Open Mathematics

Research Article

Xinyang Feng*

On Q-regular semigroups

https://doi.org/10.1515/math-2018-0048
Received November 1, 2016; accepted March 28, 2018.

Abstract: In this paper, we give some characterizations of \mathcal{Q} -regular semigroups and show that the class of \mathcal{Q} -regular semigroups is closed under the direct product and homomorphic images. Furthermore, we characterize the \mathcal{Q} -subdirect products of this class of semigroups and study the E-unitary \mathcal{Q} -regular covers for \mathcal{Q} -regular semigroups, in particular for those whose maximum group homomorphic image is a given group. As an application of these results, we claim that the similar results on V-regular semigroups also hold.

Keywords: Q-regular semigroup, Q-subdirect product, Surjective Q-subhomomorphism, E-unitary Q-regular cover

MSC: 20M10

1 Introduction and Preliminaries

Let *S* be a regular semigroup. Let V(a) be the set of all inverses of *a* for each $a \in S$. We also use E(S) to denote the set of all idempotents in *S*. It is well known that a regular semigroup *S* is orthodox if and only if for all $a, b \in S$,

$$V(b)V(a) \subseteq V(ab)$$
.

The concept of \mathcal{P} -regular semigroups was first introduced by Yamada and Sen [1]. In [2], Zhang and He characterized the structure of \mathcal{P} -regular semigroups. In fact, the class of \mathcal{P} -regular semigroups is a generalization of orthodox semigroups and regular *-semigroups.

On the other hand, by Onstad [3], a regular semigroup is said to be a V-regular semigroup if for all $a, b \in S$,

$$V(ab) \subseteq V(b)V(a)$$
.

According to the definition of orthodox semigroups, V-regular semigroup is a dual form of orthodox semigroup. Evidently, a regular semigroup S is both orthodox and V-regular if and only if for all $a, b \in S$,

$$V(ab) = V(b)V(a)$$
.

The class of inverse semigroups forms the most important class of regular semigroups which satisfy the above condition. As a generalization of inverse semigroups and orthodox semigroups, Gu and Tang [4] investigated V^n -semigroups and showed that the class of V^n -semigroups is closed under direct products and homomorphic images.

In *V*-regular semigroups case, Nambooripad and Pastijn [5] gave a characterization of this class of semigroups and Zheng and Ren [6] described congruences on *V*-regular semigroups in terms of certain

^{*}Corresponding Author: Xinyang Feng: College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, China, E-mail: xyfeng@nwafu.edu.cn

[∂] Open Access. © 2018 Feng, published by De Gruyter.

Open Access. © 2018 Feng, published by De Gruyter.
Open Access. © 2018 Feng, published by De Gruyter.
Open Access. © 2018 Feng, published by De Gruyter.
Open Access. © 2018 Feng, published by De Gruyter.
Open Access. © 2018 Feng, published by De Gruyter.
Open Access. © 2018 Feng, published by De Gruyter.
Open Access.
Open Access. © 2018 Feng, published by De Gruyter.
Open Access. © 2018 Feng, published by De Gruyter.
Open Access. © 2018 Feng, published by De Gruyter.
Open Access. © 2018 Feng, published by De Gruyter.
Open Access.
Open Access. © 2018 Feng, published by De Gruyter.
Open Access.
Open

congruence pairs. Then, Li [7] generalized the concept of V-regular semigroups and investigated Q-regular semigroups which is a dual form of \mathcal{P} -regular semigroups.

A regular semigroup S is called Q-regular if for any $a \in S$ there exists a non-empty set $V_Q \subseteq V(a)$ satisfying the following conditions:

- (1) $aa^+ \in V_0(aa^+)$ and $a^+a \in V_0(a^+a)$ for any $a \in S$ and $a^+ \in V_0(a)$,
- (2) $V_Q(ab) \subseteq V_Q(b)V_Q(a)$ for all $a, b \in S$, where a^+ satisfying the above conditions is called a Q-inverse of a and $V_Q(a)$ denotes the set of all Q-inverses of a.

In [7], Li also gave an example of Q-regular semigroup and showed that this class of semigroups properly contains the class of V-regular semigroups. At the same time, an equivalent characterization of Q-regular semigroups was obtained.

A regular semigroup S is Q-regular if and only if there exists a set $Q \subseteq E(S)$ satisfying the following conditions:

- (1) $Q \cap L_a \neq \emptyset$ and $Q \cap R_a \neq \emptyset$ for any $a \in S$;
- (2) $\omega^l|_Q = \omega|_Q \circ \mathcal{L}|_Q$ and $\omega^r|_Q = \omega|_Q \circ \mathcal{R}|_Q$;
- (3) For any $a, b \in S$, if $(ab)^+ \in V(ab)$ such that $(ab)^+(ab), (ab)(ab)^+ \in Q$, then there exists $e_1 \in Q \cap L_a$ and $f_2 \in Q \cap R_a$ such that $b(ab)^+a = f_2e_1$.

