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Abstract: Sum of ratios problem occurs frequently in various areas of engineering practice and management
science, but most solution methods for this kind of problem are often designed for determining local
solutions. In this paper, we develop a reduced space branch and bound algorithm for globally solving sum
of convex-concave ratios problem. By introducing some auxiliary variables, the initial problem is converted
into an equivalent problem where the objective function is linear. Then the convex relaxation problem
of the equivalent problem is established by relaxing auxiliary variables only in the outcome space. By
integrating some acceleration and reduction techniques into branch and bound scheme, the presented global
optimization algorithm is developed for solving these kind of problems. Convergence and optimality of the
algorithm are presented and numerical examples taken from some recent literature andMINLPLib are carried
out to validate the performance of the proposed algorithm.
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1 Introduction
Fractional programming occurs frequently in a variety of economic, industrial and engineering problems [1].
It is one of themost topical and useful �elds in nonconvex optimization andmany intensive and systematical
researches have been done on fractional programming since the seminal works by Charnes and Cooper [2,
3]. Sum of ratios problem SRP is a special case of optimization among fractional programming [4, 5], as a
generalization of linear fractional programming which optimizes sum of linear ratios, the SRP has a broad
range of applications. Included among those, are clustering problems [6], transportation planning [7], multi-
stage stochastic shipping [8], �nance and investment [9], and layered manufacturing problems [10, 11], to
name but a few. The reader is referred to a survey [12] and a bibliography [13] to �ndmany other applications.
In this paper, we focus on the following sum of ratios problem:

SRP ∶

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min f(x) =
p
∑
i=1
δi
φi(x)
ψi(x)

s.t. hj(x) ≤ 0, j = 1, 2, . . . ,m
x ∈ X = [x, x],

where each coe�cient δi is a real number, functions φi(x),−ψi(x), i = 1, 2, . . . , p, hj(x), j = 1, 2, . . . ,m are
all convex (hence continuous). Furthermore, we assume that ψi(x) ≠ 0, ∀x ∈ X. By the continuity of the
denominators, we know that ψi(x) must satisfy ψi(x) > 0 or ψi(x) < 0. Based on the discussion in [14] and
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for the sake of simplicity, we only need to consider a special case of the SRP, that is, the numerator and the
denominator of each ratio in the objective function of the SRP satis�es the following condition:

φi(x) ≥ 0,ψi(x) > 0, ∀x ∈ X, i = 1, 2,⋯, p. (1)

The SRP has attracted the interest of quite a lot of researchers and practitioners for many years which is
at least in part due to the di�culty associated with the existence of multiple local solution that are not
optimally global. Actually, Charnes and Cooper have proved that the optimization of a single linear ratio
is equivalent to a linear program and hence it can be solved in polynomial time [2, 15]. But this is not true
for the SRP where the objective function is a sum of p (p ≥ 2) nonlinear (even linear) ratios, due to some
inherent di�culties, there aremany theoretical and computational challenge for �nding the global optimizer
of the SRP. During the past several years, some feasible algorithms have already been proposed for the SRP
and its special forms, for instance, Konno et al. presented a parametric simplex method and an e�cient
heuristic algorithm for globally solving the sum of linear fractional problems and its special case [17, 18],
but their algorithm can only solve sum of linear ratios, and the problem must have three ratios. Falk and
Palocasy put forward an approach based on the image space analysis for globally solving sum of a�ne ratios
problem [19], wherein they identify classes of nonconvex problems involving either sums or products of ratios
of linear terms which may be treated by analysis in a transformed space. In each class, the image space is
de�ned by a mapping which associates a new variable with each original ratio of linear terms. In the image
space, optimization is easy in certain directions, and the overall solution may be realized by sequentially
optimizing in these directions, this algorithm has good performance, but the problem they considered can
only have linear constraints; Pei and Zhu present a branch and bound algorithm by converting it into a D.C
programming [20], their algorithm performs well when the number of variables is not so big. In addition to
this, Shen and Wang developed two kinds of branch-reduction-bound algorithms for sum of linear ratios
problem [21, 22], both of these branch and bound algorithms branch in the variable space, with the increase
of the number of variables, the performance of the algorithm will decline sharply; Jiao and Liu presented a
practical outcome space branch and bound algorithm for globally maximizing sum of linear ratios problem
[14], this algorithm can e�ectively solve the sum of linear ratios problem with quite a lot of variables, but the
branch operation occurs in the outcome space of the reciprocal of the denominator. Despite these various
contributions, however, there is still no decisive method for globally solving general sum of ratios problem
and thus e�cient solution method for SRP is still an open issue.

In this study, we will present a reduced space branch and bound algorithm with practical accelerating
techniques according to some properties (concavity, convexity and continuity) of the objective and constraint
functions in SRP. The attractive properties of this algorithm is mainly embodied in the following three
aspects. First, the problem we considered is more general and extensive than that in most of the above
literatures. Second, the relaxation operation we used is quite concise and practical, the adapted subdivision
and range reduction technique carried out in the outcome space can sharply reduce the number of nodes in
the branching tree so as the execution e�ciency of the algorithm is signi�cantly improved. Finally, the global
convergence property is proved and some numerical experiment and a random test is performed to illustrate
the feasibility and robust property.

