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Abstract: In this paper, we study linear codes over ring Rk = Fpm[u1, u2,⋯, uk]/⟨u2i = ui , uiuj = ujui⟩ where
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1 Introduction
Constacyclic codes are an important class of linear codes and have good error-correcting properties as well
as have practical applications since they can be encoded with shift registers. have practical applications as
they can be encoded with shift registers. Constacyclic codes over �nite rings are well-known as they have
rich algebraic structures for e�cient error detection and correction, which explain their preferred role in
engineering. In recent years, due to their rich algebraic structure, constacyclic codes have been studied over
�nite �elds [1-4]. The class of �nite chain rings has been studied, bymany authors, [5-8]. There is a lot of work
on constacyclic codes over �nite rings of the form Fpm + uFpm +⋯ + ue−1Fpm by many authors, where ue = 0.
For example, Chen et al. in [9] gave the structures of all (a + bu)-constacyclic codes of length 2ps over ring
Fpm + uFpm . Sobhani in [10] completely determined the structure of (δ +αu2)-constacyclic codes of length pk

over Fpm +uFpm +u2Fpm . Liu and Xu in [11] gave the structure of cyclic and negacyclic codes of length 2ps over
Fpm+uFpm . Abualrub and Siap in [12] gave the structure of (1+u)-constacyclic codes of arbitrary length n over
F2+uF2. Kai et al. in [13] studied the (1+λu)-constacyclic codes of arbitrary length n overFp[u]/⟨um⟩, where
(1+λu) is a unite of Fp[u]/⟨um⟩. Guenda and Gulliver in [14] gave the structure of repeated root constacyclic
codes of length mps over Fpr + uFpr +⋯ + ue−1Fpr .

The class of �nite commutative rings of the form R+uR has been studied bymany authors, where u2 = 1.
For example, in [15] Cengellenmis gave the structure of cyclic codes over F3+ vF3, where v2 = 1. Q̈zen et al. in
[16] gave the structure of cyclic and some constacyclic codes over the ring Z4[u]/⟨u2 − 1⟩. The class of �nite
commutative rings of the form Fpm + uFpm has been studied by many authors, where u2 = u. For example, in
[17], Kong and Chang described the structure of cyclic codes and self dual cyclic codes over Fp + uFp, where
u2 = u. Cengellenmis et al. in [18] gave the structure of codes overF2[u1, u2,⋯, uk]/⟨u2i = ui , uiuj = ujui⟩with
a Gray map. Li et al. in [19] gave the structure of linear codes over Z4[u, v]/⟨u2 = u, v2 = v, uv = vu⟩. In [20],
the generators of cyclic codes and (λ1+λ2u+λ3v+λ4uv)-constacyclic codes over Fp +uFp + vFp +uvFp were
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given. The purpose of this paper is to continue this line of research. We determine the algebraic structures of
all λ-constacyclic codes of Fpm[u1, u2,⋯, uk]/⟨u2i = ui , uiuj = ujui⟩, where λ is an arbitrary unit of the ring
Fpm[u1, u2,⋯, uk]/⟨u2i = ui , uiuj = ujui⟩.

The remainder of this paper is organized as follows. In section 2, we provide the preliminaries that we
need and de�ne a Gray map from Rn

k to F2kn
pm . In section 3, we study the Gray image of linear codes over Rk. In

section 4, we give the structure of constacyclic codes of arbitrary length over Rk.

2 Preliminaries
An ideal I of a �nite commutative ring R is called principal if it is generated by one element. R is a principal
ideal ring if its ideals are principal. R is called a local ring if R has a uniquemaximal ideal. R is called a chain
ring if its ideals are linearly ordered by inclusion.

As de�ned in [18], let
Rk = Fpm[u1, u2,⋯, uk]/⟨u2i = ui , uiuj = ujui⟩.

For any subset A ⊆ {1, 2,⋯, k}, let
uA =∏

i∈A
ui

with the convention that u∅ = 1. Then any element of Rk can be represented as

∑
A⊆{1,2,⋯,k}

cAuA , cA ∈ Fpm .

We can easily observe that
uAuB = uA⋃ B .

