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Abstract: In this paper, we introduce the concepts of f-prime ideals, f-semiprime ideals and f-prime radicals
in ordered semigroups. Furthermore, some results on f-prime radicals and f-primary decomposition of an
ideal in an ordered semigroup are obtained.
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1 Introduction and preliminaries

Prime radical theorem is an important result in commutative ring theory and commutative semigroup theory
(see [1,2]). In [3], Hoo and Shum gave a similar result in a residuated negatively ordered semigroup. Wu and
Xie extended the result to a commutative ordered semigroup by using m-systems in [4]. In [5], Tang and Xie
characterized in detail the radicals of ideals in ordered semigroups. In 1969, Murata, Kurata and Marubayashi
introduced the notions of f-prime ideals and f-prime radicals in ring theory (see [6]), which generalized the
concepts of prime ideals and prime radicals. In [7], Sardar and Goswami extended these concepts and results
of ring theory to semirings. In this paper, we introduce the concepts of f-prime ideals and f-prime radicals in
ordered semigroups and extend some results of rings and semirings to ordered semigroups. We also introduce
the notion of f-semiprime ideals in ordered semigroups and obtain the result that the f-prime radical of an
ideal I in an ordered semigroup is the least f-semiprime ideal containing I.

Next we list some basic concepts and notations on ordered semigroups (see [8]). An ordered semigroup is
a semigroup (S, -) endowed with an order relation “ < ” such that

(Va,b,xeS)a< b= xa<xband ax < bx.

Let (S, -, <) be an ordered semigroup. A non-empty subset I of S is called an ideal of S if it satisfies the
following conditions: (1) SIUIS c I; (2Q)a e Tand b € S, b < a implies b € I. An ideal I of S is called
weakly prime if AB c I implies A c I or B c I for any ideals A, B of S; an ideal I of S is called weakly semiprime
if A% c Iimplies A c I for any ideal A of S. For h € S, we denote

(h] = {teS|t<h};

[h)={seS|h<s}.

A subset M of S is called an m-system of S, if for any a, b € M, there exists x € S such that (axb] n M #+ @.
A subset N of S is said to be a n-system of S if for any a € N, there exists x € S such that [axa) c N.
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2 f-prime ideals and f-prime radical of an ideal

Definition 2.1. Let S be an ordered semigroup. Denote by I(S) the set of all ideals of S. Define a mapping
f S - I(S) which satisfies the following conditions

Dacf(a);

(2) x € f(a) u I implies that f(x) c f(a) uI for any I € I(S).

We call such mapping f a good mapping on S.

Example 2.2. Let S be an ordered semigroup. If f(a) = I(a) for all a € S, where I(a) is the principal ideal
generated by a, then it is easy to see that f satisfies the above conditions.

Example 2.3. We consider the ordered semigroup S = {a, b, c} defined by multiplication and the order below:

<:={(a, a), (a,b),(a,c),(b,b),(b,c),(c,C)}.

The ideals of S are the sets:
{a}, {a,b} andS.

Ifwe define f(a) = {a}, f(b) ={a, b} and f(c) = S, then it is easy to see that f satisfies the above conditions.

Definition 2.4. Let S be an ordered semigroup and f a good mapping on S. A subset F of S is called an f-system
of S if F contains an m-system F*, called the kernel of F, such that f(t) n F* # @ forany t € F.
Especially, @ is also defined to be an f-system.

Remark 2.5. (1) Every m-system is an f-system with kernel itself.
(2) If F is an f-system with kernel F*, then F = @ if and only if F* = @.

Definition 2.6. Let S be an ordered semigroup and f a good mapping on S. An ideal I of S is called f-prime if
its complement C(I) in S is an f-system.

Remark 2.7. As we know, the complement of a weakly prime ideal of an ordered semigroup is an m-system.
Furthermore, every m-system is an f-system. Hence, every weakly prime ideal of an ordered semigroup is an
f-prime ideal. But the converse is not true in general.

