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Abstract: In this paper, we give some characterizations of Q-regular semigroups and show that the class
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1 Introduction and Preliminaries
Let S be a regular semigroup. Let V(a) be the set of all inverses of a for each a ∈ S. We also use E(S) to denote
the set of all idempotents in S. It is well known that a regular semigroup S is orthodox if and only if for all
a, b ∈ S,

V(b)V(a) ⊆ V(ab).

The concept of P-regular semigroups was �rst introduced by Yamada and Sen [1]. In [2], Zhang and He char-
acterized the structure ofP-regular semigroups. In fact, the class ofP-regular semigroups is a generalization
of orthodox semigroups and regular ∗-semigroups.

On the other hand, byOnstad [3], a regular semigroup is said to be aV-regular semigroup if for all a, b ∈ S,

V(ab) ⊆ V(b)V(a).

According to the de�nition of orthodox semigroups, V-regular semigroup is a dual form of orthodox
semigorup. Evidently, a regular semigroup S is both orthodox and V-regular if and only if for all a, b ∈ S,

V(ab) = V(b)V(a).

The class of inverse semigroups forms the most important class of regular semigroups which satisfy the
above condition. As a generalization of inverse semigroups and orthodox semigroups, Gu and Tang [4]
investigated Vn-semigroups and showed that the class of Vn-semigroups is closed under direct products and
homomorphic images.

In V-regular semigroups case, Nambooripad and Pastijn [5] gave a characterization of this class of
semigroups and Zheng and Ren [6] described congruences on V-regular semigroups in terms of certain
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congruence pairs. Then, Li [7] generalized the concept of V-regular semigroups and investigated Q-regular
semigroups which is a dual form of P-regular semigroups.

A regular semigroup S is calledQ-regular if for any a ∈ S there exists anon-empty setVQ ⊆ V(a) satisfying
the following conditions:
(1) aa+ ∈ VQ(aa+) and a+a ∈ VQ(a+a) for any a ∈ S and a+ ∈ VQ(a),
(2) VQ(ab) ⊆ VQ(b)VQ(a) for all a, b ∈ S, where a+ satisfying the above conditions is called aQ-inverse of
a and VQ(a) denotes the set of allQ-inverses of a.

In [7], Li also gave an example ofQ-regular semigroup and showed that this class of semigroups properly
contains the class of V-regular semigroups. At the same time, an equivalent characterization of Q-regular
semigroups was obtained.

A regular semigroup S is Q-regular if and only if there exists a set Q ⊆ E(S) satisfying the following
conditions:
(1) Q ∩ La ≠ ∅ and Q ∩ Ra ≠ ∅ for any a ∈ S;
(2) ωl ∣Q = ω∣Q ○ L∣Q and ωr ∣Q = ω∣Q ○R∣Q;
(3) For any a, b ∈ S, if (ab)+ ∈ V(ab) such that (ab)+(ab), (ab)(ab)+ ∈ Q, then there exists e1 ∈ Q ∩ La
and f2 ∈ Q ∩ Ra such that b(ab)+a = f2e1.

In this paper, aQ-regular semigroup S will be denoted by S(Q). A subset Q of E(S) satisfying (1) − (3)
is called a charcateristic set (for simple a C-set) of S.

Some results on subdirect products of inverse semigroups were characterized by McAlister and Reilly
[8]. In [9], Nambooripad and Veeramony discussed the subdirect products of regular semigroups. Mitsch [10]
studied the subdirect products of E-inversive semigroups. In [11], Zheng characterized the subdirect products
of P-regular semigroups. Throughout this paper, we investigate some properties ofQ-regular semigroups at
�rst and characterize the Q-subdirect products of this class of semigroups. Furthermore, we introduce the
concept of the E-unitaryQ-regular covers forQ-regular semigroups, in particular for those whose maximum
group homomorphic image is a given group. Finally, we deduce the similar results on V-regular semigroups
also hold up.

For notations and de�nitions given in this paper, the reader is referred to Howie [12].

2 OnQ-regular semigroups
Asadual formofP-regular semigroups, Li [7] introduced the concept ofQ-regular semigroups. In this section,
we give some characterizations of Q-regular semigroups. In particular, we show that the class of Q-regular
semigroups is closed under the homomorphic images.

