Open Mathematics

Research Article

Ze Gu*

On f-prime radical in ordered semigroups

https://doi.org/10.1515/math-2018-0053 Received February 6, 2018; accepted April 25, 2018.

Abstract: In this paper, we introduce the concepts of f-prime ideals, f-semiprime ideals and f-prime radicals in ordered semigroups. Furthermore, some results on f-prime radicals and f-primary decomposition of an ideal in an ordered semigroup are obtained.

Keywords: Ordered semigroup, *f*-prime ideal, *f*-semiprime ideal, *f*-prime radical, *f*-primary decomposition

MSC: 06F05, 20M10

1 Introduction and preliminaries

Prime radical theorem is an important result in commutative ring theory and commutative semigroup theory (see [1,2]). In [3], Hoo and Shum gave a similar result in a residuated negatively ordered semigroup. Wu and Xie extended the result to a commutative ordered semigroup by using m-systems in [4]. In [5], Tang and Xie characterized in detail the radicals of ideals in ordered semigroups. In 1969, Murata, Kurata and Marubayashi introduced the notions of f-prime ideals and f-prime radicals in ring theory (see [6]), which generalized the concepts of prime ideals and prime radicals. In [7], Sardar and Goswami extended these concepts and results of ring theory to semirings. In this paper, we introduce the concepts of f-prime ideals and f-prime radicals in ordered semigroups and extend some results of rings and semirings to ordered semigroups. We also introduce the notion of f-semiprime ideals in ordered semigroups and obtain the result that the f-prime radical of an ideal f in an ordered semigroup is the least f-semiprime ideal containing f.

Next we list some basic concepts and notations on ordered semigroups (see [8]). An *ordered semigroup* is a semigroup (S, \cdot) endowed with an order relation " \leq " such that

$$(\forall a, b, x \in S) \ a \leq b \Rightarrow xa \leq xb \text{ and } ax \leq bx.$$

Let (S, \cdot, \leq) be an ordered semigroup. A non-empty subset I of S is called an *ideal* of S if it satisfies the following conditions: (1) $SI \cup IS \subseteq I$; (2) $a \in I$ and $b \in S$, $b \leq a$ implies $b \in I$. An ideal I of S is called *weakly prime* if $AB \subseteq I$ implies $A \subseteq I$ for any ideal A, B of S; an ideal A of A is called *weakly semiprime* if $A \subseteq I$ implies $A \subseteq I$ for any ideal A of A is denote

$$(h] = \{t \in S \mid t \leq h\};$$

$$[h) = \{s \in S \mid h \leq s\}.$$

A subset M of S is called an m-system of S, if for any a, $b \in M$, there exists $x \in S$ such that $(axb] \cap M \neq \emptyset$. A subset N of S is said to be a n-system of S if for any $a \in N$, there exists $x \in S$ such that $[axa) \subseteq N$.

^{*}Corresponding Author: Ze Gu: School of Mathematics and Statistics, Zhaoqing University, Zhaoqing, Guangdong, China, E-mail: guze528@sina.com

[∂] Open Access. © 2018 Gu, published by De Gruyter. © BYANC-ND This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.

2 f-prime ideals and f-prime radical of an ideal

Definition 2.1. Let S be an ordered semigroup. Denote by I(S) the set of all ideals of S. Define a mapping $f: S \to I(S)$ which satisfies the following conditions

(1) $a \in f(a)$;

(2) $x \in f(a) \cup I$ implies that $f(x) \subseteq f(a) \cup I$ for any $I \in I(S)$.

We call such mapping f a good mapping on S.

Example 2.2. Let S be an ordered semigroup. If f(a) = I(a) for all $a \in S$, where I(a) is the principal ideal generated by a, then it is easy to see that f satisfies the above conditions.

Example 2.3. We consider the ordered semigroup $S = \{a, b, c\}$ defined by multiplication and the order below:

$$\leq := \{(a,a),(a,b),(a,c),(b,b),(b,c),(c,c)\}.$$

The ideals of S are the sets:

$$\{a\}, \{a, b\} \text{ and } S.$$

If we define $f(a) = \{a\}$, $f(b) = \{a, b\}$ and f(c) = S, then it is easy to see that f satisfies the above conditions.