In this paper, a Q-regular semigroup S will be denoted by S(Q). A subset Q of E(S) satisfying (1) – (3) is called a charcateristic set (for simple a C-set) of S.

Some results on subdirect products of inverse semigroups were characterized by McAlister and Reilly [8]. In [9], Nambooripad and Veeramony discussed the subdirect products of regular semigroups. Mitsch [10] studied the subdirect products of E-inversive semigroups. In [11], Zheng characterized the subdirect products of \mathcal{P} -regular semigroups. Throughout this paper, we investigate some properties of \mathcal{Q} -regular semigroups at first and characterize the \mathcal{Q} -subdirect products of this class of semigroups. Furthermore, we introduce the concept of the E-unitary \mathcal{Q} -regular covers for \mathcal{Q} -regular semigroups, in particular for those whose maximum group homomorphic image is a given group. Finally, we deduce the similar results on V-regular semigroups also hold up.

For notations and definitions given in this paper, the reader is referred to Howie [12].

2 On Q-regular semigroups

As a dual form of \mathcal{P} -regular semigroups, Li [7] introduced the concept of \mathcal{Q} -regular semigroups. In this section, we give some characterizations of \mathcal{Q} -regular semigroups. In particular, we show that the class of \mathcal{Q} -regular semigroups is closed under the homomorphic images.

Proposition 2.1. Let S(Q) be a Q-regular semigroup. For any $p \in Q$,

$$V_O(p) = (Q \cap L_p)(Q \cap R_p).$$

Proof. Since $p \in Q \subseteq E(S)$, $Q \cap L_p \neq \emptyset$, $Q \cap R_p \neq \emptyset$. For any $h \in V_Q(p)$, we have $h = hph = (hp)(ph) \in (Q \cap L_p)(Q \cap R_p)$, and so $V_Q(p) \subseteq (Q \cap L_p)(Q \cap R_p)$.

Conversely, let $f \in Q \cap L_p$, $g \in Q \cap R_p$. Then

$$p(fg)p = (pf)(gp) = p \cdot p = p,$$

$$(fg)p(fg) = f(gp)fg = fpfg = fg.$$

So $fg \in V(p)$. Additionally,

$$(fg)p = f(gp) = fp = f \in Q,$$

 $p(fg) = (pf)g = pg = g \in Q.$

Thus $fg \in V_O(p)$, namely, $(Q \cap L_p)(Q \cap R_p) \subseteq V_O(p)$. Therefore, $V_O(p) = (Q \cap L_p)(Q \cap R_p)$.

Proposition 2.2 ([13]). Let S(Q) be a Q-regular semigroup. If $a \in S(Q)$, $a^+ \in V_0(a)$, then

$$V_O(a) = V_O(a^+a)a^+V_O(aa^+).$$

Theorem 2.3. Let S(Q) be a Q-regular semigroup. If $e \in Q \cap L_a$, $f \in Q \cap R_a$, for any $a \in S$, then there exists a unique $a^+ \in V_Q(a)$ such that $a^+a = e$, $aa^+ = f$.

Proof. For any $a \in S$, let $e \in Q \cap L_a$ and $f \in Q \cap R_a$. And so there is an inverse a' of a in $R_e \cap L_f$ such that $a'a = e \in Q$, $aa' = f \in Q$. Thus $a' \in V_Q(a)$. If there exists a $a^+ \in V_Q(a)$ such that $a^+a = e$, $aa^+ = f$, then

$$a' = a'aa' = a'f = a'aa^{+} = ea^{+} = a^{+}aa^{+} = a^{+}$$
.

Corollary 2.4. Let S(Q) be a Q-regular semigroup. For any $a, b \in S$,

- (1) $(a, b) \in \mathcal{L}$ if and only if there exists $a^+ \in V_0(a)$, $b^+ \in V_0(b)$ such that $a^+a = b^+b$;
- (2) $(a,b) \in \mathcal{R}$ if and only if there exists $a^+ \in V_0(a)$, $b^+ \in V_0(b)$ such that $aa^+ = bb^+$;
- (3) $(a,b) \in \mathcal{H}$ if and only if there exists $a^+ \in V_O(a)$, $b^+ \in V_O(b)$ such that $aa^+ = bb^+$, $a^+a = b^+b$.

Proof. (1) For any $a^+ \in V_Q(a)$, we have $a^+a \in Q \cap L_a$. If $(a,b) \in \mathcal{L}$ and there exists a $e \in Q \cap R_b$, then $e \mathcal{R} b \mathcal{L} a \mathcal{L} a^+a$. By Theorem 2.3, there exists a unique $b^+ \in V_Q(b)$ such that $b^+b = a^+a$.

