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Abstract: In this paper, we study linear codes over ring Ry = Fpn[u1, ua, -+, ux]/{uf = w;, uiuj = uju;) where
k>1and1 <i,j < k. We define a Gray map from R}, to Ff,fﬂ" and give the generator polynomials of constacyclic
codes over Ry. We also study the MacWilliams identities of linear codes over Ry.
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1 Introduction

Constacyclic codes are an important class of linear codes and have good error-correcting properties as well
as have practical applications since they can be encoded with shift registers. have practical applications as
they can be encoded with shift registers. Constacyclic codes over finite rings are well-known as they have
rich algebraic structures for efficient error detection and correction, which explain their preferred role in
engineering. In recent years, due to their rich algebraic structure, constacyclic codes have been studied over
finite fields [1-4]. The class of finite chain rings has been studied, by many authors, [5-8]. There is a lot of work
on constacyclic codes over finite rings of the form Fpm + uFpm + --- + u®~*F,n by many authors, where u® = 0.
For example, Chen et al. in [9] gave the structures of all (a + bu)-constacyclic codes of length 2p® over ring
Fpm + uF,m». Sobhani in [10] completely determined the structure of (§ + au? )-constacyclic codes of length p*
over Fpm + uFpm +u’Fpn. Liu and Xu in [11] gave the structure of cyclic and negacyclic codes of length 2p* over
Fpm +ulF,m. Abualrub and Siap in [12] gave the structure of (1 +u)-constacyclic codes of arbitrary length n over
IF, + ulF,. Kai et al. in [13] studied the (1 + Au)-constacyclic codes of arbitrary length n over Fp[u]/(u™), where
(1+ Au) isaunite of Fp[u]/(u™). Guenda and Gulliver in [14] gave the structure of repeated root constacyclic
codes of length mp® over Fyr + uFpr + - + u¢ ' Fpr.

The class of finite commutative rings of the form R + uR has been studied by many authors, where u” = 1.
For example, in [15] Cengellenmis gave the structure of cyclic codes over F3 + vF3, where v? = 1. Ozenetal. in
[16] gave the structure of cyclic and some constacyclic codes over the ring Z4[u]/(u” - 1). The class of finite
commutative rings of the form F, + ulF,» has been studied by many authors, where u? = u. For example, in
[17], Kong and Chang described the structure of cyclic codes and self dual cyclic codes over F,, + uF,, where
u’ = u. Cengellenmis et al. in [18] gave the structure of codes over F [u1, ua, -+, ug ] /(uf = u;, uiuj = uju;) with
a Gray map. Li et al. in [19] gave the structure of linear codes over Z4[u, v]/(u2 =u, v =v,uv= vu). In [20],
the generators of cyclic codes and (A1 + A u + A3V + A4uv)-constacyclic codes over F, + uF, + vIFp, + uvF, were
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given. The purpose of this paper is to continue this line of research. We determine the algebraic structures of
all \-constacyclic codes of Fpn[u1, uz, -, u]/{uf = u;, uju; = uju;), where X is an arbitrary unit of the ring
Fpmlu1, uz, -, uk]/(ui2 = Uj, Uilj = UjU;).

The remainder of this paper is organized as follows. In section 2, we provide the preliminaries that we
need and define a Gray map from R}, to F2,". In section 3, we study the Gray image of linear codes over Ry. In
section 4, we give the structure of constacyclic codes of arbitrary length over R.

2 Preliminaries

An ideal I of a finite commutative ring R is called principal if it is generated by one element. R is a principal
ideal ring if its ideals are principal. R is called a local ring if R has a unique maximal ideal. R is called a chain
ring if its ideals are linearly ordered by inclusion.
As defined in [18], let
Rk = Fpm [ul, Uz, -+, uk]/(uiz = Ui, Uilj = ujui).

For any subset A ¢ {1, 2, -, k}, let

uA:Hui

icA
with the convention that ug = 1. Then any element of Ry can be represented as
> caug,cp€Fpn.
Ac{1,2,---k}
We can easily observe that
Uupup = UpyB-
Let Py be the power set of the set {1, 2, ---, k}.
It follows that

(> caua)( D cup)= >, ( Y. cacp)up.