Example 2.8. We consider the ordered semigroup S in Example 2.3. Let I = {a}. Then C(I) = {b, c} is an f-
system with kernel F* = {b}. Hence, I is an f-prime ideal. However, I is not weakly prime. Indeed: {a, b} is an
ideal of S and {a, b}{a, b} c I, but {a, b} is not contained in I.

Proposition 2.9. Let P be an f-prime ideal of an ordered semigroup Sand a, b € S.If f(a)f(b) c P, then either
acPorbeP.

Proof. Suppose that a, b € C(P). Since P is an f-prime ideal, C(P) is an f-system. Hence, f(a) n[C(P)]* + @
and f(b)n[C(P)]* + @, where [C(P)]" is the kernel of C(P).Let x1 € f(a)n[C(P)]* and x, € f(b)n[C(P)]*.
Since [C(P)]* is an m-system, (x1rx2] N [C(P)]* + & for some r € S. Thus (x1rx2] n C(P) # @. Also x1rx; €
f(a)f(b) c P. Thus (x1rxz] € P which is a contradiction. Therefore, eithera ¢ Por b € P. O

Corollary 2.10. Let P be an f-prime ideal of an ordered semigroup S and a; ¢ S (i = 1,2,--,n). If
f(a1)f(az)---f(an) € P, then a; € P for some i.
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Let S be an ordered semigroup. Denote by fPI(S) and fS(S) the set of all f-prime ideals of S and the set of all
f-systems of S respectively.

Definition 2.11. Let S be an ordered semigroup and I be an ideal of S. We call theset {a € S | (VF € fS(S)) a ¢
F = Fnl+ @} the f-prime radical of I, denoted by r;(I).

Theorem 2.12. Let S be an ordered semigroup and I be an ideal of S. Then r¢(I) = nperP where I = {P «
fPI(S)|Ic P}.

Proof. Let ] = npepPwhere I = {P € fPI(S) | I < P}.If x ¢ ], then there exists an f-prime ideal P containing I
such that x ¢ P. Thus C(P) is an f-system containing x but C(P) nI = @. Hence x ¢ r¢(I). Therefore, r¢(I) ¢ J.
On the other hand, if y ¢ r¢(I), then there exists an f-system F containing y such that FnI = . Thusy ¢ C(F)
and C(F) is an f-prime ideal such that I ¢ C(F). Hence y ¢ J and so J ¢ r¢(I). Therefore, r¢(I) = J. O

Corollary 2.13. Let S be an ordered semigroup and I be an ideal of S. Then r(I) is an ideal of S.

3 f-semiprime ideals

In this section, we introduce the concept of f-semiprime ideals in ordered semigroups and obtain that the
f-prime radical of an ideal I is the least f-semiprime ideal containing I.

Definition 3.1. Let S be an ordered semigroup. A subset A of S is said to be an fn-system of Sif A = U F; where
iel’
{Fi|ieT}cfS(S).

Definition 3.2. Anideal P of an ordered semigroup S is said to be f-semiprime if its complement C(P) in S is
an fn-system.

Clearly, every f-system is an fn-system. Therefore, every f-prime ideal is an f-semiprime ideal.

Proposition 3.3. Let S be an ordered semigroup and I a weakly semiprime ideal of S. Then I is an f-semiprime
ideal of S.

Proof. Since I is a weakly semiprime ideal, C(I) is a n-system. Thus C(I) is the union of some m-systems of
S. Since every m-system is an f-system, C(I) is the union of some f-systems of S. Hence C(I) is an fn-system.
Therefore, I is an f-semiprime ideal. O

Proposition 3.4. Let P be an f-semiprime ideal of an ordered semigroup S and a € S. If f(a)f(a) c P, then
aceP.

