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Abstract: The paper belongs to the qualitative theory of half-linear equations which are located between
linear and non-linear equations and, at the same time, between ordinary and partial differential equations.
We analyse the oscillation and non-oscillation of second-order half-linear differential equations whose
coefficients are given by the products of functions having mean values and power functions. We prove that
the studied very general equations are conditionally oscillatory. In addition, we find the critical oscillation
constant.
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1 Introduction

The aim of this paper is to contribute to the rapidly developing theory of conditionally oscillatory equations.
The topic of our research belongs to the qualitative theory concerning the oscillatory behaviour of the half-
linear differential equation

[R(B(xX)] +S(t)®(x) =0, &(x)=|x'sgnx, p>1, (1)

where coefficients R > 0, S are continuous functions. Function & is the so-called one dimensional p-Laplacian
which connects half-linear equations with partial differential equations. Of course, some results obtained for
equations of type (1) can be transferred or generalized to (elliptic) PDEs (see, e.g., the last section of [1]).

We recall some basic facts about the treated topic, a short historical background, and the motivation of
our research. First of all, we point out that one of the biggest disadvantages of the research in the field of half-
linear equations is the lack of the additivity of the solution space (it is the reason for the used nomenclature).
Nevertheless, Sturm’s separation and comparison theorems remain valid (see, e.g., [2, 3]). Therefore, we can
classify half-linear equations as oscillatory and non-oscillatory as well as linear equations. More precisely,
Sturm’s separation theorem guarantees that if one non-zero solution is oscillatory (i.e., its zero points tend
to infinity), then every solution is oscillatory and Eq. (1) is called oscillatory. There exist important equations
whose oscillatory properties can be determined simply by measuring (in some sense) their coefficients.
Searching for such equations is based on the study of the so-called conditional oscillation.
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On behalf of clarity, we consider the equations of the form
[R()®(x")] +~C(t)P(x) =0, ~eR. )

We say that Eq. (2) is conditionally oscillatory if there exists a constant I" such that Eq. (2) is oscillatory for
~ > I and non-oscillatory for v < I". The constant I" is usually called the critical oscillation constant of Eq. (2).
Note that such a critical oscillation constant depends on coefficients R > 0 and C and it is non-negative—
this observation comes directly from Sturm’s comparison theorem (see Theorem 2.3 in Section 2 below). The
conditionally oscillatory equations are very useful as testing and comparing equations.

The first conditionally oscillatory half-linear equation was found in [4], where the critical oscillation
constant I" = (p — 1)? /p? was revealed for the equation

[B(x)] + tlpqs(x) - 0.
Then, motivated by results about linear equations (see [5]), the equation
4 4 D
[R()D(x')] + VTS%()() =0 3)

with positive periodic functions R, D was studied in [6] and it turned out that Eq. (3) is conditionally
oscillatory as well. Later, it was proved that the critical oscillation constant can be found even in the case
of Eq. (3) with coefficients having mean values (see [1]).

As a follow-up of the above mentioned results, a natural question arose, whether it is possible to remove
t? from the potential of Eq. (3) and to preserve the conditionally oscillatory behaviour of the considered
equation. Concerning this research direction, we mention papers [7-9] which are, together with paper [1],
the main motivations of the results presented here. We should emphasize that, although the first motivation
comes from the linear case, our research follows a path in half-linear equations and the linear case remains a
special case for p = 2. Hence, our result is new even for linear equations which is demonstrated in Corollary 3.5
at the end of this paper.

To conclude this introductory section, we mention some books and papers that are connected to the
treated topic. The theory of half-linear equations is thoroughly described in the already mentioned books
[2, 3]. The direction of research which leads to perturbed equations is treated in many papers. We mention
at least papers [10—15]. Half-linear equations are close to non-linear equations, where the p-Laplacian is
replaced by more general functions. For results concerning such a type of equations, we refer to [16-21].
We should not forget to mention the discrete counterparts of results mentioned in this section. The theory of
conditionally oscillatory difference equations is not as developed as the continuous one. Nevertheless, some
results are already available in the literature (see [22, 23]). Some basic results are known even for dynamic
equations on time scales which connect and generalize the continuous and discrete case. For such results,
see [24, 25].

