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Abstract: In this paper, we consider positively weak measure expansive homeomorphisms and �ows with
the shadowing property on a compact metric space X. Moreover, we prove that if a homeomorphism (or
�ow) has a positively weak expansive measure and the shadowing property on its nonwandering set, then its
topological entropy is positive.
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1 Introduction
The main goal of the study on dynamical systems is to understand the structure of the orbits for homeomor-
phisms or �ows on a compact metric space. To describe the dynamics on the underlying space, it is common
to study the dynamic properties such as shadowing property, expansiveness, entropy, etc. It has close relations
with stable or chaotic and sensitive properties of a given system.

Recently, Morales [1] has introduced the notion of measure expansiveness, generalizing the concept of
expansiveness, and Lee et al. [2] has introduced a notion of weak measure expansiveness for �ows which
is really weaker than measure expansive �ows in [3]. The concept of positively measure-expansiveness is
introduced by [1] as a generalization of the notion of positively expansiveness, and positively measure
expansive continuousmaps of a compactmetric space are studied from themeasure theoretical point of view.
Also Morales [4] proved that every homeomorphism exhibiting positively expansive measures has positive
topological entropy, and its restriction to thenonwandering set has the shadowingproperty. Based on this,we
consider the shadowing property and entropy for the positively weak measure expansive homeomorphisms
and �ows, respectively.

In this paper, we show that if a homeomorphism (or �ow) has a positively weak expansive measure and
the shadowing property on its nonwandering set, then its topological entropy is positive. This is a slight
generalizationof themain result in [4].Wealso consider a relationshipbetween theweakmeasure expansivity
with shadowing property and topological entropy.
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1.1 Basics for positively weak measure expansive homeomorphisms

As pointed out by Morales [1], a notion generalizing the concept of expansiveness is called measure expan-
siveness. Lee et al. [2] introduced a notion of weak measure expansive homeomorphism which is weaker
than the notion of measure expansive homeomorphism. From this, we study the various properties of
weak measure expansive homeomorphisms, such as sensitivity, equicontinuity, shadowing property, and
topological entropy.

Let (X, d) be a compact metric space and f be a homeomorphism on X. A homeomorphism f ∶ X → X
is called expansive if there is δ > 0 such that for any distinct points x, y ∈ X there exists i ∈ Z such that
d(f i(x), f i(y)) > δ. Given x ∈ X and δ > 0, we de�ne the dynamic δ-ball of f at x,

Φ
f
δ(x) = {y ∈ X ∶ d(f i(x), f i(y)) ≤ δ for all i ∈ Z}.

(DenoteΦδ(x) byΦf
δ(x) for simplicity if there is no confusion.) Thenwe see that f is expansive if there is δ > 0

such that Φδ(x) = {x} for all x ∈ X.
Let β be the Borel σ-algebra on X. Denote byM(X) the set of Borel probability measures on X endowed

with weak∗ topology. LetM∗(X) = {µ ∈ M(X) ∶ µ be nonatomic}. A homeomorphism f ∶ X → X is said to be
µ-expansive if there is δ > 0 (called an expansive constant of µ with respect to f ) such that µ(Φδ(x)) = 0 for
all x ∈ X. In the case, we say that f has expansive measure µ. Note that Φδ(x) = ∩i∈Zf−i(B[f i(x), δ]), where
B[x, δ] = {y ∈ X ∶ d(x, y) ≤ δ}.

Nowwe�rst introduce the notions of a �nite partition P of X and a dynamical P-ball of a homeomorphism
f on X. We say that a �nite collection P = {A1, A2,⋯, An} of subsets of X is a �nite δ-partition (δ > 0) of X
if each Ai is disjoint, measurable, intAi ≠ ∅, diam Ai ≤ δ, and ∪ni=1Ai = X. For a homeomorphism f on X, a
�nite δ-partition P of X and x ∈ X, we denote Φf

P(x) by

Φ
f
P(x) = {y ∈ X ∶ f i(y) ∈ P(f i(x)) for all i ∈ Z},

and it is called by the dynamical P-ball of f centered at x, where P(x) denotes the element of P containing x.
Denote ΦP(x) by Φf

P(x) for simplity if there is no confusion. Then it is easy to check that ΦP(x) is measurable,
ΦP(x) = ∩ni=1 f

−i(P(f i(x))), and f(ΦP(x)) ⊂ ΦP(f(x)).

