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Abstract: This paper is devoted to pose several interpolation problems on the open unit diskD of the complex
plane in a recursive and linear way. We look for interpolating sequences (zn) in D so that given a bounded
sequence (an) and a suitable sequence (wn), there is a bounded analytic function f onD such that f(z1) = w1

and f(zn+1) = an f(zn) + wn+1. We add a recursion for the derivative of the type: f ′(z1) = w′1 and f ′(zn+1) =
a′n [(1−∣zn ∣2)/(1−∣zn+1∣2)] f ′(zn)+w′n+1, where (a′n) is bounded and (w′n) is an appropriate sequence, andwe
also look for zero-sequences verifying the recursion for f ′. The conditions on these interpolating sequences
involve the Blaschke product with zeros at their points, one of them being the uniform separation condition.
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1 Introduction
Interpolation problems on the unit disk D are a classical branch of complex analysis. Several types of
interpolating sequences for di�erent classes of analytic functions have been addressed since the middle of
the last century, beginning with the celebrated works of W.K. Hayman [1], D.J. Newman [2] and L. Carleson [3]
about the so-called “universal” interpolation problem, which consists in characterizing the sequences (zn)
in D verifying that for any bounded sequence (wn), there is a bounded analytic function f on D such that
f(zn) = wn.

On the other hand, recursion appears in many areas of mathematics: formulas, algorithms, optimiza-
tion..., providing alternative de�nition procedures. Since there exists a speci�c theory for recursive numerical
sequences and interpolating sequences have not been studied from a recursive perspective, we think it is
interesting to pose recursive-type interpolation problems.

We want to emphasize that our approach converts the universal interpolation problem and other prob-
lems related to it into trivial cases of those that we introduce. Furthermore, most conditions involved are new
and depend not only on the separation of the points of the sequence in D, but also on the sequences that we
employ to de�ne recursion.

We begin with the necessary notation. Let H∞ be the space of all analytic functions f on D such that
∥f∥∞ = supz∈D ∣f(z)∣ < ∞ and let l∞ be the Banach space of all sequences of complex numbers (wn) such
that ∥(wn)∥∞ = supn ∣wn ∣ < ∞.Weput Z = (zn) for any sequenceof di�erent points inD verifying theBlaschke
condition∑n(1−∣zn ∣) < ∞, which characterizes the zero-sequences of functions in H∞. For two points z and
w in D, we write

ψ(z,w) = z − w
1 − z̄w

,
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so that ρ = ∣ψ∣ is their pseudo-hyperbolic distance. Let B be the Blaschke product with zeros at Z, that is,

B(z) =∏
n

∣zn ∣
zn

ψ(zn , z).

If E is a subsequence of Z, we put BE for the Blaschke product with zeros at E and for a �xedm ∈ N, we denote
BZ∖{zm} by Bm. Wewrite c for strictly positive constants that may change from one occurrence to the next one.

First, we recall that Z is interpolating if given any (wn) ∈ l∞, there exists f ∈ H∞ such that f(zn) = wn.
Interpolating sequences are characterized by the well-known Carleson’s theorem:

Theorem 1.1 ([3]). Z is interpolating if and only if

∣Bm(zm)∣ ≥ c ∀m ∈ N. (1)

Sequences satisfying (1) are called uniformly separated (u.s.). From the Schwarz lemma, it follows that

∣f(z) − f(w)∣ ≤ c ∥f∥∞ ρ(z,w) (2)

and thus, it is said that Z is interpolating in di�erences if given (wn) verifying ∣wi − wj ∣ ≤ c ρ(zi , zj), there is
f ∈ H∞ such that f(zn) = wn. These sequences are the union of two u.s. [4], characterized as follows.

Lemma 1.2 ([5]). For a sequence Z, the following are equivalent
(a) Z is the union of two u.s. sequences.
(b) For each zi, there exists zj such that ∣Bi(zi)∣ ≥ c ρ(zi , zj).
(c) Z is either u.s. or it can be rearranged Z = (αn) ∪ (βn), where (αn) and (βn) are u.s. sequences, ρ(αn , βn) =
ρ(αn , Z ∖ {αn}) → 0, and ρ(αn , zi) ≥ c, if zi ≠ βn.

