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Abstract: In this paper, we use the analysis method and the properties of trigonometric sums to study the
computational problem of one kind power mean of the hybrid Gauss sums. After establishing some relevant
lemmas, we give an exact computational formula for it. As an application of our result, we give an exact
formula for the number of solutions of one kind diagonal congruence equation mod p, where p be an odd
prime.
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1 Introduction
Asusual, let q ≥ 3be apositive integer. For anypositive integer n ≥ 2, the classical n-thGauss sumsG(m, n; q)
is de�ned by

G(m, n; q) =
q−1
∑
a=0

e (man

q
) ,

where e(y) = e2πiy.
Many mathematical scholars have studied the arithmetical properties concerning G(m, n; q) and have

obtained various interesting results, see references [1]-[9] and [11]. For example, Shimeng Shen andWenpeng
Zhang [2] studied the computational problem of the number Mn(p) of solutions of the congruence equation

x41 + x42 +⋯ + x4n ≡ 0 mod p, 0 ≤ xi ≤ p − 1, i = 1, 2,⋯, n,

and proved the following conclusions:
Let p be a prime with p = 8k + 5, Un(p) = Mn(p) − pn−1. Then for any positive integer n ≥ 5, one has the

fourth-order linear recurrence formula

Un(p) = −2pUn−2(p) + 4pα(p)Un−3(p) − (9p2 − pα2(p))Un−4(p),

where the �rst four terms are U1(p) = 0, U2(p) = −(p − 1), U3(p) = 3(p − 1)α(p) and U4(p) = −7p(p −
1) + (p − 1)α2(p).

If p = 8k + 1, then for any positive integer n ≥ 5, one has the fourth-order linear recurrence formula

Un(p) = 6pUn−2(p) + 4pα(p)Un−3(p) − (p2 − pα2(p))Un−4(p),
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where the �rst four terms are U1(p) = 0, U2(p) = 3(p − 1), U3(p) = 3(p − 1)α(p), U4(p) = 17p(p −

1) + (p − 1)α2(p), and α(p) =
p−1
2

∑
a=1

(
a + a
p

), (∗p ) denotes the Legendre’s symbol mod p, and a denotes the

multiplicative inverse of a mod p.
Xiaoxue Li and Jiayuan Hu [3] obtained the identity

p−1
∑
b=1

∣
p−1
∑
a=0

e (ba
4

p
)∣

2

⋅ ∣
p−1
∑
c=1

e (bc + c
p

)∣

2

=

⎧⎪⎪
⎨
⎪⎪⎩

3p3 − 3p2 − 3p + p (τ
2
(χ4) + τ

2
(χ4)) , if p ≡ 5 mod 8;

3p3 − 3p2 − 3p − pτ2 (χ4) − pτ
2
(χ4) + 2τ5 (χ4) + 2τ

5
(χ4), if p ≡ 1 mod 8,

whereχ4 denotes any fourth-order character mod p, τ(χ) =
p−1
∑
a=1

χ(a)e (a
p
)denotes the classicalGauss sums.

At the same time, Xiaoxue Li and Jiayuan Hu [3] also pointed out that how to compute the exact value of
τ2 (χ4) + τ

2(χ4) and τ5 (χ4) + τ5(χ4) are two meaningful problems.
Let A(k, p) = τ k (χ4)+τ k (χ4). Zhuoyu Chen andWenpeng Zhang [9] studied the computational problem

of A(k, p), and obtained two interesting linear recurrence formulas. That is, let p be an odd prime with p ≡

1 mod 4. Then for any positive integer k, one has the linear recurrence formulas

A(2k + 2, p) = 2
√
p ⋅ α(p) ⋅ A(2k, p) − p2 ⋅ A(2k − 2, p)

and
A(2k + 3, p) = 2

√
p ⋅ α(p) ⋅ A(2k + 1, p) − p2 ⋅ A(2k − 1, p),

where A(0, p) = 2, A(1, p) = G(1) − √p, G(1) = G(1, 4; p), A(2, p) = 2√pα(p), A(3, p) =
√p ⋅

(2α − (−1)
p−1
4
√p) ⋅ (G(1) −√p).