Proposition 2.1. Let S(Q) be aQ-regular semigroup. For any p ∈ Q,

VQ(p) = (Q ∩ Lp)(Q ∩ Rp).

Proof. Since p ∈ Q ⊆ E(S), Q ∩ Lp ≠ ∅, Q ∩ Rp ≠ ∅. For any h ∈ VQ(p), we have h = hph = (hp)(ph) ∈
(Q ∩ Lp)(Q ∩ Rp), and so VQ(p) ⊆ (Q ∩ Lp)(Q ∩ Rp).

Conversely, let f ∈ Q ∩ Lp , g ∈ Q ∩ Rp. Then

p(fg)p = (pf)(gp) = p ⋅ p = p,
(fg)p(fg) = f(gp)fg = fpfg = fg.

So fg ∈ V(p). Additionally,

(fg)p = f(gp) = fp = f ∈ Q,
p(fg) = (pf)g = pg = g ∈ Q.

Thus fg ∈ VQ(p), namely, (Q ∩ Lp)(Q ∩ Rp) ⊆ VQ(p). Therefore, VQ(p) = (Q ∩ Lp)(Q ∩ Rp).
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Proposition 2.2 ([13]). Let S(Q) be aQ-regular semigroup. If a ∈ S(Q), a+ ∈ VQ(a), then

VQ(a) = VQ(a+a)a+VQ(aa+).

Theorem 2.3. Let S(Q) be aQ-regular semigroup. If e ∈ Q ∩ La , f ∈ Q ∩ Ra, for any a ∈ S, then there exists a
unique a+ ∈ VQ(a) such that a+a = e, aa+ = f .

Proof. For any a ∈ S, let e ∈ Q ∩ La and f ∈ Q ∩ Ra. And so there is an inverse a′ of a in Re ∩ Lf such that
a′a = e ∈ Q, aa′ = f ∈ Q. Thus a′ ∈ VQ(a). If there exists a a+ ∈ VQ(a) such that a+a = e, aa+ = f , then

a′ = a′aa′ = a′f = a′aa+ = ea+ = a+aa+ = a+.

Corollary 2.4. Let S(Q) be aQ-regular semigroup. For any a, b ∈ S,
(1) (a, b) ∈ L if and only if there exists a+ ∈ VQ(a), b+ ∈ VQ(b) such that a+a = b+b;
(2) (a, b) ∈ R if and only if there exists a+ ∈ VQ(a), b+ ∈ VQ(b) such that aa+ = bb+;
(3) (a, b) ∈ H if and only if there exists a+ ∈ VQ(a), b+ ∈ VQ(b) such that aa+ = bb+, a+a = b+b.

Proof. (1) For any a+ ∈ VQ(a), we have a+a ∈ Q ∩ La. If (a, b) ∈ L and there exists a e ∈ Q ∩ Rb, then
eR b L a L a+a. By Theorem 2.3, there exists a unique b+ ∈ VQ(b) such that b+b = a+a.

On the other hand, if there exist a+ ∈ VQ(a), b+ ∈ VQ(b) such that b+b = a+a, then a L a+a = b+b L b,
that is a L b.

By using similar arguments as the above, we can proof (2) and (3).

Corollary 2.5. Let S(Q) be a Q-regular semigroup. If e, f ∈ Q, then (e, f) ∈ D if and only if there exist a ∈
S, a+ ∈ VQ(a) such that a+a = f , aa+ = e.

Proof. If (e, f) ∈ D, there exists a ∈ Re ∩ Lf . By Theorem 2.3, there exists a+ ∈ VQ(a) such that a+a = f ,
aa+ = e.

Conversely, if there exist a ∈ S, a+ ∈ VQ(a) such that a+a = f , aa+ = e, then eR a, aL f . Hence eD f .

Proposition 2.6. Let S(Q) beQ-regular semigroup. If qR p (q L p) for any p, q ∈ Q, then q ∈ VQ(p).

Proof. Let q ∈ Rp. Since p, q ∈ Q ⊆ E(S), so pq = q, qp = p. Hence pqp = qp = p, qpq = pq = q, namely
q ∈ V(p). For another, pq = q ∈ Q, qp = p ∈ Q. Hence q ∈ VQ(p). In the case of p L q, the proof is similar.