De�nition 1.1. A homeomorphism f on X is said to be weak µ-expansive (µ ∈ M(X)) if there exists a constant
δ > 0 and �nite δ-partition P = {A1, A2, . . . , An} of X such that

µ(Φf
P(x)) = 0 for all x ∈ X.

We say that f is weak measure expansive if f is weak µ-expansive for all µ ∈ M∗(X). In the case, we say that f
has weak expansive measure µ.

We can also de�ne the positively weak measure expansiveness for homeomorphisms by de�ning the positive
dynamical P-ball

ΓP(x) = {y ∈ X ∶ f n(y) ∈ P(f n(x)) for all n ∈ N ∪ {0}}.

De�nition 1.2. A homeomorphism f on X is said to be positively weak µ-expansive (µ ∈ M(X)) if µ(ΓP(x)) =
0 for all x ∈ X. We say that f is positively weak measure expansive if f is positively weak µ-expansive for all
µ ∈ M∗(X). In the case, we say that f has positively weak expansive measure µ.

It follows easily from the de�nitions that any weak measure expansive homeomorphism f is positively weak
measure expansive.

We give some de�nitions and notations for our works. Recall that (X, d) is a compact metric space and
f ∶ X → X is a homeomorphism. The f -orbit {x, f(x), f 2(x),⋯} of a point x ∈ X is denoted by Of (x). The
ω-limit set ωf (x) of a point x ∈ X is the set of limit points of Of (x). We say that a point x ∈ X is periodic if
f n(x) = x for some n ∈ N, recurrent if there exists n ∈ N such that f n(x) ∈ U for any neighborhood U and
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V of x, and non-wandering if there exists n ∈ N such that U ∩ f−n(V) ≠ ∅ for any neighborhood U of x. Let
P(f), R(f) andΩ(f)denote the sets of periodic, recurrent, andnon-wandering points of f , respectively. Then
we have

P(f) ⊂ R(f) ⊂ Ω(f).

A point x ∈ X is a sensitive point if there is ε > 0 with the property that for any neighborhood U of x, we have
diam[f n(U)] > ε for some n ∈ N. Let Sen(f) denote the set of sensitive points of f . We say that f is sensitive if
Sen(f) = X and if there is ε > 0 that works for all x. By the compactness of X, we see that Sen(f) = ∅ if and
only if for any ε > 0 there is δ > 0 such that

d(f n(x), f n(y)) < ε

for all n ∈ Zwhenever x, y ∈ Xwith d(x, y) < δ. If this conditionholds,we say f is equicontinuous. If x ∉ Sen(f)
then we say that f is equicontinuous at x, or x is an equicontinuity point for f .

For δ > 0, a δ-pseudo orbit of f in X is a �nite or in�nite sequence of points {xn}pn=0 such that

d(xn+1, f(xn)) < δ

for p ∈ N ∪ {∞} and every n < p. We say that a δ-pseudo orbit {xn}pn=0 is ε-traced by a point y ∈ X if
d(xn , f n(y)) < ε for every n < p. And f is said to have the shadowing property if for every ε > 0 there is δ > 0
such that every in�nite δ-pseudo orbit {xn}∞n=0 of f in X is ε-traced by some point in X. By the compactness of
X, f has shadowing property if and only if for every ε > 0 there is δ > 0 such that every �nite δ-pseudo orbit
{xn}pn=0 (p ∈ N) of f in X is ε-traced by some point in X.

Let us recall the topological entropy for a homeomorphism f on a closed set([6]). Let n ∈ N, ε > 0, and K
be a compact subset of X. A subset E of K is said to be (n, ε)-separated with respect to f , if x ≠ y ∈ E implies

max
0≤i≤n

d(f i(x), f i(y)) > ε.

And let sn(ε, K) denote the largest cardinality of any (n, ε)-separated subset of K with respect to f . Put

s(ε, K, f) = lim sup
n→∞

1
n

log sn(ε, K).

So, topological entropy of f on K is de�ned as the number

h(f , K) = lim
ε→0

{lim sup
n→∞

log sn(ε, K)
n

} .