In this paper, as a note of [2] and [9], we shall consider the computational problem of one kind hybrid
power mean of two di�erent Gauss sums

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2h

⋅ ∣
p−1
∑
b=0

e (mb4

p
)∣

2k

, (1)

where p = 12r + 1 is an odd prime, k and h are two non-negative integers.
What we are interested in is whether there exits an exact computational formula for (1). Through

researches mentioned above we found that for some special prime p we can give an an e�cient method to
compute the value of (1). The main purpose of this paper is to illustrate this point. That is, we shall prove the
following main results:

Theorem 1.1. Let p be a prime with p = 24r + 13. Then for any positive integers h and k, we have the identity

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2h

⋅ ∣
p−1
∑
b=0

e (mb4

p
)∣

2k

=
1
2
⋅ p

k
2 ⋅ [(3

√
p + 2α(p))k + (3

√
p − 2α(p))k] ⋅

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2h

,

where α(p) =
p−1
2

∑
a=1

(
a + a
p

), (∗p ) denotes the Legendre’s symbol mod p, a denotes the multiplicative inverse of

a mod p.

From Theorem 1.1 we may immediately deduce the corollaries as follows.

Corollary 1.2. If p is a prime with p = 24r + 13, then for any positive integer k, we have

p−1
∑
m=1

∣
p−1
∑
b=0

e (mb4

p
)∣

2k

=
1
2
(p − 1) ⋅ p

k
2 ⋅ [(3

√
p + 2α(p))k + (3

√
p − 2α(p))k] .
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Corollary 1.3. If p is a prime with p = 24r + 13, then for any positive integer k, we have

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2

⋅ ∣
p−1
∑
b=0

e (mb4

p
)∣

2k

= (p − 1) ⋅ p
k+2
2 ⋅ [(3

√
p − 2α(p))k + (3

√
p + 2α(p))k] .

Corollary 1.4. If p = 24r + 13 is an odd prime, then for any positive integer k, we have

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

4

⋅ ∣
p−1
∑
b=0

e (mb4

p
)∣

2k

= 3(p − 1) ⋅ p
k+4
2 ⋅ [(3

√
p + 2α(p))k + (3

√
p − 2α(p))k] .

Corollary 1.5. If p = 24r + 13 is an odd prime, then for any positive integer k, we have

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

6

⋅ ∣
p−1
∑
b=0

e (mb4

p
)∣

2k

=
1
2
(p − 1)(18p + d2) ⋅ p

k+4
2 ⋅ [(3

√
p − 2α(p))k + (3

√
p + 2α(p))k] ,

where d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

Let k and h be two positive integers, p is a prime with p = 24r + 13, and M(h, k; p) denotes the number of
solutions of the congruence equation

x31 +⋯ + x3h + y
4
1 +⋯ + y4k ≡ z31 +⋯ + z3h + w

4
1 +⋯ + w4

k mod p,

where 0 ≤ xi , zi yj , wj ≤ p − 1, i = 1, 2,⋯, h, j = 1, 2,⋯, k.
Then from Theorem 1.1 we can give an exact computational method forM(h, k; p). In particular, we have

the following:

Corollary 1.6. If p = 24r + 13 is an odd prime, then for any positive integer k, we have

M(2, k; p) = p2k+3 + 3(p − 1) ⋅ p
k+2
2 ⋅ [(3

√
p − 2α(p))k + (3

√
p + 2α(p))k] .

If prime p = 24r + 1, then the situation is more complex, we can only give an e�ective calculation method
one by one. Theorem 1.7 indicates some examples of it.

Theorem 1.7. If p is an odd prime with p = 24r + 1, then we have the identities

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2

⋅ ∣
p−1
∑
a=0

e (ma4

p
)∣

2

= 6(p − 1) ⋅ p2.

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

4

⋅ ∣
p−1
∑
a=0

e (ma4

p
)∣

4

= 6p3(p − 1) (17p + 4α2(p)) .