Let Pk be the power set of the set {1, 2,⋯, k}.
It follows that

( ∑
A∈Pk

cAuA)( ∑
B∈Pk

cBuB) = ∑
D∈Pk

( ∑
A∪B=D

cAcB)uD .

By the same method of Theorem 2.3 and Lemma 2.4 in [18] we have the following theorem:

Theorem 2.1. The ideal ⟨w1,w2,⋯,wk⟩, where wi ∈ {ui , 1 − ui}, is an ideal of cardinality pm(2
k
−1) and there

are 2k such ideals.

Let ωi = ⟨wi1,wi2,⋯,wik⟩ be an ideal as described in Theorem 2.1, where wij ∈ {uj , 1 − uj}, 1 ≤ i ≤ 2k. An
element e is called an idempotent element if e2 = e. For x, y ∈ Rk, x, y are called orthogonal if xy = 0. Let
ei = wi1wi2⋯wik, where i = 1, 2,⋯, 2k. We know that u2i = ui, (1−ui)2 = 1−ui, ui(1−ui) = 0, so e1, e2,⋯, e2k
are pairwise orthogonal non-zero idempotent elements over Rk. By the induction method over Rk, we have
1 = e1 + e2 +⋯+ e2k . By the Chinese Remainder Theorem, we have that Rk = e1Rk + e2Rk +⋯+ e2kRk, and for
any element r ∈ Rk, r can be expressed uniquely as r = r1e1 + r2e2 +⋯+ r2k e2k , where ri ∈ Fpm , i = 1, 2,⋯, 2k.

Theorem 2.2. Rk ≅ Rk/ω1 × ⋅ ⋅ ⋅ × Rk/ω2k .

Proof. First, we prove that⋂2k
i=1 ωi = {0}.

We use mathematical induction over Rk.
Base case: Setting over R1, we get

2
⋂
i=1
ωi = ⟨u1⟩⋂⟨1 − u1⟩ = ⟨u1 − u21⟩ = {0}.

Induction step: Over Rk−1, suppose that
2k−1

⋂
i=1

ω
′

i = {0},
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where ω
′

i = ⟨wi1,wi2,⋯,wik−1⟩, wij ∈ {uj , 1 − uj}, 1 ≤ i ≤ 2k−1, 1 ≤ j ≤ k − 1.
Then over Rk

2k

⋂
i=1
ωi =

2k

⋂
i=1

⟨wi1,wi2,⋯,wik⟩ = (
2k−1

⋂
i=1

⟨wi1,wi2,⋯,wik−1, uk⟩)⋂(
2k−1

⋂
i=1

⟨wi1,wi2,⋯,wik−1, 1 − uk⟩)

= (
2k−1

⋂
i=1

(ω
′

i + ⟨uk⟩))⋂(
2k−1

⋂
i=1

(ω
′

i + ⟨1 − uk⟩)) = (
2k−1

⋂
i=1

ω
′

i + ⟨uk⟩)⋂(
2k−1

⋂
i=1

ω
′

i + ⟨1 − uk⟩)

= ⟨uk⟩⋂⟨1 − uk⟩ = ⟨uk − u2k⟩ = {0},

where ωi = ⟨wi1,wi2,⋯,wik⟩, wij ∈ {uj , 1 − uj}, 1 ≤ i ≤ 2k, 1 ≤ j ≤ k.
Secondly, we prove thatω1,ω2,⋯,ω2k are pairwise coprime. For any two di�erent idealsωi ,ωj, there exist

ut ∈ ωi , (1 − ut) ∈ ωj, such that 1 ∈ ωi + ωj, then ωi + ωj = Rk. So ω1,ω2,⋯,ω2k are pairwise coprime.
By the Chinese Remainder Theorem, we can get that Rk ≅ Rk/ω1 × ⋅ ⋅ ⋅ × Rk/ω2k .

Theorem 2.3. The ring Rk has cardinality pm2
k
. The ideal ωi is a maximal ideal of Rk, where i = 1, 2,⋯, 2k.

Consequently, Rk ≅ F2k
pm .