APy BePy DePy AUB=D

By the same method of Theorem 2.3 and Lemma 2.4 in [18] we have the following theorem:

Theorem 2.1. The ideal (w1, w2, -+, Wi), where w; € {u;, 1 — u;}, is an ideal of cardinality pm(zk_l) and there
are 2¥ such ideals.

Let w; = (Wi1, Wiz, ---, Wix) be an ideal as described in Theorem 2.1, where wj; € {u;,1 - u;}, 1 <i < 2%, An
element e is called an idempotent element if e’ = e. For x, y € Ry, x,y are called orthogonal if xy = 0. Let
e; = Wit Wiz Wik, wherei = 1,2, 2k. We know that u,-z = Uj, (1—111')2 =1-u;, ui(l—ui) =0,s0ey, ez, -, €k
are pairwise orthogonal non-zero idempotent elements over Ry. By the induction method over Ry, we have
1 =e; + ey + -+ e,. By the Chinese Remainder Theorem, we have that Ry = e1Ry + e2Ry + --- + €54 Ry, and for
any element r € Ry, r can be expressed uniquely asr = rie1 +r2e2 + -+ rycesx, where rj € Fpm, i =1, 2, -, 2k,

Theorem 2.2. Ry = Rk/wl X oo X Rk/wzk.
Proof. First, we prove that ﬂizzkl w; = {0}.

We use mathematical induction over Ry.
Base case: Setting over Ry, we get

wi = (u1) (1 -u1) = (w1 —u3) = {0}.

S

i=1

Induction step: Over Ry_1, suppose that
Zk—l

wi = {0},
1

i=
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where w; = (Wir, Wiz, -, Wi1), Wi € {wj, 1 -}, 1< <20 1 <j <k -1,
Then over Ry

2k 2](—1 2k—1

ﬂwz = (Wit Wizs - Wi) = ([ (Wit Wizs -+ Wik—1, Uk)) [ V() {Wit, Wiz, =+, Wik—1, 1 — Ug))
i=1 i=1 i=1
2k 1 2k 1 zk 1

—(ﬂ(wl uk))ﬂ(ﬂ(wz (1-u))) = (ﬂwl uk)ﬂ(ﬁw, (1-u))
= () (1 - wx) = (ue - ui) = {0},

where w; = <W,‘1, Win, ey Wik); Wij € {u]-, 1- u,-}, 1<i< Zk, 1<j<k.

Secondly, we prove that w1, wy, -+, w,« are pairwise coprime. For any two different ideals w;, wj, there exist
Ut € wi, (1 - u¢) € wj, such that 1 € w; + wj, then w; + wj = Ry. SO w1, wy, -+, wyk are pairwise coprime.

By the Chinese Remainder Theorem, we can get that Ry = Ry /w1 x -+« x Ry /wyx. O

Theorem 2.3. The ring Ry has cardinality pmzk. The ideal w; is a maximal ideal of Ry, where i = 1,2, ---, 2K,
k
Consequently, Ry = F2u.

1Rl IRkI
Joor] " Ty

Proof. By Theorem 2.2, we have that |[Ry| =
We have that |Ry| = p™". Thus !

fol =

that Ry/w; = Fpm, wherei=1,2, -, 2%, so Ry = Fzm. O

.By Theorem 2.1 |w;| = p™®~Y), wherei = 1, 2, -, 2.

p™, wherei = 1 2,- 2 . So w; is a maximal ideal of Ry, we can get

Corollary 2.4. There are (p™ - 1)2k units in the ring Ry,.
Proof. There are (p™ - 1) units in Fpn. By Theorem 2.3, we know there are (p™ — 1)2k unitsin thering R;. O
Theorem 2.5 (cf. [21, Theorem 2]). The ring Ry, is a principal ideal ring, not a chain ring.