Definition 2.4. Let S be an ordered semigroup and f a good mapping on S. A subset F of S is called an f-system of S if F contains an m-system F^* , called the kernel of F, such that $f(t) \cap F^* \neq \emptyset$ for any $t \in F$. Especially, \emptyset is also defined to be an f-system.

Remark 2.5. (1) Every m-system is an f-system with kernel itself. (2) If F is an f-system with kernel F^* , then $F = \emptyset$ if and only if $F^* = \emptyset$.

Definition 2.6. Let S be an ordered semigroup and f a good mapping on S. An ideal I of S is called f-prime if its complement C(I) in S is an f-system.

Remark 2.7. As we know, the complement of a weakly prime ideal of an ordered semigroup is an m-system. Furthermore, every m-system is an f-system. Hence, every weakly prime ideal of an ordered semigroup is an f-prime ideal. But the converse is not true in general.

Example 2.8. We consider the ordered semigroup S in Example 2.3. Let $I = \{a\}$. Then $C(I) = \{b, c\}$ is an f-system with kernel $F^* = \{b\}$. Hence, I is an f-prime ideal. However, I is not weakly prime. Indeed: $\{a, b\}$ is an ideal of S and $\{a, b\}\{a, b\} \subseteq I$, but $\{a, b\}$ is not contained in I.

Proposition 2.9. *Let* P *be an* f-*prime ideal of an ordered semigroup* S *and* a, $b \in S$. *If* $f(a)f(b) \subseteq P$, then either $a \in P$ or $b \in P$.

Proof. Suppose that $a, b \in C(P)$. Since P is an f-prime ideal, C(P) is an f-system. Hence, $f(a) \cap [C(P)]^* \neq \emptyset$ and $f(b) \cap [C(P)]^* \neq \emptyset$, where $[C(P)]^*$ is the kernel of C(P). Let $x_1 \in f(a) \cap [C(P)]^*$ and $x_2 \in f(b) \cap [C(P)]^*$. Since $[C(P)]^*$ is an m-system, $(x_1rx_2] \cap [C(P)]^* \neq \emptyset$ for some $r \in S$. Thus $(x_1rx_2] \cap C(P) \neq \emptyset$. Also $x_1rx_2 \in f(a)f(b) \subseteq P$. Thus $(x_1rx_2] \subseteq P$ which is a contradiction. Therefore, either $a \in P$ or $b \in P$. □

Corollary 2.10. Let P be an f-prime ideal of an ordered semigroup S and $a_i \in S$ $(i = 1, 2, \dots, n)$. If $f(a_1)f(a_2)\cdots f(a_n) \subseteq P$, then $a_i \in P$ for some i.

576 — Z. Gu DE GRUYTER

Let *S* be an ordered semigroup. Denote by fPI(S) and fS(S) the set of all *f*-prime ideals of *S* and the set of all *f*-systems of *S* respectively.

Definition 2.11. *Let* S *be an ordered semigroup and* I *be an ideal of* S. *We call the set* $\{a \in S \mid (\forall F \in fS(S)) \mid a \in F \Rightarrow F \cap I \neq \emptyset\}$ *the* f-prime radical of I, denoted by $r_f(I)$.

Theorem 2.12. Let S be an ordered semigroup and I be an ideal of S. Then $r_f(I) = \bigcap_{P \in \Gamma} P$ where $\Gamma = \{P \in FPI(S) \mid I \subseteq P\}$.