The topological entropy of f on X is de�ned as h(f) = h(f , X). We say that x ∈ X is an entropy point for f if
h(f , U) > 0 for any neighborhood U of x. Let Ent(f) denote the set of entropy points of f . Then Ent(f) is a
closed f -invariant set and Ent(f) ≠ ∅ if and only if h(f) > 0.

1.2 Basics for positively weak measure expansive flows

Many dynamic results for homeomorphisms can be extended to the case of vector �elds, but not always.
Bowen and Walters [5], inspired by the notion of expansiveness for discrete dynamical systems, introduced
a de�nition of expansiveness for continuous �ows. Studying the dynamics of expansive continuous �ows
(or vector �elds) is challenging. In this section, we begin to study the expansive �ows from the measure
theoretical view point.

Let (X, d)bea compactmetric space.A�owonX is a continuousmapφ ∶ X×RÐ→ X satisfyingφ(x, 0) = x
and φ(φ(x, s), t) = φ(x, s + t) for x ∈ X and s, t ∈ R. For convenience, we will denote by

φ(x, s) = φs(x) and φ(a,b)(x) = {φt(x) ∶ t ∈ (a, b)}.

The set φR(x) is called by the orbit of φ through x ∈ X and will be denoted byOφ(x).
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LetM(X) be the set of all Borel probabilitymeasures µ on X, and denote byM∗
φ(X) the set of µ inM(X)

vanishing along the orbits of the �ow φ on X. More precisely, we let

M∗
φ(X) = {µ ∈ M(X) ∶ µ(Oφ(x)) = 0 for all x ∈ X}.

Then we haveM∗
φ(X) ⊂M(X). For any subset B ⊂ X (Borel measurable or not) we write µ(B) = 0 if µ(A) = 0

for any Borel subset A ⊂ B.
More general extension,which is calledmeasure expansivity for �owsusingBorelmeasures ona compact

metric space, was introduced by Carrasco-Olivera et al. in [3]. For any �ow φ on X, x ∈ X and δ > 0, we denote
Φ
φ
δ (x)

Φ
φ
δ (x) = {y ∈ X ∶ d(φt(x), φh(t)(y)) ≤ δ for some h ∈ H and all t ∈ R}

and it is called by the dynamical δ-ball of φ centered at x ∈ X. Note that

Γ
φ
δ (x) = ⋃

h∈H
⋂
t∈R
φ−h(t)(B[φt(x), δ]).

For any µ ∈ M(X), we say that φ is µ-expansive if there exists a constant δ > 0 such that µ(Φφ
δ (x)) = 0 for all

x ∈ X. Such a δ is called an expansivity constant of φ with respect to µ. Note that if φ is µ-expansive for some
µ ∈ M(X) then µ vanishes along the orbits of φ (see (A4) of Theorem 1 in [3]). A �ow φ on X is said to be
measure expansive if φ is µ-expansive for any µ ∈ M∗

φ(X). In the case, we say that φ has expansive measure µ.
Now we recall that the notions of a �nite δ-partition P of X and a dynamical P-ball of a homeomorphism

f on X as before. For a �ow φ on X, a �nite δ-partition P of X and x ∈ X, the dynamical P-ball of φ centered
at x, Φφ

P (x), is de�ned by

{y ∈ X ∶ φh(t)(y) ∈ P(φt(x)) for some h ∈ H and all t ∈ R},

where H denotes the set of increasing continuous maps h ∶ R → R with h(0) = 0 and P(x) denotes the
element of P containing x.

De�nition 1.3. A �ow φ on X is said to beweak µ-expansive (µ ∈ M(X)) if there exists a �nite δ-partition P of
X such that

µ(Φφ
P (x)) = 0 for all x ∈ X.

We say that φ is weak measure expansive if φ is weak µ-expansive for all µ ∈ M∗
φ(X). In the case, we say that

φ has weak expansive measure µ.

We can also de�ne the positively weak measure expansiveness for �ows by de�ning the positive dynamical
P-ball

Γ
φ
P (x) = {y ∈ X ∶ φh(t)(y) ∈ P(φt(x)) for some h ∈ H and all t ≥ 0}.

De�nition 1.4. A �ow φ on X is said to be positively weak µ-expansive (µ ∈ M(X)) if there exists a �nite
δ-partition P of X such that

µ(Γφ
P (x)) = 0 for all x ∈ X.