The remainder of this paper is organized in the following way. The next section shows how to construct
the equivalent problem EP and the convex relaxation programming of the EP according to the concavity
and convexity of the objective and constraint functions in SRP. The condensing, branching and bounding
operations of the new algorithm are established in Section 3. The detailed statement and the global con-
vergence property of the presented algorithm is put forward in Section 4. Section 5 is devoted to a report
of computational comparison between our algorithm and some of the other algorithms that exist in the
literature. Some concluding remarks are proposed in the last section.
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2 Equivalent problem and relaxation programming
In this section, we will �rst transform the problem SRP into an equivalent problemEP by associating each
ratio in the objective function in SRP with an additional variable which we call the outcome variable, and
then our focus will be shifted to �nd the global optimal solution of the EP. By utilizing the special structure
of the EP, a concise convex relaxation programming for the EP will be introduced with which we only need
to branch in a reduced outcome space and at the same time, a new upper bound and lower bound of the
optimal value will be obtained simultaneously at each iteration, so as to greatly reduce the workload of the
calculation.

2.1 Equivalent problem

To solve the problem, we will �rst transform the SRP into an equivalent problem EP, where the objective
function is linear and the constraint functions possess a special structure which is bene�cial for constructing
convex relaxing programming problems. To explain how such a reformulation is possible, we �rst introduce
p auxiliary variables ti , i = 1, 2⋯, p, and for de�niteness and without loss of generality, we assume that
i) δi > 0, i = 1, 2⋯, p, when φi(x) is convex and ψi(x) is concave, i = 1, 2⋯, p.
ii) δi > 0, i = 1, 2⋯, T; δi < 0, i = T + 1, T + 2⋯, p, when φi(x) and ψi(x) are linear, i = 1, 2⋯, p.
Then denote

di = min
x∈X

ψi(x); l0i =
min
x∈X

φi(x)

max
x∈X

ψi(x)
, u0

i =
max
x∈X

φi(x)

min
x∈X

ψi(x)
, i = 1, 2,⋯, p,

note that we can obtain the values of di , l0i and u0
i easily by utilizing the convexity and concavity of the

numerators and denominators and clearly we know that 0 ≤ l0i ≤ u0
i .

Next, we consider the following equivalent problem EP:

EP ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min g(t) =
p
∑
i=1
δi ti

s.t. ci(t) = φi(x) − ti(ψi(x) − di) + tidi ≤ 0, i = 1, 2, . . . , T,
ci(t) = φi(x) − ti(ψi(x) − di) + tidi ≥ 0, i = T + 1, T + 2, . . . , p,
hj(x) ≤ 0, j = 1, 2, . . . ,m,
x ∈ X, t ∈ D0.

where D0
= {t ∈ Rp

∣ l0i ≤ ti ≤ u0
i , i = 1, 2, . . . , p} is called an outcome space corresponding to the feasible

region of SRP, and soon we will show that problems SRP and EP are equivalent in the sense of the following
theorem.

Theorem 2.1. x∗ ∈ Rn is a global optimal solution for the SRP if and only if (x∗, t∗) ∈ Rn+p is a global optimal
solution for the EP, where t∗i =

φi(x∗)
ψi(x∗) , i = 1, 2, . . . , p.

Proof. Assume x∗ ∈ Rn is a global optimal solution for the SRP, let t∗i =
φi(x∗)
ψi(x∗) , i = 1, 2, . . . , p, then we have

(x∗, t∗) ∈ Rn+p is a feasible solution for the EP, according the optimality of x∗ in the SRP, we know that, for
each x ∈ F

f(x) =
p
∑
i=1
δi
φi(x)
ψi(x)

≥ f(x∗) =
p
∑
i=1
δi
φi(x∗)
ψi(x∗)

=

p
∑
i=1
δi t∗i = g(t∗). (2)

In addition, if (x, t) is a feasible solution to the EP, we can obtain

g(t) =
T
∑
i=1
δi ti +

p
∑

i=T+1
δi ti ≥

T
∑
i=1
δi
φi(x)
ψi(x)

+

p
∑

i=T+1
δi
φi(x)
ψi(x)

= f(x). (3)
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From the above conclusion (2) and (3), we know that (x∗, t∗) ∈ Rn+p is a global optimal solution for the EP.
Conversely, if (x∗, t∗) ∈ Rn+p is a global optimal solution for the EP, we �rst prove that

t∗i =
φi(x∗)
ψi(x∗)

, i = 1, 2, . . . , p.