The rest of this paper is divided into two sections. The next section contains the description of the used
transformation, where we derive the so-called adapted Riccati equation and we state preparatory lemmas.
The last section is devoted to our results. We also mention a corollary concerning linear equations (to
demonstrate the novelty of the main result and its impact to linear equations) and an illustrative simple
example.

2 Preparations

First of all, we recall the definition of mean values for continuous functions.

Definition 2.1. Let a continuous functionf : [T, co) — R be such that the limit

t+a

hm f f(s)ds
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is finite and exists uniformly with respect to t € [T, co). The number f is called the mean value of f.

Obviously, the mean value of any 3-periodic continuous function f is

B 1 T+0
F=3 / f(s)ds, )

where 7 is arbitrary.
To prove our results, we use the generalized Riccati technique which is described below. We consider the
second-order half-linear differential equation

[tr(o(x)] +t* Ps(t)d(x) =0, &(x) =[x " sgnx, p>1, (5)

where o < 0 and r, s are continuous functions such that the mean values of functions r/(-P) and s exist, the
mean value s is positive, and

0<r :=inf{r(t), te R} <r" :=sup{r(t), t e R} < oo. (6)
We denote by g the number conjugated with the given number p > 1, i.e.,
p+4q=pq. @)

Immediately, we obtain the inverse function to ¢ in the form &' (x) = [x|9™! sgn x.
The basis of our method is the transformation to the Riccati half-linear equation which can be introduced
as follows. We consider a non-zero solution x of Eq. (5) and we define

W(t) = € r(t) ( ’;'(f)) ) . (8)

Considering Eq. (5), the differentiation of (8) leads to the Riccati half-linear equation
w(t) + t°Ps(t) + (p - 1) (t*r(6)) " w(t)|" = . )
The form of Eq. (9) is not sufficient enough for our method. Hence, we apply the transformation ((t) =

—t"~*"1w(t) which leads to the equation

(1) =1 [(p-a-1)c0) + 5(0)+ (0 - P Ol(0)]. (10)

Eq. (10) is called the adapted generalized Riccati equation for the consistency with similar cases in the
literature.

Further, in this section, we formulate auxiliary results that will be needed in the following section within
the proof of Theorem 3.1 below. We begin with properties of functions having mean values.

Lemma 2.2. Let a continuous function f : [T, c0) c (0, c0) — R have mean value f. For an arbitrarily given
a > 0, there exists a constant M(f) > O such that

t+b

[ £yar| < mef) (an
t

and
t+b
(1D 4 MO 12
/T t

forallt>T,be|0,a].

Proof. The statement of the lemma follows from the beginning of the proof of [1, Theorem 8] (see directly
inequalities (48) and (51) in [1]). O
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Next, we recall the well-known Sturm half-linear (also called the Sturm—Picone) comparison theorem.

Theorem 2.3. Let 7, 7,3, § be continuous functions satisfying ¥(t) > ¥(t) > 0 and 3(t) > §(t) for all sufficiently
large t. Consider the pair of equations

[F(t)e(x)] +3(t)d(x) =0, (13)

[F(t)o(x')] +3(t)d(x) = 0. (14)

() IfEq. (14) is non-oscillatory, then Eq. (13) is non-oscillatory.
(I) If Eq. (13) is oscillatory, then Eq. (14) is oscillatory.

Proof. See, e.g., [3, Theorem 1.2.4]. O

Now, we formulate the condition which is equivalent to the non-oscillation of Eq. (5).

Theorem 2.4. Egq. (5) is non-oscillatory if and only if there exists a € R and a solution w: [a, o) — R of Eq. (9)
satisfying either

w(t) = frws(r)dﬂ (r-1) f (+*r()) " w(r)|"dr > 0 (15)
or - -

w(t) = [ " Ps(rydr+ (p-1) [ (#r(r)" ™ w(r)7dr <o (16)
forallt > a.

Proof. See, e.g., [3, Theorems 2.2.4 and 2.2.5], where it suffices to consider that the used divergence of
[ (*r(7))" "7 dr follows from « < 0 and from (6) and the used convergence of [ *° 7*Ps(7) dr is proved
as (20) in [1]. O

The upcoming lemma describes the connection between the behaviour of solutions of Eq. (5) and the adapted
Riccati equation (10).