Proof. By Theorem 2.2, we have that ∣Rk ∣ =
∣Rk ∣
∣ω1∣

×⋅ ⋅ ⋅×
∣Rk ∣
∣ω2k ∣

. By Theorem 2.1 ∣ωi ∣ = pm(2
k
−1), where i = 1, 2,⋯, 2k.

We have that ∣Rk ∣ = pm2
k
. Thus ∣Rk ∣

∣ωi ∣
= pm, where i = 1, 2,⋯, 2k. So ωi is a maximal ideal of Rk, we can get

that Rk/ωi ≅ Fpm , where i = 1, 2,⋯, 2k. So Rk ≅ F2k
pm .

Corollary 2.4. There are (pm − 1)2
k
units in the ring Rk.

Proof. There are (pm −1) units in Fpm . By Theorem 2.3, we know there are (pm −1)2
k
units in the ring Rk.

Theorem 2.5 (cf. [21, Theorem 2]). The ring Rk is a principal ideal ring, not a chain ring.

We de�ne the Gray map as follows:
For r = r1e1 + r2e2 +⋯ + r2k e2k ∈ Rk, we de�ne φ ∶ r ↦ (r1, r2,⋯, r2k). We expand φ as :

Φ ∶ Rn
k → F2kn

pm

(c0, c1,⋯, cn−1) ↦ (r1,0,⋯, r1,n−1, r2,0,⋯, r2,n−1,⋯, r2k ,0,⋯, r2k ,n−1),

where ci = r1,ie1 + r2,ie2 +⋯ + r2k ,ie2k ∈ Rk.
A linear code C of length n over Rk is an Rk-submodule of Rn

k . Every codeword c in such a code C is just
an n-tuple of the form c = (c0, c1,⋯, cn−1) ∈ Rn

k , and can be represented by a polynomial in Rk[x] as follows:

c = (c0, c1,⋯, cn−1) ←→ c(x) =
n−1
∑
i=0

cixi ∈ Rk[x].

We de�ne a constacyclic shift operator as:

σλ(c0, c1,⋯, cn−1) = (λcn−1, c0,⋯, cn−2).

If for any c ∈ C, we have σλ(c) ∈ C, then C is called λ-constacyclic code over Rk. Let a = (a0, a1,⋯, an−1)
and b = (b0, b1,⋯, bn−1) be two elements of Rn

k . Then the usual inner product of a and b is de�ned as
a ⋅ b = ∑n−1

i=0 aibi. If a ⋅ b = 0, then a and b are said to be orthogonal.
The dual code of C is C⊥ = {a∣∀b ∈ C, a ⋅ b = 0}, which is also a linear code. A code C is self-orthogonal if

C ⊆ C⊥ and self dual if C = C⊥.
For all r ∈ Rk, de�ne the Lee weight of r as follows: wL(r) = wH(φ(r)), where let wH(φ(r)) denote the

Hamming weight of the image of r under φ.
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For all x = (x1, x2,⋯, xn) ∈ Rn
k , de�ne the Leeweight of x as followswL(x) = ∑n

i=1 wL(xi), the Leedistance
of codewords x, y over Rn

k is de�ned as dL(x, y) = wL(x − y). The Lee distance of C is de�ned by

dL(C) = min{dL(x − y), x, y ∈ C, x ≠ y}.

By the de�nition of the Gray map and the Lee weight of Rk, we can get that Φ is one-to-one and a distance
preserving linear map from Rn

k to F2kn
pm .

3 Linear codes over Rk

Using the polynomial representation of codewords in Rn
k , we easily have the following.

Lemma 3.1. A subset C of Rn
k is a λ-constacyclic code of length n over Rk if and only if its polynomial

representation is an ideal of the ring Rk[x]/⟨xn − λ⟩.

For any r = (r(0), r(1),⋯, r(n−1)) ∈ Rn
k , where r(i) = ∑2k

j=1 rijej, i = 0, 1,⋯, n−1. Then r can be uniquely express
as r = ∑2k

j=1 rjej, where rj = (r0j , r1j ,⋯, rn−1,j) ∈ Fn
pm , j = 1, 2,⋯, 2k.