If otherwise, according the feasibility of (x∗, t∗), one of the following two conclusions

t∗i >
φi(x∗)
ψi(x∗) , for some i ∈ {1, 2,⋯, T}, t∗j ≥

φj(x∗)
ψj(x∗) , for all j ≠ i

or

t∗i <
φi(x∗)
ψi(x∗) , for some i ∈ {T + 1, T + 2,⋯, p}, t∗j ≤

φj(x∗)
ψj(x∗) , for all j ≠ i

must hold. Let ti = φi(x∗)
ψi(x∗) , i = 1, 2, . . . , p, then we know (x∗, t) is a feasible solution and g(t) =

T
∑
i=1
δi ti +

p
∑

i=T+1
δi ti <

T
∑
i=1
δi t∗i +

p
∑

i=T+1
δi t∗i = g(t∗), it is a contradiction to the optimality of (x∗, t∗), hence we have

t∗i =
φi(x∗)
ψi(x∗)

, i = 1, 2, . . . , p.

Furthermore, ∀x ∈ F, let ti = φi(x)
ψi(x) , i = 1, 2, . . . , p, then we have (x, t) ∈ Rn+p is a feasible solution for the EP,

and by the optimality of (x∗, t∗), we have

f(x∗) =
p
∑
i=1
δi
φi(x∗)
ψi(x∗)

=

p
∑
i=1
δi t∗i ≤

p
∑
i=1
δi ti =

p
∑
i=1
δi
φi(x)
ψi(x)

= f(x),

that is to say, x∗ is the global optimal solution of SRP, and this completes the proof.

For solving problem SRP, according to the conclusion of Theorem 2.1, we only need to consider how to solve
problem EP. To this end, we will make full use of the structure of the EP to establish the convex or linear
relaxation problem of the EP for designing the presented algorithm. To keep things simple, we only consider
the linear situation (case ii)), it can be easily extended to the nonlinear circumstances that satisfy condition i).

2.2 Relaxation technique

In this part, we concentrate on how to construct the linear relaxation programming problem of the EP on
assumption that all functions appeared in the SRP are linear. Note that the objective function of problem EP
is already a linear function, so we only need to consider the bilinear constraints. For simplicity, we denote D
as the rectangle region generated by the branching operation, where D = D1 × D2 × ⋯ × Dp with Di = {ti ∈
R∣li ≤ ti ≤ ui}, and F is a subset of the feasible regionwhich appears in the branch operation, thenwe can put
forward an approach for generating a linear underestimating function of the constraint function for problem
EP, which is given by the following Theorem 2.1.

Theorem 2.2. For any (x, t) ∈ F × D, denote

c̃i(t) = (ni)Tx −
n
∑
j=1
θijdijxj + βi + tiγi , i = 1, 2,⋯, p, (4)

where

θij = {
ui , dj ≥ 0
li , dj < 0

, i = 1, 2⋯T ; θij = {
li , dj ≥ 0
ui , dj < 0

, i = T + 1, T + 2⋯p,
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then we have:
(i) The function c̃i(t) is a lower bounding function for ci(t) over the region F × D.
(ii) Function c̃i(t) will approximate each ci(t), (i = 1, 2,⋯, p) as ∣ui − li ∣ → 0 that is ∣c̃i(t) − ci(t)∣ → 0, as
∣ui − li ∣ → 0.

Proof. (i) For any (x, t) ∈ F × D, by the de�nition of ci(t) and c̃i(t), we have

ci(t) = φi(x) − tiψi(x) = (ni)Tx + βi − ti(dix − γi)

= (ni)Tx −
n
∑
j=1

tidijxj + tiγi + βi

≥ (ni)Tx −
n
∑
j=1
θijdijxj + βi + tiγi = c̃i(t).

So the conclusion (i) holds.
(ii) For any (x, t) ∈ F × D, by the de�nition of ci(t) and c̃i(t), we have

∣c̃i(t) − ci(t)∣ = ∣nix −
n
∑
j=1

tidijxj + tiγi + βi − (nix −
n
∑
j=1
θijdijxj + βi + tiγi)∣

= ∣
n
∑
j=1
θijdijxj −

n
∑
j=1

tidijxj ∣ = ∣
n
∑
j=1

(θij − ti)dijxj ∣

≤ ∣
n
∑
j=1

dijxj ∣∣ui − li ∣ ≤ Mi ∣ui − li ∣.

(5)

WhereMi is anupper boundof ∣
n
∑
j=1

dijxj ∣, it existence canbe easily obtainedby the continuity of a�ne function
n
∑
j=1

dijxj over a compact region. From conclusion (5), it is easy to see that

∣c̃i(t) − ci(t)∣ → 0, as ∣ui − li ∣ → 0.

Thus the proof is complete.

Therefore, according to the abovediscussion,we canobtain the linear relaxationprogrammingproblemREPD

corresponding to the outcome space D of EPD as follows:

REPD ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min g(t) =
p
∑
i=1
δi ti

s.t. −c̃i(t) ≥ 0, i = 1, 2, . . . , T,
c̃i(t) ≥ 0, i = T + 1, T + 2,⋯, p,
x ∈ F, t ∈ D,

where c̃i(t) is de�ned by (5), and from now on, we will use the symbol EPD to express the problem EP
corresponding to the outcome space D, and in the rest of this paper, any symbol similar to this should be
understood in the same meaning.

