
Open Access. © 2018 Gu, published by De Gruyter. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

Open Math. 2018; 16: 574–580

Open Mathematics

Research Article

Ze Gu*

On f -prime radical in ordered semigroups
https://doi.org/10.1515/math-2018-0053
Received February 6, 2018; accepted April 25, 2018.

Abstract: In this paper, we introduce the concepts of f -prime ideals, f -semiprime ideals and f -prime radicals
in ordered semigroups. Furthermore, some results on f -prime radicals and f -primary decomposition of an
ideal in an ordered semigroup are obtained.
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1 Introduction and preliminaries
Prime radical theorem is an important result in commutative ring theory and commutative semigroup theory
(see [1,2]). In [3], Hoo and Shum gave a similar result in a residuated negatively ordered semigroup. Wu and
Xie extended the result to a commutative ordered semigroup by using m-systems in [4]. In [5], Tang and Xie
characterized in detail the radicals of ideals in ordered semigroups. In 1969, Murata, Kurata andMarubayashi
introduced the notions of f -prime ideals and f -prime radicals in ring theory (see [6]), which generalized the
concepts of prime ideals and prime radicals. In [7], Sardar and Goswami extended these concepts and results
of ring theory to semirings. In this paper, we introduce the concepts of f -prime ideals and f -prime radicals in
ordered semigroups and extend some results of rings and semirings to ordered semigroups.We also introduce
the notion of f -semiprime ideals in ordered semigroups and obtain the result that the f -prime radical of an
ideal I in an ordered semigroup is the least f -semiprime ideal containing I.

Next we list some basic concepts and notations on ordered semigroups (see [8]). An ordered semigroup is
a semigroup (S, ⋅) endowed with an order relation “ ≤ ” such that

(∀a, b, x ∈ S) a ≤ b⇒ xa ≤ xb and ax ≤ bx.

Let (S, ⋅, ≤) be an ordered semigroup. A non-empty subset I of S is called an ideal of S if it satis�es the
following conditions: (1) SI ∪ IS ⊆ I; (2) a ∈ I and b ∈ S, b ≤ a implies b ∈ I. An ideal I of S is called
weakly prime if AB ⊆ I implies A ⊆ I or B ⊆ I for any ideals A, B of S; an ideal I of S is calledweakly semiprime
if A2 ⊆ I implies A ⊆ I for any ideal A of S. For h ∈ S, we denote

(h] = {t ∈ S ∣ t ≤ h};

[h) = {s ∈ S ∣ h ≤ s}.

A subset M of S is called an m-system of S, if for any a, b ∈ M, there exists x ∈ S such that (axb] ∩ M ≠ ∅.
A subset N of S is said to be a n-system of S if for any a ∈ N, there exists x ∈ S such that [axa) ⊆ N.
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2 f -prime ideals and f -prime radical of an ideal
De�nition 2.1. Let S be an ordered semigroup. Denote by I(S) the set of all ideals of S. De�ne a mapping
f ∶ S → I(S) which satis�es the following conditions
(1) a ∈ f(a);
(2) x ∈ f(a) ∪ I implies that f(x) ⊆ f(a) ∪ I for any I ∈ I(S).
We call such mapping f a good mapping on S.

Example 2.2. Let S be an ordered semigroup. If f(a) = I(a) for all a ∈ S, where I(a) is the principal ideal
generated by a, then it is easy to see that f satis�es the above conditions.

Example 2.3. We consider the ordered semigroup S = {a, b, c} de�ned by multiplication and the order below:

⋅ a b c
a a a a
b a a b
c a b b

≤∶= {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)}.

The ideals of S are the sets:
{a}, {a, b} and S.

If we de�ne f(a) = {a}, f(b) = {a, b} and f(c) = S, then it is easy to see that f satis�es the above conditions.

De�nition 2.4. Let S be an ordered semigroup and f a goodmapping on S. A subset F of S is called an f -system
of S if F contains an m-system F∗, called the kernel of F, such that f(t) ∩ F∗ ≠ ∅ for any t ∈ F.