Proof. Let $J = \cap_{P \in \Gamma} P$ where $\Gamma = \{P \in FPI(S) \mid I \subseteq P\}$. If $x \notin J$, then there exists an f-prime ideal P containing I such that $x \notin P$. Thus C(P) is an f-system containing x but $C(P) \cap I = \emptyset$. Hence $x \notin r_f(I)$. Therefore, $r_f(I) \subseteq J$. On the other hand, if $y \notin r_f(I)$, then there exists an f-system F containing Y such that $F \cap I = \emptyset$. Thus $Y \notin C(F)$ and C(F) is an f-prime ideal such that $I \subseteq C(F)$. Hence $Y \notin I$ and so $Y \subseteq r_f(I)$. Therefore, $Y \notin I$ is an $Y \notin I$ therefore, $Y \notin I$ and so $Y \subseteq I$ is an $Y \notin I$ that $Y \subseteq I$ therefore $Y \notin I$ and so $Y \subseteq I$ therefore, $Y \notin I$ is an $Y \notin I$ therefore, $Y \notin I$ and so $Y \subseteq I$ therefore $Y \notin I$ and so $Y \subseteq I$ therefore $Y \notin I$ and so $Y \subseteq I$ therefore $Y \notin I$ therefore $Y \notin I$ and so $Y \subseteq I$ therefore $Y \notin I$ and so $Y \subseteq I$ therefore $Y \notin I$

Corollary 2.13. Let S be an ordered semigroup and I be an ideal of S. Then $r_f(I)$ is an ideal of S.

3 f-semiprime ideals

In this section, we introduce the concept of f-semiprime ideals in ordered semigroups and obtain that the f-prime radical of an ideal I is the least f-semiprime ideal containing I.

Definition 3.1. Let S be an ordered semigroup. A subset A of S is said to be an fn-system of S if $A = \bigcup_{i \in \Gamma} F_i$ where $\{F_i \mid i \in \Gamma\} \subseteq fS(S)$.

Definition 3.2. An ideal P of an ordered semigroup S is said to be f-semiprime if its complement C(P) in S is an fn-system.

Clearly, every f-system is an fn-system. Therefore, every f-prime ideal is an f-semiprime ideal.

Proposition 3.3. Let S be an ordered semigroup and I a weakly semiprime ideal of S. Then I is an f-semiprime ideal of S.

Proof. Since I is a weakly semiprime ideal, C(I) is a n-system. Thus C(I) is the union of some m-systems of S. Since every m-system is an f-system, C(I) is the union of some f-systems of S. Hence C(I) is an fn-system. Therefore, I is an f-semiprime ideal.

Proposition 3.4. Let P be an f-semiprime ideal of an ordered semigroup S and $a \in S$. If $f(a)f(a) \subseteq P$, then $a \in P$.

Proof. Suppose that $a \in C(P)$. Since P is an f-semiprime ideal, C(P) is an fn-system. Thus $C(P) = \bigcup_{i \in \Gamma} F_i$, where $\{F_i \mid i \in \Gamma\} \subseteq fS(S)$. Hence, $a \in F_i$ for some $i \in \Gamma$. Therefore, $f(a) \cap F_i^* \neq \emptyset$, where F_i^* is the kernel of F_i . Let $x \in f(a) \cap F_i^*$. Since F_i^* is an m-system, $(xrx] \cap F_i^* \neq \emptyset$ for some $r \in S$. Thus $(xrx] \cap F_i \neq \emptyset$ and so $(xrx] \cap C(P) \neq \emptyset$. Also $xrx \in f(a)f(a) \subseteq P$. Therefore, $(xrx] \subseteq P$ which is a contradiction. Hence $a \in P$.

Proposition 3.5. Let S be an ordered semigroup and I be an ideal of S. Then $r_f(I)$ is an f-semiprime ideal of S.

Proof. By Theorem 2.12, we know that $r_f(I) = \bigcap_{P \in \Gamma} P$ where $\Gamma = \{P \in fPI(S) \mid I \subseteq P\}$. Thus $C(r_f(I)) = \bigcup_{P \in \Gamma} C(P)$. Since every C(P) is an f-system, $C(r_f(I))$ is an fn-system. Therefore, $r_f(I)$ is an f-semiprime ideal of S.

Proposition 3.6. Let S be an ordered semigroup and I be an f-semiprime ideal of S. Then $r_f(I) = I$.