On the other hand, if there exist $a^+ \in V_Q(a)$, $b^+ \in V_Q(b)$ such that $b^+b = a^+a$, then $a \mathcal{L} a^+a = b^+b \mathcal{L} b$, that is $a \mathcal{L} b$.

By using similar arguments as the above, we can proof (2) and (3).

Corollary 2.5. Let S(Q) be a Q-regular semigroup. If $e, f \in Q$, then $(e, f) \in D$ if and only if there exist $a \in S$, $a^+ \in V_0(a)$ such that $a^+a = f$, $aa^+ = e$.

Proof. If $(e,f) \in \mathcal{D}$, there exists $a \in R_e \cap L_f$. By Theorem 2.3, there exists $a^+ \in V_Q(a)$ such that $a^+a = f$, $aa^+ = e$.

Conversely, if there exist $a \in S$, $a^+ \in V_Q(a)$ such that $a^+a = f$, $aa^+ = e$, then $e \mathcal{R} a$, $a \mathcal{L} f$. Hence $e \mathcal{D} f$. \square

Proposition 2.6. Let S(Q) be Q-regular semigroup. If $q \mathcal{R} p$ $(q \mathcal{L} p)$ for any $p, q \in Q$, then $q \in V_Q(p)$.

Proof. Let $q \in R_p$. Since $p, q \in Q \subseteq E(S)$, so pq = q, qp = p. Hence pqp = qp = p, qpq = pq = q, namely $q \in V(p)$. For another, $pq = q \in Q$, $qp = p \in Q$. Hence $q \in V_Q(p)$. In the case of $p \not L q$, the proof is similar. \square

Corollary 2.7. Let S(Q) be a Q-regular semigroup. Then the following statements are equivalent:

- (1) for any $q, p \in Q$, if $V_O(q) \cap V_O(p) \neq \emptyset$, then $V_O(q) = V_O(p)$;
- (2) for any $e, f \in E(S)$, if $V_O(e) \cap V_O(f) \neq \emptyset$, then $V_O(e) = V_O(f)$;
- (3) for any $a, b \in S(Q)$, if $V_Q(a) \cap V_Q(b) \neq \emptyset$, then $V_Q(a) = V_Q(b)$.

Proof. We only need to proof $(1) \Rightarrow (3)$. Let $c \in V_Q(a) \cap V_Q(b)$. By Proposition 2.2,

$$V_Q(a) = V_Q(ca) c V_Q(ac),$$

$$V_Q(b) = V_Q(cb) c V_Q(bc)$$
.

Since ca, ac, cb, $bc \in Q$ and $ca \mathcal{R} c \mathcal{R} cb$, $ac \mathcal{L} c \mathcal{L} bc$, by Proposition 2.6,

$$ca \in V_O(ca) \cap V_O(cb)$$
, $ac \in V_O(ac) \cap V_O(bc)$.

By (1),

$$V_Q(ca) = V_Q(cb), V_Q(ac) = V_Q(bc).$$

Thus,
$$V_O(a) = V_O(b)$$
.

Proposition 2.8. Let S(Q) be a Q-regular semigroup and ρ an idempotent-separating congruence on S. For any $a, b \in S$, if $a \rho b$, then $a^+ \rho b^+$ for some $a^+ \in V_0(a)$, $b^+ \in V_0(b)$.

Proof. Since ρ is an idempotent-separating congruence on S, $a \rho b$ implies that $a \mathcal{H} b$. By Corollary 2.4, there exist $a^+ \in V_0(a)$, $b^+ \in V_0(b)$ such that $aa^+ = bb^+$, $a^+a = b^+b$. Thus

$$a^{+} = a^{+}aa^{+} = a^{+}bb^{+},$$

 $b^{+} = b^{+}bb^{+} = a^{+}ab^{+}.$

Since ρ is a congruence, $a^+ab^+\rho$ a^+bb^+ , that is $b^+\rho$ a^+ .

Theorem 2.9. Let S(Q) be a Q-regular semigroup and T a regular semigroup. If $\psi : S(Q) \to T$ is a semigroup homomorphism and $\bar{Q} = \{q\psi : q \in Q\}$, then $T(\bar{Q})$ is Q-regular.