Especially, ∅ is also de�ned to be an f -system.

Remark 2.5. (1) Every m-system is an f -system with kernel itself.
(2) If F is an f -system with kernel F∗, then F = ∅ if and only if F∗ = ∅.

De�nition 2.6. Let S be an ordered semigroup and f a good mapping on S. An ideal I of S is called f -prime if
its complement C(I) in S is an f -system.

Remark 2.7. As we know, the complement of a weakly prime ideal of an ordered semigroup is an m-system.
Furthermore, every m-system is an f -system. Hence, every weakly prime ideal of an ordered semigroup is an
f -prime ideal. But the converse is not true in general.

Example 2.8. We consider the ordered semigroup S in Example 2.3. Let I = {a}. Then C(I) = {b, c} is an f -
system with kernel F∗ = {b}. Hence, I is an f -prime ideal. However, I is not weakly prime. Indeed: {a, b} is an
ideal of S and {a, b}{a, b} ⊆ I, but {a, b} is not contained in I.

Proposition 2.9. Let P be an f -prime ideal of an ordered semigroup S and a, b ∈ S. If f(a)f(b) ⊆ P, then either
a ∈ P or b ∈ P.

Proof. Suppose that a, b ∈ C(P). Since P is an f -prime ideal, C(P) is an f -system. Hence, f(a) ∩ [C(P)]∗ ≠ ∅
and f(b)∩[C(P)]∗ ≠ ∅, where [C(P)]∗ is the kernel of C(P). Let x1 ∈ f(a)∩[C(P)]∗ and x2 ∈ f(b)∩[C(P)]∗.
Since [C(P)]∗ is an m-system, (x1rx2] ∩ [C(P)]∗ ≠ ∅ for some r ∈ S. Thus (x1rx2] ∩ C(P) ≠ ∅. Also x1rx2 ∈
f(a)f(b) ⊆ P. Thus (x1rx2] ⊆ P which is a contradiction. Therefore, either a ∈ P or b ∈ P.

Corollary 2.10. Let P be an f -prime ideal of an ordered semigroup S and ai ∈ S (i = 1, 2,⋯, n). If
f(a1)f(a2)⋯f(an) ⊆ P, then ai ∈ P for some i.
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Let S be an ordered semigroup. Denote by fPI(S) and fS(S) the set of all f -prime ideals of S and the set of all
f -systems of S respectively.

De�nition 2.11. Let S be an ordered semigroup and I be an ideal of S. We call the set {a ∈ S ∣ (∀F ∈ fS(S)) a ∈
F⇒ F ∩ I ≠ ∅} the f -prime radical of I, denoted by rf (I).

Theorem 2.12. Let S be an ordered semigroup and I be an ideal of S. Then rf (I) = ∩P∈Γ P where Γ = {P ∈
fPI(S) ∣ I ⊆ P}.

Proof. Let J = ∩P∈Γ P where Γ = {P ∈ fPI(S) ∣ I ⊆ P}. If x /∈ J, then there exists an f -prime ideal P containing I
such that x /∈ P. Thus C(P) is an f -system containing x but C(P)∩ I = ∅. Hence x /∈ rf (I). Therefore, rf (I) ⊆ J.
On the other hand, if y /∈ rf (I), then there exists an f -system F containing y such that F∩ I = ∅. Thus y /∈ C(F)
and C(F) is an f -prime ideal such that I ⊆ C(F). Hence y /∈ J and so J ⊆ rf (I). Therefore, rf (I) = J.

Corollary 2.13. Let S be an ordered semigroup and I be an ideal of S. Then rf (I) is an ideal of S.

3 f -semiprime ideals
In this section, we introduce the concept of f -semiprime ideals in ordered semigroups and obtain that the
f -prime radical of an ideal I is the least f -semiprime ideal containing I.

De�nition 3.1. Let S be an ordered semigroup. A subset A of S is said to be an fn-system of S if A = ⋃
i∈Γ

Fi where

{Fi ∣ i ∈ Γ} ⊆ fS(S).