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

6

⋅ ∣
p−1
∑
a=0

e (ma4

p
)∣

6

= 3p4(p − 1) (33p + 28α2(p)) ⋅ (18p + d2) .

Some notes: If 3 ∤ (p − 1), then for any integer m with (m, p) = 1, we have

∣
p−1
∑
a=0

e (ma3

p
)∣ = ∣

p−1
∑
a=0

e (ma
p

)∣ = 0.

If prime p = 4r + 3, then we have

∣
p−1
∑
a=0

e (ma4

p
)∣ = ∣1 +

p−1
∑
a=1

e (ma2

p
) +

p−1
∑
a=1

(
a
p
) e (ma2

p
)∣ =

√
p.

So in these cases, the problem we are studying is trivial.
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2 Some simple lemmas
To prove our main results, we �rst propose several simple lemmas. During the proof process, we will apply
some analytic number theory knowledge and the properties of character and trigonometric sums, all of which
can be found in [1].

Lemma 2.1. If p is an odd prime with 3∣(p − 1), ψ is any third-order character mod p, then we have

τ
3
(ψ) + τ

3 (ψ) = dp,

where τ (ψ) denotes the classical Gauss sums, d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

Proof. See [7] or [11].

Lemma 2.2. If p is an odd prime with p ≡ 1 mod 4, ψ is any fourth-order character mod p, then we have

τ
2
(ψ) + τ

2 (ψ) =
√
p ⋅

p−1
∑
a=1

(
a + a
p

) = 2
√
p ⋅ α(p),

where (∗p ) is the Legendre’s symbol mod p, α(p) =

p−1
2

∑
a=1

(
a + a
p

) is an integer and it satis�es the identity (see

Theorem 4-11 in [10])

p = α2 + β2 ≡
⎛
⎜
⎝

p−1
2

∑
a=1

(
a + a
p

)
⎞
⎟
⎠

2

+
⎛
⎜
⎝

p−1
2

∑
a=1

(
a + ra
p

)
⎞
⎟
⎠

2

,

and r is any quadratic non-residue mod p.

Proof. In fact this is Lemma 2 of [9], so its proof is omitted.

Lemma 2.3. If p is a prime with p ≡ 5 mod 8, then for any positive integer k, we have the identity

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma4

p
)∣

2k

=
1
2
(p − 1) ⋅ p

k
2 ⋅ [(3

√
p − 2α(p))k + (3

√
p + 2α(p))k] .

Proof. If p = 8h+5, then for any fourth-order characterψ mod p and any integermwith (m, p) = 1, applying
the properties of the classic Gauss sums we have ψ(−1) = −1 and

B(m) =
p−1
∑
a=0

e (ma4

p
) = 1 +

p−1
∑
a=1

(1 + ψ(a) + ψ2
(a) + ψ(a)) e (ma

p
)

=
p−1
∑
a=0

e (ma
p

) +
p−1
∑
a=1

χ2(a)e (
ma
p

) +
p−1
∑
a=1

(ψ(m) + ψ(m)) e (ma
p

)

= χ2(m)
√
p + ψ(m)τ(ψ) + ψ(m)τ (ψ) , (2)

where χ2 = (∗p ) denotes the Legendre’s symbol mod p.

Note that ψ(m)τ(ψ) + ψ(m)τ (ψ) = −(ψ(m)τ(ψ) + ψ(m)τ (ψ)) (that is, it is a pure imaginary number)
and ψ2 = χ2, from (2) and Lemma 2.2 we have

∣B(m)∣
2
= ∣χ2(m)

√
p + ψ(m)τ(ψ) + ψ(m)τ (ψ)∣

2

= p + ∣ψ(m)τ(ψ) + ψ(m)τ (ψ)∣
2
= 3p − χ2(m) (τ

2
(ψ) + τ

2 (ψ))

= 3p − 2χ2(m)
√
pα(p). (3)
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So for any positive integer k, from (3) and binomial theorem we have

∣B(m)∣
2k
= (3p − 2χ2(m)

√
pα(p))k =

k
∑
i=0

(
k
i
)(3p)k−i (−2χ2(m)