Proof. For any $a \in S$, there exists a $a^+ \in V_0(a)$ such that $aa^+, a^+a \in Q$. And so

$$(a\psi)(a^+\psi)(a\psi) = (aa^+a)\psi = a\psi,$$
 $(a^+\psi)(a\psi)(a^+\psi) = (a^+aa^+)\psi = a^+\psi.$

That is $a^+\psi \in V(a\psi)$. Since $(a\psi)(a^+\psi) = (aa^+)\psi \in \bar{Q}$, $a^+\psi \in V_{\bar{Q}}(a\psi) \neq \emptyset$. It is easy to see that

$$(a\psi)(a^+\psi) \in V_O((a\psi)(a^+\psi))$$
 and $(a^+\psi)(a\psi) \in V_O((a^+\psi)(a\psi))$.

On the other hand, for any $(ab)^+ \in V_Q(ab)$, since S is Q-regular, there exist $a^+ \in V_Q(a)$, $b^+ \in V_Q(b)$ such that

$$(ab)^+\psi = (b^+a^+)\psi = (b^+\psi)(a^+\psi).$$

Thus $V_{\bar{O}}((ab)\psi) \subseteq V_{\bar{O}}(b\psi)V_{\bar{O}}(a\psi)$ and $T(\bar{Q})$ is Q-regular.

3 Q-subdirect products of Q-regular semigroups

Some results on subdirect products of regular semigroups and E-inversive semigroups were characterized by Nambooripad [9] and Mitsch [10]. In this section, we show that the class of Q-regular semigroups is closed under the direct product and characterize the Q-subdirect products of Q-regular semigroups.

For arbitrary semigroup S, Petrich [14] introduced the concept of filters of S, that is, a subsemigroup F of S such that $ab \in F$ implies $a \in F$ and $b \in F$.

Example 3.1. Let $S = \{a, b, c, d, e\}$ be the semigroup with operation defined by

•	а	b	с	d	e
а	а	b	с	С	С
b	а	b	c	c	с
c	а	b	c	c	С
d	а	b	c	e	d
e	а а а а а	b	c	d	e

Then $F = \{d, e\}$ is a filter of S.

In what follows, we introduce the concept of Q-inverse filters of a Q-regular semigroup.

Definition 3.2. A regular subsemigroup T of Q-regular semigroup S(Q) is called a Q-inverse filter, if (1) $T(Q \cap E_T)$ is a Q-regular semigroup;

(2) For any
$$t_1, t_2 \in T$$
 and $t_1^+ \in V_0^S(t_1), t_2^+ \in V_0^S(t_2)$, if $t_1^+ t_2^+ \in T$, then $t_1^+, t_2^+ \in T$.

Definition 3.3. Let $S_1(Q_1)$ and $S_2(Q_2)$ be two \mathcal{Q} -regular semigroups. A homomorphism f of $S_1(Q_1)$ into $S_2(Q_2)$ is called a \mathcal{Q} -homomorphism if $Q_1f = Q_2 \cap S_1(Q_1)f$. A \mathcal{Q} -homomorphism $f: S_1(Q_1) \to S_2(Q_2)$ is called a \mathcal{Q} -isomorphism if f is bijective, in such the case, $S_1(Q_1)$ is called \mathcal{Q} -isomorphic to $S_2(Q_2)$, and denoted by $S_1(Q_1) \stackrel{\mathcal{Q}}{=} S_2(Q_2)$.

Proposition 3.4. Let $S_1(Q_1)$ and $S_2(Q_2)$ be two Q-regular semigroups. If $S(Q) = S_1(Q_1) \times S_2(Q_2)$, where $Q = \{(p_1, p_2) : p_1 \in Q_1, p_2 \in Q_2\}$, then S(Q) is a Q-regular semigroup.

Proof. Obviously, S(Q) is a semigroup. If $(s, t) \in S$, where $s \in S_1$, $t \in S_2$, since S_1 , S_2 are all Q-regular, there exists $s' \in V_{S_1}(s)$, $t' \in V_{S_2}(t)$ such that $(s', t') \in S$. It is easy to see that $(s', t') \in V(s, t)$, and so S is regular. Let

$$V_{O_1}(s) \times V_{O_2}(t) = \{(s^+, t^+) : s^+ \in V_{O_1}(s), t^+ \in V_{O_2}(t)\}.$$

Clearly, it is non-empty and contained in V(s, t). For any $(s^+, t^+) \in V_{Q_1}(s) \times V_{Q_2}(t)$, we have

$$(s,t)(s^+,t^+) \in V_{Q_1}(ss^+) \times V_{Q_2}(tt^+),$$

 $(s^+,t^+)(s,t) \in V_{Q_1}(s^+s) \times V_{Q_2}(t^+t).$

For another, let (s, t), $(x, y) \in S$. For any $((sx)^+, (ty)^+) \in V_{Q_1}(sx) \times V_{Q_2}(ty)$, since S_1, S_2 are all Q-regular, there exists $s^+ \in V_{Q_1}(s)$, $x^+ \in V_{Q_1}(s)$, $t^+ \in V_{Q_2}(t)$, $t^+ \in V_{Q_2}(s)$ such that

$$((sx)^+, (ty)^+) = (x^+s^+, y^+t^+)$$

$$= (x^+, y^+)(s^+, t^+)$$

$$\in (V_{O_1}(x) \times V_{O_2}(y))(V_{O_1}(s) \times V_{O_2}(t)).$$

Hence, S(Q) is a Q-regular semigroup.