De�nition 3.2. An ideal P of an ordered semigroup S is said to be f -semiprime if its complement C(P) in S is
an fn-system.

Clearly, every f -system is an fn-system. Therefore, every f -prime ideal is an f -semiprime ideal.

Proposition 3.3. Let S be an ordered semigroup and I a weakly semiprime ideal of S. Then I is an f -semiprime
ideal of S.

Proof. Since I is a weakly semiprime ideal, C(I) is a n-system. Thus C(I) is the union of some m-systems of
S. Since everym-system is an f -system, C(I) is the union of some f -systems of S. Hence C(I) is an fn-system.
Therefore, I is an f -semiprime ideal.

Proposition 3.4. Let P be an f -semiprime ideal of an ordered semigroup S and a ∈ S. If f(a)f(a) ⊆ P, then
a ∈ P.

Proof. Suppose that a ∈ C(P). Since P is an f -semiprime ideal, C(P) is an fn-system. Thus C(P) = ⋃
i∈Γ

Fi,

where {Fi ∣ i ∈ Γ} ⊆ fS(S). Hence, a ∈ Fi for some i ∈ Γ . Therefore, f(a) ∩ F∗i ≠ ∅, where F∗i is the kernel
of Fi. Let x ∈ f(a) ∩ F∗i . Since F∗i is an m-system, (xrx] ∩ F∗i ≠ ∅ for some r ∈ S. Thus (xrx] ∩ Fi ≠ ∅ and so
(xrx] ∩ C(P) ≠ ∅. Also xrx ∈ f(a)f(a) ⊆ P. Therefore, (xrx] ⊆ P which is a contradiction. Hence a ∈ P.

Proposition 3.5. Let S be an ordered semigroup and I be an ideal of S. Then rf (I) is an f -semiprime ideal of S.

Proof. By Theorem 2.12, we know that rf (I) = ∩P∈Γ P where Γ = {P ∈ fPI(S) ∣ I ⊆ P}. Thus C(rf (I)) =
⋃P∈Γ C(P). Since every C(P) is an f -system, C(rf (I)) is an fn-system. Therefore, rf (I) is an f -semiprime
ideal of S.

Proposition 3.6. Let S be an ordered semigroup and I be an f -semiprime ideal of S. Then rf (I) = I.
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Proof. By Theorem 2.12, we have I ⊆ rf (I). Let x /∈ I. Since C(I) is an fn-system, C(I) = ⋃
i∈Γ

Fi where {Fi ∣ i ∈
Γ} ⊆ fS(S). Thus x ∈ ⋃

i∈Γ
Fi and so x ∈ Fi for some i ∈ Γ , but Fi∩ I = ∅. Hence Fi is an f -system containing x but

not containing any element of I. By De�nition 2.11, x ∉ rf (I). It follows that rf (I) ⊆ I. Therefore rf (I) = I.

De�nition 3.7. Let S be an ordered semigroup and f a good mapping on S. Let a ∈ S and I ∈ I(S). The set
{x ∈ S ∣ f(a)f(x) ⊆ I}, denoted by I ∶ a, is called the left f -quotient of I by a. Moreover, for any ideal J of S, the
left f -quotient of I by J is de�ned to be ⋂

a∈J
(I ∶ a), denoted by I ∶ J.

Remark 3.8. Similar to De�nition 3.7, we call the set {x ∈ S ∣ f(x)f(a) ⊆ I} right f -quotient of I by a, denoted by
a ∶ I. Moreover, ⋂

a∈J
(a ∶ I) is de�ned to be right f -quotient of I by J. In what follows, unless otherwise mentioned,

f -quotient means left f -quotient.

We note that I ∶ a may be empty. See the following example.

Example 3.9. We consider the ordered semigroup S of Example 2.3. If we de�ne f(a) = f(b) = f(c) = S, then
the mapping f is a good mapping. Let I = {a}. Then I ∶ a, I ∶ b and I ∶ c are all empty.

The following result can be easily obtained from the above de�nition.

