)

λ(m)nk

(f)(z)) ,

where k ∈ I, R = dist(Ωc , ζ0).
Obviously,

λ(m+1)nk

λ(m)nk

< C and λ(m+1)nk ≥ λ(m)nk give that

deg(pk) ≤ λ(m+1)nk < Cλ(m)nk .

Let E = (⋃k∈N Ek)⋂D(ζ0, 2R)c . Then E is closed and non-thin at∞. Let z ∈ E. Then for large enough k, z ∈ Ek
and ∣z − ζ0∣ ≥ 2R. By (1) and (2), since I is in�nite and k large enough, we obtain k ∈ I and thus

∣pk ∣ ≤ ∣
R

z − ζ0
∣
λ(m)nk ⎛
⎝
∣αnk ∣ ∥T

(ζ0)

λ(m+1)nk

(f)∥
Ek

+ ∣αnk ∣ ∥T
(ζ0)

λ(m)nk

(f)∥
Ek

⎞
⎠

≤ (12)
λ(m)nk (1 + 2

k
)

< 3

2λ
(m)
nk

.

Hence limsup
k∈I,k→∞

∣pk ∣
1

Cλ(m)nk ≤ ( 12)
1
C < 1. Moreover, if Γ ⊂ E is a continuum (compact, connected but not a

singleton) we have limsup
k∈I,k→∞

∥pk∥
1

Cλ(m)nk
Γ ≤ ( 12)

1
C < 1. Therefore, by Theorem 1 of [19], we conclude that for k ∈ I,
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pk → 0 compactly on C. Let ξ ∈ ∂Ω with ∣ξ − ζ0∣ = R, then from the above

(ξ − ζ0
R
)
λ(m)nk pk(ξ) → 0, k ∈ I. (3)

But

(ξ − ζ0
R
)
λ(m)nk pk(ξ) = αnkT

(ζ0)

λ(m+1)nk

(f)(ξ) − αnkT
(ζ0)

λ(m)nk

(f)(ξ), k ∈ I.

Thus
RRRRRRRRRRR
(ξ − ζ0

R
)
λ(m)nk pk(ξ) − 1

RRRRRRRRRRR
≤ ∥αnkT

(ζ0)

λ(m+1)nk

(f) − 1∥
Ek

+ ∥αnkT
(ζ0)

λ(m)nk

(f)∥
Ek

≤ 2
k
→ 0,

which contradicts (3).
Now we prove the case J is in�nite, we set

pk(z) = (
R

z − ζ0
)
λ(m+1)nk (αnkT

(ζ0)

λ(m)nk

(f)(z) − αnkT
(ζ0)

λ(m+1)nk

(f)(z)) , k ∈ J.

Then following the same argument as I is in�nite, we arrive at contradiction.
(iii)⇒(i): Obviously, this result is due to Theorem 1.5.

3 A su�cient condition for disjoint supercyclicity
In this section, we present a su�cient condition to imply the disjointness of supercyclicity for Taylor-type
operators, which is di�erent from Theorem 2.3.

De�nition 3.1. Let hn ∶ U → C, n = 1, 2, . . . be a sequence of continuous functions de�ned on an open set U
and σn be a sequence of positive integers. If for every compact set K ⊂ U the sequence ∥hn∥

1
σn
K is bounded, we

say that the sequence hn is {σn}−locally bounded.

Any continuous function f can be approximated uniformly on a compact subset K of C by polynomials
provided thatC∖K is connected and f extends to beholomorphic on aneighbourhoodof K. Ransford [18] gave
a somewhat stonger version of this result called Bernstin-walsh Theorem. Vlachou [17] generalized Bernstin-
walsh Theorem. On this basis, we give minor modi�cations. Though the proof is similar to the above two
papers, for the convenience of the reader we give the details of the proof. Write deg(p) as the degree of a
polynomial p. Note that dτn(f , K) = inf{∥f − p∥K ∶ deg(p) ≤ n}.

Proposition 3.2. Let K ∈ M and {fn}n∈N be a {σn}−locally bounded sequence of holomorphic functions on
an open neighbourhood U of K. If for any sequence of natural numbers {τn}n∈N with lim

n→∞
τn = +∞, for some

constant C0 > 0 such that τn
σn

> C0, then there exists a constant C > 1 such that

lim sup
n

dτn(fn , K)
1
τn ≤ Cθ,

where

θ = { supC∞∖U exp(−gC∞∖K(z,∞)), if c(K) > 0;
0, if c(K) = 0.