Definition 3.5. Let $S_1(Q_1)$, $S_2(Q_2)$ be Q-regular semigroups and S(Q) be the direct product of them, where $Q = \{(p_1, p_2) : p_1 \in Q_1, p_2 \in Q_2\}$. If T(Q') is a Q-inverse filter of S(Q) and the projections

$$f_1: T(Q') \to S_1(Q_1), (s_1, s_2) \mapsto s_1,$$

 $f_2: T(Q') \to S_2(Q_2), (s_1, s_2) \mapsto s_2$

are all surjective Q-homomorphisms, then T(Q') is called a Q-subdirect product of $S_1(Q_1)$ and $S_2(Q_2)$.

Definition 3.6. Let $S(Q_1)$ and $T(Q_2)$ be two Q-regular semigroups. A mapping $\varphi: S \to 2^T$ (the power set of T) is called a surjective Q-subhomomorphism of $S(Q_1)$ onto $T(Q_2)$, if it satisfies the following:

- (1) for any $s \in S$, $s\varphi \neq \emptyset$;
- (2) for any $s_1, s_2 \in S$, $(s_1\varphi)(s_2\varphi) \subseteq (s_1s_2)\varphi$;
- (3) $\bigcup_{s \in S} s \varphi = T$;
- (4) for any $t \in S\varphi$ ($s \in S$, $t \in T$), there exist $s^+ \in V_{Q_1}(s)$, $t^+ \in V_{Q_2}(t)$ such that $t^+ \in S^+\varphi$;
- (5) for any $p_1 \in Q_1$, there exists $p_2 \in Q_2$ such that $p_2 \in p_1 \varphi$; and for any $p_2 \in Q_2$, there exists $p_1 \in Q_1$ such that $p_2 \in p_1 \varphi$;
- (6) for any $t_1 \in s_1 \varphi$, $t_2 \in s_2 \varphi$, if $t_1^+ t_2^+ \in (s_1^+ s_2^+) \varphi$, then $t_1^+ \in s_1^+ \varphi$, $t_2^+ \in s_2^+ \varphi$, where $t_i^+ \in V_{Q_2}(t_i)$, $s_i^+ \in V_{Q_1}(s_i)$, i = 1, 2.

Theorem 3.7. Let $S(Q_1)$ and $T(Q_2)$ be Q-regular semigroups, φ a surjective Q-subhomomorphism of $S(Q_1)$ onto $T(Q_2)$. If

$$\pi = \pi(S, T, \varphi) = \{(s, t) \in S \times T : t \in s\varphi\},\$$

$$Q = \{(p_1, p_2) \in Q_1 \times Q_2 : p_2 \in p_1\varphi\},\$$

then $\pi(Q)$ is a Q-subdirect product of $S(Q_1)$ and $T(Q_2)$.

Conversely, every Q-subdirect product of $S(Q_1)$ and $T(Q_2)$ can be constructed in this way.

Proof. If (s_1, t_1) , $(s_2, t_2) \in \pi$, then $t_1 \in s_1 \varphi$, $t_2 \in s_2 \varphi$. By (2), $t_1 t_2 \in (s_1 s_2) \varphi$, and so $(s_1 s_2, t_1 t_2) \in \pi$. Hence π is a subsemigroup of $S \times T$. If $(s, t) \in \pi$, then $t \in s \varphi$. By (4), there exist $s^+ \in V_{Q_1}(s)$ and $t^+ \in V_{Q_2}(t)$ such that $t^+ \in s^+ \varphi$, and so $(s^+, t^+) \in \pi$. It is easy to see that $(s^+, t^+) \in V(s, t)$. Thus π is a regular semigroup. Let

$$V_O(s,t) = \{(s^+,t^+) \in V_{O_1}(s) \times V_{O_2}(t) : t^+ \in s^+\varphi\}.$$

If $(s, t) \in \pi$, then $t \in s\varphi$. By (4), $V_Q(s, t) \neq \emptyset$. For any $(s, t) \in \pi$, $(s^+, t^+) \in V_Q(s, t)$,

$$(s,t)(s^+,t^+)=(ss^+,tt^+),$$

where $s^+ \in V_{Q_1}(s)$, $t^+ \in V_{Q_2}(t)$, $t^+ \in s^+ \varphi$. Since $S(Q_1)$, $T(Q_2)$ are \mathcal{Q} -regular, it follows that $ss^+ \in V_{Q_1}(ss^+)$, $tt^+ \in V_{Q_2}(tt^+)$. And $tt^+ \in (ss^+)\varphi$, hence

$$(s,t)(s^+,t^+) \in V_O(ss^+,tt^+) = V_O((s,t)(s^+,t^+)).$$

Similarly, $(s^+, t^+)(s, t) \in V_O((s^+, t^+)(s, t))$.