For any r, s ∈ Rn
k , where s = ∑2k

j=1 sjej, sj = (s0j , s1j ,⋯, sn−1,j) ∈ Fn
pm , we can get that

r ⋅ s =
2k

∑
j=1

(rj ⋅ sj)ej ,

where rj ⋅ sj = ∑n−1
i=0 (rijsij).

Let C be a linear code over Rk. For j = 1, 2,⋯, 2k, we denote Cj as follows:

Cj = {rj ∈ Fn
pm ∣

2k

∑
i=1

riei ∈ C, ri ∈ Fn
pm , }, j = 1, 2,⋯, 2k .

Clearly, Cj is a linear code of length n over Fpm .
By the de�nition above we have the following theorems easily.

Theorem 3.2. Let C be a linear code over Rk, then C = ∑
2k
j=1 ejCj,∣C∣ = ∏2k

j=1 ∣Cj ∣, where C1, C2,⋯, C2k are linear
codes of length n over Fpm , and the direct sum decomposition is unique.

Theorem 3.3. Let C be a linear code over Rk, then C� = ∑
2k
j=1 ejC�j , where C

�
j is the dual code of Cj, where

j = 1, 2,⋯, 2k.

Proof. Let C̃ = ∑
2k
j=1 ejC�j . For any c ∈ C, c̃ ∈ C̃, c ⋅ c̃ = ∑

2k
j=1(cj c̃j)ej, where c = ∑2k

j=1 ejcj, c̃ = ∑2k
j=1 ej c̃j, cj ∈ Cj,

c̃j ∈ C�j . Then c ⋅ c̃ = 0, and thus C̃ ⊆ C�. The ring Rk is a principal ideal ring and thus a Frobenius ring, we
have ∣C∣∣C�∣ = ∣Rk ∣

n. Thus

∣C̃∣ =
2k

∏
j=1

∣C�j ∣ =
2k

∏
j=1

pn

∣Cj ∣
=

∣Rk ∣
n

∣C∣
= ∣C�∣.

So C� = C̃.

Theorem 3.4. Let C be a linear code over Rk, then C is a self-orthogonal code if and only if Cj is a self-orthogonal
over Fpm , where c = ∑

2k
j=1 ejcj. C is a self-dual code if and only if Cj is a self-dual code over Fpm , where j =

1, 2,⋯, 2k.

Proof. By Theorems 3.2 and 3.3, C ⊆ C� if and only if Cj ⊆ C�j , so if C is a self-orthogonal code then Cj is a
self-orthogonal code over Fpm , where j = 1, 2,⋯, 2k. Similarly, C is a self-dual code then Cj is a self-dual code
over Fpm , where j = 1, 2,⋯, 2k.
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Let C be a linear code of length n over Rk, for any c = c1e1+c2e2+⋯+c2k e2k ∈ C,Φ(c) = (c1, c2,⋯, c2k) ∈ F2kn
pm .

Let C1, C2,⋯, C2k be linear codes of length n over Fpm , we de�ne

C1 × C2 ×⋯ × C2k = {(c1, c2,⋯, c2k), ci ∈ Ci , i = 1, 2,⋯, 2k}.

Theorem 3.5. Let C = e1C1 + e2C2 + ⋯ + e2kC2k be a linear code of length n over Rk with ∣C∣ = pml and the
minimum Lee distance dL(C) = d. Then Φ(C) = C1 × C2 × ⋯ × C2k is a linear code with parameter [2kn, l, d]
and Φ(C)� = Φ(C�). If C is a self-dual code over Rk, then Φ(C) is a self-dual code over Fpm .

Proof. By the de�nition above, we can know that

C1 × C2 ×⋯ × C2k ⊆ Φ(C)

and
∣C1 × C2 ×⋯ × C2k ∣ = ∣C1∣∣C2∣⋯∣C2k ∣ = ∣C∣.

This gives that
Φ(C) = C1 × C2 ×⋯ × C2k .

Let c = ∑2k
j=1 ejcj ∈ C, d = ∑

2k
j=1 ejdj ∈ C⊥, where cj ∈ Cj, dj ∈ C⊥j , then c ⋅ d = ∑

2k
j=1 ejcjdj = 0, which implies

cjdj = 0, so

Φ(c) ⋅ Φ(d) =
2k

∑
j=1

cjdj = 0,

which implies
Φ(C)� ⊇ Φ(C⊥).