Corollary 2.7. Let S(Q) be aQ-regular semigroup. Then the following statements are equivalent:
(1) for any q, p ∈ Q, if VQ(q) ∩ VQ(p) ≠ ∅, then VQ(q) = VQ(p);
(2) for any e, f ∈ E(S), if VQ(e) ∩ VQ(f) ≠ ∅, then VQ(e) = VQ(f);
(3) for any a, b ∈ S(Q), if VQ(a) ∩ VQ(b) ≠ ∅, then VQ(a) = VQ(b).

Proof. We only need to proof (1) ⇒ (3). Let c ∈ VQ(a) ∩ VQ(b). By Proposition 2.2,

VQ(a) = VQ(ca) c VQ(ac),
VQ(b) = VQ(cb) c VQ(bc).

Since ca, ac, cb, bc ∈ Q and caR cR cb, ac L c L bc, by Proposition 2.6,

ca ∈ VQ(ca) ∩ VQ(cb), ac ∈ VQ(ac) ∩ VQ(bc).

By (1),

VQ(ca) = VQ(cb), VQ(ac) = VQ(bc).

Thus, VQ(a) = VQ(b).
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Proposition 2.8. Let S(Q) be a Q-regular semigroup and ρ an idempotent-separating congruence on S. For
any a, b ∈ S, if a ρ b, then a+ρ b+ for some a+ ∈ VQ(a), b+ ∈ VQ(b).

Proof. Since ρ is an idempotent-separating congruence on S, a ρ b implies that aH b. By Corollary 2.4, there
exist a+ ∈ VQ(a), b+ ∈ VQ(b) such that aa+ = bb+, a+a = b+b. Thus

a+ = a+aa+ = a+bb+,
b+ = b+bb+ = a+ab+.

Since ρ is a congruence, a+ab+ρ a+bb+, that is b+ρ a+.

Theorem 2.9. Let S(Q) be aQ-regular semigroup and T a regular semigroup. If ψ ∶ S(Q) → T is a semigroup
homomorphism and Q̄ = {qψ ∶ q ∈ Q}, then T(Q̄) isQ-regular.

Proof. For any a ∈ S, there exists a a+ ∈ VQ(a) such that aa+, a+a ∈ Q. And so

(aψ)(a+ψ)(aψ) = (aa+a)ψ = aψ, (a+ψ)(aψ)(a+ψ) = (a+aa+)ψ = a+ψ.

That is a+ψ ∈ V(aψ). Since (aψ)(a+ψ) = (aa+)ψ ∈ Q̄, a+ψ ∈ VQ̄(aψ) ≠ ∅. It is easy to see that

(aψ)(a+ψ) ∈ VQ((aψ)(a+ψ)) and (a+ψ)(aψ) ∈ VQ((a+ψ)(aψ)).

On the other hand, for any (ab)+ ∈ VQ(ab), since S is Q-regular, there exist a+ ∈ VQ(a), b+ ∈ VQ(b) such
that

(ab)+ψ = (b+a+)ψ = (b+ψ)(a+ψ).

Thus VQ̄((ab)ψ) ⊆ VQ̄(bψ)VQ̄(aψ) and T(Q̄) isQ-regular.

3 Q-subdirect products ofQ-regular semigroups
Some results on subdirect products of regular semigroups and E-inversive semigroups were characterized by
Nambooripad [9] and Mitsch [10]. In this section, we show that the class of Q-regular semigroups is closed
under the direct product and characterize theQ-subdirect products ofQ-regular semigroups.

For arbitrary semigroup S, Petrich [14] introduced the concept of �lters of S, that is, a subsemigroup F of
S such that ab ∈ F implies a ∈ F and b ∈ F.

Example 3.1. Let S = {a, b, c, d, e} be the semigroup with operation de�ned by

⋅ a b c d e
a a b c c c
b a b c c c
c a b c c c
d a b c e d
e a b c d e

Then F = {d, e} is a �lter of S.

In what follows, we introduce the concept ofQ-inverse �lters of aQ-regular semigroup.