We say that φ is positively weak measure expansive if φ is positively weak µ-expansive for all µ ∈ M∗
φ(X). In

the case, we say that φ has positively weak expansive measure µ.

Similarly, we can de�ne periodic, recurrent, non-wandering and sensitive points for �ows. A point x ∈ X is
called nonwandering if for any neighborhood U of x, there is T > 0 such that for all t ≥ T φt(U) ∩ U ≠ ∅.
The set of all nonwandering points of φt is called the nonwandering set of φt , denoted byΩ(φ). By non-trivial
recurrence of a �ow φ on a compact metric space X wemean a non-periodic point x0 which is recurrent in the
sense that x0 ∈ ω(x0), where

ω(x) = {y ∈ X ∶ y = lim
n→∞

φtn(x) for some sequence tn →∞}
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for any x ∈ X. The set of all recurrent points of φt is called the recurrent set of φt , denoted by R(φ).
Let φ be a continuous �ow on a compact metric space X. Given real numbers δ, a > 0, we say that a �nite

(δ, a)-chain, is a pair of sequences {(xi , ti) ∶ i = 0, . . . , k} such that ti ≥ a and d(φti(xi), xi+1) < δ. An in�nite
(δ, a)-chain is a pair of doubly in�nite sequences {(xi , ti) ∶ i ∈ Z} such that ti ≥ a and d(φti(xi), xi+1) < δ
for all i ∈ Z. The de�nition of a �nite(in�nite) (δ, a)-pseudo orbit is the same as that of a �nite(in�nite) (δ, a)-
chain. According to standard notation let

s0 = 0, sn =
n−1
∑
i=0

ti , and s−n =
−1
∑
i=−n

ti

for every sequence {ti ∶ i ∈ Z} of real numbers.
Let ε > 0 be given. A reparametrization h ∈ H̃ satisfying h ∶ R → R is a monotone increasing

homeomorphism with h(0) = 0 and

∣h(s) − h(t)
s − t

− 1∣ ≤ ε for every s, t ∈ R.

A �nite(in�nite) (δ, a)-pseudo orbit {(xi , ti) ∶ i ∈ Z} is ε-traced by an orbit (φt(z))t∈R, z∈X if there exists h ∈ H̃
such that

{ d(φh(t)(z), φt−si(xi)) < ε, if t ≥ 0, si ≤ t < si+1,
d(φh(t)(z), φt+s−i(x−i)) < ε, if t ≤ 0, −si ≤ t < −s−i+1.

for i = 0, 1,⋯. For every a > 0, the �ow φ on X has the shadowing property (or pseudo-orbit tracing property)
with respect to time a > 0 if and only if φ has the shadowing property (that is with respect to time 1).

For a �ow φ, given any φ-invariant probability measure µ on X, we denote by hµ(φ) the measure
theoretic entropy of φ with respect to µ. The topological entropy, denoted by htop(φ), can be de�ned using
the variational principle [9] by ;

htop(φ) = sup{hµ(φ) ∶ µ is a φ-invariant probability measure}.

The topological entropy is always non-negative and �nite.
For E, F ⊂ X we say E is a (t, δ)-separate subset of F with respect to φ if for any x, y ∈ Ewith x ≠ ywe have

max
0≤s≤t

d(φs(x), φs(y)) > δ.

Let st(F, δ) = st(F, δ, φ) denote the maximum cardinality of a set which is a (t, δ)-separated subset of F. If F
is compact then [9] shows that st(F, δ) < ∞. We de�ne

s̄φ(F, δ) = lim sup
t→∞

1
t

log st(F, δ)

and topological entropy by
h(φ, F) = lim

δ→0
s̄φ(F, δ).

By Lemma 1 in [6] these limits exists and are equal. The topological entropy of φ is de�ned as h(φ) = h(φ, X).
We say that x ∈ X is an entropy point for φ if h(φ, U) > 0 for any neighborhood U of x. Denote by Ent(φ) the
set of entropy points of φ. Then Ent(φ) is a closed φ-invariant set and Ent(φ) ≠ ∅ if and only if h(φ) > 0.