Lemma 2.5. If Eq. (5) is non-oscillatory, then there exists a solution ¢ of the associated adapted generalized
Riccati equation (10) such that ¢(t) < O for all large t € R.

Proof. We apply Theorem 2.4. From the positivity of 5 (see also [1]), it is seen that (16) cannot be valid for all
large t, i.e., we obtain (15). Hence, there exists a non-negative solution w of Eq. (9) on some interval [T, o0),
i.e., there exists a non-positive solution ¢ of Eq. (10) on [T, o). O

The last lemma contains the opposite implication to the one in Lemma 2.5.
Lemma 2.6. If there exists a solution ¢ of Eq. (10) for all large t € R, then Eq. (5) is non-oscillatory.

Proof. The statement of the lemma follows directly from the half-linear version of the Reid roundabout
theorem (see 3, Theorem 1.2.2] and also [1, Lemma 4]). O

3 Results

In this section, we formulate and prove our results. For reader’s convenience, we slightly modify Eq. (5) as
follows. We consider the equation

[ i) + Ps(D(x) =0, B(x) = ' senx, p>1, (17)
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where t € R is sufficiently large, g is the number conjugated with p (see (7)), « < 0, and r, s are continuous
functions having mean values such that (6) is satisfied. Note that s can be non-positive. The only difference
between Eq. (5) and Eq. (17) is the power —p/q of r. The reason for this modification is purely technical (it
leads to more transparent calculations below) and it does not mean any restriction (consider (6)).

Theorem 3.1. Let us consider Eq. (17).

@D I )
(L) P>, (18)
p-a-1
then Eq. (17) is oscillatory.
a It
p
(L) sl <1, (19)
p-a-1

then Egq. (17) is non-oscillatory.

Proof. In the both parts of the proof, we will consider such a number a > 2 for which (see Definition 2.1
together with (18) and (19))

t+a t+a p-1

_p \|1 1

(p—a—l) atfs(f)dT atfr(T)dT Sl+e 20)
or

P p(q t+a 1 t+a p-1

(m) atfs(r)dr a[r(r)dr <1-¢ 1)
for all considered t and for some ¢ € (0, 1). We can rewrite (20) and (21) into the following forms

1 t+a a1 (1 t+a 1-p

*[S(T)dT>(1+€)(pL) 7\/1’(’7’)(17’ (22)

a )4 a
and 1 t+a » (1 t+a 1-p

Ca—
1 s(T)dT<(1-g)(7) ([r(T)dT) . 23)
a tf p a

Using (6), from (22) and (23), we obtain the existence of L > 0, for which

t+a

t+a 1-p
lefs(T)dT—(p_z_l)p((lztfr(T)dT) > L (24)

t

and

+a +a -
! ]5(7) dr - (p‘%‘l)p (; ] r(r)dr) e 25)
t t

for all considered ¢t. Indeed, one can put

v —1\P _
L= E(w) [r+]1 p
p
in the both cases.
We will consider the associated adapted generalized Riccati equation in the form of Eq. (10) which
corresponds Eq. (17), i.e., the equation

() =5 [(p-a-1)¢(t) +s(t) + (p - Dr(H)C(OI] . (26)

~| =
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At first, we show that any solution ¢ of Eq. (26) defined for ¢ > T is bounded from below, i.e., we show that
there exists K > 1 satisfying

c(t)>-K, t>T. @7)
On the contrary, let us assume that
li{n inf ¢(t) = —o0 (28)
or
liminf¢(t) = —o0 (29)
t—>T6

for some Ty € (T, c0). For given a and function s, let us consider M(s) from Lemma 2.2. Let P > 0 be an
arbitrary number such that

(P-Dry’-(p-a-1)y>M(s), y=P. (30)

In particular, considering inf;. 1 ((t) = —oo, the continuity of ¢ implies the existence of an interval [¢1, ¢ ]
such that ¢(t1) < —P, ((t) < —Pforallt € (t1, t2], and t; — t; € (0, a]. Without loss of generality, we consider
T > 2. Using (12) in Lemma 2.2, the form of Eq. (26), and (30), we have

I
—
J\r\
~
\]
N—
o
\]

¢(t2) = ¢(tr)

_ / (p-a-1)¢(r) +5(r) + (0~ (DK
8 ’ (31)