Based on the construct process of the REPD, it is not hard to �nd that every feasible solution for EPD is
also a feasible solution of the REPD, but its optimal value is not less than that of the REPD, thus the REPD can
provide a valid lower bound for the optimal value of problem EPD and problem REPD will approximate the
EPD as max

1≤i≤p
∣ui − li ∣ → 0 which is indicated by Theorem 2.2.

3 Key operations for algorithm design
To present the reduced space branch and bound algorithm for solving the SRP, we will describe three
fundamental operations: branching, condensing and bounding, in this section.
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3.1 Branching operation

In this paper, we adopt the so-called adapted partition technique to subdivide the initial box D0 into sub-
boxes. The adapted partition operation performs in a reduced outcome space associated with problem EP
other than n−dimensional variable space, this is the place where is di�erent from the general branch and
bound algorithm performed in variable space. For any subset D = {t ∈ Rp

∣li ≤ ti ≤ ui} ⊂ D0, the speci�c
division procedure is given as follows.

Partition regulation

1. Let r ∈ argmax{ui − li ∣i = 1, 2,⋯, p}.
2. Let θr = (1 − α)lr + αur .
3. Subdivide Dr into two intervals D1

r and D2
r , where D1

r = [lr , θr] and D2
r = [θr , ur], then let

D′ = D1 × D2 ×⋯ × Dr−1 × D1
r × Dr+1 ×⋯ × Dp ,

and
D′′ = D1 × D2 ×⋯ × Dr−1 × D2

r × Dr+1 ×⋯ × Dp .

Thus, region D is divided into two new hyper-rectangles D′ and D′′.
It can be seen from the above partition regulation that only the p−dimensional outcome space is

partitioned in the algorithm, the n−dimensional variable spacewas never divided, this is just the placewhere
our algorithm is di�erent from the usual branch and bound algorithm, and immediately, we will see that this
operation will make the algorithm quite e�cient for special scaled problem where the number of the ratios
in the objective function is far less than that of the variables.

3.2 Condensing and bounding technique

For any rectangle Dk
⊂ D0 generated by the branching operation in the k-th iteration, the condensing

operation consists in reducing the current partition still of interest by incising the partwhich does not contain
the global optimal solution for problem SARPD0 ; The bounding operation aims at estimating an upper and
(or) lower bound of the optimal objective value of the EP and removing the subregion which doesn’t have
further research value.

In the k-th iteration, �rst,we solve the linear relaxationprogrammingproblemREPDk , assume theoptimal
solution is (xk , tk), then let t̃ki =

φi(xk)
ψi(xk)

, we can obtain a feasible solution (xk , t̃k) for problem (EPD0), and of

course, the objective value of (xk , t̃k) is an upper bound for the optimal value of the (EPD0); Further more,
the optimal value of the REPDk is a lower bound of the objective value of (EPDk), and the smallest optimal
value of all subproblem in the k-th iteration is a lower bound for the optimal value of the (EPD0). Assume that
f is the best upper bound of the optimum of the REPD0 known so far, then the condensing technique can be
described in the form of the following theorem:

Theorem 3.1. For any sub-region Dk
⊂ D0, assume f kmin is the optimal value of problem REPDk , then the

following two conclusions hold:
(i) If f kmin > f , then Dk doesn’t contain the optimal solution of problem (EPD0), so it can be removed.
(ii) If f kmin ≤ f , then for each j ∈ {1, 2,⋯, T}, the region Dk

⋂Dk can be incised; For each j ∈ {T+1, T+2,⋯, p},

the region D
k
⋂Dk can be incised, where

Dk
= Dk

1 × Dk
2 ×⋯ × Dk

j−1 × Dk
j × Dk

j+1 ×⋯ × Dk
T × Dk

T+1 ×⋯ × Dk
p ,

and
D
k
= Dk

1 × Dk
2 ×⋯ × Dk

T × Dk
T+1 ×⋯ × Dk

j−1 × D
k
j × Dk

j+1 ×⋯ × Dk
p ,
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with

rkj =
⎧⎪⎪
⎨
⎪⎪⎩

1
δj

(f − f kmin) + ukj , j = 1, 2,⋯, T,
1
δj

(f − f kmin) + lkj , j = T + 1, T + 2,⋯, p,

and
Dk
j = [lkj , rkj ] ∩ Dk

j , D
k
j = [rkj , ukj ] ∩ Dk

j .

Proof. (i)The conclusion is obvious, here is omitted.
(ii) For simplicity’s sake, we denote

Mk
= {(x, t) ∈ F × D̄k

∣
c̃i(t) ≤ 0, i = 1, 2, . . . , T
c̃i(t) ≥ 0, i = T + 1, T + 2,⋯, p

} ,

and

M
k
= {(x, t) ∈ F × ¯̄D

k
∣
c̃i(t) ≤ 0, i = 1, 2, . . . , T
c̃i(t) ≥ 0, i = T + 1, T + 2,⋯, p

} ,

Since f kmin ≤ f , then for each j ∈ {1, 2,⋯, T}, and (x, t) ∈ Mk , we have

min
(x,t)∈Mk

p
∑
i=1
δi ti ≥ f kmin + min

(x,t)∈Mk
δj tj − min

(x,t)∈Mk
δj tj > f kmin + δjrkj − δjukj = f ,

therefore, Dk doesn’t contain the global optimal solution for the (EPD0), and it can be incised.
In the same way, when j ∈ {T + 1, T + 2,⋯, p}, we have

min
(x,t)∈Mk

p
∑
i=1
δi ti ≥ f kmin + min

(x,t)∈M
k
δj tj − min

(x,t)∈M
k
δj tj > f kmin + δjrkj − δj lkj = f ,

similarly, D
k
doesn’t contain the global optimal solution of the (EPD0), and it will be incised in the algorithm.