Proof. By Theorem 2.12, we have $I \subseteq r_f(I)$. Let $x \notin I$. Since C(I) is an fn-system, $C(I) = \bigcup_{i \in \Gamma} F_i$ where $\{F_i \mid i \in \Gamma\}$ ⊆ fS(S). Thus $x \in \bigcup_{i \in \Gamma} F_i$ and so $x \in F_i$ for some $i \in \Gamma$, but $F_i \cap I = \emptyset$. Hence F_i is an f-system containing x but not containing any element of I. By Definition 2.11, $x \notin r_f(I)$. It follows that $r_f(I) \subseteq I$. Therefore $r_f(I) = I$. \square

Definition 3.7. Let S be an ordered semigroup and f a good mapping on S. Let $a \in S$ and $I \in I(S)$. The set $\{x \in S \mid f(a)f(x) \subseteq I\}$, denoted by I: a, is called the left f-quotient of I by a. Moreover, for any ideal J of S, the left f-quotient of I by J is defined to be $\bigcap_{a \in I} (I:a)$, denoted by I: J.

Remark 3.8. Similar to Definition 3.7, we call the set $\{x \in S \mid f(x)f(a) \subseteq I\}$ right f-quotient of I by a, denoted by a:I. Moreover, $\bigcap_{a \in J} (a:I)$ is defined to be right f-quotient of I by J. In what follows, unless otherwise mentioned, f-quotient means left f-quotient.

We note that I: a may be empty. See the following example.

Example 3.9. We consider the ordered semigroup S of Example 2.3. If we define f(a) = f(b) = f(c) = S, then the mapping f is a good mapping. Let $I = \{a\}$. Then I : a, I : b and I : c are all empty.

The following result can be easily obtained from the above definition.

Proposition 3.10. Let S be an ordered semigroup and f a good mapping on S. If $I, I', I'', J, J', J'' \in I(S)$ and $a \in S$, then

```
(1) I' \subseteq I'' \Rightarrow I' : a \subseteq I'' : a \text{ and } I' : J \subseteq I'' : J;

(2) J' \subseteq J'' \Rightarrow I : J' \supseteq I : J'';

(3) (I' \cap I'') : a = (I' : a) \cap (I'' : a) \text{ and } (I' \cap I'') : J = (I' : J) \cap (I'' : J).
```

Proposition 3.11. Let S be an ordered semigroup and f a good mapping on S. If $I \in I(S)$ and $a \in S$, then I : a is either empty or an ideal containing I of S.

Proof. Suppose that $I: a \neq \emptyset$. Let $x \in I: a$ and $r \in S$. Then rx, $xr \in f(x)$. Thus $f(rx) \subseteq f(x)$ and $f(xr) \subseteq f(x)$. Also $f(a)f(x) \subseteq I$. Therefore, $f(a)f(rx) \subseteq I$ and $f(a)f(xr) \subseteq I$. Let $z \le y \in I: a$. Then $z \in f(y)$ and $f(a)f(y) \subseteq I$. Thus $f(z) \subseteq f(y)$. Therefore, $f(a)f(z) \subseteq I$, which implies that $z \in I: a$. Hence, I: a is an ideal of S. Next we prove that $I \subseteq I: a$.

Let $b \in I$ and $x \in I$: a. Then $b \in f(x) \cup I$. Thus $f(b) \subseteq f(x) \cup I$. Also $f(a)f(x) \subseteq I$. It follows that $f(a)f(b) \subseteq f(a)(f(x) \cup I) = f(a)f(x) \cup f(a)I \subseteq I$. Hence $b \in I$: a and so $I \subseteq I$: a.

Let *S* be an ordered semigroup and *f* a good mapping on *S*. Denote the following condition by (α) :

$$(\forall F \in fS(S)) (\forall I \in I(S)) F \cap I \neq \emptyset \Rightarrow F^* \cap I \neq \emptyset.$$

If f(a) = I(a) for every $a \in S$, then S satisfies the condition (α) . But this is not true for any good mapping f. See the following example.