2 Main Theorems

2.1 Topological entropy for positively weak measure expansive homeomorphisms

Beforewe state themain theorems,we recall some results from [1] and [7]. Given amap f ∶ X → X, x ∈ X, δ > 0
and n ∈ N, we de�ne

V[x, n, δ] = {y ∈ X ∶ d(f i(x), f i(y)) ≤ δ for all 0 ≤ i ≤ n}.
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That is, V[x, n, δ] = ⋂n
i=0f

−i(B[f i(x), δ]), where B[x, δ] denotes the closed δ-ball centered at x. It is clear that
Γδ(x) = ⋂n∈Z V[x, n, δ] and V[x,m, δ] ⊂ V[x, n, δ] for n ≤ m. Consequently, µ(Γδ(x)) = lim

l→∞
µ(V[x, kl , δ])

for every x ∈ X, δ > 0, every Borel probability measure µ of X, and every sequence kl →∞.
Based on this, we can construct the weak measure expansive set, and we will use the set for the proof of

the main theorems. Let

VP[x, n, δ] = {y ∈ X ∶ f i(y) ∈ P(f i(x)) for all 0 ≤ i ≤ n}

then VP[x, n, δ] = ⋂n
i=0f

−i(P(f i(x))) and ΓP(x) = ⋂i∈N f−i(P(f i(x))). Similarly,

µ(ΓP(x)) = lim
l→∞

µ(VP[x, kl , δ]) ⋯⋯(∗).

Given a measure µ ∈ M∗(X) and a homeomorphism f ∶ X → X, we denote f∗(µ) the pullback measure of µ
denoted by f∗(µ)(A) = µ(f−1(A)) for all Borel set A of X. We say that a Borel measure is invariant for f if
µ = µ ○ f−1.

Lemma 2.1. Let f ∶ X → X be a homeomorphism of a compact metric space X. If µ ∈ M∗(X) is a positively
weak expansive measure with expansive constant δ of f , then so does f∗−1µ.

Proof. By the de�nition of ΓP(x), we can check that
(i) f(ΓP(x)) ⊂ ΓP(f(x)) and (ii) ΓP(x) ⊂ ΓP(f−1(x)).

So we show that if µ(ΓP(x)) = 0 then µ(ΓP(f−1(x))) = 0 for all x ∈ X, by (i) and (ii).

Lemma 2.2. Let f ∶ X → X be a homeomorphism of a metric space X. Then every invariant measure of f which
is the limit with respect to weak∗ topology of a sequence of µ with a common expansivity constant is positively
weak expansive.

Proof. As in the proof of Lemma 7 in [4], we let δx and W[x, n]. Then we can check that

VP[x, n,
δ

2 ] ⊂ W[x, n] ⊂ VP[x, n, δ]

for all x ∈ X, n ∈ N. Similarly, we verify that

lim
n→∞

inf µ(VP[x, n,
δ

2 ]) = 0

by the above fact of (∗). So, µ is positively weak expansive measure.

Lemma 2.3. If a homeomorphism f of a compact metric space X has positively weak expansive measure then
it has positively weak expansive invariant measures.

Proof. Let µ be a positively weak expansive measure with expansive constant δ of f ∶ X → X. By Lemma 2.1,
we know that f∗−1µ is a positively weak expansive measure with positive expansive constant δ of f . And so,
f∗−iµ is a positively weak expansive measure with positively expansive constant δ of f for all i ∈ N, we can
consider a sequence of positively weak expansive measures with uniform expansive constant δ,

µn =
1
n

n−1
∑
i=0

f∗−iµ, for all n ∈ N.

Since X is compact there is a subsequence µnk such that µnk → µ as nk →∞. Since µ is invariant for f−1 and f
are homeomorphisms, we have that µ is also an invariant measure of f . So, we conclude that µ is a positively
weak expansive measure of f , by applying Lemma 2.2.

From the above facts, we can state the �rst main theorem as following.
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Theorem A. If a homeomorphism f on X has a positively weak expansive measure and the shadowing property
on its nonwandering set, then its topological entropy is positive.

The following lemma is a particular case of Corollary 6 in [8].

Lemma 2.4. If f is a homeomorphism with the shadowing property of a compact metric space X and h(f) = 0,
then f ∣Ω(f) is equicontinuous.

Proof. See Lemma 9 in [4].

Lemma 2.5. Let f ∶ X → X be a continuous map having the shadowing property on a compact metric space X.
Let Y ⊂ X be an f -invariant closed set, g = f ∣Y , and consider g in Y . If g is not equicontinuous then h(f) > 0.