By Theorem 3.1, the condensing operation can cut away a large part of current region in which the optimal
solutiondoesn’t exist, so the rapid growthof the branchingnode canbe suppressed from iteration to iteration.
Additionally, unlike a normal branch and bound algorithm, the branching method used in this study can
adjust the ratio of the partitions measurement by adopting di�erent ratios, and thus the convergent speed of
the algorithm can be enhanced.

4 Algorithm statement and convergence analysis
Based upon the above results and technique, the basic steps of the reduced space branch and bound
algorithm associated with e�cient accelerating techniques for globally solving the SRP will be summarized
in this section.

4.1 Algorithm statement

By integrating the condensing technique and partition skills into the reduced space branch and bound
scheme, the presented algorithm for the SRP can be described as follows.

Step 0 (Initialization). Set the convergence precision ε ≥ 0, iteration counter k = 0 and the partition ratio
α ∈ [0, 1]. Compute the values of l0i , u0

i , for each i = 1, 2,⋯, p, then detemine the optimal solution (x0, t0
)

and optimal value fmin by solving the linear relaxation programming problem REPD0 . Let

f = fmin , t∗i =
φi(x∗)
ψi(x∗)

, i = 1, 2,⋯, p, x∗ = x0,



546 | Y. Zhao, T. Zhao

clearly, (x∗, t∗) is a feasible solution for the (EPD0). Let f = g(t∗) =
p
∑
i=1
δi t∗i , if f − f ≤ ε, stop, and x∗, f are the

optimal solution and the optimal vale of the SRP, respectively; otherwise, set F = φ, k = 1, D1
= D0, the set of

all partitions still of interest Θk = {D1
}, then turn to step 1.

Step 1 (Condensing). For each rectangle Dk
⊂ D, incising the invalid part by the condensing technique

described in section 3.2, substitute Dk with the remaining partition.

Step 2 (Branching). Subdivide region Dk into two new regions Dk1 and Dk2 according to the ratio partition
rule, express the collection of new partitions as D̃k .

Step 3 (Bounding).Obtain optimal solutions (xkν , tkν) and optimal values f kνmax, with ν ∈ {1, 2}, respectively,
by solving problems REPDk . Then let

t∗νi =
φi(xkν)
ψi(xkν)

, i = 1, 2,⋯, p, ν ∈ {1, 2},

and update the upper bound by setting f = min{f , g(t∗ν)}, and let x∗ be the feasible solution with the best
objective value currently known. If f kνmin > f , delete the node associated with Dkν from Θk , if Θk = φ, stop,
x∗, f are the optimal solution and the optimal vale of the SRP, respectively; else, update the lower bound by
setting fmin = min{f kνmin}.

Step 4 (Optimality test). If f − f ≤ ε, the algorithm can stop, at the same time, we can conclude that x∗ and f
are the ε−global minimizer and minimum for the SRP, respectively. Otherwise, let k = k+1 and return to step
1.

4.2 Convergence analysis

In this section, we illustrate the convergence property of the algorithm by the following theorem.

Theorem 4.1. The reduced space branch andboundalgorithmdescribed above either terminateswithin �nitely
many iterations and yield an ε−global solution of the SRP, or generates an in�nite sequence of feasible solutions
with an accumulation as an ε−global solution for the SRP.

Proof. If the algorithm terminates at the k-th iteration, upon termination criteria, it follows that f − f ≤ ε.
From step 0 and step 3 in the algorithm, a feasible solution xk can be found to satisfy the following relation
f(xk) − f ≤ ε. At the same time, we have f ≤ fopt ≤ f(xk), where fopt is the optimal value for the (EPD0). Thus,
taken the above relations together, it implies that

fopt ≤ f(xk) ≤ f + ε ≤ fopt + ε,

we can conclude that xk is the optimal solution for the (EPD0), and of course also for the SRP.
If the algorithm is in�nite and via solving the REPDk , generates an in�nite feasible solution sequence

{(xk , tk)}. Let tki = φi(xk)
ψi(xk)

, then {(xk , tk)} is a feasible solution sequence for the (EPD0). Since the sequence
{xk} is bounded, it must have accumulations assuming lim

k→∞
xk = x∗ without loss of generality. On the other

hand, we get

lim
k→∞

ti
k
= lim

k→∞

φi(xk)
ψi(xk)

=
φi(x∗)
ψi(x∗)