We define the Gray map as follows:
Forr=rie; + ey + -+ ryey € Ry, wedefine ¢ : r = (r1,72,-+-,7,¢). We expand ¢ as :

k
@ : R} > Fau"

(CO) C1,y 0y Cﬂ—l) g (rl,Os ) rl,n—ls rZ,O) RRE) r2,n—1, ) rzk’o, ) rzk,n_l)y

where ¢; = 11je1 +12,i€2 + -+ + I'k ;€3 € Ry
A linear code C of length n over Ry is an Ry-submodule of R}. Every codeword c in such a code C is just
an n-tuple of the form ¢ = (co, c1, -+, cn-1) € R}, and can be represented by a polynomial in R;[x] as follows:
n-1

€ =(C0,C1, Cn1) <= C(x) = > cix' € Ri[x].
i=0

We define a constacyclic shift operator as:

ox(Co, €1, Cn-1) = (ACn-1, Co, -+, Cn-2)-

If for any ¢ € C, we have o, (c) € C, then C is called A-constacyclic code over Ry. Let a = (ao, ai, -+, Gn-1)
and b = (bo, b1, -, bn_1) be two elements of R}. Then the usual inner product of a and b is defined as
a-b= Z;‘z_ol a;b;. If a- b = 0, then a and b are said to be orthogonal.

The dual code of Cis C* = {a|Vb € C,a-b = 0}, which is also a linear code. A code C is self-orthogonal if
C c C* and self dual if C = C*.

For all r € Ry, define the Lee weight of r as follows: wi(r) = wy(¢(r)), where let wy(¢(r)) denote the
Hamming weight of the image of r under ¢.
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Forall x = (x1, x2, -+, Xn) € R}, define the Lee weight of x as follows wy (x) = 1 ; wi(x;), the Lee distance
of codewords x, y over R} is defined as dr(x, y) = wr(x — y). The Lee distance of C is defined by

dp(C) =min{d.(x-y),x,y e C,x £ y}.

By the definition of the Gray map and the Lee weight of R;, we can get that @ is one-to-one and a distance
k
preserving linear map from R} to F2.".

3 Linear codes over Rj

Using the polynomial representation of codewords in R}, we easily have the following.

Lemma 3.1. A subset C of R} is a \-constacyclic code of length n over Ry if and only if its polynomial
representation is an ideal of the ring Ri[x]/{(x" - \).

0 1 n-1 n i 2k . .
Foranyr = (r( ), r( ), ey r( )) € Ry, where r® - Y rijej,i=0,1,-, n-1. Then r can be uniquely express
2k . k
asr =Y, rjej, where rj = (roj, r1j, =+ 'no1,j) € Fypm, j = 1,2, -, 27,
k
Foranyr, s € R}, where s = Zle Sjej, Sj = (Soj, S1j>*+*» Sn—1,j) € Fym, We can get that

2k
r-s=)(r-sjej,
j=1
where r; - s; = Y10 (rijsij)-
Let C be a linear code over Ry. Forj=1,2, -, 2", we denote C; as follows:

zk
Ci={rje IFzm| Z rieie C,ri€Fpm, },j=1,2,, 2k,
i=1
Clearly, C; is a linear code of length n over Fyn.
By the definition above we have the following theorems easily.

Theorem 3.2. Let C be a linear code over Ry, then C = Z,-zzkl e;C;,|C| = H]-zzkl |Cj|, where C1, C», -+, Cox are linear
codes of length n over Fyn, and the direct sum decomposition is unique.

Theorem 3.3. Let C be a linear code over Ry, then C* = ij:kl e,-le, where CjL is the dual code of C;j, where
j=1,2,- 2k

Proof. Let C= Zf:kl ejC;_. ForanyceC, ¢ ¢ C,c-¢= Zf:kl(c,-é,-)e,-, where ¢ = ij:kl ejcj, € = ij:kl e;Cj, cj € Cj,
e CI.L. Then ¢ - ¢ = 0, and thus C ¢ C*. The ring Ry is a principal ideal ring and thus a Frobenius ring, we
have |C||C*| = |Rk|". Thus

SoC!=C. O

Theorem 3.4. Let C be a linear code over Ry, then Cis a self-orthogonal code if and only if C; is a self-orthogonal
over Fpm, where ¢ = Zfzkl ejcj. Cis a self-dual code if and only if C; is a self-dual code over Fyn, where j =
1,2,-,2k