√
pα(p))i

=

[ k2 ]
∑
i=0

(
k
2i

)3k−2i ⋅ pk−i ⋅ (2α(p))2i − χ2(m)

[ k−12 ]
∑
i=0

(
k

2i + 1
)(3p)k−2i−1 ⋅ (2

√
pα(p))2i+1 . (4)

Note that
p−1
∑
m=1

χ2(m) = 0, from (4) we may immediately deduce that

p−1
∑
m=1

∣B(m)∣
2k
=

p−1
∑
m=1

[ k2 ]
∑
i=0

(
k
2i

)3k−2i ⋅ pk−i ⋅ (2α(p))2i −
p−1
∑
m=1

χ2(m)

[ k−12 ]
∑
i=0

(
k

2i + 1
)(3p)k−2i−1 ⋅ (2

√
pα(p))2i+1

= (p − 1) ⋅
[ k2 ]
∑
i=0

(
k
2i

)3k−2i ⋅ pk−i ⋅ (2α(p))2i

=
1
2
(p − 1)p

k
2 ⋅ [(3

√
p + 2α(p))k + (3

√
p − 2α(p))k] .

This proves Lemma 2.3.

Lemma 2.4. If p is a prime with p ≡ 1 mod 8, then for any positive integer k, we have S1(p) = 0, S2(p) =

3p(p − 1), S3(p) = 6p(p − 1)α(p), and for k ≥ 4, Sk(p) satisfy the fourth-order linear recurrence formula

Sk(p) = 6pSk−2(p) + 8pα(p)Sk−3(p) + p (4α2(p) − p) Sk−4(p),

where Sk(p) =
p−1
∑
m=1

Bk
(m) =

p−1
∑
m=1

(
p−1
∑
a=0

e (ma4

p
))

k

.

Proof. If p = 8r +1, then ψ(−1) = 1, so ψ(m)τ(ψ)+ψ(m)τ (ψ) is a real number. From (2) and Lemma 2.2 we
have

∣B(m)∣
2
= B2

(m) = 3p + 2χ2(m)
√
pα(p) + 2ψ(m)

√
pτ(ψ) + 2ψ(m)

√
pτ (ψ) . (5)

From (2) and (5) we can deduce that

B4
(m) − 6pB2

(m) − 8pα(p)B(m) + p2 − 4pα2(p) = 0. (6)

Note that the identities
p−1
∑
m=1

B(m) = 0,
p−1
∑
m=1

B2
(m) = 3p(p − 1),

p−1
∑
m=1

B3
(m) = 6p(p − 1)α(p). (7)

If n ≥ 4, then from (6) we have
p−1
∑
m=1

Bn
(m) =

p−1
∑
m=1

Bn−4
(m)B4

(m)

=
p−1
∑
m=1

Bn−4
(m) (6pB2

(m) + 8pα(p)B(m) − p2 + 4pα2(p))

= 6p
p−1
∑
m=1

Bn−2
(m) + 8pα(p)

p−1
∑
m=1

Bn−3
(m) + (4pα2(p) − p2)

p−1
∑
m=1

Bn−4
(m). (8)

So for any integer k ≥ 4, from (7), (8) we know that Sk(p) satisfy the fourth-order linear recurrence formula

Sk(p) = 6pSk−2(p) + 8pα(p)Sk−3(p) + p (4α2(p) − p) Sk−4(p).

This proves Lemma 2.4.
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Lemma 2.5. If p is an odd prime with p ≡ 1 mod 3, then for any integer m with (m, p) = 1, we have M1(p) = 0,
M2(p) = 2p(p − 1), M3(p) = dp(p − 1), and for all h ≥ 4, Mh(p) satisfy the linear recurrence formula

Mh(p) = 3pMh−2(p) + dpMh−3(p), (9)

where Mh(p) =
p−1
∑
m=1

Gh
(m) =

p−1
∑
m=1

(
p−1
∑
a=0

e (ma3

p
))

h

, where d is uniquely determined by 4p = d2 + 27b2 and

d ≡ 1 mod 3

Proof. It can be found in reference [4]. Here we give a simple proof. Let λ be any third-order character mod p.
Then for any integer m with p ∤ m, from the de�nition and properties of the classical Gauss sums we have