, (6)

by the continuity of φi(x) and ψi(x).
Also, according to the branching regulation described before, we know that

lim
k→∞

lki = lim
k→∞

uki = t∗i , (7)
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what’more, note that lki ≤
φi(xk)
ψi(xk)

≤ uki , we conclude that

t∗i = lim
k→∞

φi(xk)
ψi(xk)

=
φi(x∗)
ψi(x∗)

= lim
k→∞

tk

by (6) and (7), therefore (x∗, t∗) is also a feasible solution for the (EPD0). Furthermore, since the lower bound
sequence f k for the optimal value is increasing and lower bounded by the optimal value fopt in the algorithm,
so combining the continuity of g(t), we have

lim
k→∞

f k = g(t∗) ≤ fopt ≤ lim
k→∞

g(tk) = g(t∗).

That is, (x∗, t∗) is an optimal solution for the (EPD0), and of course x∗ is an optimal solution for the SRP
according to the equality of problems SRP and (EPD0), therefore completing the proof.

5 Numerical experiments
To test theproposedalgorithm in e�ciency and solutionquality,weperformed somecomputational examples
on a personal computer containing an Intel Core i5 processor of 2.40 GHz and 4GB of RAM. The code base is
written inMatlab 2014a and interfaces LINPROG for the linear relaxation subproblems andCVX for the convex
relaxation subproblems.

We consider some numerical examples in recent literatures [14, 20–26], and a randomly generated test
problem to verify the performance of the algorithm. The numerical test and results are listed as follows.

Example 5.1 ([23]).

{
max −x1+2x2+2

3x1−4x2+5 +
4x1−3x2+4
−2x1+x2+3

s.t. x1 + x2 ≤ 1.50, x1 − x2 ≤ 0, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 5.2 ([14, 22, 23]).

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

max 4x1+3x2+3x3+50
3x2+3x3+50 +

3x1+4x2+50
4x1+4x2+5x3+50 +

x1+2x2+5x3+50
x1+5x2+5x3+50 +

x1+2x2+4x3+50
5x2+4x3+50

s.t. 2x1 + x2 + 5x3 ≤ 10, x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10, 9x1 + 7x2 + 3x3 ≤ 10, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 5.3 ([14]).

{
max 0.9 × −x1+2x2+2

3x1−4x2+5 − 0.1 × 4x1−3x2+4
−2x1+x2+3

s.t. x1 + x2 ≤ 1.50, x1 − x2 ≤ 0, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 5.4 ([21]).

⎧⎪⎪
⎨
⎪⎪⎩

max 3x1+4x2+50
3x1+5x2+4x3+50 −

3x1+5x2+3x3+50
5x1+5x2+4x3+50 −

x1+2x2+4x3+50
5x2+4x3+50 −

4x1+3x2+3x3+50
3x2+3x3+50

s.t. 6x1 + 3x2 + 3x3 ≤ 10, 10x1 + 3x2 + 8x3 ≤ 10, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 5.5 ([14, 24]).
⎧⎪⎪
⎨
⎪⎪⎩

max 37x1+73x2+13
13x1+13x2+13 +

63x1−18x2+39
13x1+26x2+13

s.t. 5x1 − 3x2 = 3, 1.5 ≤ x1 ≤ 3.

Example 5.6 ([20, 23]).

⎧⎪⎪
⎨
⎪⎪⎩

max 3x1+5x2+3x3+50
3x1+4x2+5x3+50 +

3x1+4x2+50
4x1+3x2+2x3+50 +

4x1+2x2+4x3+50
5x1+4x2+3x3+50

s.t. 6x1 + 3x2 + 3x3 ≤ 10, 10x1 + 3x2 + 8x3 ≤ 10, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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Example 5.7 ([14, 24]).
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

max
5
∑
i=1

cix+ri
dix+si

s.t. Ax ≤ b,
x ≥ 0.

where
b = (15.7, 31.8,−36.4, 38.5, 40.3, 10.0, 89.8, 5.8, 2.7,−16.3,−14.6,−72.7, 57.7,−34.5, 69.1)T