Proof. By Theorems 3.2 and 3.3, C ¢ C* if and only if Cj c C}-L, so if C is a self-orthogonal code then C; is a
self-orthogonal code over Fyn, wherej =1, 2, -, 2k, Similarly, C is a self-dual code then C; is a self-dual code
overIFpm,wherej:1,2,~~«,2k. O
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Let Cbe alinear code of length n over Ry, forany ¢ = cie1+caex+--+cpep € C,P(c) = (€1, C2,++, Cox) € F2.
Let C1, Ca, -+, C,« be linear codes of length n over [F,», we define

C1 x Cy x - x Cor = {(C1, C2, -+, Co), € € Ciy i = 1,2, -+, 257,

Theorem 3.5. Let C = e1C1 + e2C5 + -+ + e, Cyx be a linear code of length n over Ry with |C| = pml and the
minimum Lee distance d;(C) = d. Then &(C) = Cy x C x - x Cy is a linear code with parameter [2*n, I, d]
and &(C)* = &(C*). If C is a self-dual code over Ry, then &(C) is a self-dual code over Fpn.

Proof. By the definition above, we can know that
C1xCy x--xCo cP(C)

and
€1 % Ca e x Ctl = [CAllCal1Con] = -

This gives that
@(C) = C1 X Cz X e X Czk.

Letc = Y2, ejcj € C,d = Y7, ed; € C*, where ¢; € Cj, dj € C, then ¢ - d = Y7, ¢j¢;d; = 0, which implies
C}'d}' =0, so
2’(

@(C) . @(d) = Z dej = O,

j=1
which implies
o(C)* 2(CH).
By Theorem 3.3, we have
B(C*) = Ci x C3 x - x Cyi.

Since ¢ is one-to-one, we have
m2kn m2*n

1\ _ P _p B 1
So
B(C)* =d(Ch). O

Let 7 be a cyclic shift operator on Fyn. Let a = (a(1)|a(2)|--~|a(2k)) € Ff,fn", where a¥) ¢ Fyn forj=1,2,-, 2k,
Let 75« be the quasi-shift given by

ra(aVaP}-1a®?) = (r(@®)lr(@®)]-fr(a®)).
Proposition 3.6. Let o be a cyclic shift on Ry, let & be the Gray map from R} to IE‘IZ,;”, and let Ty be as above.
Then o = T .

Proof. Letr = (ro,r1,-,rn-1) € R, wherer; = Zf:kl rie;,1=0,1,--,n—1.Wehave o(r) = (rn-1, ro, -, 'n-2).
If we apply @, we have

D(o(r)) = DP(rn-1,70, s n-2) = (F1,n-1, 71,0, ***» '1,n-2, F2,n-1, 12,0, ***s T2,n-2, *** Tok n_15 T2k 0s s rzk,n,z).
On the other hand,

T (P(1)) = Ty (P(T05 T15 5 Tn-1) ) = Tok (11,0, 71,15 T1,n=15 72,05 12,15 = T2,n-15 **s Tak 0 T2k 155 T2k 1)

= (rl,n—l, r1,0, Tty rl,n—Zy r2,n—1, r2,0, Tty r2,n—2, Tty er,n—ly rzk,O’ Tty r2k,n—2)'

Therefore, we have
Do = o D. O
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Theorem 3.7. Let C be a cyclic code of length n over Ry. Then #(C) is a quasi-cyclic code of index 2% over Fpm
with length 2*n.