De�nition 3.2. A regular subsemigroup T ofQ-regular semigroup S(Q) is called aQ-inverse �lter, if
(1) T(Q ∩ ET) is aQ-regular semigroup;
(2) For any t1, t2 ∈ T and t+1 ∈ VS

Q(t1), t+2 ∈ VS
Q(t2), if t+1 t+2 ∈ T, then t+1 , t+2 ∈ T.



526 | X. Feng

De�nition 3.3. Let S1(Q1) and S2(Q2) be two Q-regular semigroups. A homomorphism f of S1(Q1) into
S2(Q2) is called aQ-homomorphism if Q1f = Q2∩S1(Q1)f . AQ-homomorphism f ∶ S1(Q1) → S2(Q2) is called
a Q-isomorphism if f is bijective, in such the case, S1(Q1) is called Q-isomorphic to S2(Q2), and denoted by
S1(Q1)

Q≅ S2(Q2).

Proposition 3.4. Let S1(Q1) and S2(Q2) be two Q-regular semigroups. If S(Q) = S1(Q1) × S2(Q2), where
Q = {(p1, p2) ∶ p1 ∈ Q1, p2 ∈ Q2}, then S(Q) is aQ-regular semigroup.

Proof. Obviously, S(Q) is a semigroup. If (s, t) ∈ S, where s ∈ S1, t ∈ S2, since S1, S2 are allQ-regular, there
exists s′ ∈ VS1(s), t′ ∈ VS2(t) such that (s′, t′) ∈ S. It is easy to see that (s′, t′) ∈ V(s, t), and so S is regular.
Let

VQ1(s) × VQ2(t) = {(s+, t+) ∶ s+ ∈ VQ1(s), t+ ∈ VQ2(t)}.

Clearly, it is non-empty and contained in V(s, t). For any (s+, t+) ∈ VQ1(s) × VQ2(t), we have

(s, t)(s+, t+) ∈ VQ1(ss+) × VQ2(tt+),
(s+, t+)(s, t) ∈ VQ1(s+s) × VQ2(t+t).

For another, let (s, t), (x, y) ∈ S. For any ((sx)+, (ty)+) ∈ VQ1(sx) × VQ2(ty), since S1, S2 are allQ-regular,
there exists s+ ∈ VQ1(s), x+ ∈ VQ1(x), t+ ∈ VQ2(t), y+ ∈ VQ2(y) such that

((sx)+, (ty)+) =(x+s+, y+t+)
=(x+, y+)(s+, t+)
∈(VQ1(x) × VQ2(y))(VQ1(s) × VQ2(t)).

Hence, S(Q) is aQ-regular semigroup.

De�nition 3.5. Let S1(Q1), S2(Q2) be Q-regular semigroups and S(Q) be the direct product of them, where
Q = {(p1, p2) ∶ p1 ∈ Q1, p2 ∈ Q2}. If T(Q′) is aQ-inverse �lter of S(Q) and the projections

f1 ∶ T(Q
′

) → S1(Q1), (s1, s2) ↦ s1,
f2 ∶ T(Q

′

) → S2(Q2), (s1, s2) ↦ s2

are all surjectiveQ-homomorphisms, then T(Q′) is called aQ-subdirect product of S1(Q1) and S2(Q2).

De�nition 3.6. Let S(Q1) and T(Q2) be twoQ-regular semigroups. A mapping ϕ ∶ S → 2T (the power set of T)
is called a surjectiveQ-subhomomorphism of S(Q1) onto T(Q2), if it satis�es the following:
(1) for any s ∈ S, sϕ ≠ ∅;
(2) for any s1, s2 ∈ S, (s1ϕ)(s2ϕ) ⊆ (s1s2)ϕ;
(3) ⋃s∈S sϕ = T;
(4) for any t ∈ sϕ (s ∈ S, t ∈ T), there exist s+ ∈ VQ1(s), t+ ∈ VQ2(t) such that t+ ∈ s+ϕ;
(5) for any p1 ∈ Q1, there exists p2 ∈ Q2 such that p2 ∈ p1ϕ; and for any p2 ∈ Q2, there exists p1 ∈ Q1 such that
p2 ∈ p1ϕ;
(6) for any t1 ∈ s1ϕ, t2 ∈ s2ϕ, if t+1 t+2 ∈ (s+1 s+2 )ϕ, then t+1 ∈ s+1ϕ, t+2 ∈ s+2ϕ, where t+i ∈ VQ2(ti), s+i ∈ VQ1(si),
i = 1, 2.