Finally, since ∣f ′(z)∣(1 − ∣z∣2) ≤ c ∥f∥∞, it is said that Z is double interpolating if given (wn) ∈ l∞ and (w′n)
satisfying (w′n(1 − ∣zn ∣2)) ∈ l∞, there is f ∈ H∞ such that f(zn) = wn and f ′(zn) = w′n. It is proved in [6] that
these sequences are also the u.s. ones.

Next we consider the following three quantities for the terms of a sequence T = (tn) ∈ l∞:

Γ(tm) = ρ(zm , zm+1) + ∣1 − tm ∣
Π(tm) = ∥T∥∞ ρ(zm , zm+1) + ρ(zm+1, zm+2) + ∣tm − tm+1∣
Λ(tm) = ρ(zm , zm+1) {ρ(zm , zm+1) + ∣1 + tm ∣}.

We need them to take suitable target spaces in our interpolation problems and they also appear in the results
we get (Section 2).

We write Γ(tm) = O(Γ(tm+1)) (resp. Λ(tm) = O(Λ(tm+1))) if there exists a constant cT,Z > 0 such that
Γ(tm) ≤ cT,Z Γ(tm+1) (resp. Λ(tm) ≤ cT,Z Λ(tm+1)) for all m ∈ N. We write Π(tm) ∼ Π(tm+1) if Π(tm) ≤
cT,ZΠ(tm+1) andΠ(tm+1) ≤ c′T,ZΠ(tm) for some constants cT,Z, c′T,Z > 0 and for all m ∈ N.

From now on A = (an) and A′ = (a′n) will denote sequences in l∞. Our purpose is to examine the
following distinguished sequences of D:

De�nition 1.3. We say that Z is A-interpolating if given (wn) verifying

∣(
n
∑
i=1

ai ai+1 . . . anwi) + wn+1∣ ≤ c (3)

and
∣wn+1∣ ≤ c Γ(an), (4)

there exists f ∈ H∞ such that
⎧⎪⎪⎨⎪⎪⎩

f(z1) = w1

f(zn+1) = an f(zn) + wn+1.
(5)
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Clearly if ∥A∥∞ < 1, then the sum in (3) is bounded by ∥(wn)∥∞
1 − ∥A∥∞

.

De�nition 1.4. We say that Z is A-interpolating in di�erences if given (wn) satisfying (3) and

∣wn+1 − wn+2∣ ≤ cΠ(an), (6)

there is f ∈ H∞ verifying recursion (5).

De�nition 1.5. We say that Z is (A, A′)-interpolating if given (wn) satisfying (3) and (4) and (w′n) verifying

∣
n
∑
i=1

a′i a′i+1 . . . a′n(1 − ∣zi ∣2)w′i + (1 − ∣zn+1∣2)w′n+1∣ ≤ c (7)

and
∣w′n+1∣(1 − ∣zn+1∣2) ≤ c Γ(a′n), (8)

there exists f ∈ H∞ satisfying recursion (5) and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f ′(z1) = w′1

f ′(zn+1) = a′n
1 − ∣zn ∣2

1 − ∣zn+1∣2
f ′(zn) + w′n+1.

(9)

De�nition 1.6. We say that Z is zero and A′-interpolating if given (w′n) verifying (7),

∣w′1∣(1 − ∣z1∣2) ≤ cΛ(a′1) (10)

and
∣w′n+1∣(1 − ∣zn+1∣2) ≤ cΛ(a′n), (11)

there is f ∈ H∞ vanishing on Z and satisfying recursion (9).

Recursion (5) is equivalent to f(zn) = µn, where

⎧⎪⎪⎨⎪⎪⎩

µ1 = w1

µn+1 = (∑n
i=1 ai ai+1 . . . anwi) + wn+1,

(12)

and recursion (9) is equivalent to f ′(zn) = µ′n, with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ′1 = w′1

µ′n+1 =
∑n

i=1 a
′
i a′i+1 . . . a′n(1 − ∣zi ∣2)w′i

1 − ∣zn+1∣2
+ w′n+1.