G(m) =
p−1
∑
a=0

e (ma3

p
) =

p−1
∑
a=0

(1 + λ(a) + λ(a)) e (ma
p

)

=
p−1
∑
a=0

e (ma
p

) +
p−1
∑
a=0

λ(a)e (ma
p

) +
p−1
∑
a=0

λ(a)e (ma
p

)

= λ(m)τ(λ) + λ(m)τ (λ) . (10)

Note that τ(λ)τ (λ) = p, λ3 = χ0, the principal character mod p, from (10) and Lemma 2.1 we may deduce
that

G3
(m) = τ

3
(λ) + τ

3 (λ) + 3p (λ(m)τ(λ) + λ(m)τ (λ)) = dp + 3pG(m). (11)

From (11) and the de�nition of Mh(p) we can deduce Lemma 2.5.

3 Proofs of the main results
Nowwe will use the lemmas in section 2 to prove our main theorems. If p = 12r+1, let ψ be any fourth-order
character mod p, and λ be any third-order character mod p. Then note that

p−1
∑
m=1

λ
i
(m)ψ

j
(m) = 0, i = 0, 1, 2, j = 0, 1, 2, 3, (i, j) ≠ (0, 0).

So the value of the power mean in (1) only depend on the constant terms in ∣G(m)∣2h and ∣B(m)∣2k, those
terms are independent of m. So we have

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2h

⋅ ∣
p−1
∑
b=0

e (mb4

p
)∣

2k

=
1

p − 1
⎛

⎝

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2h
⎞

⎠
⋅
⎛

⎝

p−1
∑
m=1

∣
p−1
∑
b=0

e (mb4

p
)∣

2k
⎞

⎠
. (12)

If p = 24r + 13, then p ≡ 5 mod 8 and p ≡ 1 mod 3, from Lemma 2.3 we have

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2h

⋅ ∣
p−1
∑
b=0

e (mb4

p
)∣

2k

=
⎛
⎜
⎝

[ k2 ]
∑
i=0

(
k
2i

)3k−2i ⋅ pk−i ⋅ (2α(p))2i
⎞
⎟
⎠
⋅
p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2h

=
1
2
⋅ p

k
2 ⋅ [(3

√
p + 2α(p))k + (3

√
p − 2α(p))k] ⋅

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2h

.

This proves Theorem 1.1.
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If p = 24r +1, then we can calculate the value of Sk(p) by Lemma 2.4 for any even number k ≥ 2. We can
also calculate the value of Mh(p) by Lemma 2.5 for any even number h ≥ 2. In fact this time note that G(m)

and B(m) are both real numbers. So from (11) we have

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2

= M2(p) = 2p(p − 1). (13)

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

4

= M4(p) = 6p2(p − 1). (14)

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

6

= M6(p) = (p − 1)p2 (18p + d2) . (15)

From Lemma 2.4 we have

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma4

p
)∣

2

= S2(p) = 3p(p − 1). (16)

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma4

p
)∣

4

= S4(p) = (p − 1)p (17p + 4α2(p)) . (17)

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

6

= S6(p) = 3(p − 1)p2 (33p + 28α2(p)) . (18)

Then from (12)-(18) we may immediately deduce the identities

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

2

⋅ ∣
p−1
∑
a=0

e (ma4

p
)∣

2

= 6(p − 1) ⋅ p2.

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

4

⋅ ∣
p−1
∑
a=0

e (ma4

p
)∣

4

= 6p3(p − 1) (17p + 4α2(p)) .

p−1
∑
m=1

∣
p−1
∑
a=0

e (ma3

p
)∣

6

⋅ ∣
p−1
∑
a=0

e (ma4

p
)∣

6

= 3p4(p − 1) (33p + 28α2(p)) ⋅ (18p + d2) .

This completes the proof of Theorem 1.7.
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