Proof. Since C is a cyclic code, then o(C) = C. If we apply &, we have o (C) = #(C). By the Proposition 3.6,
®(o(C)) = d(C) = 5 (®(C)), 50 &(C) is a quasi-cyclic code of index 2¥ over F,n with length 2¥n. O

Let C be a linear code of length n over Ry, let Ao, A1, -, A, denote the number of codewords in C of the Lee
weight, and the Lee weight distribution of C is simply the tuple of numbers {Ao, A1, -+, Ayip }-
K Kk, s s
Let Leec(x, y) = Y74 Aix* "'y denote the Lee weight enumerator of C, we get that

Leec(x, y) = szkn—WL(c)yWL(c).
ceC

Let We(x,y) = % X2 n=wu(©) y"#(¢) denote the Hamming weight enumerator of C.
ceC
By the results of [22], we have

1

WCi(X, Y) = |C|

We(x + (Rl = 1)y, x - y).
By a proof similar to (cf. [23, Lemma 1]), we obtain the following lemma.

Lemma 3.8. Let x and y be two vectors in R}, and let dy(®(x),®(y)) denote the Hamming distance of
&(x), d(y), where &(x), d(y) are codewords in Ff,fn". Let wy(®(x)) denote the Hamming weight of &, then

(1) wi(x) = wa(2(x)),

(2) di(x,y) = du(2(x), 2(y))-

Theorem 3.9. Let C be a linear code of length n over Ry, then Leec. (x,y) = |¢(1C)| Wacy(x+ (pmzk -1)y,x-y).

Proof. By Theorem 3.5, we have that

Leec: (x,y) = Wa(cry (X, ¥) = We(c)e (X, ).

So
Leec(x,y) = ZXan—WL(C)yWL(C) _ Z szn—WH(fb(c))yWH(@(c)) _ W@(C)(X:Y)-
ceC P(c)cP(C)
As @ is one-to-one, we have that |#(C)| = |C|, hence

L

W, m2 _ 1Yy, x-y). 0
(0 sc)(x+(p )YsX~=Y)

Leec: (x,y) = We(cy(x,y) =

4 X\-Constacyclic codes over Ry

Theorem 4.1. Let C = e1C1 +e2C, ++-+ e, Cox be a linear code over Ry, then Cis a (Me1+ 22+ + A€y )-
constacyclic code over Ry if and only if C1, C2, ---, C,x are \i-constacyclic codes over Fpn,where \1e1 + \2ez +
-« + X\yk€yk 1S a unit over Ry.

Proof. For any c; = (ci,0, Ci 1, Cin-1) € Ci, wherei=1,2, -, 2% Then

2k 2k 2k
C=e1C1 +e2C2 + -+ eyl = (Z €iCi,0, Zeici,la Tty Z eiCin-1) € C.
i=1 i=1 i=1

If \ye1+Xz2e2+-+ ey isaunit over Ry, itis easy to know that forany element r = rie;+r2ez+:+-+r1€5« € Ry,
ris a unit if and only if r; + O, wherei =1, 2, --, 2k,
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Fori=1,2,-, 2", if C; is a A;-constacyclic code over Fpn, then
ox(€i) = o5, (€105 Ci1s 5 Cin-1) = (AiCin—15 Ci,0, > Ci,n—2) € Ci.

Then we have

2k 2k 2k
Taierihertihyey (€) = (A1€1+ A2z + -+ Apeyk) D €iCin-1, ) €iCi,05 s ), €iCin-2)
i=1 i=1 i=1

=e10),(C1) + e20),(€2) + - +epoy, (cyx) € C.

This proves that Cis a (A\1e1 + Az2ez2 + -+ + Axex )-constacyclic code over Ry.
Conversely, if Cis a (A\1e1 + Az2e2 + -+ + Aey )-constacyclic code over Ry, then

O—>\191+>\z€z+"'+)\zkezk(c) = elJAl(C1) + er)\Z(Cz) +oeet esz)\Zk(Czk) eC.

Thus o,(c;) € C;, wherei=1,2, -, 2k,
So C; is a \;-constacyclic code over Fyn, wherei =1, 2, -, 2k, O

Theorem 4.2. Let C = e1C1 + €,Cy + - + exCyx be a (A1e1 + Aaez + -+ + Ayreyn )-constacyclic code of length
n over Ry, then there exists a polynomial e181(x) + e282(x) + -+ + exgax (X) in Ry[x] that divides x" — (A\1e1 +
A2y + -+ + A€,k ) generates the code, where g; is the generator polynomial of C;, i =1, 2, -+, 2k,

Proof. If C=e1C1+e32Cy +--+euCyorbea(Aier + A€z + -+ + Aey )-constacyclic n over Ry, by Theorem 4.1
we know that C; is A;-constacyclic code over Fpn,wherei =1, 2, -, 2K Let gi be the generator polynomial of
Ci,wherei=1,2, -, 2¥_ 1t follows that C has the form

C = (e181(x), €282(X), -+, €&y (X))

Let C' = (e181(x) + €282(X) + -+ + e,x85x (x)). We have that C’ c C.