Proof. The proof is divided into two cases.
Case 1: c(K) > 0. Γ is a closed contour in U ∖ K which winds once around each point of K and zero times
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round each point of C ∖ U. Since lim
n→∞

τn = +∞, we can choose n large enough to ensure τn ≥ 2. Thus we can
consider a Fekete polynomial qτn of degree τn for K, for ω ∈ K de�ne

pn(ω) =
1
2πi ∫

Γ

fn(z)
qτn(z)

⋅ qτn(ω) − qτn(z)
ω − z

dz.

Obviously, deg(pn) ≤ τn − 1. Cauchy’s integral formula gives

fn(ω) − pn(ω) =
1
2πi ∫

Γ

fn(z)
ω − z

⋅ −qτn(ω)
qτn(z)

dz,

and hence,

dτn(fn , K) ≤ ∥fn − pn∥K ≤
l(Γ)
2π ⋅ ∥fn∥Γ

dist(Γ , K) ⋅
∥qτn∥K

minz∈Γ ∣qτn(z)∣
,

where l(Γ) is the length of Γ and dist(Γ , K) is the distance of Γ from K.
Since fn is {σn}−locally bounded, there exists a positive constant A > 1 such that ∥fn∥Γ ≤ Aσn . In

addition, according to the proof of Theorem 6.3.1 in [18], we see that

lim sup
n
( ∥qτn∥K
minz∈Γ ∣qτn(z)∣

) ≤ ατn ,

where α = supz∈Γ exp(−gC∞∖K(z,∞)).
For A

σn
τn ≤ A

1
C0 , let C = A

1
C0 , clearly

lim sup
n

dτn(fn , K)
1
τn ≤ Cα.

Case 2: c(K) = 0. Let (Kk)k≥1 be a decreasing sequence of non-polar compact subsets of U, with connected
complements, such that limk→∞ Kk = K. Let θk denote the corresponding numbers de�ned in the theorem, as
shown in case 1

lim sup
n

dτn(fn , K)
1
τn ≤ lim sup

n
dτn(fn , Kk)

1
τn ≤ Cθk .

Now we prove that limk→∞ θk = 0. De�ne the function

hk(z) = {
gC∞∖Kk(z,∞) − gC∞∖K1(z,∞), if z ∈ C ∖ K1;

log c(K1) − log c(Kk), if z = ∞.

Thus (hk)k≥1 is an increasing sequence of harmonic functions on z ∈ C ∖ K1 and hk(∞) → ∞, Harnack’s
Theorem implies that hk → ∞ locally uniformly on C ∖ K1. In particular gC∞∖Kk(z,∞) → ∞ uniformly on
C∞ ∖ U, which shows that limk→∞ θk = 0.

For convenience, we de�ne γ = Cθ in the following.

Theorem 3.3. For σ = 1, 2, . . . , σ0 − 1, let λ(σ)n be a �nite collection of well-ordered sequences of natural
numbers. If lim

n→∞
λ
(1)
n = +∞ and λ(σ+1)n > λ

(σ)
n , moreover, lim

n→∞
∣β∣λ

(σ)
n ∣γ∣λ

(σ+1)
n = 0 for every ∣β∣ < 1. then the

class
V(ζ0)mult ({λ

(1)
n }n∈N, {λ(2)n }n∈N, . . . , {λ(σ0)

n }n∈N)

is a Gδ and dense subset of H(Ω).

Proof. Suppose {fj}j∈N is an enumeration of polynomialswith rational coe�cients. In viewof [13], there exists
a sequence of compact sets {Km}m∈N inMΩ , such that for every K ∈ MΩ is contained in some Km. For α ∈ C
and every choice of positive integers s, n,mσ and jσ, let

E ({mσ}σ0
σ=1, {jσ}

σ0
σ=1, s, n,α) = {f ∈ H(Ω) ∶ ∥αT

(ζ0)

λ(σ)n
− fjσ∥

Kmσ

< 1
s
, σ = 1, 2, . . . , ζ0} .
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An application of Mergelyan’s Theorem shows that

V(ζ0)mult ({λ
(1)
n }n∈N, {λ(2)n }n∈N, . . . , {λ(σ0)

n }n∈N)

= ⋂
{mσ}

σ0
σ=1

⋂
{jσ}

σ0
σ=1

⋂
s
⋃
n
⋃
α∈C

E ({mσ}σ0
σ=1, {jσ}

σ0
σ=1, s, n,α) .