>[7M(S)+S(7) def@dT—

T
ty ty

ty

f@dT

t

M M
>0- M(s) > _M(s) > -M(s).
t1 T
This inequality proves that (29) cannot be valid for any T, € R (consider that a > 2 is given). Therefore, there
exist arbitrarily long intervals, where ¢(t) < —P. Let I = [t3, t4] be such an interval whose length is at least 2
(i.e., t4 — t3 > 2) and t4 — t3 < a. As in (31) (consider that t3 > 2), we obtain
ty

C(M)-C(t;):f('(r) dw/@dT_

t3

ty

t3

(32

zM(s)log% - %j) > M(s) (1og% - %) > 0.

Of course, (32) means that ¢(t4) > ((t3). In fact, (31) and (32) guarantee that
ligninfg‘(t) > —o00,

which contradicts (28). Hence, (27) is valid.
In the both parts of the proof, we will also apply the estimation

t+a t+a

f@dT—f@dT
t T

t

< %M(s) (33)

for all large ¢t and M(s) from Lemma 2.2. We use the mean value theorem of the integral calculus to get this
estimation. More precisely, considering t € [t1, t2], where t; is sufficiently large, since s is integrable and
x(t) = t ' is monotone for t € [t1, t,], there exists t3 € [¢1, t2] such that

t t3 6

[@drzéfs(r) dT+éfS(T) dr. (34)

t t t3
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Immediately, from (34), we obtain (see (11) in Lemma 2.2)

t+a 1 1 t+aS( ) 1 t+b 1 t+a
T
[(t_ ;)S(T) dT [t dT—? t S(T) dT—Mt{S(T) dT
+

t+a t+a t+a (35)
a a
_ tl{s(r)drﬂ_ HfS( L Hfbs(f)dr < SM(s),

where b € [0, a]. It is seen that (35) gives (33).

Part (I). Evidently (see (18)), s > 0. By contradiction, let us suppose that Eq. (17) is non-oscillatory. From
Lemma 2.5, we know that there exists a non-positive solution ¢ of Eq. (26) on some interval [T, oo). For this
solution ¢, we introduce the averaging function (ave by

t+a

Cave(t) := 2 f ¢(r)ydr, t>T. (36)
t
We know that (see (27))
Cave(t) € (-K,0], t>T. 37)
For t > T (see Eq. (26)), we have
t+a t+a
Ge® =7 [(@ar=2 [ 2[p-a-1cm) +5() + - DrOEEF dr. 68
t t

For t > T, we also have (see (27) and (33))

t+a

[ 2 w-a-1¢) 50+ - D] dr

t

t+a

[ [w-a-1)¢@) +5() + (0 - Drole(n))] dr

t (39)
t+a 1 1 t+as(7_) HHS(T)
Sf(?ff)[(p a-1DK+(p-1)r'K'] dr+ deT*de

t t t
2
St(tafa)[(p a-1)K+(p- 1)r+Kq]+—M(s) t2’
where
N:=a(p-a-1)K+a(p-1)r'K? + M(s). (40)
For t > T, we obtain (see (38), (39), and (40))
t+a
Gue(6)2 / (0= a- 1@ +5() + (- DI - T dr. (@
If we put ,
x= 2= (2 0 ) Ly e B @)
pt a / qt /
for t > T, then we have (see (41))
t+a
Guel)2 22 [ (0= 1)c(r) dr 4 X(0) + ¥(0) - 5
' “3)

t+a t+a

s(r) dr - X(t) + % t[(p - Dr(n)c(n)|* dr-Y(t), t>T.
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Taking into account (43), for large t, we will show the inequalities

N L
— < —,
t2 "~ 3t

t+a
% /(p Ca—1)c(r) dr + X(8) + Y(£) > 0,

t+a

altt[s(r)dr—X(t) z%

>

t+a

= [ - D@l dr-v(e)

t

L
<.
3t

(44)

(45)

(46)

(47)

The first inequality (44) is valid for all ¢ > 3N/L. Hence, we can approach to (45). It holds (see (36) and (42))

t+a

% /(p Ca—1)c(r) dr + X(8) + Y (1)

-3 <p—a—1>cave<t>+W(§fr(T> dT)

fom (z; / r(r) d)]