Proposition 3.10. Let S be an ordered semigroup and f a good mapping on S. If I, I
′

, I
′′

, J, J
′

, J
′′

∈ I(S) and
a ∈ S, then
(1) I

′

⊆ I
′′

⇒ I
′

∶ a ⊆ I
′′

∶ a and I
′

∶ J ⊆ I
′′

∶ J;
(2) J

′

⊆ J
′′

⇒ I ∶ J
′

⊇ I ∶ J
′′

;
(3) (I

′

∩ I
′′

) ∶ a = (I
′

∶ a) ∩ (I
′′

∶ a) and (I
′

∩ I
′′

) ∶ J = (I
′

∶ J) ∩ (I
′′

∶ J).

Proposition 3.11. Let S be an ordered semigroup and f a good mapping on S. If I ∈ I(S) and a ∈ S, then I ∶ a is
either empty or an ideal containing I of S.

Proof. Suppose that I ∶ a ≠ ∅. Let x ∈ I ∶ a and r ∈ S. Then rx, xr ∈ f(x). Thus f(rx) ⊆ f(x) and f(xr) ⊆ f(x).
Also f(a)f(x) ⊆ I. Therefore, f(a)f(rx) ⊆ I and f(a)f(xr) ⊆ I. Let z ≤ y ∈ I ∶ a. Then z ∈ f(y) and f(a)f(y) ⊆
I. Thus f(z) ⊆ f(y). Therefore, f(a)f(z) ⊆ I, which implies that z ∈ I ∶ a. Hence, I ∶ a is an ideal of S. Next we
prove that I ⊆ I ∶ a.

Let b ∈ I and x ∈ I ∶ a. Then b ∈ f(x) ∪ I. Thus f(b) ⊆ f(x) ∪ I. Also f(a)f(x) ⊆ I. It follows that
f(a)f(b) ⊆ f(a)(f(x) ∪ I) = f(a)f(x) ∪ f(a)I ⊆ I. Hence b ∈ I ∶ a and so I ⊆ I ∶ a.

Let S be an ordered semigroup and f a good mapping on S. Denote the following condition by (α):

(∀F ∈ fS(S)) (∀I ∈ I(S)) F ∩ I ≠ ∅ ⇒ F∗ ∩ I ≠ ∅.

If f(a) = I(a) for every a ∈ S, then S satis�es the condition (α). But this is not true for any good mapping f .
See the following example.

Example 3.12. We consider the ordered semigroup S = {a, b, c} de�ned bymultiplication and the order below:

⋅ a b c
a a a a
b a a b
c a b c

≤∶= {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)}.

It is easy to check that S is an ordered semigroup. The ideals of S are the sets:

{a}, {a, b} and S.
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If we de�ne f(a) = {a}, f(b) = f(c) = S, then it is easy to see that f is a good mapping. Let I = {a, b} and
F = {b, c}. Then F is an f -system with kernel F∗ = {c} and F ∩ I ≠ ∅. However, F∗ ∩ I = ∅.

Proposition 3.13. Let S be an ordered semigroup and f a good mapping on S. If I, J ∈ I(S), then
(1) I ⊆ J ⇒ rf (I) ⊆ rf (J);
(2) rf (rf (I)) = rf (I);
(3) rf (I ∪ J) = rf (rf (I) ∪ rf (J));
(4) rf (I ∩ J) = rf (I) ∩ rf (J), if S satis�es the condition (α).

Proof. (1) and (2) are obvious.
(3) FromTheorem2.12,wehave I∪J ⊆ rf (I)∪rf (J). By condition (1),wehave rf (I∪J) ⊆ rf (rf (I)∪rf (J)) and

rf (I)∪ rf (J) ⊆ rf (I∪ J). Combining conditions (1) and (2), we obtain rf (rf (I)∪ rf (J)) ⊆ rf (rf (I∪ J)) = rf (I∪ J).
(4) It is obvious that rf (I ∩ J) ⊆ rf (I) ∩ rf (J) from condition (1). Next we prove the other inclusion. Let