On the other hand, let $(s_1, t_1), (s_2, t_2) \in \pi$. For any

$$((s_1s_2)^+,(t_1t_2)^+)\in V_O(s_1s_2,t_1t_2),$$

since $S(Q_1)$ and $T(Q_2)$ are all \mathcal{Q} -regular semigroups, there exist $s_1^+ \in V_{Q_1}(s_1), s_2^+ \in V_{Q_1}(s_2), t_1^+ \in V_{Q_2}(t_1), t_2^+ \in V_{Q_2}(t_2)$ such that

$$((s_1s_2)^+,(t_1t_2)^+)=(s_2^+s_1^+,t_2^+t_1^+)=(s_2^+,t_2^+)(s_1^+,t_1^+).$$

Since $t_2^+ t_1^+ \in (s_2^+ s_1^+) \varphi$, by (6), $t_2^+ \in s_2^+ \varphi$, $t_1^+ \in s_1^+ \varphi$. And so

$$(s_2^+, t_2^+) \in V_Q(s_2, t_2), \qquad (s_1^+, t_1^+) \in V_Q(s_1, t_1).$$

Hence,

$$V_Q(s_1s_2,t_1t_2) \subseteq V_Q(s_2,t_2)V_Q(s_1,t_1).$$

that is, $\pi(Q)$ is a Q-regular semigroup.

For any

$$(s_1^+, t_1^+) \in V_{Q_1}(s_1) \times V_{Q_2}(t_1), \qquad (s_2^+, t_2^+) \in V_{Q_1}(s_2) \times V_{Q_2}(t_2).$$

If $(s_1^+, t_1^+)(s_2^+, t_2^+) \in \pi$, namely $(s_1^+s_2^+, t_1^+t_2^+) \in \pi$, then $t_1^+t_2^+ \in (s_1^+s_2^+)\varphi$. By (6), $t_1^+ \in s_1^+\varphi$, $t_2^+ \in s_2^+\varphi$, and so (s_1^+, t_1^+) , $(s_2^+, t_2^+) \in \pi$. Hence $\pi(Q)$ is a Q-inverse filter of $S(Q_1) \times T(Q_2)$.

By (1) and (5), the projection $f_1: \pi \to S$, $(s, t) \mapsto s$ is a surjective \mathcal{Q} -homomorphism. By (3) and (5), the projection $f_2: \pi \to T$, $(s, t) \mapsto t$ is a surjection \mathcal{Q} -homomorphism. Therefore, $\pi(Q)$ is a \mathcal{Q} -subdirect product of $S(Q_1)$ and $T(Q_2)$.

Conversely, let H(Q) be a Q-subdirect product of $S(Q_1)$ and $T(Q_2)$. Let

$$\varphi: S \to 2^T, s \mapsto \{t \in T: (s,t) \in H\}.$$

Since H(Q) is a Q-subdirect product of $S(Q_1)$ and $T(Q_2)$, there exists $t \in T$ such that $(s,t) \in H$ for any $s \in S$. Thus $t \in s\varphi$. Hence (1) holds. Since H is a subsemigroup of $S(Q_1) \times T(Q_2)$, (2) holds. Since the projection $f_2: H \to T$ is surjective, (3) holds. If $t \in s\varphi$ ($s \in S$, $t \in T$), then $(s,t) \in H$. Since H(Q) is Q-regular, there exists

$$(s^+, t^+) \in (V_{O_1}(s) \times V_{O_2}(t)) \cap H.$$

Hence $s^+ \in V_{Q_1}(s)$, $t^+ \in V_{Q_2}(t)$, and $t^+ \in s^+\varphi$, so (4) holds. For any $p_1 \in Q_1$, there exists $(p_1, p_2) \in Q = H \cap (Q_1 \times Q_2)$, and so $p_2 \in Q_2$ and $p_2 \in p_1\varphi$. Additionally, since f_2 is a surjective \mathcal{Q} -homomorphism, there exists

$$(p_1,p_2)\in Q=H\cap (Q_1\times Q_2)$$

for any $p_2 \in Q_2$. Hence $p_1 \in Q_1$ and $p_2 \in p_1 \varphi$. Thus (5) holds. Since H(Q) is a Q-inverse filter of $S(Q_1) \times T(Q_2)$, (6) holds. By the proof above, φ is a surjective Q-subhomomorphism of $S(Q_1)$ onto $T(Q_2)$. Obviously, $H = \pi(S, T, \varphi)$.