We recall the well-known Young inequality which says that

p q
A—+B——ABZO
p q

holds for all non-negative numbers A, B. We take A = (th(t))l/p and B = (th(t))l/q. Hence,

p

AP i . (p—oz—l)p P t+a g
p_tX(t)_p(at/r(T) dr) ,

B1 _ _ |Gave ())|? [ P ‘
? - tY(t) = T (a[r(T) dr),

and (see (37))

AB = (ptX(t))? (qtY(t))s

1 1

t

:(p—a—l)(’j f r(7) df) <ave<t>|(§ [ dT) = (P~ a = Dane(0)-

Finally, considering (48) and (49), we have
t+a

%/(p—a—l)@(r) d7'+X(t)+Y(t):1[?:+qu—AB:|>0,

which proves (45).

(48)

(49)
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Next, (46) is valid. Indeed, we have (see (24) and (42))

B )4
t+a t+a t+a

alttfs(T)dT—X(t):1 let/S(T)dT_(p_O;—l)p (itfr(T) dT)

[ t+a t+a 1-p
= Cllfs(r)dr—(p_;[_l)p(cllv/r(r) dT) ]>§

~| =

t

for all considered t.
To prove (47), we use the form of Eq. (26) together with (6), (12) from Lemma 2.2, and with (27) which
immediately give

t+j

L DK (K s() (50
St[T[(p a-DK+(p-1)r K]d7+t[ . dr
Lp-a- _rtge] s MG) _Q
< t[(p a-1)K+(p-1)r'K']+ o1 57
fort> Tandi,je[0,a],i<j, where
Q:=a[(p-a-1)K+(p-1)r'K]+ M(s).
Hence, we have
|§(t+j)—((t+i)|§%, t>T,i,je[0,a],
which implies (see (36))
€) ~ Gae(t)] < 2 1)

forallt> Tand 7 € ¢, t +a].
Further, since the function x(t) = |t|? is continuously differentiable on [-K, 0], there exists C > O for
which
W1 - |z"| < Cly-zl, y,z€[-K,0]. (52)

Thus, we have (see (6), (7), (27), (37), (42), (51), and (52))

t+a

— [ - Drel dr-v(o)

t+a t+a
-7 le / (P - DrOK @I dT_'Cave;t)'q(ﬁ [ () dT)
-1 tra ( _1)r+ t+a
Spat t[||C(T)|q—|<ave(t)|q|r(7’) dTS19m¢[||C(T)|q—Cave(t)|q| dr

t+a

<D™ L 06(r) - Guel0)] 7 <

(p-1)r'cq
at t2
t
for t > T which gives (47) for all sufficiently large t.
Altogether, (43) together with (44), (45), (46), and (47) guarantee
L L L L

() 20— =+~ -~ == 53
Gae(0)20- S+ =50 = 5 53
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for all large t. From (53) it follows that lim¢— o Cave (t) = oo. In particular (see (36)), ¢ is positive at least in one
point which is a contradiction. The proof of part (I) is complete.

Part (II). Without loss of generality, we can assume that s > 0. Indeed, for s < 0, it suffices to replace
function s by function s + k for a constant k > 0 such that s + k > 0 and

(#)p G+ <1

and to use Theorem 2.3.
Let to be a sufficiently large number. We denote (see (6))

Z:= (pr_)l_p.
p-a-1

Let ¢ be the solution of the adapted generalized Riccati equation (26) satisfying

to+a t-p
p
C(to):_((p—a—l)a t([ I’(T)dT) €(-2Z,0). (54)

Based on Lemma 2.6, it suffices to prove that this solution exists for all ¢ € [to, o). Let [to, T) be the maximal
interval, where the solution ¢ exists. Note that T € (to, oo) U {0 }. In fact, considering the continuity and the
boundedness from below of ¢ (see (27)), it suffices to show that ¢(t) < O forall ¢ € [¢o, T).