Note that

eif(e181(x) + e282(x) + -+ + ex gy (x)] = €igi(x),

wherei=1,2, -, 2k,

We get that C ¢ C". So C = C’, and C is generated by a single element g(x) = e181(x) + €282(x) + -+ +
€58k (X).

We know that g; divides X" — );, since g; is the generator polynomial of C;, wherei = 1, 2, ---, 2. Let fi(x)
be the polynomial such that g;(x)fi(x) = x" — \;, wherei =1, 2, -, 2k,

Then we have

[e181(X) + e282(X) + - + exgu(X)][e1f1(X) + e2f2(X) + -+ + exfor (X)] = M1e1 + A2€2 + -+ + Ayr€yr.
So we have e181(x) + €282(X) + -+ + exgox (X) in Ri[x] that divides x" — (A1€1 + Az2€2 + - + Ak€yx ). O

By Theorem 4.2 we have the following theorem easily:

Theorem 4.3. Let C = e1C1 + €2C; + -+ + exxCor be a (A1e1 + Aaez + -+ + Ayreqn )-constacyclic code of length
Sk

n over Ry. Then C* = (e1fy (x) + exf5 (x) + - + exfsi(X)),|CY| = p™(Zin 48(8D) where f7(x) is the reciprocal

polynomial of fy(x),i.e., fi(x) = (X" = X)) [8:(x), fi (x) = x*SWf(x), fori = 1,2, -, 2K,

Example 4.4. Let n = 10 and R, = F3 + u1F3 + uxIF5 + uqusfs, A = -1, x0+1= (x2 + 1)(x4 +0 +2x +
D(x* +2x° +x+ 1) inF3(x). Let fi(x) = fo(x) = (x* + X2 +2x + 1), f5(x) = fa(x) = (x" + 2> + x + 1),
C=((1+ur+ux+uru)fi(x), (ur + uruz)f2(x), (uz + uruz)f3(x), (ur1u2)f4(x)). C1, C2, Cs, Cy4 are [10,6,4]
linear codes of length 10 with the minimum Lee weight d; = 4. So ®(C) is a [40,24,4] linear code.

Example 4.5. Let n = 15 and Rs = Fo[u1, Uz, u3]/(uf = wi, wikj = wjnz), x> =1 = (x + 1) (2 +x + 1) (x* +x +
DO+ + 1) (X + 2 + X2 +x+ 1) inFa(x). Let f1(x) = fr(x) = f3(x) = fa(x) = (x* + x+ 1), fs(x) = fo(x) =
f1(X) =fa(x) = (x* +x° +1), C = ([T, (L +w) fr (x), ur (1 +u2) (1 +u3)fo(x), w2 (1 +ur) (1 +u3)fs(x), us(1+
) (1 + uz)fa(x), urua (1 + us)fs(x), urus (1 + uz)fe(x), uaus (1 + u1)f7(x), uruzusfs(x)). C; is a [15,11,3]
linear code of length 15 with the minimum Lee weight d; = 3,i=1, 2,---,8.So &(C) is a [120,88,3] linear code.
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5 Conclusion

In this paper, we studied the constacyclic codes over Ry = Fpn[uy, uz, -, uk]/(ui2 = U;, W;U; = uju;). We proved
that the (A\1e1 + X\zez2 + --- + A\yreqx )-constacyclic codes of arbitrary length over R can be generated by one
polynomial.

Acknowledgement: This work was supported by the Basic and Advanced Technology Research Project
of Henan Province (N0.162300410083) and the Science and Technology Developing Project of Henan
Province(No0.172102210243).