Theorem 3.7. Let S(Q1) and T(Q2) be Q-regular semigroups, ϕ a surjective Q-subhomomorphism of S(Q1)
onto T(Q2). If

π = π(S, T,ϕ) = {(s, t) ∈ S × T ∶ t ∈ sϕ},
Q = {(p1, p2) ∈ Q1 × Q2 ∶ p2 ∈ p1ϕ},

then π(Q) is aQ-subdirect product of S(Q1) and T(Q2).
Conversely, everyQ-subdirect product of S(Q1) and T(Q2) can be constructed in this way.
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Proof. If (s1, t1), (s2, t2) ∈ π, then t1 ∈ s1ϕ, t2 ∈ s2ϕ. By (2), t1t2 ∈ (s1s2)ϕ, and so (s1s2, t1t2) ∈ π. Hence π
is a subsemigroup of S × T. If (s, t) ∈ π, then t ∈ sϕ. By (4), there exist s+ ∈ VQ1(s) and t+ ∈ VQ2(t) such that
t+ ∈ s+ϕ, and so (s+, t+) ∈ π. It is easy to see that (s+, t+) ∈ V(s, t). Thus π is a regular semigroup. Let

VQ(s, t) = {(s+, t+) ∈ VQ1(s) × VQ2(t) ∶ t+ ∈ s+ϕ}.

If (s, t) ∈ π, then t ∈ sϕ. By (4), VQ(s, t) ≠ ∅. For any (s, t) ∈ π, (s+, t+) ∈ VQ(s, t),

(s, t)(s+, t+) = (ss+, tt+),

where s+ ∈ VQ1(s), t+ ∈ VQ2(t), t+ ∈ s+ϕ. Since S(Q1), T(Q2) are Q-regular, it follows that ss+ ∈
VQ1(ss+), tt+ ∈ VQ2(tt+). And tt+ ∈ (ss+)ϕ, hence

(s, t)(s+, t+) ∈ VQ(ss+, tt+) = VQ((s, t)(s+, t+)).

Similarly, (s+, t+)(s, t) ∈ VQ((s+, t+)(s, t)).
On the other hand, let (s1, t1), (s2, t2) ∈ π. For any

((s1s2)+, (t1t2)+) ∈ VQ(s1s2, t1t2),

since S(Q1) and T(Q2) are all Q-regular semigroups, there exist s+1 ∈ VQ1(s1), s+2 ∈ VQ1(s2), t+1 ∈
VQ2(t1), t+2 ∈ VQ2(t2) such that

((s1s2)+, (t1t2)+) = (s+2 s+1 , t+2 t+1 ) = (s+2 , t+2 )(s+1 , t+1 ).

Since t+2 t+1 ∈ (s+2 s+1 )ϕ, by (6), t+2 ∈ s+2ϕ, t+1 ∈ s+1ϕ. And so

(s+2 , t+2 ) ∈ VQ(s2, t2), (s+1 , t+1 ) ∈ VQ(s1, t1).

Hence,

VQ(s1s2, t1t2) ⊆ VQ(s2, t2)VQ(s1, t1).

that is, π(Q) is aQ-regular semigroup.
For any

(s+1 , t+1 ) ∈ VQ1(s1) × VQ2(t1), (s+2 , t+2 ) ∈ VQ1(s2) × VQ2(t2).

If (s+1 , t+1 )(s+2 , t+2 ) ∈ π, namely (s+1 s+2 , t+1 t+2 ) ∈ π, then t+1 t+2 ∈ (s+1 s+2 )ϕ. By (6), t+1 ∈ s+1ϕ, t+2 ∈ s+2ϕ, and so
(s+1 , t+1 ), (s+2 , t+2 ) ∈ π. Hence π(Q) is aQ-inverse �lter of S(Q1) × T(Q2).