Example 3.12. We consider the ordered semigroup $S = \{a, b, c\}$ defined by multiplication and the order below:

	а	b	с
а	а	а	а
b	а	а	b
c	а	b	c

$$\leq := \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}.$$

It is easy to check that S is an ordered semigroup. The ideals of S are the sets:

$$\{a\}, \{a, b\} \text{ and } S.$$

578 — Z. Gu DE GRUYTER

If we define $f(a) = \{a\}$, f(b) = f(c) = S, then it is easy to see that f is a good mapping. Let $I = \{a, b\}$ and $F = \{b, c\}$. Then F is an f-system with kernel $F^* = \{c\}$ and $F \cap I \neq \emptyset$. However, $F^* \cap I = \emptyset$.

Proposition 3.13. Let S be an ordered semigroup and f a good mapping on S. If $I, J \in I(S)$, then

```
(1) I \subseteq J \Rightarrow r_f(I) \subseteq r_f(J);
```

- (2) $r_f(r_f(I)) = r_f(I)$;
- (3) $r_f(I \cup J) = r_f(r_f(I) \cup r_f(J));$
- (4) $r_f(I \cap J) = r_f(I) \cap r_f(J)$, if S satisfies the condition (α) .

Proof. (1) and (2) are obvious.

(3) From Theorem 2.12, we have $I \cup J \subseteq r_f(I) \cup r_f(J)$. By condition (1), we have $r_f(I \cup J) \subseteq r_f(r_f(I) \cup r_f(J))$ and $r_f(I) \cup r_f(J) \subseteq r_f(I \cup J)$. Combining conditions (1) and (2), we obtain $r_f(r_f(I) \cup r_f(J)) \subseteq r_f(r_f(I \cup J)) = r_f(I \cup J)$.

(4) It is obvious that $r_f(I \cap J) \subseteq r_f(I) \cap r_f(J)$ from condition (1). Next we prove the other inclusion. Let $x \in r_f(I) \cap r_f(J)$ and F be an f-system containing x. Suppose that $a \in F \cap I$ and $b \in F \cap J$. By assumption (α) , there exist $a^* \in F^* \cap I$ and $b^* \in F^* \cap J$. Since F^* is an m-system, $(a^*zb^*] \cap F^* \neq \emptyset$ for some $z \in S$. Thus $(a^*zb^*] \cap F \neq \emptyset$. Moreover, $a^*zb^* \in I \cap J$ and so $(a^*zb^*] \subseteq I \cap J$. Hence $F \cap (I \cap J) \neq \emptyset$. It follows that $x \in r_f(I \cap J)$. Therefore $r_f(I \cap J) = r_f(I) \cap r_f(J)$.

Combining Proposition 3.5, 3.6 and 3.13 (1), we have the following result.

Theorem 3.14. Let I be an ideal of an ordered semigroup S. Then $r_f(I)$ is the least f-semiprime ideal containing I.

4 f-primary decomposition of an ideal

In this section, we introduce the concepts of f-primary ideals and f-primary decomposition of an ideal in ordered semigroups, and conclude that the number of f-primary components and the f-prime radicals of f-primary components of a normal decomposition of an ideal I depend only on I under some assumptions.

Definition 4.1. Let S be an ordered semigroup and f a good mapping on S. An ideal I of S is called left f-primary if $f(a)f(b) \subseteq I$ implies that $a \in r_f(I)$ or $b \in I$.

Remark 4.2. By symmetry, we call an ideal I of S right f-primary if $f(a)f(b) \subseteq I$ implies that $a \in I$ or $b \in r_f(I)$. In what follows unless otherwise mentioned, f-primary means left f-primary.

By Proposition 2.9, we note that f-prime ideals must be f-primary ideals.

From Definition 4.1, we obtain easily the following result.