(13)

Thus, we must have (3) and (7) to state that sequences (µn) and (µ′n(1− ∣zn ∣2)) are bounded. We impose that
data sequences (wn) and (w′n) verify (4), (6), (8) and (11), because they are intrinsic to recursions (a technical
reason justi�es (10)). In e�ect, (4) and (6) are obtained taking into account (2) in the inequalities

∣wn+1∣ ≤ ∣f(zn) − f(zn+1)∣ + ∣f(zn)∣ ∣1 − an ∣

and
∣wn+1 − wn+2∣ ≤ ∣an ∣ ∣f(zn) − f(zn+1)∣ + ∣f(zn+1) − f(zn+2)∣ + ∣f(zn+1)∣ ∣an − an+1∣,

respectively. On the other hand,

∣f ′(z)(1 − ∣z∣2) − f ′(w)(1 − ∣w∣2)∣ ≤ c ∥f∥∞ ρ(z,w), (14)

∣f(z) − f(w) + f ′(w)(1 − ∣w∣2)ψ(z,w)∣ ≤ c ∥f∥∞ ρ(z,w)2 (15)
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and
∣f(z) − f(w) − [f ′(z)(1 − ∣z∣2) + f ′(w)(1 − ∣w∣2)]ψ(z,w)

2
∣ ≤ c ∥f∥∞ ρ(z,w)3. (16)

See [7] for (14), [8] for (15) and [9] for (16). Thus, (8) is obtained using (14) in the inequality

∣w′n+1∣(1 − ∣zn+1∣2) ≤ ∣f ′(zn+1)(1 − ∣zn+1∣2) − f ′(zn)(1 − ∣zn ∣2)∣ + ∣f ′(zn)∣(1 − ∣zn ∣2)∣1 − a′n ∣.

If on the right of this last inequality, we put

∣f ′(zn+1)(1 − ∣zn+1∣2) + f ′(zn)(1 − ∣zn ∣2)∣ + ∣f ′(zn)∣(1 − ∣zn ∣2)∣1 + a′n ∣,

then (11) is obtained using (16) for the �rst summand and (15) for the second one.
We introduce these interpolating sequences because they provide a generalization of the usual interpola-

tion problems, in the sense that (0)-interpolating sequences, (0)-interpolating in di�erences and ((0), (0))-
interpolating are interpolating, interpolating in di�erences and double interpolating, respectively.

Extending recursion to an arbitrary order or increasing the degree of derivability are projects certainly
cumbersome, so that we con�ne ourselves to order one and the �rst derivative. Nevertheless, we think it
would be interesting to consider these types of sequences for other spaces of analytic functions, such as
the Lipschitz class and the Bloch space, for which the pseudo-hyperbolic distance in (2) is replaced by the
Euclidean and hyperbolic distance, respectively (interpolating sequences for these spaces are characterized
in [10] and [11]).

While the proofs of results turn out to be rather standard (Carleson’s theorem is used repeatedly), we
appreciate the following separation conditions, which are consistent with the problems posed and appear in
a natural way.

De�nition 1.7. We say that (Z, A) satis�es condition (S) if

∣Bm+1(zm+1)∣ ≥ c Γ(am) ∀m ∈ N,

and condition (D) if
∣Bm+1(zm+1)∣ ≥ cΠ(am) ∀m ∈ N.

We say that (Z, A′) satis�es condition (M) if

∣Bm+1(zm+1)∣2 ≥ cΛ(a′m) ∀m ∈ N.

We name (S), (D) and (M) to the above conditions because these are the initials of simple, di�erences and
mixed, respectively, andwewill see in the next section that condition (S) is related to interpolating sequences
in a simple sense; (D), in a di�erences sense, and (M), in a mixed sense (zero and interpolating).