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.8 −2.2 0.8 4.1 3.8 −2.3 −0.8 2.5 −1.6 0.2 −4.5 −1.8
4.6 −2.0 1.4 3.2 −4.2 −3.3 1.9 0.7 0.8 −4.4 4.4 2.0
3.7 −2.8 −3.2 −2.0 −3.7 −3.3 3.5 −0.7 1.5 −3.1 4.5 −1.1
−0.6 −0.6 −2.5 4.1 0.6 3.3 2.8 −0.1 4.1 −3.2 −1.2 −4.3
1.8 −1.6 −4.5 −1.3 4.6 3.3 4.2 −1.2 1.9 2.4 3.4 −2.9
−0.5 −4.1 1.7 3.9 −0.1 −3.9 −1.5 1.6 2.3 −2.3 −3.2 3.9
0.3 1.7 1.3 4.7 0.9 3.9 −0.5 −1.2 3.8 0.6 −0.2 −1.5
0.5 −4.2 3.6 −0.6 −4.8 1.5 −0.3 0.6 −3.6 0.2 3.8 −2.8
0.1 3.3 −4.3 2.4 4.1 1.7 1.0 −3.3 4.4 −3.7 −1.1 −1.4
−0.6 2.2 2.5 1.3 −4.3 −2.9 −4.1 2.7 −0.8 −2.9 3.5 1.2
4.3 1.9 −4.0 −2.6 1.8 2.5 0.6 1.3 −4.3 −2.3 4.1 −1.1
0.0 0.4 −4.5 −4.4 1.2 −3.8 −1.9 1.2 3.0 −1.1 −0.2 2.5
−0.1 −1.7 2.9 1.5 4.7 −0.3 4.2 −4.4 −3.9 4.4 4.7 −1.0
−3.8 1.4 −4.7 1.9 3.8 3.5 1.5 2.3 −3.7 −4.2 2.7 −0.1
0.2 −0.1 4.9 −0.9 0.1 4.3 1.6 2.6 1.5 −1.0 0.8 1.6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

c1
= (0.0,−0.1,−0.3, 0.3, 0.5, 0.5,−0.8, 0.4,−0.4, 0.2, 0.2,−0.1), r1 = 14.6

c2
= (0.2, 0.5, 0.0, 0.4, 0.1,−0.6,−0.1,−0.2,−0.2, 0.1, 0.2, 0.3), r2 = 7.1

c3
= (−0.1, 0.3, 0.0, 0.1 − 0.1, 0.0, 0.3,−0.2, 0.0, 0.3, 0.5, 0.3), r3 = 1.7

c4
= (−0.1, 0.5, 0.1, 0.1 − 0.2,−0.5, 0.6, 0.7, 0.5, 0.7,−0.1, 0.1), r4 = 4.0

c5
= (0.7,−0.5, 0.1, 0.2 − 0.1,−0.3, 0.0,−0.1,−0.2, 0.6, 0.5,−0.2), r5 = 6.8

d1
= (−0.3,−0.1,−0.1,−0.1, 0.1, 0.4, 0.2,−0.2, 0.4, 0.2,−0.4, 0.3), s1 = 14.2

d2
= (0.0, 0.1,−0.1, 0.3, 0.3 − 0.2, 0.3, 0.0,−0.4, 0.5,−0.3, 0.1), s2 = 1.7

d3
= (0.8,−0.4, 0.7,−0.4,−0.4, 0.5,−0.2,−0.8, 0.5, 0.6,−0.2, 0.6), s3 = 8.1

d4
= (0.0, 0.6,−0.3, 0.3, 0.0, 0.2, 0.3,−0.6,−0.2,−0.5, 0.8,−0.5), s4 = 26.9

d5
= (0.4, 0.2,−0.2, 0.9, 0.5,−0.1, 0.3,−0.8,−0.2, 0.6,−0.2,−0.4), s5 = 3.7

Example 5.8 ([25]).
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min x1 + x2 + x3

s.t. 833.33252x4
x1x6

+ 100
x6

≤ 1
1250x5 − 1250x4

x2x7 +
x4
x7 ≤ 1

1250000 − 2500x5
x3x8 +

x5
x8 ≤ 1

0.0025x4 + 0.0025x6 ≤ 1
−0.0025x4 + 0.0025x5 + 0.0025x7 ≤ 1
0.01x8 − 0.01x5 ≤ 1
100 ≤ x1 ≤ 10000
1000 ≤ x2, x3 ≤ 10000
10 ≤ xi ≤ 1000, i = 4, 5 . . . , 8.
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Example 5.9 ([26]).
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min 0.5(x1 − 10)
x2 − x1

s.t. x2x3 + x1 + 0.5x1x3 ≤ 100
1 ≤ xi ≤ 100, i = 1, 2, 3.

Example 5.10 (Random test).
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

max
p
∑
i=1
δi
(ni)Tx+βi
(di)Tx+γi

s.t. Ax ≤ b,
x ≥ 0.

where the elements of the matrix A ∈ Rm×n , b ∈ Rm , ni , di ∈ Rn and the elements of constant terms of
denominators and numerators βi and γi ∈ R are randomly generated in the interval [0,1], this agrees with the
way random numbers are generated in [14], while in our experiment δi ∈ R is randomly generated in the interval
[-1,1] rather than in interval [0,1], this is much more challenging to test the performance of the algorithm. The
results of the contrast experiments and the random tests are shown in Tables 1-3, and each symbol used in the
table has the following meaning: p,m and n represent the number of a�ne ratios in the objective function, the
number of the constraints and the number of constrained variable respectively; Ave.time, Ave.Nod and Ave.Ite
stand for the average CPU time in seconds, average number of the subproblem and iteration in the algorithm; ε
express the error precision used in the algorithm, and α refer to the split ratio used in the branching operations.

Table 1. Results of the numerical contrast test 1-7.