Proposition 4.3. Let S be an ordered semigroup satisfying the condition (α) . If I' and I'' are f-primary ideals of S such that $r_f(I') = r_f(I'')$, then $I = I' \cap I''$ is also an f-primary ideal of S such that $r_f(I) = r_f(I') = r_f(I'')$.

Let *S* be an ordered semigroup and *f* a good mapping on *S*. Denote the following condition by (β) :

$$(\forall I, J \in I(S)) \ J \nsubseteq r_f(I) \Rightarrow I : J \neq \emptyset.$$

Theorem 4.4. Let S be an ordered semigroup satisfying the condition (β) . An ideal I of S is f-primary if and only if I: J = I for all ideals $J \nsubseteq r_f(I)$.

Proof. Suppose that I is an f-primary ideal of S and J is an ideal of S not contained in $r_f(I)$. Since S satisfies the condition (β) , $I: J \neq \emptyset$. Thus $I: b \neq \emptyset$ for all $b \in J$. Hence $I \subseteq I: b$ for every $b \in J$ and so $I \subseteq I: J$. Now we choose an element $c \in J \setminus r_f(I)$. By the condition (β) , $I: c \neq \emptyset$. Moreover, $f(c)f(a) \subseteq I$ for any $a \in I: c$.

Since *I* is *f*-primary and $c \notin r_f(I)$, $a \in I$. Thus $I : c \subseteq I$. Therefore, I = I : c and so $I : J \subseteq I : c = I$. Consequently, I = I : J.

Conversely, suppose that I: J = I for all ideals J not contained in $r_f(I)$. Let $f(a)f(b) \subseteq I$ and $a \notin r_f(I)$. Since $a \in f(a)$, f(a) is not a subset of $r_f(I)$ and so I: f(a) = I. For any $a' \in f(a)$, $f(a') \subseteq f(a)$. Thus $f(a')f(b) \subseteq f(a)f(b) \subseteq I$ and thus $b \in I: f(a) = I$. It follows that I is f-primary. \square

Definition 4.5. If an ideal I of an ordered semigroup S can be written as $I = I_1 \cap I_2 \cap \cdots \cap I_n$ where each I_i is an f-primary ideal, then this is called an f-primary decomposition of I and each I_i is called the f-primary component of the decomposition.

A f-primary decomposition in which no I_i contains the intersection of the remaining I_j is called irredundant. Moreover, an irredundant f-primary decomposition in which the radicals of the various f-primary components are all different is called a normal decomposition.

From Proposition 4.3, we note that each f-primary decomposition can be refined into one which is normal.

Let *S* be an ordered semigroup and *f* a good mapping on *S*. Denote the following condition by (γ) : if for any *f*-primary ideal *I* of *S*, we have I : I = S. If f(a) = I(a) for all $a \in S$, then *S* satisfies the condition (γ) . But the condition (γ) need not be satisfied for any good mapping *f*.

Example 4.6. From Example 2.8, $P = \{a\}$ is an f-prime ideal of S and so P is f-primary. However $P: P = \{a\} \neq S$.

Theorem 4.7. Let S be an ordered semigroup satisfying the conditions (α) , (β) and (γ) . If an ideal A of S has two normal f-primary decompositions $A = \bigcap_{i=1}^n I_i = \bigcap_{i=1}^m I_i'$, then n = m and $r_f(I_i) = r_f(I_i')$ for $1 \le i \le n = m$ by a suitable ordering.

Proof. It is easy to see that the result holds in the case A = S. Next we prove the case that $A \neq S$, where all f-primary components $I_1, \dots, I_n, I'_1, \dots, I'_m$ are proper ideals. We may assume that $r_f(I_1)$ is maximal in the set $\{r_f(I_1), \dots, r_f(I_n), r_f(I'_1), \dots, r_f(I'_n), r_f(I'_n), \dots, r_f(I$