By (1) and (5), the projection f1 ∶ π → S, (s, t) ↦ s is a surjectiveQ-homomorphism. By (3) and (5), the
projection f2 ∶ π → T, (s, t) ↦ t is a surjectionQ-homomorphism. Therefore, π(Q) is aQ-subdirect product
of S(Q1) and T(Q2).

Conversely, let H(Q) be aQ-subdirect product of S(Q1) and T(Q2). Let

ϕ ∶ S → 2T , s ↦ {t ∈ T ∶ (s, t) ∈ H}.

Since H(Q) is aQ-subdirect product of S(Q1) and T(Q2), there exists t ∈ T such that (s, t) ∈ H for any s ∈ S.
Thus t ∈ sϕ. Hence (1) holds. Since H is a subsemigroup of S(Q1) × T(Q2), (2) holds. Since the projection
f2 ∶ H → T is surjective, (3) holds. If t ∈ sϕ (s ∈ S, t ∈ T), then (s, t) ∈ H. Since H(Q) is Q-regular, there
exists

(s+, t+) ∈ (VQ1(s) × VQ2(t)) ∩ H.

Hence s+ ∈ VQ1(s), t+ ∈ VQ2(t), and t+ ∈ s+ϕ, so (4) holds. For any p1 ∈ Q1, there exists (p1, p2) ∈ Q =
H ∩ (Q1 × Q2), and so p2 ∈ Q2 and p2 ∈ p1ϕ. Additionally, since f2 is a surjective Q-homomorphism, there
exists

(p1, p2) ∈ Q = H ∩ (Q1 × Q2)
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for any p2 ∈ Q2. Hence p1 ∈ Q1 and p2 ∈ p1ϕ. Thus (5)holds. SinceH(Q) is aQ-inverse �lter of S(Q1)×T(Q2),
(6) holds. By the proof above, ϕ is a surjective Q-subhomomorphism of S(Q1) onto T(Q2). Obviously, H =
π(S, T,ϕ).

4 E-unitary covers forQ-regular semigroups
McAlister and Reilly [8] have given E-unitary covers of inverse semigroups by using surjective subhomomor-
phisms of inverse semigroups. Mitsch [10] has given some su�cient conditions on E-unitary, E-inverse covers
of E-inversive semigroups.

In this section, we introduce the concept of the E-unitary Q-regular covers of Q-regular semigroups, in
particular for those whose maximum group homomorphic image is a given group.

Let S be a regular semigroup. A subset H of S is said to be
(1) full if E(S) ⊆ H;
(2) self-conjugate if aHa′ ⊆ H and a′Ha ⊆ H for all a ∈ S and all a′ ∈ V(a).

Let U be the minimum full and self-conjugate subsemigroup of S.

Lemma 4.1 ([15]). Let S be a regular semiroup. The minimum group congruence σ on S is given by

σ = {(a, b) ∈ S × S ∶ (∃x, y ∈ U) xa = by}.

In [12], a subset A of a semigroup S is called right unitary, if

(∀a ∈ A)(∀s ∈ S) sa ∈ A⇒ s ∈ A.

A is called left unitary, if

(∀a ∈ A)(∀s ∈ S) as ∈ A⇒ s ∈ A.

A right and left unitary subset is called unitary.
A regular semigroup S is called E-unitary, if the set E(S) of idempotents of S is unitary.

De�nition 4.2. Let T(Q1) and S(Q) be two Q-regular semigroups. T(Q1) is called an E-unitary Q-regular
cover of S(Q), if T(Q1) is E-unitary, and there exists an idempotent separating Q-homomorphism of T(Q1)
onto S(Q).

A group G is aQ-regular semigroup whose C-set is {1}, where 1 is the identity element of G.

De�nition 4.3. Let S(Q) be aQ-regular semigroup and G be a group. A surjectiveQ-subhomomorphism ϕ of
S(Q) onto G is called unitary, if

(∀s ∈ S)1 ∈ sϕ⇒ s ∈ E(S),

where 1 is the identity element of G.

Theorem 4.4. Let S(Q) be a Q-regular semigroup and G be a group. If there exists a unitary surjetive Q-
subhomomorphism ϕ of S(Q) onto G, then π(S, G,ϕ) is an E-unitaryQ-regular cover of S(Q).