Since ρ(zm , zm+1) > ∣Bm+1(zm+1)∣, it follows that if (Z, A′) veri�es (M), then (Z,−A′) satis�es (S). All
conditions imply (b) in Lemma 1.2 so that Z is the union of two u.s. sequences. Note that if ∥A∥∞ < 1 (resp.
∥A′∥∞ < 1), then (S) (resp. (M))⇒ u.s.

2 Statement of results
Our results are the following ones.

Proposition 2.1.
(i) If Z is A-interpolating and Γ(an) = O(Γ(an+1)), then (Z, A) veri�es (S).
(ii) If Z is A-interpolating in di�erences andΠ(an) ∼ Π(an+1), then (Z, A) veri�es (D).
(iii) If Z is (A, A′)-interpolating, Γ(an) = O(Γ(an+1)) and Γ(a′n) = O(Γ(a′n+1)), then Z is u.s.
(iv) If Z is zero and A′-interpolating and Λ(a′n) = O(Λ(a′n+1)), then (Z, A′) veri�es (M).
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Proposition 2.2.
(i) If (Z, A) veri�es (S), then Z is A-interpolating.
(ii) If (Z, A) veri�es (D) and A is such that

∣an+1∣ ≤ r ∣an ∣ (17)

for some r ∈ (0, 1), then Z is A-interpolating in di�erences.
(iii) If Z is u.s., then Z is (A, A′)-interpolating for any sequences A and A′.
(iv) If (Z, A′) veri�es (M), Λ(a′n) = O(Λ(a′n+1)) and

∣a′1 a′2⋯a′n ∣Λ(a′1) +
n
∑
i=2

∣a′i a′i+1⋯a′n ∣Λ(a′i−1) ≤ cΛ(a′n−1) ∀n ≥ 2, (18)

then Z is zero and A′-interpolating.

3 Proof of results
Proof of Proposition 2.1. (i) For a �xed m ∈ N, let (wn) be de�ned by wm+1 = Γ(am), wm+2 = −am+1wm+1 and
wn = 0 if n ≠ m + 1, m + 2. Since Γ(an) = O(Γ(an+1)), it follows that

∣wm+2∣ ≤ ∥A∥∞ Γ(am) ≤ cA,Z ∥A∥∞ Γ(am+1)

and wm+2 also veri�es (4). Since the operator

R ∶ H∞ Ð→ {(wn) / (wn) veri�es (3) and (4)}

de�ned by R(f) = (un), where u1 = f(z1) and un+1 = f(zn+1) − an f(zn), is linear and onto, a standard
argument using the closed graph theoremgives the existence of fm ∈ H∞ such thatR(fm) = (wn) and ∥fm∥∞ ≤
c ∥(wn)∥∞ = c. Since fm(zm+1) = wm+1 and fm(zn) = 0 if n ≠ m + 1, there is gm ∈ H∞ such that fm = gmBm+1

and ∥gm∥∞ = ∥fm∥∞. Thus,
Γ(am) = ∣fm(zm+1)∣ ≤ c ∣Bm+1(zm+1)∣

and (S) holds.
(ii) For a �xed m ∈ N, let (wn) be de�ned by wm+1 = Π(am) and the other terms as in (i). This sequence

satis�es (6), because taking into account thatΠ(an) ∼ Π(an+1),

∣wm+1 − wm+2∣ = ∣1 + am+1∣wm+1 ≤ (1 + ∥A∥∞)Π(am),
∣wm − wm+1∣ = wm+1 = Π(am) ≤ c′A,ZΠ(am−1) if m ≥ 2,

∣wm+2 − wm+3∣ = wm+2 ≤ ∥A∥∞Π(am) ≤ cA,Z ∥A∥∞Π(am+1).

Condition (D) is obtained proceeding exactly as in the proof of (i).

(iii) Let (wn) be de�ned as in (i) and let (w′n) be de�ned byw′m+1 =
Γ(a′m)

1 − ∣zm+1∣2
,w′m+2 = −a′m+1

Γ(a′m)
1 − ∣zm+2∣2

and w′n = 0 if n ≠ m + 1, m + 2. We have that w′m+2 also satis�es (8), because

∣w′m+2∣(1 − ∣zm+2∣2) ≤ ∥A′∥∞ Γ(a′m) ≤ cA′ ,Z ∥A′∥∞ Γ(a′m+1).