Proof. Suppose that a € C(P). Since P is an f-semiprime ideal, C(P) is an fn-system. Thus C(P) = U F;,
iel”

where {F; | i € I'} ¢ fS(S). Hence, a ¢ F; for some i € I'. Therefore, f(a) n F; # @, where F; is the kernel
of Fi. Let x € f(a) n F{. Since F; is an m-system, (xrx] n F; # & for some r € S. Thus (xrx] n F; # @ and so
(xrx]n C(P) # @. Also xrx € f(a)f(a) < P. Therefore, (xrx] ¢ P which is a contradiction. Hencea ¢ P. [

Proposition 3.5. Let S be an ordered semigroup and I be an ideal of S. Then r¢(I) is an f-semiprime ideal of S.
Proof. By Theorem 2.12, we know that rf(I) = np.rP where I' = {P ¢ fPI(S) | I ¢ P}. Thus C(rs(I)) =
Uper C(P). Since every C(P) is an f-system, C(r¢(I)) is an fn-system. Therefore, r¢(I) is an f-semiprime
ideal of S. O

Proposition 3.6. Let S be an ordered semigroup and I be an f-semiprime ideal of S. Then r¢(I) = 1.
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Proof. By Theorem 2.12, we have I ¢ r¢(I). Let x ¢ I. Since C([) is an fn-system, C(I) = U F; where {F; | i€
I'} < fS(S).Thusx ¢ U Fiandsox e F;forsomei e I',but F;nI = @. Hence F;isan f- system containing x but
not containing any element of I. By Definition 2.11, x ¢ r¢(I). It follows that r¢(I) ¢ I. Therefore rs(I) =1. O

Definition 3.7. Let S be an ordered semigroup and f a good mapping on S. Let a € S and I € I(S). The set
{xeS|f(a)f(x)cI},denotedbyl: a,is called the left f-quotient of I by a. Moreover, for any ideal ] of S, the
left f-quotient of I by ] is defined to be N (I : a), denoted by I : ].

aeJ

Remark 3.8. Similar to Definition 3.7, we call the set {x € S | f(x)f (a) < I} right f-quotient of I by a, denoted by

a : I. Moreover, N (a : I) is defined to be right f-quotient of I by ]. In what follows, unless otherwise mentioned,
ae]

f-quotient means left f-quotient.
We note that I : @ may be empty. See the following example.

Example 3.9. We consider the ordered semigroup S of Example 2.3. If we define f(a) = f(b) = f(c) = S, then
the mapping f is a good mapping. Let I = {a}. ThenI:a, I : b and I : c are all empty.

The following result can be easily obtained from the above definition.

Proposition 3.10. Let S be an ordered semigroup and f a good mapping on S. If I, 1,0,1,],] eI (S) and
ace S, then

WIcl =T:acl :aandl :jcI :J;

@Jc) =I1:J2I1:];

G I nIlY:ia=T :a)n :a)and (I nI'):J=T :))n :]).

Proposition 3.11. Let S be an ordered semigroup and f a good mappingon S.If [ e I(S) and a € S, thenI : ais
either empty or an ideal containing I of S.

Proof. Supposethatl:a+ @.Letxel:aandreS.Thenrx, xr € f(x).Thus f(rx) c f(x) and f(xr) < f(x).
Also f(a)f(x) c I. Therefore, f(a)f(rx) cIand f(a)f(xr) cI.Letz<yeI:a.Thenze f(y)andf(a)f(y)c
I. Thus f(z) < f(y). Therefore, f(a)f(z) < I, which implies that z € I : a. Hence, I : a is an ideal of S. Next we
provethatI cI:a.

Letb e Iand x € I : a. Then b € f(x) ul. Thus f(b) c f(x) u Il Also f(a)f(x) c I. It follows that
fla)f(b) cf(a)(f(x)ul)=f(a)f(x)uf(a)IcI.Hencebel:aandsolIcI:a. O

Let S be an ordered semigroup and f a good mapping on S. Denote the following condition by («):
(VFefS(S)) (VIeI(S)) Fnl+@=F"nl+g.

If f(a) = I(a) for every a € S, then S satisfies the condition («). But this is not true for any good mapping f.
See the following example.