4 E-unitary covers for Q-regular semigroups

McAlister and Reilly [8] have given *E*-unitary covers of inverse semigroups by using surjective subhomomorphisms of inverse semigroups. Mitsch [10] has given some sufficient conditions on *E*-unitary, *E*-inverse covers of *E*-inversive semigroups.

In this section, we introduce the concept of the E-unitary Q-regular covers of Q-regular semigroups, in particular for those whose maximum group homomorphic image is a given group.

Let *S* be a regular semigroup. A subset *H* of *S* is said to be

- (1) full if $E(S) \subseteq H$;
- (2) *self-conjugate* if $aHa' \subseteq H$ and $a'Ha \subseteq H$ for all $a \in S$ and all $a' \in V(a)$. Let U be the minimum full and self-conjugate subsemigroup of S.

Lemma 4.1 ([15]). Let S be a regular semiroup. The minimum group congruence σ on S is given by

$$\sigma = \{(a, b) \in S \times S : (\exists x, y \in U) \ xa = by\}.$$

In [12], a subset *A* of a semigroup *S* is called right unitary, if

$$(\forall a \in A)(\forall s \in S) sa \in A \Rightarrow s \in A.$$

A is called left unitary, if

$$(\forall a \in A)(\forall s \in S) \ as \in A \Rightarrow s \in A.$$

A right and left unitary subset is called unitary.

A regular semigroup S is called E-unitary, if the set E(S) of idempotents of S is unitary.

Definition 4.2. Let $T(Q_1)$ and S(Q) be two Q-regular semigroups. $T(Q_1)$ is called an E-unitary Q-regular cover of S(Q), if $T(Q_1)$ is E-unitary, and there exists an idempotent separating Q-homomorphism of $T(Q_1)$ onto S(Q).

A group G is a Q-regular semigroup whose C-set is $\{1\}$, where 1 is the identity element of G.

Definition 4.3. Let S(Q) be a Q-regular semigroup and G be a group. A surjective Q-subhomomorphism φ of S(Q) onto G is called unitary, if

$$(\forall s \in S) 1 \in s\varphi \Rightarrow s \in E(S),$$

where 1 is the identity element of G.

Theorem 4.4. Let S(Q) be a Q-regular semigroup and G be a group. If there exists a unitary surjetive Q-subhomomorphism φ of S(Q) onto G, then $\pi(S, G, \varphi)$ is an E-unitary Q-regular cover of S(Q).

Proof. By Theorem 3.7, $T(Q_1) = \pi(S, G, \varphi)$ is \mathcal{Q} -regular whose C-set is

$$Q_1 = \{(p, 1) \in S \times G : p \in Q, 1 \in p\varphi\}.$$

For any $(s, g) \in T$, $(e, 1) \in E_T$, if

$$(s,g)(e,1) \in E_T \subseteq \{(t,1) \in S \times G : t \in E_S\},\$$

then $(se, g) \in E_T$, and so g = 1, and $(s, 1) \in T(Q_1)$. By the definition of $T(Q_1)$, $1 \in s\varphi$. Since φ is unitary, $s \in E_S$. Hence $(s, g) \in E_T$, so $T(Q_1)$ is E-unitary.

Define $f: T(Q_1) \to S(Q)$, $(s,g) \mapsto s$. Then f is a surjective \mathcal{Q} -homomorphism. Obviously, f is idempotent separating. Hence $\pi(S,G,\varphi)$ is an E-unitary \mathcal{Q} -regular cover of S(Q).

Definition 4.5. A Q-regular semigroup $T(Q_1)$ is called an E-unitary Q-regular cover of S(Q) through G, if (1) $T(Q_1)$ is an E-unitary Q-regular cover of S(Q);

(2) $T/\sigma \stackrel{\mathcal{Q}}{\cong} G$, where σ is the minimum group congruence on $T(Q_1)$.

Lemma 4.6. Let $S(Q_1)$, $T(Q_2)$ be two Q-regular semigroups and $f: S(Q_1) \to T(Q_2)$ be a Q-homomorphism. Then $S(Q_1)/\ker f \stackrel{Q}{\cong} S(Q_1)f$.

Proof. It is easy to see that the mapping $\phi: S(Q_1)/kerf \to S(Q_1)f$ is an isomorphism. Since f is a \mathcal{Q} -homomorphism, we have

$$(Q_1 kerf)\phi = Q_1 f = Q_2 \cap S(Q_1) f = Q_2 \cap (S(Q_1) kerf)\phi.$$

Thus ϕ is also a Q-homomorphism and $S(Q_1)/kerf \stackrel{Q}{\cong} S(Q_1)f$.