x ∈ rf (I) ∩ rf (J) and F be an f -system containing x. Suppose that a ∈ F ∩ I and b ∈ F ∩ J. By assumption
(α), there exist a∗ ∈ F∗ ∩ I and b∗ ∈ F∗ ∩ J. Since F∗ is an m-system, (a∗zb∗] ∩ F∗ ≠ ∅ for some z ∈ S.
Thus (a∗zb∗] ∩ F ≠ ∅. Moreover, a∗zb∗ ∈ I ∩ J and so (a∗zb∗] ⊆ I ∩ J. Hence F ∩ (I ∩ J) ≠ ∅. It follows that
x ∈ rf (I ∩ J). Therefore rf (I ∩ J) = rf (I) ∩ rf (J).

Combining Proposition 3.5, 3.6 and 3.13 (1), we have the following result.

Theorem 3.14. Let I be an ideal of an ordered semigroup S. Then rf (I) is the least f -semiprime ideal contain-
ing I.

4 f -primary decomposition of an ideal
In this section, we introduce the concepts of f -primary ideals and f -primary decomposition of an ideal in
ordered semigroups, and conclude that the number of f -primary components and the f -prime radicals of
f -primary components of a normal decomposition of an ideal I depend only on I under some assumptions.

De�nition 4.1. Let S be an ordered semigroup and f a goodmapping on S. An ideal I of S is called left f -primary
if f(a)f(b) ⊆ I implies that a ∈ rf (I) or b ∈ I.

Remark 4.2. By symmetry, we call an ideal I of S right f -primary if f(a)f(b) ⊆ I implies that a ∈ I or b ∈ rf (I).
In what follows unless otherwise mentioned, f -primary means left f -primary.

By Proposition 2.9, we note that f -prime ideals must be f -primary ideals.
From De�nition 4.1, we obtain easily the following result.

Proposition 4.3. Let S be an ordered semigroup satisfying the condition (α). If I
′

and I
′′

are f -primary ideals
of S such that rf (I

′

) = rf (I
′′

), then I = I
′

∩ I
′′

is also an f -primary ideal of S such that rf (I) = rf (I
′

) = rf (I
′′

).

Let S be an ordered semigroup and f a good mapping on S. Denote the following condition by (β):

(∀I, J ∈ I(S)) J Ü rf (I) ⇒ I ∶ J ≠ ∅.

Theorem 4.4. Let S be an ordered semigroup satisfying the condition (β). An ideal I of S is f -primary if and
only if I ∶ J = I for all ideals J Ü rf (I).

Proof. Suppose that I is an f -primary ideal of S and J is an ideal of S not contained in rf (I). Since S satis�es
the condition (β), I ∶ J ≠ ∅. Thus I ∶ b ≠ ∅ for all b ∈ J. Hence I ⊆ I ∶ b for every b ∈ J and so I ⊆ I ∶ J. Now
we choose an element c ∈ J ∖ rf (I). By the condition (β), I ∶ c ≠ ∅. Moreover, f(c)f(a) ⊆ I for any a ∈ I ∶ c.
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Since I is f -primary and c /∈ rf (I), a ∈ I. Thus I ∶ c ⊆ I. Therefore, I = I ∶ c and so I ∶ J ⊆ I ∶ c = I. Consequently,
I = I ∶ J.

Conversely, suppose that I ∶ J = I for all ideals J not contained in rf (I). Let f(a)f(b) ⊆ I and a /∈ rf (I).
Since a ∈ f(a), f(a) is not a subset of rf (I) and so I ∶ f(a) = I. For any a

′

∈ f(a), f(a
′

) ⊆ f(a). Thus
f(a

′

)f(b) ⊆ f(a)f(b) ⊆ I and thus b ∈ I ∶ f(a) = I. It follows that I is f -primary.

De�nition 4.5. If an ideal I of an ordered semigroup S can be written as I = I1 ∩ I2 ∩ ⋯ ∩ In where each Ii
is an f -primary ideal, then this is called an f -primary decomposition of I and each Ii is called the f -primary
component of the decomposition.