Let us consider an interval J := [¢to, t1) such that ((t) € (-2Z,0) for t € J. For any t,, t3 € J n [to, to + a],
t; < t3, we have (see (6) and (12) in Lemma 2.2, cf. (50))

iCI(T) dr

| [ - a- 16 +5() + (- DO dr

[¢(t3) = ¢(t2)| =

(55)
s(7)
gf [(p-a-1)2Z+(p-1)r (22)7] dr f—d
T
t, ty
1 to+a M( ) é
<= / [(p-a-1)2Z+(p-1)r" (22)7] dr+ —2) ¢ =2
to ; ty t,
0
where
Q:=al[(p-a-1)2Z+(p-1)r" (22)7] + M(s).
Since ty is given as a sufficiently large number, from (55), we see that
¢(t) e (-2Z,0), te[to,to+al. (56)
In addition, (55) means that 3
|¢(to) = ¢ ()] < %, 7 € [to, to + a]. (57)
Similarly as in the first part of the proof, we introduce
1 t+a
Cave(t) = E / C(T) dT (58)

t

for t from a neighbourhood of t. It holds (see (56), (57), and (58))

Cove(t0) € (-22,0),  [Cave(to) — C(t0)] < % (59)
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We have (see Eq. (26), cf. (38))
to+a to+a

Céve(to):éfC'(T)dT:%f%[(p—a—1)@“(7)+s(T)+(p—1)r(T)|C(T)|q] dr. (60)

to to
In addition, as in the first part of the proof (see (39)), we have

to+a

2@ -a-1)¢@) +5() + (2 - DI dr

& [ (a1 +56) + (- Dreolen) ] o) < 5

where N is defined in (40) (we can also put K = 22).
Hence, from (60) and (61), we obtain (cf. (41))

to+a

Guelto) < = [ [(p=a=1)c(r) +5(r) + (0= DI+ 1 | @

to

to+a 1-p
X(to) = (p=a-1" (i f r(r) dr) ,

If we put (cf. (42))

p 7
» tot+a 1-p
Y(t@::“’”{‘[”(‘;fr(r) dr) , (64)
to

then we have (see (62))
to+a to+a

mm«i[w>mmH—fm1wqummT

to+a

1 X(to) Y(to) N
+at0/(p a-1)¢(r)dr+ ——= o o +t(2).

The aim of our process is to prove that (ae(to) < 0. To obtain this inequality, it suffices to show (see (65))

to+a

*[S(T)—X(to)drs—L, (66)
to
to+a
i/w—mmm&qHMd <L
to+a
%f(p—a—1)C(T)dT+X(to)+Y(t0)g%,

to
N_L
to 4

(67)

(68)

(69)

Evidently, (69) is valid, because to is sufficiently large. We show that (66) is valid. We have (see (25), (63))

= 7%5(7) X(to) dr = = fO/JraS(T) dr - (p_(;%l)p (I; Tar(T) dT) ’

to

1 to+a p (1 to+a 1-p
Can
-2 st dT—(T) (afr(T) dr) <-L,

to

to

to
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i.e., we obtain (66).
Now we prove (67). Let D > 0 be such that (cf. (52))

Ily|? -1z <Dly -z,  y,ze[-2Z,0].
Using (6), (7), (54), (56), (57), (64), and (70), we have

to+a

= [ - D@ - V(o) dr

to

to+a to+a 1-p
2 [ - vreknear - @ (if’“) dT)

to 1 to

12/ <p—1>r(r><<r>qdr—’;|<<to)|‘I(jz [ ) dT)

to to

to+a to+a

gp_l\/rﬁwkhﬂq—KawﬂdTﬁgm}Ur/thﬂq—KUQWNT

a
to

< THDK(T) ~((to)| dr < EZUT th Q,,  DAp-vr
) a to ’ ) 4 to fo fo .

For a sufficiently large number t, inequality (67) follows from (71).

It remains to prove (68). We have (see (58), (63), and (64))

to+a

it[<p—a—1><<r>dr+X<to>+Y<to):(p—a—1><ave<to)

to+a 1-p to+a 1-p
+ (p—c;— 1) (Z f r(r) dr) + 7(19_0;_ D (i f r(r) dr) .

to to

Let us assume that (see (54))

to+a 1-p
14
Cave(to) = ((to) :((p—a—l)a [0[ r(T)dT) .