Proof. By Theorem 3.7, T(Q1) = π(S, G,ϕ) isQ-regular whose C-set is

Q1 = {(p, 1) ∈ S × G ∶ p ∈ Q, 1 ∈ pϕ}.

For any (s, g) ∈ T, (e, 1) ∈ ET , if
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(s, g)(e, 1) ∈ ET ⊆ {(t, 1) ∈ S × G ∶ t ∈ ES},

then (se, g) ∈ ET , and so g = 1, and (s, 1) ∈ T(Q1). By the de�nition of T(Q1), 1 ∈ sϕ. Since ϕ is unitary,
s ∈ ES. Hence (s, g) ∈ ET , so T(Q1) is E-unitary.

De�ne f ∶ T(Q1) → S(Q), (s, g) ↦ s. Then f is a surjectiveQ-homomorphism. Obviously, f is idempotent
separating. Hence π(S, G,ϕ) is an E-unitaryQ-regular cover of S(Q).

De�nition 4.5. AQ-regular semigroup T(Q1) is called an E-unitaryQ-regular cover of S(Q) through G, if
(1) T(Q1) is an E-unitaryQ-regular cover of S(Q);
(2) T/σ Q≅ G, where σ is the minimum group congruence on T(Q1).

Lemma 4.6. Let S(Q1), T(Q2) be twoQ-regular semigroups and f ∶ S(Q1) → T(Q2) be aQ-homomorphism.
Then S(Q1)/kerf

Q≅ S(Q1)f .

Proof. It is easy to see that the mapping φ ∶ S(Q1)/kerf → S(Q1)f is an isomorphism. Since f is a
Q-homomorphism, we have

(Q1kerf)φ = Q1f = Q2 ∩ S(Q1)f = Q2 ∩ (S(Q1)kerf)φ.

Thus φ is also aQ-homomorphism and S(Q1)/kerf
Q≅ S(Q1)f .

Theorem 4.7. If there exists a unitary surjective Q-subhomomorphism ϕ of S(Q) onto G, then T(Q1) =
π(S, G,ϕ) is an E-unitaryQ-regular cover of S(Q) through G.

Proof. By Theorem 4.4, T(Q1) = π(S, G,ϕ) is an E-unitaryQ-regular cover of S(Q). We prove that T/σ Q≅ G
as follow.

It follows from Theorem 3.7 that T(Q1) is a Q-subdirect product of S(Q) and G. Hence G is the Q-
homomorphic image of T(Q1) under the projection f2 ∶ T(Q1) → G, (a, g) ↦ g. Since G is a group, kerf2 is a
group congruence on T(Q1), and so σ ⊆ kerf2. Conversely, if (a, g) ∈ (b, g)kerf2, then (a, g)f2 = (b, h)f2, so
that g = h. Since T(Q1) isQ-regular, for any (b, g) = (b, h) ∈ T(Q1) there exists (x, y) ∈ VQ1(b, g) such that

(b, g)(x, y) = (bx, gy) ∈ ET ⊆ {(e, 1) ∈ T ∶ e ∈ ES}.

Hence bx ∈ ES and gy = 1, that is g−1 = y. So (x, g−1) ∈ T(Q1) and (bx, 1) ∈ Q1. Now (xa, 1) = (x, y)(a, g) ∈
T. Hence, by the de�nition of T, 1 ∈ (xa)ϕ. Notice that ϕ is unitary, we have xa ∈ ES. Thus (xa, 1) ∈ ET , and
so

(bx, 1)(a, g) = (bxa, g) = (b, h)(xa, 1).

Since (bx, 1), (xa, 1) ∈ ET ⊆ U, by Lemma 4.1, (a, g)σ(b, h). Thus kerf2 ⊆ σ. Hence σ = kerf2. Therefore, it
follows from lemma 4.6 that T/σ = T/kerf2

Q≅ G.

Remark 4.8. As we know, the class of Q-regular semigroups properly contains the class of V-regular semi-
groups. In fact, if we restrict the C-set Q of aQ-regular semigroup S to the set of idempotents , then the subdirect
products of V-regular semigroups can be constructed in a similar way and we can also use this contruction to
study the E-unitary cover for V-regular semigroups.
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