A f -primary decomposition in which no Ii contains the intersection of the remaining Ij is called irredundant.
Moreover, an irredundant f -primary decomposition in which the radicals of the various f -primary components
are all di�erent is called a normal decomposition.

From Proposition 4.3, we note that each f -primary decomposition can be re�ned into one which is normal.
Let S be an ordered semigroup and f a good mapping on S. Denote the following condition by (γ): if for

any f -primary ideal I of S, we have I ∶ I = S. If f(a) = I(a) for all a ∈ S, then S satis�es the condition (γ). But
the condition (γ) need not be satis�ed for any good mapping f .

Example 4.6. From Example 2.8, P = {a} is an f -prime ideal of S and so P is f -primary. However
P ∶ P = {a} ≠ S.

Theorem 4.7. Let S be an ordered semigroup satisfying the conditions (α), (β) and (γ). If an ideal A of S has
two normal f -primary decompositions A =

n
⋂
i=1

Ii =
m
⋂
i=1

I′i , then n = m and rf (Ii) = rf (I′i) for 1 ≤ i ≤ n = m by a

suitable ordering.

Proof. It is easy to see that the result holds in the case A = S. Next we prove the case that A ≠ S, where all
f -primary components I1,⋯, In , I′1,⋯, I′m are proper ideals. We may assume that rf (I1) is maximal in the set
{rf (I1),⋯, rf (In), rf (I′1),
⋯, rf (I′m)}. Now we prove that rf (I1) = rf (I′i) for some i. It is enough to show that I1 ⊆ rf (I′i). Suppose that
I1 Ü rf (I′i) for all 1 ≤ i ≤ m. Then we have, by Theorem 4.4, I′i ∶ I1 = I′i for all 1 ≤ i ≤ m, and so

A ∶ I1 = (I′1 ∩ I′2 ∩⋯ ∩ I′n) ∶ I1
= (I′1 ∶ I1) ∩ (I′2 ∶ I1) ∩ ⋯ ∩ (I′n ∶ I1)
= I′1 ∩ I′2 ∩⋯ ∩ I′n
= A.

If n = 1, then, by the condition (γ), S = I1 ∶ I1 = A ∶ I1 = A which is a contradiction. If n > 1, then, by the
condition (γ) and the fact that I1 Ü rf (Ii) for all 2 ≤ i ≤ n, we have

A = A ∶ I1
= (I1 ∩ I2 ∩⋯ ∩ In) ∶ I1
= (I1 ∶ I1) ∩ (I2 ∶ I1) ∩ ⋯ ∩ (In ∶ I1)
= I2 ∩⋯ ∩ In .

This is also a contradiction. By a suitable ordering, we may have rf (I1) = rf (I′1).
We use an induction on the number n of f -primary components. If n = 1, then A = I1 =

m
⋂
i=1

I′i . Suppose

that m > 1. Then I1 Ü rf (Ii) for all 2 ≤ i ≤ m. Since S = I1 ∶ I1 =
m
⋂
i=1

(I′i ∶ I1), we have, by Theorem 4.4,

S = I′2 = ⋯ = I′m which is a contradiction. Thus m = 1 = n. Now let us suppose that the conclusions hold for
the ideals which are represented by fewer than n f -primary components. Let I = I1∩ I′1. Then I is an f -primary
ideal such that rf (I) = rf (I1) = rf (I′1) from Proposition 4.3. By the condition (γ), we have S = I1 ∶ I1 ⫅ I1 ∶ I
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and thus I1 ∶ I = S. From the fact that I Ü rf (Ii) for all 2 ≤ i ≤ n, we obtain Ii ∶ I = Ii. Hence A ∶ I =
n
⋂
i=2

Ii.

Similarly, we can show that A ∶ I =
m
⋂
i=2

I′i . Consequently, A ∶ I =
n
⋂
i=2

Ii =
m
⋂
i=2

I′i and the decompositions are both
normal. By the induction hypothesis, we have n − 1 = m − 1 and so n = m. Moreover, by a suitable ordering,
we have rf (Ii) = rf (I′i) for all 2 ≤ i ≤ n = m.
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