Example 3.12. We consider the ordered semigroup S = {a, b, c} defined by multiplication and the order below:

<={(a, a), (a, b), (a,c), (b, b), (b, ), (c,c)}.

It is easy to check that S is an ordered semigroup. The ideals of S are the sets:

{a}, {a, b} and S.
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If we define f(a) = {a}, f(b) = f(c) = S, then it is easy to see that f is a good mapping. Let I = {a, b} and
F ={b, c}. Then F is an f-system with kernel F* = {c} and F n I + @. However, F* nI = @.

Proposition 3.13. Let S be an ordered semigroup and f a good mapping on S. If I, ] € I(S), then
(I)IE] = )’f(I) c rf(]);

@) re(re(1)) = 1p(D);

B re(Tu]) = re(re(I) ure(J));

W re(In]) =re(I) nre(J), if S satisfies the condition ().

Proof. (1) and (2) are obvious.

(3) From Theorem 2.12, we have IuJ ¢ r¢(I)urs(J). By condition (1), we have rg(Iu]) < r¢(rs(I)urs(J)) and
re(I)urs(J) c re(Iu]). Combining conditions (1) and (2), we obtain r¢(re(I)ur(J)) € re(rs(I0J)) = re(IU]).

(4) 1t is obvious that r¢(I nJ) ¢ rg(I) n rp(J) from condition (1). Next we prove the other inclusion. Let
x € rg(I) nrp(J) and F be an f-system containing x. Suppose that a € FnIand b € F nJ. By assumption
(), there exist a* € F* nIand b* € F* n]. Since F* is an m-system, (a*zb*] n F* + & for some z € S.
Thus (a*zb*] n F # @. Moreover, a*zb* e InJ and so (a*zb*] c In]. Hence Fn (In]) # . It follows that
xerg(In]). Therefore r(In]) =re(I) nre(J). O

Combining Proposition 3.5, 3.6 and 3.13 (1), we have the following result.

Theorem 3.14. Let I be an ideal of an ordered semigroup S. Then r¢(I) is the least f-semiprime ideal contain-
ingl.

4 f-primary decomposition of an ideal

In this section, we introduce the concepts of f-primary ideals and f-primary decomposition of an ideal in
ordered semigroups, and conclude that the number of f-primary components and the f-prime radicals of
f-primary components of a normal decomposition of an ideal I depend only on I under some assumptions.

Definition 4.1. Let S be an ordered semigroup and f a good mapping on S. Anideal I of S is called left f-primary
iff(a)f(b) c Iimplies that a e re(I) or b € I.

Remark 4.2. By symmetry, we call anideal I of S right f-primary if f(a)f (b) c I implies that a € I or b € r¢(I).
In what follows unless otherwise mentioned, f-primary means left f-primary.

By Proposition 2.9, we note that f-prime ideals must be f-primary ideals.
From Definition 4.1, we obtain easily the following result.

Proposition 4.3. Let S be an ordered semigroup satisfying the condition (). If I "and I are f-primary ideals
of Ssuchthatry(I') =r¢(I ),thenI =1 n1I isalso an f-primary ideal of S such that r(I) = rs(I ) = r¢(I ).

Let S be an ordered semigroup and f a good mapping on S. Denote the following condition by (3):
(VLJeI(S)) JEr(I)=1:]+@.

Theorem 4.4. Let S be an ordered semigroup satisfying the condition (). An ideal I of S is f-primary if and
onlyifI:] =1 forallideals ] & r(I).

Proof. Suppose that I is an f-primary ideal of S and J is an ideal of S not contained in r¢(I). Since S satisfies
the condition (8),I:]J + @.ThusI: b + gforallb e J.HenceI cI: bforeveryb ¢ JandsoI cI:]. Now
we choose an element c € J \ r¢(I). By the condition (8), I : ¢ # @. Moreover, f(c)f(a) c IforanyaeI:c.
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Since I'is f-primaryand c ¢ r¢(I), a € I. Thus I : ¢ ¢ I. Therefore, I =I: candsoI: ] cI: c = I. Consequently,
I=1:].