Therefore, by Baire’s Category Theorem, it is su�cient to prove that

⋃
n
⋃
α∈C

E ({mσ}σ0
σ=1, {jσ}

σ0
σ=1, s, n,α) is dense in H(Ω).

Choose g ∈ H(Ω), ε > 0 and a compact subset L of Ω. Without loss of generality, we may assume that L has
connected complement, ζ0 ∈ L0. For every ∣β∣ < 1, Runge’s Theorem implies that we may �x a polynomial p
such that:

∥g − p∥L <
ε

2 , (4)

∥βp − fj1∥Km1
< 1
s
. (5)

Moreover, we �x two open and disjoint sets U1, U2 with L ⊂ U1 and ∪σ0
σ=1Kmσ ⊂ U2. Let U = (U1 − ζ0) ∪ (U2 −

ζ0), K = (L − ζ0) ∪ (Kmσ − ζ0).
Next, our proof is divided into two steps:

Step 1. For σ ≥ 2, we will construct a sequence of polynomials {Q(σ)n }n∈N via a �nite induction with the
following properties:

(1) deg(Q(σ)n ) ≤ λ(σ)n .
(2) {βQ(σ)n (z − ζ0)} →n→∞0 on L.

(3) βp(z) +
σ

∑
k=2

βQ(k)n (z − ζ0) − fjσ(z) →n→∞0 on Kmσ .

We de�ne a function fn as

fn(z) =
⎧⎪⎪⎨⎪⎪⎩

β−λ
(σ−1)
n gn(z), if z ∈ U2 − ζ0;

0, if z ∈ U1 − ζ0.

where

gn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

fjσ(z + ζ0) − βp(z + ζ0) −
σ−1
∑
k=2

βQ(k)n (z), if σ ≥ 3;

fj2(z + ζ0) − βp(z + ζ0), if σ = 2.

Moreover, let σn = λ(σ−1)n and τn = λ(σ)n and a compact set K̃ ⊂ U2 − ζ0.
First of all, we prove σ = 2 case. Note that

∥fn∥K̃ = ∥β−λ
(1)
n (fj2(z + ζ0) − βp(z + ζ0))∥

K̃

≤ ( 1
∣β∣ )

σn

c,

where c = ∥fjσ − βp∥K̃+ζ0 . So {fn}n∈N is {σn}−locally bounded. By Proposition 3.2, it follows that there exists
γ > 0 such that

lim sup
n

dτn(fn , K)
1
τn ≤ γ.

This implies that we can �x a sequence of polynomials pn with degree less or equal to τn so that

∥fn − βpn∥K ≤ (γ)τn , (6)

for n su�ciently large.
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De�ne the function Q(2)n (z) by Q(2)n (z) = βλ
(1)
n pn(z). Then deg(Q(2)n ) ≤ λ

(2)
n . Property (1) can be

obtained. By (6), we have

∥βQ(2)n (z − ζ0)∥L ≤ ∣β∣
λ(1)n ∥βpn∥L−ζ0

≤ ∣β∣λ
(1)
n ∥βpn − fn∥K

≤ ∣β∣λ
(1)
n (γ)λ

(2)
n .

Using lim
n→∞

∣β∣λ
(σ)
n ∣γ∣λ

(σ+1)
n = 0, we obtain Property (2).

On the other hand,

∥βp(z) + βQ(2)n (z − ζ0) − fj2(z)∥Km2

= ∥fj2(z + ζ0) − βp(z + ζ0) − βQ
(2)
n (z)∥Km2−ζ0

= ∥βλ
(1)
n (fn(z) − βpn(z))∥

Km2−ζ0

≤ ∣β∣λ
(1)
n (γ)λ

(2)
n .