 \cdots , $r_f(I'_m)$ }. Now we prove that $r_f(I_1) = r_f(I'_i)$ for some i. It is enough to show that $I_1 \subseteq r_f(I'_i)$. Suppose that $I_1 \nsubseteq r_f(I'_i)$ for all $1 \le i \le m$. Then we have, by Theorem 4.4, $I'_i : I_1 = I'_i$ for all $1 \le i \le m$, and so

$$A: I_{1} = (I'_{1} \cap I'_{2} \cap \cdots \cap I'_{n}): I_{1}$$

$$= (I'_{1}: I_{1}) \cap (I'_{2}: I_{1}) \cap \cdots \cap (I'_{n}: I_{1})$$

$$= I'_{1} \cap I'_{2} \cap \cdots \cap I'_{n}$$

$$= A.$$

If n = 1, then, by the condition (γ) , $S = I_1 : I_1 = A : I_1 = A$ which is a contradiction. If n > 1, then, by the condition (γ) and the fact that $I_1 \nsubseteq r_f(I_i)$ for all $2 \le i \le n$, we have

$$A = A : I_{1}$$

$$= (I_{1} \cap I_{2} \cap \dots \cap I_{n}) : I_{1}$$

$$= (I_{1} : I_{1}) \cap (I_{2} : I_{1}) \cap \dots \cap (I_{n} : I_{1})$$

$$= I_{2} \cap \dots \cap I_{n}.$$

This is also a contradiction. By a suitable ordering, we may have $r_f(I_1) = r_f(I_1')$.

We use an induction on the number n of f-primary components. If n=1, then $A=I_1=\bigcap_{i=1}^m I_i'$. Suppose that m>1. Then $I_1\nsubseteq r_f(I_i)$ for all $1\le i\le m$. Since $1:I_1=\bigcap_{i=1}^m I_i'$ is a possible $1:I_1=\bigcap_{i=1}^m I_i'$ which is a contradiction. Thus $1:I_1=I_1$ is an $1:I_1=I_1$ which is a contradiction. Thus $1:I_1=I_1$ is an $1:I_1=I_1$ in $1:I_1=I_1$ in

580 — Z. Gu DE GRUYTER

and thus $I_1:I=S$. From the fact that $I\nsubseteq r_f(I_i)$ for all $2\le i\le n$, we obtain $I_i:I=I_i$. Hence $A:I=\bigcap_{i=2}^nI_i$. Similarly, we can show that $A:I=\bigcap_{i=2}^mI_i'$. Consequently, $A:I=\bigcap_{i=2}^nI_i=\bigcap_{i=2}^mI_i'$ and the decompositions are both normal. By the induction hypothesis, we have n-1=m-1 and so n=m. Moreover, by a suitable ordering, we have $r_f(I_i)=r_f(I_i')$ for all $2\le i\le n=m$.

Acknowledgement: This work is supported by the National Natural Science Foundation of China (No. 11701504), the Young Innovative Talent Project of Department of Education of Guangdong Province (No. 2016KQNCX180) and the University Natural Science Project of Anhui Province (No. KJ2018A0329).

References

- [1] Anderson, D.D., Johnson, E.W., Ideal theory in commutative semigroups, Semigroup Forum, 1984, 30, 127-158
- [2] McCoy, N.H., The theory of rings, MacMillan, 1968
- [3] Hoo, C.S., Shum, K.P., Prime radical theorem on ordered semigroups, Semigroup Forum, 2009, 19, 87-93
- [4] Wu, M.F., Xie, X.Y., Prime radical theorems on ordered semigroups, JP Jour. Algebra, Number Theory and Appl., 2001, 1(1), 1-9
- [5] Tang J., Xie, X.Y., On radicals of ideals of ordered semigroups, Journal of Mathematical Research & Exposition, 2010, 30(6), 1048-1054
- [6] Murata, K., Kurata, Y., Marubayashi, H., A generalization of prime ideals in rings, Osaka J. Math., 1969, 6, 291-301
- [7] Sardar, S.K., Goswami, S., f-prime radical of semirings, Southeast Asian Bulletin of Mathematics, 2011, 35, 319-328
- [8] Xie, X.Y., An introduction to ordered semigroup theory, Kexue Press, Beijing, 2001