Proof. It is easy to prove this lemma from the next section Lemma 2.8. For more details, see Theorem 3 in [8].

We know that if h(f) = 0 and f has the shadowing property, then Ω(f) is totally disconnected and f ∣Ω(f) ∶
Ω(f) → Ω(f) is an equicontinuous map. That is, an equicontinuous map of a compact metric space has zero
topological entropy (for more details, Corollary 6 in [8]). The following lemma improves this result. First of
all, letM∗

f (X) = {µ ∈ M∗(X) ∶ µ be f -invariant}.

Lemma 2.6. Let f ∶ X → X be positively weak µ-expansive. Then f is not equicontinuous.

Proof. Let f be a homeomorphism of a compact metric space X. Suppose that f is equicontinuous. Since f is
weak µ-expansive, there exist δ > 0 and a �nite δ-partition P = {Ai ∶ i = 1,⋯, n} such that µ(ΓP(x)) = 0 for
all x ∈ X. By the de�nition of equicontinuous, we obtain δ′ > 0 such that B[x, δ′] ⊂ ΓP(x) for all x ∈ X. From
this, we get µ(B[x, δ′]) = 0 for all x ∈ Ω(f). Since X is compact, there are �nitely many points x1, x2,⋯, xn
such that X = ⋃n

i=1 B[xn , δ′]. Then

µ(X) ≤
n
∑
i=1
µ(B[xi , δ′]) = 0.

This is a contradiction which completes the proof.

End of the Proof of Theorem A. Suppose that f is positively weak µ-expansive but h(f) = 0. Then by Lemma
2.4, f ∣Ω(f) is equicontinuous. By Lemma 2.6, f is not positively weak measure expansive. This is a contradic-
tion which completes the proof.

Example 2.7. It is well-known that the horseshoe map has the shadowing property, expansive property and
positive topological entropy. If a map is expansive then it has positively weak expansive measure. That is, the
horseshoe map has positively weak expansive measure. So, we can conclude that this map is an example of
applying Theorem A.

2.2 Topological entropy for positively weak measure expansive flows

Let X andM∗
φ(X) be as before.We consider that weakmeasure expansive �owswith the shadowing property

is an extension for �ows of the Theorem A.

Theorem B. If a �ow φ has a positively weak expansive measure and the shadowing property on its nonwan-
dering set, then its topological entropy is positive.

Nowwe consider a relationship between equicontinuity and topological entropy for a �ow.We say that a �ow
φ is equicontinuous if for any ε > 0 there is δ > 0 such that for any y ∈ X if d(x, y) < δ then d(φt(x), φt(y)) < ε
for all t ∈ R.
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Lemma 2.8. Let X be a compact metric space and φ ∶ X × R → X be a continuous �ow having the �nite
shadowing property. Let Y ⊂ X and ψ = φ∣Y . If ψ is not equicontinuous then φ has positive topological entropy.

Proof. Since ψ is not equicontinuous, there exist z ∈ Sen(ψ) with (z, z) ∈ int[R(ψ × ψ)]. Let U be a
neighborhood of z in X. We have to show that h(φ, U) > 0. Choose ε > 0 with B(z, 2ε) ⊂ U by taking
ε small enough. We may also assume that for any neighborhood V of z in X, there exists t ∈ R with
diam[ψt(V ∩ Y)] > 3ε. Using the shadowing property of φ, choose δ ∈ (0, ε) so that every (δ, 1)-pseudo
orbit in X is ε-traced by some point in X.

Since V is a neighborhood of z in X with (V ∩Y)×(V ∩Y) ⊂ int[R(ψ × ψ)] and diam(V) < δ
2 . Then there

exist T ∈ R and (x0, y0) ∈ R(ψ × ψ) ∩ (V × V) such that d(ψT(x0),ψT(y0)) > 3ε. Since (x0, y0) ∈ R(ψ × ψ),
there is τ > T with

d(x0,ψτ (x0)) <
δ

2 and d(y0,ψτ (y0)) <
δ

2 .

Now we claim that
h(φ, U) ≥ log2

τ
.