So Property (3) can be obtained.
Secondly, in the case σ − 1(σ ≥ 3), we assume there exist polynomials {Q(σ−1)n }n∈N with properties (1),

(2) and (3).
Thirdly, we will show σ(σ ≥ 3) case. Since {βQ(σ−1)n (z − ζ0)} →

n→∞
0, it follows that for n large enough,

∥
σ−1
∑
k=2

βQ(k)n (z)∥
L−ζ0

< 1. Let dn = deg(
σ−1
∑
k=2

Q(k)n (z)), since for every n, dn ≤ λ(σ−1)n , Bernstein’s Lemma (a) of

[18] yields

∣
σ−1
∑
k=2

βQ(k)n (z)∣
1
dn

≤ egD(z,∞) ∥
σ−1
∑
k=2

βQ(k)n (z)∥
1
dn

L−ζ0

< egD(z,∞),

for D = C∞ − (L − ζ0) and z ∈ D/{∞}. The compact set L − ζ0 is non-polar since it contains an open disk of
center 0. The function egD(z,∞) is bounded and continuous on K̃. De�ne A = maxz∈K̃ ∣e

gD(z,∞)∣ + 1, we obtain

∥β
σ−1
∑
k=2

Q(k)n (z)∥
K̃
< Adn ≤ Aλ(σ−1)n = Aσn .

Hence, by the de�nition of fn, we see that

∥fn∥K̃ ≤ (∣β∣)
σn(c + Aσn),

where c = ∥fjσ − p∥K̃+ζ0 . Similarly to σ = 2, we can �x a sequence of polynomials pn with degree less or equal
to τn such that:

∥fn − βpn∥K ≤ (γ)τn , n ≥ n0. (7)

We set Q(σ)n (z) = βλ
(σ−1)
n pn(z), so the degree of the terms of Q(σ)n is at most λ(σ)n .

Using inequality (7), we have

∥βQ(σ)n (z − ζ0)∥L ≤ ∣β∣
λ(σ−1)n ∥βpn∥L−ζ0

≤ ∣β∣λ
(σ−1)
n ∥βpn − fn∥K

≤ ∣β∣λ
(σ−1)
n (γ)λ

(σ)
n

and

∥βp(z) +
σ

∑
k=2

βQ(k)n (z − ζ0) − fjσ(z)∥
Kmσ
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= ∥fjσ(z + ζ0) − βp(z + ζ0) −
σ−1
∑
k=2

βQ(k)n (z) − βQ(σ)n (z)∥
Kmσ−ζ0

= ∥βλ
(σ−1)
n (fn(z) − βpn(z))∥

Kmσ−ζ0

≤ ∣β∣λ
(σ−1)
n (γ)λ

(σ)
n .

Applying lim
n→∞

∣β∣λ
(σ)
n ∣γ∣λ

(σ+1)
n = 0 to the above two inequalities, Property (2) and (3) can be obtained.

Thus, we have constructed a sequence of polynomials {Q(σ)n }n∈N via a �nite induction with the above three
properties.
Step 2. Now, we will show that there exists f ∈ ⋃n⋃α∈C E ({mσ}σ0

σ=1, {jσ}
σ0
σ=1, s, n,α) such that ∥f − g∥L < ε.

If σ = 1, we de�ne f(z) = p(z). Inequality (4) shows ∥f − g∥L < ε. Since lim
n→∞

λ
(1)
n = +∞ and p is �xed as

mentioned above, λ(1)n1 > deg(p) obviously. It follows that T(ζ0)
λ(1)n
(f) = p. Therefore, inequality (5) yields

∥βT(ζ0)
λ(1)n
(f) − fj1∥

Km1

= ∥βp − fj1∥Km1
< 1
s
.

Otherwise, if σ ≥ 2, let f(z) = p(z) +
σ0

∑
k=2

Q(k)n1 (z − ζ0) for a suitable choice of n1 ∈ N. Combining Property (2)

with (4),

∥f − g∥L ≤ ∥p − g∥L + ∥
σ0

∑
k=2

Q(k)n1 (z − ζ0)∥
L
< 2∥p − g∥L < ε,

for n1 large enough.
Property (1) implies that deg(Q(σ)n ) ≤ λ(σ)n . On the other hand, p is �xed as mentioned above and lim

n→∞
λ
(1)
n =

+∞, λ(σ+1)n > λ(σ)n , hence, T(ζ0)
λ(σ)n
(f) = f . Therefore,

∥βT(ζ0)
λ(σ)n
(f) − fjσ∥

Kmσ

= ∥βp(z) +
σ

∑
k=2

βQ(k)n1 (z − ζ0) − fjσ(z)∥
Kmσ

< 1
s
,

for n1 large enough, which used Property (3). This completes the proof of the theorem.
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