Then, (72) gives

to+a

. [ (p-a- 1) dr e xeo) + ¥t

to+a 1-p
- p
__(p_a_l)((p—oe—l)a EO/ T(T)dT)

to+a 1-p tota 1-p
+(p—0;—1)p (Z/Y(T) dT) +(p_0;—1)p (Zfr(T) dT)

to to
to+a 1-p 11
14
=(p-a-1) —fr d (—1+7+7):O.
(- )(at <T>T) ot
0
Using (59) (consider (73)), one can see that (74) gives (68) for large to.
Finally, applying (66), (67), (68), and (69) in (65), we have
L L L L

1
Czllve(to)ﬁg(—l,+z+z+z):_7<0,

DE GRUYTER

(70)

(71)

(72)

(73)

(74)
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i.e., we have (see (58))
to+a) — ((t
Cave(to) = w <0,
i.e., ((to + a) < ¢(to). Since we can replace to by an arbitrary number ¢ > t, in the process above, we obtain

¢(t+a)<¢(t)and¢(7) <Oforall 7 € ¢, t + a] if

t+a 1-p

P
¢(t) = - (p_a_l)a/r(r)dr

for some t € (to, oo). Considering the fact that a can be arbitrarily large (see Definition 2.1 and (6)) together
with (55) and Cave(t) < 0, we obtain that ¢(t) < O for all t > to. The proof is complete. O

Remark 3.2. Now we describe the connection of Theorem 3.1 and our motivation. We repeat that our basic
motivation comes from papers [1, 7-9]. To the best of our knowledge, the strongest known results about non-
perturbed conditionally oscillatory half-linear differential equations are proved just in those articles. In [1, 8, 9],
only the case o = 0 is analysed. Note that, in [8], the considered type of equations differs from Eq. (17). In [7],
the general form of Eq. (17) is treated. The process in [7] (and also in [8, 9]) is based on the modified Priifer
transformation. Hence, it is entirely different from the method used in this paper which enables us to cover new
types of equations. The coefficients of equations considered in [7] has to be restricted in a certain sense. This
restriction is removed in the presented results.

Remark 3.3. Theorem 3.1 does not cover the case when

p
(L) s o1, (75)
p-a-1

It is known (see any of papers [10-15]) that this case is not generally solvable. More precisely, for

r(t) =1, S(t)z(w)p,
b
Egq. (17) is non-oscillatory (see [7]) and, at the same time, there exist continuous functions r, s satisfying (75) for
which Eq. (17) is oscillatory (for a = 0, see again papers [10—15]). We conjecture that Eq. (17) is non-oscillatory
in the situation given by (75), where the coefficients r, s are periodic functions (see also (4)). Our conjecture is
based on results of [26, 27], but it remains an open problem.

Toillustrate Theorem 3.1, we mention the following example of a simple equation whose oscillatory behaviour
does not follow from any previously known result (also for p = 2, i.e., in the case of linear equations). In fact,
as far as we know, such equations with general « are not studied in the literature.

Example 3.4. Let c, d + O be arbitrarily given. We define the function s : [1, oo) — R by the formula

c+4ny/nd(t-n), te[n,n+%);
c+4nynd(n+ 2 -t), teln+t,n+2);
c+4nynd(t-n- ), te[n+2,n+2);

S(t) =

c+4n\/ﬁd(t—n—%), te[n+4<2;1)’n+4<n;rll)+1);
C+4”\/ﬁd(" + 40:% - t), te [n + 4(";;)+1,n + 4(";?*3);

c+4ny/nd(t-n-1), te[n+l‘("z#,n+1),

where n € N. One can easily show that the mean value of this function exists and that's = c. We consider the
equation
[t“a(x")] +t*Ps(t)@(x) = 0, (76)
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wherep > 1 and « < O are arbitrary. From Theorem 3.1, we know that Eq. (76) is oscillatory for ¢ > (p—a—-1)? /p?
and non-oscillatory for c < (p —a - 1)? /pP.

We repeat that we obtain new results even for linear equations. With regard to the importance of this fact, we
formulate the corresponding consequence of Theorem 3.1 as the corollary below.

Corollary 3.5. Let us consider the equation

X 1 s
[tar(t)] *anX=0, 77)

where t € R is sufficiently large, o > 0, and r, s are continuous functions having mean values 7, s such that (6)
is satisfied.

(D) If47s> (1+a)?, then Eq. (77) is oscillatory.

(I) If 475 < (1 + «)?, then Eq. (77) is non-oscillatory.

Proof. The corollary follows directly from Theorem 3.1. O
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