It is enough to show that st(U, δ, φ) ≥ 2n , and we take t = 1, for simplicity. For every δ ∈ (0, ε) and all t ∈ R,
st(U, δ, φ) is the maximum cardinality of (U, δ, φ)-separated set for φ. Let

A = {(xi , ti) ∶ ti ≥ 1, i = 0, 1,⋯, n − 1} and
B = {(yi , ti) ∶ ti ≥ 1, i = 0, 1,⋯, n − 1}

satisfying

d(φti(xi), xi+1) <δ, for any i = 0, 1,⋯, n − 1 and
d(φti(yi), yi+1) <δ, for any i = 0, 1,⋯, n − 1.

Also, there is j ∈ N with d(φtj(x0), φtj(y0)) > 3ε. Since

d(x0, y0) <
δ

2 , d(x0,ψtj(x0)) <
δ

2 and d(y0,ψtj(x0)) <
δ

2 ,

we can take C = C1⋯Cn ∈ {A, B}n for any n ∈ N. Then C is a δ-pseudo orbit for φ consisting of n2-elements.
For C ∈ {A, B}n let wC ∈ X be a point ε-tracing the δ-pseudo orbit C. If y ∈ {x0, y0} ⊂ V is the starting element
of C then

d(z,wC) ≤ d(z, y) + d(y,wC) < δ + ε.

So, wC ∈ U . If C, D ∈ {A, B}n are distinct then for some k ∈ {0, 1,⋯, n − 1}, the k-th elements of the pseudo
orbits C and D are more than 3ε apart. Therefore by the triangle inequality,

d(φtk(wC), φtk(wD)) > ε for some k ∈ {0, 1,⋯, n − 1}.

This means that the set {wC ∶ C ∈ {A, B}n} is (U, ε, φ)-separated and hence (U, δ, φ)-separated for φ and for
any δ ∈ (0, ε). That is,

∣{wC ∶ C ∈ {A, B}n}∣ = 2n .

So, we complete the proof.

Now we introduce the notion of VP[φ, x, T, δ] which is a �ow case of VP[x, n, δ]. Let VP[φ, x, T, δ] = {y ∈ X ∶
φh(t)(y) ∈ P(φt(x)) for some h ∈ H̃ and −T ≤ t ≤ T}. Then

VP[φ, x, T, δ] = ⋃
h∈H̃

⋂
−T≤t≤T

φ−h(t)(B[φt(x), δ]).

Similarly, µ(Γφ
P (x)) = lim

t→∞
µ(VP[φ, x, t, δ]).

Lemma 2.9. Let φ be positively weak µ-expansive. Then φ is not equicontinuous.
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Proof. Let φ be an equicontinuous �ow of a compact metric space X. Suppose by contradiction that φ is a
weak µ-expansive for any µ ∈ M∗

φ(X). Then there exist a constant δ′ > 0 and a �nite δ′-partition P = {Ai ∶ i =
1, . . . , n} of X such that µ(Γφ

P (x)) = 0.
Letting it in the de�nition of the equicontinuity, we obtain δ > 0(δ < δ′) such that B[x, δ] ⊂ Γφ

P (x) for
any x ∈ X. From this, we get µ(B[x, δ]) = 0 for any x ∈ Ω(φ). Since X is compact, so there are �nitely many
points x1, x2,⋯, xn such that X = ⋃n

i=1 B[xi , δ]. Then

µ(X) ≤
n
∑
i=1
µ(B[xi , δ]) = 0.

This is a contradiction, so we complete the proof.

The following lemma is an extension for a �ow case of Corollary 6 in [8].

Lemma 2.10. If φ is a �owwith the shadowing property on a compactmetric space X and h(φ) = 0, then φ∣Ω(φ)
is equicontinuous.

Proof. By Lemma 2.8, we know that if φ is weak measure expansive then φ is not equicontinuous. By Lemma
2.9, if φ is not equicontinuous then φ has positive topological entropy.

Finally, we can see that a equicontinuous positively weak measure expansive �ow of a compact metric space
has zero topological entropy.

End of the Proof of Theorem B. Suppose that φ is positively weak µ-expansive (µ ∈ M∗
φ(X)) but h(φ) = 0.

Then by Lemma 2.10, φ∣Ω(φ) is equicontinuous, and so by Lemma 2.9, φ is not positively weak measure
expansive. This is a contradiction.
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