By Theorem 3.3, we have
Φ(C⊥) = C⊥1 × C⊥2 ×⋯ × C⊥2k .

Since Φ is one-to-one, we have

∣Φ(C⊥)∣ = pm2
kn

∣C∣
=
pm2

kn

∣Φ(C)∣
= ∣Φ(C)�∣.

So
Φ(C)� = Φ(C�).

Let τ be a cyclic shift operator on Fn
pm . Let a = (a(1)∣a(2)∣⋯∣a(2

k
)
) ∈ F2kn

pm , where a(j) ∈ Fn
pm for j = 1, 2,⋯, 2k.

Let τ2k be the quasi-shift given by

τ2k(a
(1)

∣a(2)∣⋯∣a(2
k
)
) = (τ(a(1))∣τ(a(2))∣⋯∣τ(a(2

k
)
)).

Proposition 3.6. Let σ be a cyclic shift on Rn
k , let Φ be the Gray map from Rn

k to F2kn
pm , and let τ2k be as above.

Then Φσ = τ2kΦ.

Proof. Let r = (r0, r1,⋯, rn−1) ∈ Rn
k , where ri = ∑2k

j=1 rijej, i = 0, 1,⋯, n−1.We have σ(r) = (rn−1, r0,⋯, rn−2).
If we apply Φ, we have

Φ(σ(r)) = Φ(rn−1, r0,⋯, rn−2) = (r1,n−1, r1,0,⋯, r1,n−2, r2,n−1, r2,0,⋯, r2,n−2,⋯, r2k ,n−1, r2k ,0,⋯, r2k ,n−2).

On the other hand,

τ2k(Φ(r)) = τ2k(Φ(r0, r1,⋯, rn−1)) = τ2k(r1,0, r1,1,⋯, r1,n−1, r2,0, r2,1,⋯, r2,n−1,⋯, r2k ,0, r2k ,1,⋯, r2k ,n−1)
= (r1,n−1, r1,0,⋯, r1,n−2, r2,n−1, r2,0,⋯, r2,n−2,⋯, r2k ,n−1, r2k ,0,⋯, r2k ,n−2).

Therefore, we have
Φσ = τ2kΦ.
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Theorem 3.7. Let C be a cyclic code of length n over Rk. Then Φ(C) is a quasi-cyclic code of index 2k over Fpm

with length 2kn.

Proof. Since C is a cyclic code, then σ(C) = C. If we apply Φ, we have Φσ(C) = Φ(C). By the Proposition 3.6,
Φ(σ(C)) = Φ(C) = τ2k(Φ(C)), so Φ(C) is a quasi-cyclic code of index 2k over Fpm with length 2kn.

Let C be a linear code of length n over Rk, let A0, A1,⋯, A2kn denote the number of codewords in C of the Lee
weight, and the Lee weight distribution of C is simply the tuple of numbers {A0, A1,⋯, A2kn}.

Let LeeC(x, y) = ∑2kn
i=0 Aix2

kn−iyi denote the Lee weight enumerator of C, we get that

LeeC(x, y) = ∑
c∈C

x2
kn−wL(c)ywL(c).

Let WC(x, y) = ∑
c∈C

x2
kn−wH(c)ywH(c) denote the Hamming weight enumerator of C.

By the results of [22], we have

WC�(x, y) =
1
∣C∣

WC(x + (∣Rk ∣ − 1)y, x − y).

By a proof similar to (cf. [23, Lemma 1]), we obtain the following lemma.

Lemma 3.8. Let x and y be two vectors in Rn
k , and let dH(Φ(x),Φ(y)) denote the Hamming distance of

Φ(x),Φ(y), where Φ(x),Φ(y) are codewords in F2kn
pm . Let wH(Φ(x)) denote the Hamming weight of Φ, then

(1) wL(x) = wH(Φ(x)),
(2) dL(x, y) = dH(Φ(x),Φ(y)).