References

[1] ChenB., Dinh H. Q., Liu H., Repeated-root constacyclic codes of length 2I™p", Finite Fields Appl., 2015, 33, 137-159

[2] ChenB., FanY.,, LinL., LiuH., Constacyclic codes over finite fields, Finite Fields Appl., 2012, 18, 1217-1231

[3] Dinh H. Q., Repeated-root constacyclic codes of length 2p®, Finite Fields Appl., 2012, 18, 133-143

[4] Dinh H. Q., Structure of repeated-root constacyclic codes of length 3p®, Discrete Math., 2013, 313, 983-991

[5] Dinh H. Q., Lopez-Permouth S. R., Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 2004, 50,
1728-1744

[6] KongB., Zheng X., Ma H., The depth spectrums of constacyclic codes over finite chain rings, Discrete Math., 2015, 338,
256-261

[71 CaoY., On constacyclic codes over finite chain rings, Finite Fields Appl., 2013, 24, 124-135

[8] Somphong]., Patanee U., On The generator polynomials of constacyclic codes over finite chain rings, Int. J. Pure Appl.
Math., 2010, 59, 213-224

[9] Chen B, DinhH. Q., Liu H., Wang L., Constacyclic codes of length 2p® over F,m + ulF,m, Finite Fields Appl., 2016, 37, 108-
130

[10] SobhaniR., Complete classification of (§ + auz)-constacyclic codes of length p" over Fym + ulFpm + HZ]Fpm, Finite Fields
Appl., 2015, 34, 123-138

[11] LiuX., Xu X., Cyclic and negacyclic codes of length 2p® over Fm + ulF,m, Acta Math. Sci.,2014, 34B, 829-839

[12] Abualrub T., Siap I., Constacyclic codes over IF, + ulF,, ). Franklin I., 2009, 346, 520-529

[13] KaiX., ZhuS., Li P, (1 + Au)-constacyclic codes over Fy[u]/{u™), J. Franklin I., 2010, 347, 751-762

[14] Guenda K., Gulliver T. A, Repeated root constacyclic codes of length mp® over Fpr + ulF,r + - + ue’ler, J. Algebra Appl.,
2015, 14, 1450081

[15] Cengellenmis Y., On the cyclic codes over F3 + vIF3, Int. J. Algebra, 2010, 4, 253-259

[16] Qzen M., Uzekmek F. Z., Aydin N., Qzzaim N. T., Cyclic and some constacyclic codes over the ring Z,[u]/(u? — 1), Finite
Fields Appl., 2016, 38, 27-39

[17] Kong B., Chang X., Cyclic Codes over ring Fp + uF,(in Chinese), J. Zhengzhou Univ.(Nat. Sci. Ed.), 2016, 48, 28-31

[18] Cengellenmis Y., Dertli A., Dougherty S. T., Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr.,
2014, 72,559-580

[19] LiP., GuoX.,Zhu S., Kai X., Some results on linear codes over the ring Z, + uZs, + vZ4 + +uvZy, ). Appl. Math. Comput.,
2016, 54, 307-324

[20] Zheng X.,Kong B., Cyclic codes and A1 + A u + A3V + A4uv-constacyclic codes over Fy + uFp + vFp, + uvFy, Appl. Math.
Comput., 2017, 306, 86-91

[21] Cazaran]., Kelarev A. V., On finite principal ideal rings, Acta Math. Univ. Comenianae, 1999, 68, 77-84

[22] ShiM., Zhu S., Macwilliams identities of linear codes over non-principal ideal ringF), + vFp(in Chinese), Acta Electronica
Sinica, 2011, 39, 2449-2453

[23] Dougherty S. T.,Yildiz B., Karadeniz S., Codes over Ry, Gray maps and their binary images, Finite Fields Appl., 2011, 17,
205-219



	Constacyclic codes over Fpm[u1,u2,,uk]/"4360360 u2i=ui,uiuj=ujui"5365365 
	1 Introduction
	2 Preliminaries
	3 Linear codes over Rk
	4 -Constacyclic codes over Rk
	5 Conclusion