Theorem 4.7. If there exists a unitary surjective Q-subhomomorphism φ of S(Q) onto G, then $T(Q_1) = \pi(S, G, \varphi)$ is an E-unitary Q-regular cover of S(Q) through G.

Proof. By Theorem 4.4, $T(Q_1) = \pi(S, G, \varphi)$ is an E-unitary \mathcal{Q} -regular cover of S(Q). We prove that $T/\sigma \stackrel{\mathcal{Q}}{\cong} G$ as follow.

It follows from Theorem 3.7 that $T(Q_1)$ is a \mathcal{Q} -subdirect product of S(Q) and G. Hence G is the \mathcal{Q} -homomorphic image of $T(Q_1)$ under the projection $f_2: T(Q_1) \to G$, $(a,g) \mapsto g$. Since G is a group, $kerf_2$ is a group congruence on $T(Q_1)$, and so $\sigma \subseteq kerf_2$. Conversely, if $(a,g) \in (b,g)kerf_2$, then $(a,g)f_2 = (b,h)f_2$, so that g = h. Since $T(Q_1)$ is \mathcal{Q} -regular, for any $(b,g) = (b,h) \in T(Q_1)$ there exists $(x,y) \in V_{Q_1}(b,g)$ such that

$$(b,g)(x,y) = (bx,gy) \in E_T \subseteq \{(e,1) \in T : e \in E_S\}.$$

Hence $bx \in E_S$ and gy = 1, that is $g^{-1} = y$. So $(x, g^{-1}) \in T(Q_1)$ and $(bx, 1) \in Q_1$. Now $(xa, 1) = (x, y)(a, g) \in T$. Hence, by the definition of T, $1 \in (xa)\varphi$. Notice that φ is unitary, we have $xa \in E_S$. Thus $(xa, 1) \in E_T$, and so

$$(bx, 1)(a, g) = (bxa, g) = (b, h)(xa, 1).$$

Since (bx, 1), $(xa, 1) \in E_T \subseteq U$, by Lemma 4.1, $(a, g)\sigma(b, h)$. Thus $kerf_2 \subseteq \sigma$. Hence $\sigma = kerf_2$. Therefore, it follows from lemma 4.6 that $T/\sigma = T/kerf_2 \stackrel{Q}{\cong} G$.

Remark 4.8. As we know, the class of Q-regular semigroups properly contains the class of V-regular semigroups. In fact, if we restrict the C-set Q of a Q-regular semigroup S to the set of idempotents, then the subdirect products of V-regular semigroups can be constructed in a similar way and we can also use this contruction to study the E-unitary cover for V-regular semigroups.

Acknowledgement: Research Supported by Fundamental Research Funds for the Central Universities.

References

- [1] Yamada M., Sen M.K., \mathcal{P} -regularity in semigroups, Mem. Fac. Sci. Shimane Univ., 1987, 21, 47–54
- [2] Zhang M.C., He Y., The structure of \mathcal{P} -regular semigroups, Semigroup Forum, 1997, 54, 278–291

[3] Onstad J.A., A study of certain classes of regular semigroups (PhD thesis), 1974, Nebraska-Lincoln: Nebraska-Lincoln University

- [4] Gu Z., Tang X.L., On V^n -semigroups, Open Math., 2015, 13, 931–939
- [5] Nambooripad K.S.S., Pastijn F., V-regular semigroups, Proc. Roy. Soc. Edinburgh Sect. A, 1981, 88, 275-291
- [6] Zheng H.W., Ren H.L., On V-regular semigroups, Int. J. Algebra, 2010, 4, 889–894
- [7] Li Y.H., P-regular semigroups and Q-regular semigroups, Southeast Asian Bull. Math., 2003, 26, 967-974
- [8] McAlister D.B., Reilly N.R., E-unitary covers for inverse semigroups, Pacific J. Math., 1977, 68, 161–174
- [9] Nambooripad K.S.S., Veeramony R., Subdirect products of regular semigroups, Semigroup Forum, 1983, 27, 265-307
- [10] Mitsch H., Subdirect products of E-inversive semigroups, J. Austral. Math. Soc., 1990, 48, 66-78
- [11] Zheng H.W., P-subdirect products of P-regular semigroups, Soochow J. Math., 1994, 20, 383-392
- [12] Howie J.M., Fundamentals of Semigroup Theory, 1995, Charendon Press
- [13] Feng X.Y., Group congruences on Q-regular semigroups, Int. J. Algebra, 2015, 9, 85–91
- [14] Petrich M., Introduction to Semigroups, 1973, Merrill Publishing Company
- [15] LaTorre D.R., Group congruences on regular semigroups, Semigroup Forum, 1982, 24, 327–340