Theorem 3.9. Let C be a linear code of length n over Rk, then LeeC�(x, y) = 1
∣Φ(C)∣WΦ(C)(x+(pm2

k
−1)y, x−y).

Proof. By Theorem 3.5, we have that

LeeC�(x, y) = WΦ(C�)(x, y) = WΦ(C)�(x, y).

So
LeeC(x, y) = ∑

c∈C
x2

kn−wL(c)ywL(c) = ∑
Φ(c)⊆Φ(C)

x2
kn−wH(Φ(c))ywH(Φ(c)) = WΦ(C)(x, y).

As Φ is one-to-one, we have that ∣Φ(C)∣ = ∣C∣, hence

LeeC�(x, y) = WΦ(C�)(x, y) =
1

∣Φ(C)∣
WΦ(C)(x + (pm2

k
− 1)y, x − y).

4 λ-Constacyclic codes over Rk

Theorem 4.1. Let C = e1C1+ e2C2+⋯+ e2kC2k be a linear code over Rk, then C is a (λ1e1+λ2e2+⋯+λ2k e2k)-
constacyclic code over Rk if and only if C1, C2,⋯, C2k are λi-constacyclic codes over Fpm ,where λ1e1 + λ2e2 +
⋯ + λ2k e2k is a unit over Rk.

Proof. For any ci = (ci,0, ci,1,⋯, ci,n−1) ∈ Ci, where i = 1, 2,⋯, 2k. Then

c = e1c1 + e2c2 +⋯ + e2k c2k = (
2k

∑
i=1

eici,0,
2k

∑
i=1

eici,1,⋯,
2k

∑
i=1

eici,n−1) ∈ C.

Ifλ1e1+λ2e2+⋯+λ2k e2k is a unit over Rk, it is easy to know that for any element r = r1e1+r2e2+⋯+r2k e2k ∈ Rk,
r is a unit if and only if ri ≠ 0, where i = 1, 2,⋯, 2k.
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For i = 1, 2,⋯, 2k, if Ci is a λi-constacyclic code over Fpm , then

σλi(ci) = σλi(ci,0, ci,1,⋯, ci,n−1) = (λici,n−1, ci,0,⋯, ci,n−2) ∈ Ci .

Then we have

σλ1e1+λ2e2+⋯+λ2k e2k (c) = ((λ1e1 + λ2e2 +⋯ + λ2k e2k)
2k

∑
i=1

eici,n−1,
2k

∑
i=1

eici,0,⋯,
2k

∑
i=1

eici,n−2)

= e1σλ1(c1) + e2σλ2(c2) + ⋯ + e2kσλ2k
(c2k) ∈ C.

This proves that C is a (λ1e1 + λ2e2 +⋯ + λ2k e2k)-constacyclic code over Rk.
Conversely, if C is a (λ1e1 + λ2e2 +⋯ + λ2k e2k)-constacyclic code over Rk, then

σλ1e1+λ2e2+⋯+λ2k e2k (c) = e1σλ1(c1) + e2σλ2(c2) + ⋯ + e2kσλ2k
(c2k) ∈ C.

Thus σλi(ci) ∈ Ci, where i = 1, 2,⋯, 2k.
So Ci is a λi-constacyclic code over Fpm , where i = 1, 2,⋯, 2k.

Theorem 4.2. Let C = e1C1 + e2C2 + ⋯ + e2kC2k be a (λ1e1 + λ2e2 + ⋯ + λ2k e2k)-constacyclic code of length
n over Rk, then there exists a polynomial e1g1(x) + e2g2(x) +⋯+ e2kg2k(x) in Rk[x] that divides xn − (λ1e1 +
λ2e2 +⋯ + λ2k e2k) generates the code, where gi is the generator polynomial of Ci, i = 1, 2,⋯, 2k.

Proof. If C = e1C1 + e2C2 +⋯+ e2kC2k be a (λ1e1 +λ2e2 +⋯+λ2k e2k)-constacyclic n over Rk, by Theorem 4.1
we know that Ci is λi-constacyclic code over Fpm ,where i = 1, 2,⋯, 2k. Let gi be the generator polynomial of
Ci, where i = 1, 2,⋯, 2k. It follows that C has the form

C = ⟨e1g1(x), e2g2(x),⋯, e2kg2k(x)⟩.