Example Methods ε α Optimal value Optimal solution Iter
1 [21] 1e-8 - (0.0, 0.283935547) 1.623183358 71

our 1e-9 0.5 (0.0, 0.2840) 1.62318 10
2 [18] 1e-9 - (1.1111,0.0000,0.0000) 4.0907 1289

[20] 1e-6 - (1.1111,1.365e-5,1.351e-5) 4.081481 39
[21] 1e-5 - (0.0013,0.0000,0.0000) 4.087412 1640
our 1e-9 0.5 (1.1111,0.0000,0.0000) 4.09070 1

3 [18] 1e-6 - (0,1) 3.575 1
our 1e-9 0.5 (0.00000,1.00000) 3.57500 1

4 [19] 1e-6 - (-1.838e-16,3.3333,0.0) 1.9 8
our 1e-9 0.5 (0.00000,3.33333,0.00000) -1.9 1

5 [18] 1e-6 - (3,4) 5 1
[22] 1e-2 - (3,4) 5 11
our 1e-9 0.3 (3.00000,4.00000) 5.0000 2

6 [17] 1e-6 - (0.00,1.6725,0.0000) 3.0009 1033
[21] 1e-2 - (0.00,3.3333,0.0) 3.00292 119
our 1e-9 0.5 (0.00,3.33333,0.00000) 3.00292 1

7 [18] 1e-3 - x(18) 16.2619 927
[22] 1e-2 - x(22) 16.077978 620
our 1e-3 0.65 x(our1) 16.26283 626

8 [23] 1e-6 - x(23) 7049.24682 -
our 1e-6 0.50 x(our2) 6944.248031 35

9 [24] 1e-6 - x(24) -83.249728 -
our 1e-6 0.50 x(our3) -85.68859 58



550 | Y. Zhao, T. Zhao

while
x(18)

= (6.24409, 20.0249, 3.79672, 5.93972, 0, 7.43852,

0, 23.2833, 0.515015, 40.9896, 0, 3.14363)T

x(22)
= (6.223689, 20.060317, 3.774684, 5.947841, 0, 7.456686,

0, 23.312579, 0.000204, 41.031824, 0, 3.171106)T

x(23)
= (578.973143, 1359.572730, 5110.701048, 181.9898,

295.5719, 218.0101, 286.4179, 395.5719)

x(24)
= (87.614446, 8.754375, 1.413643, 19.311410)

x(our1) = (6.22442, 20.05821, 3.77441, 5.94859, 0.00001, 7.45691,

0.00002, 23.31133, 0.00012, 41.03002, 0.00001, 3.17225)T

x(our2) = (579.326059, 1359.9445, 5109.977472, 182.019317,

295.600901, 217.980682, 286.418416, 395.600901)

x(our3) = (87.614446, 8.754375, 1.413643, 19.311410).

The computational results in Table 2 and Table 3 indicate that our algorithm has good performance, and is
e�ective for special relatively large-scale optimization problems where the number of ratios in the objective
function is not so large. Meanwhile, we �nd that, the average number of iterations and subproblems that
need to be solved by the algorithm and the average CPU time do not substantially increase as the size of the
problem becomes large. Based on the result of the above numerical examples, our algorithm is quite robust
and e�cient and so it can be used successfully to solve the sum of a�ne ratios problem SRP.

Table 2. Computational results of random test 8 corresponding to the variation of the number of variable n.

(p,m, n) Ave.Ite Ave.Nod Ave.Time(s)
(2,10,10) 23 31 0.507
(2,10,20) 30 42 0.729
(2,10,30) 36 53 1.327
(2,10,40) 47 66 1.465
(2,10,50) 74 105 2.323
(2,10,60) 63 88 1.942
(2,10,70) 57 79 1.799
(2,10,80) 54 77 1.707
(2,10,90) 63 91 2.125
(2,10,100) 175 269 5.567

6 Concluding remarks
In this paper, a new kind of branch and bound optimization algorithm is presented for globally solving
a class of sum of ratios problem. The algorithm is divided into three steps. First, the original problem is
tactfully reformulated into an equivalent problemcoupledwith an outcome space, then the convex relaxation
programming is established by utilizing the lower and upper bound of the auxiliary variables. At last, a new
condensing operation based on the lower bound of the optimal value is presented for inciting the whole or a
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Table 3. Computational results of random test 8 corresponding to the variation of the number of ratio p.

(p,m, n) Ave.Ite Ave.Nod Ave.Time(s)
(2,10,100) 175 269 5.567
(3,10,90) 297 511 9.056
(4,10,80) 376 660 10.211
(5,10,70) 598 973 18.937
(6,10,60) 4235 7508 128.986
(7,10,50) 4654 8274 130.364
(8,10,40) 5420 9318 150.624
(9,10,30) 7338 11782 217.592
(10,10,20) 11844 20473 318.62

part of the investigated region in which there does not contain the global optimal solution of the equivalent
problem. By combining the adapted partition rule with the accelerating technique into the reduced space
branch and bound scheme, the presented algorithm is developed. Numerical results show that the proposed
algorithm can suppress the rapid growth of the branching tree during the algorithm search process, and
several random examples illustrate the high e�ciency and stability of the algorithm.
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