Conversely, suppose that I : J = I for all ideals J not contained in r¢(I). Let f(a)f(b) c Iand a ¢ r¢(I).
Slnce a € f(a), f(a) is not a subset of r¢(I) and so I : f(a) = I. For any a e f(a), f(a ) € f(a). Thus
f(a )f(b) cf(a)f(b) cIandthus b eI: f(a) = 1.1t follows that I is f-primary. O

Definition 4.5. If an ideal I of an ordered semigroup S can be written as I = I; n I, n --- n I, where each I;
is an f-primary ideal, then this is called an f-primary decomposition of I and each I; is called the f-primary
component of the decomposition.

A f-primary decomposition in which no I; contains the intersection of the remaining I; is called irredundant.
Moreover, an irredundant f-primary decomposition in which the radicals of the various f-primary components
are all different is called a normal decomposition.

From Proposition 4.3, we note that each f-primary decomposition can be refined into one which is normal.

Let S be an ordered semigroup and f a good mapping on S. Denote the following condition by () if for
any f-primary ideal I of S, we have I : I = S. If f(a) = I(a) for all a € S, then S satisfies the condition (). But
the condition () need not be satisfied for any good mapping f.

Example 4.6. From Example 2.8, P = {a} is an f-prime ideal of S and so P is f-primary. However
P:P={a}+S.

Theorem 4.7. Let S be an ordered semigroup satisfying the conditions (), (3) and (). If anideal A of S has

two normal f-primary decompositions A = ﬁ I = rnﬁ Ij,thenn =mand re(I;) = ry(Ij) for1 <i<n=mbya
i=1 i=1

suitable ordering.

Proof. It is easy to see that the result holds in the case A = S. Next we prove the case that A # S, where all
f-primary components I, ---, I, I1, ---, I, are proper ideals. We may assume that r7(I1) is maximal in the set

{rr(1), - rp(In), s (1),
-, ¢(Iy) }. Now we prove that r¢(I1) = rg(I;) for some i. It is enough to show that I; ¢ r¢(I). Suppose that
I ¢ re(Ij) forall 1 < i < m. Then we have, by Theorem 4.4, I; : I = I{ forall 1 < i < m, and so

AL =(I1nhhn--nly): L
=(I1:L)nI:L)n-n(Ip: 1)
=Iinlhn-nI,
= A.
If n = 1, then, by the condition (v), S = I : I; = A : I = A which is a contradiction. If n > 1, then, by the
condition (v) and the fact that I ¢ r¢(I;) forall 2 <i < n, we have
A=A: Il
=(hnhn-nly): L
= (Il :Il) n (Iz 111) Nn---N (In :Il)

=L n--nlIy.

This is also a contradiction. By a suitable ordering, we may have r¢(I,) = r¢(I7).

We use an induction on the number n of f-primary components. If n = 1, then A = I; = ﬂ I{. Suppose
i=1

thatm > 1. ThenI; ¢ ry(I;) forall2 <i < m.SinceS =11 : I = ﬂ(I{ : I), we have, by Theorem 4.4,
i=1
S =1, = --- = I, which is a contradiction. Thus m = 1 = n. Now let us suppose that the conclusions hold for

the ideals which are represented by fewer than n f-primary components. Let I = I; nI;. Then I is an f-primary
ideal such that r¢(I) = rs(I1) = r¢(I}) from Proposition 4.3. By the condition (), wehave S =11 : Iy S Iy : I
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and thus I; : I = S. From the fact that I ¢ r¢(I;) forall 2 <i < n,weobtain I; : I = I;. Hence A : I = rn] I;.

i=2

m

Similarly, we can show that A : [ = ﬂ I Consequently, A : I = ﬂ I; = N I{ and the decompositions are both
i=2 i=2

normal. By the induction hypothe51s we have n — 1 = m - 1 and so n = m. Moreover, by a suitable ordering,

we have rg(I;) = re(I{) forall2 <i<n=m. O
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