Let C′ = ⟨e1g1(x) + e2g2(x) + ⋯ + e2kg2k(x)⟩. We have that C′ ⊆ C.
Note that

ei[(e1g1(x) + e2g2(x) + ⋯ + e2kg2k(x)] = eigi(x),
where i = 1, 2,⋯, 2k.

We get that C ⊆ C′. So C = C′, and C is generated by a single element g(x) = e1g1(x) + e2g2(x) + ⋯ +

e2kg2k(x).
We know that gi divides xn −λi, since gi is the generator polynomial of Ci, where i = 1, 2,⋯, 2k. Let fi(x)

be the polynomial such that gi(x)fi(x) = xn − λi, where i = 1, 2,⋯, 2k.
Then we have

[e1g1(x) + e2g2(x) + ⋯ + e2kg2k(x)][e1f1(x) + e2f2(x) + ⋯ + e2k f2k(x)] = λ1e1 + λ2e2 +⋯ + λ2k e2k .

So we have e1g1(x) + e2g2(x) + ⋯ + e2kg2k(x) in Rk[x] that divides xn − (λ1e1 + λ2e2 +⋯ + λ2k e2k).

By Theorem 4.2 we have the following theorem easily:

Theorem 4.3. Let C = e1C1 + e2C2 + ⋯ + e2kC2k be a (λ1e1 + λ2e2 + ⋯ + λ2k e2k)-constacyclic code of length
n over Rk. Then C⊥ = ⟨e1f∗1 (x) + e2f∗2 (x) + ⋯ + e2k f∗2k(x)⟩,∣C

⊥
∣ = pm(∑

2k
i=1 deg(gi)), where f∗i (x) is the reciprocal

polynomial of fi(x),i.e., fi(x) = (xn − λi)/gi(x), f∗i (x) = xdeg(fi)f(x−1), for i = 1, 2,⋯, 2k.

Example 4.4. Let n = 10 and R2 = F3 + u1F3 + u2F3 + u1u2F3, λ = −1, x10 + 1 = (x2 + 1)(x4 + x3 + 2x +
1)(x4 + 2x3 + x + 1) in F3(x). Let f1(x) = f2(x) = (x4 + x3 + 2x + 1), f3(x) = f4(x) = (x4 + 2x3 + x + 1),
C = ⟨(1 + u1 + u2 + u1u2)f1(x), (u1 + u1u2)f2(x), (u2 + u1u2)f3(x), (u1u2)f4(x)⟩. C1, C2, C3, C4 are [10,6,4]
linear codes of length 10 with the minimum Lee weight dL = 4. So Φ(C) is a [40,24,4] linear code.

Example 4.5. Let n = 15 and R3 = F2[u1, u2, u3]/⟨u2i = ui , uiuj = ujui⟩, x15 −1 = (x +1)(x2 + x +1)(x4 + x +
1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1) in F2(x). Let f1(x) = f2(x) = f3(x) = f4(x) = (x4 + x + 1), f5(x) = f6(x) =
f7(x) = f8(x) = (x4+x3+1), C = ⟨∏

3
i=1(1+ui)f1(x), u1(1+u2)(1+u3)f2(x), u2(1+u1)(1+u3)f3(x), u3(1+

u1)(1 + u2)f4(x), u1u2(1 + u3)f5(x), u1u3(1 + u2)f6(x), u2u3(1 + u1)f7(x), u1u2u3f8(x)⟩. Ci is a [15,11,3]
linear code of length 15 with the minimum Lee weight dL = 3, i = 1, 2,⋯, 8. So Φ(C) is a [120,88,3] linear code.
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5 Conclusion
In this paper,we studied the constacyclic codes over Rk = Fpm[u1, u2,⋯, uk]/⟨u2i = ui , uiuj = ujui⟩.Weproved
that the (λ1e1 + λ2e2 + ⋯ + λ2k e2k)-constacyclic codes of arbitrary length over Rk can be generated by one
polynomial.
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