Proceeding as in (i), there exists gm ∈ H∞ such that fm = gmB2
m+1. Since ρ(zm , zm+1) ≤ Γ(am) (see de�nition

of Γ ) and ∣Bm+1(zm+1)∣ < ρ(zm , zm+1), we have

ρ(zm , zm+1) ≤ Γ(am) = ∣fm(zm+1)∣ ≤ c ∣Bm+1(zm+1)∣2 < c ∣Bm+1(zm+1)∣ ρ(zm , zm+1).

Thus, it follows that Z ∖ {z1} is u.s. and so is Z.
(iv) Let (w′n) be de�ned as in (iii) replacing Γ by Λ. Since Λ(a′n) = O(Λ(a′n+1)), then w′m+2 veri�es (11).

Proceeding as in (i), there is gm ∈ H∞ such that fm = gmBBm+1. A simple calculation gives

∣B′(zm+1)∣ =
∣Bm+1(zm+1)∣

1 − ∣zm+1∣2
(19)
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and then,
Λ(a′m)

1 − ∣zm+1∣2
= ∣f ′m(zm+1)∣ = ∣(gmB′Bm+1)(zm+1)∣ ≤ c ∣Bm+1(zm+1)∣2

1 − ∣zm+1∣2
.

Thus, (M) holds.

Proof of Proposition 2.2. Let (µn) be as in (12) and (µ′n) as in (13).
(i) We situate ourselves in (c) of Lemma 1.2. If Z is u.s., then Carleson’s theorem provides f performing

the interpolation f(zn) = µn. Otherwise, Z is the union of E = (z2m) and F = (z2m+1), both u.s. Let g ∈ H∞

such that g(z2m) = µ2m. We look for a function h ∈ H∞ such that h(z2m+1) = λm, where

λm = µ2m+1 − g(z2m+1)
BE(z2m+1)

,

because then f1 = g + BEh is in H∞ and performs the above interpolation on Z ∖ {z1}. Since ∣BE(z2m+1)∣ >
∣B2m+1(z2m+1)∣ and ∣B2m+1(z2m+1)∣ ≥ c Γ(a2m) (condition (S)), we have ∣BE(z2m+1)∣ ≥ c Γ(a2m). Then,

∣λm ∣ ≤ c ∣µ2m+1 − µ2m ∣ + ∣g(z2m) − g(z2m+1)∣
Γ(a2m)

.

Taking into account that
µ2m+1 = a2m µ2m + w2m+1 (20)

and using (3) and (4),
∣µ2m+1 − µ2m ∣ ≤ ∣1 − a2m ∣ ∣µ2m ∣ + ∣w2m+1∣ ≤ c Γ(a2m).

By (2)
∣g(z2m) − g(z2m+1)∣ ≤ c ρ(z2m , z2m+1) ≤ c Γ(a2m).

Thus, (λn) ∈ l∞ and Carleson’s theorem provides h. Putting

f(z) = f1(z) + (µ1 − f1(z1))
B1(z)
B1(z1)

,

it follows that f is in H∞ and performs the above interpolation on Z.
(ii) The proof is as in (i). Now we have

∣λm ∣ ≤ c ∣µ2m+1 − µ2m+2∣ + ∣g(z2m+2) − g(z2m+1)∣
Π(a2m)

.

By (20) and using (3) and (6),

∣µ2m+1 − µ2m+2∣ ≤ ∣w2m+1 − w2m+2∣ + ∣µ2m+1∣ ∣a2m − a2m+1∣ + ∣a2m ∣ (∣µ2m+1∣ + ∣µ2m ∣) ≤ c {Π(a2m) + ∣a2m ∣}

and by (17), it turns out that ∣a2m ∣ ≤
∣a2m − a2m+1∣

1 − r
≤ cΠ(a2m). On the other hand, by (2)

∣g(z2m+2) − g(z2m+1)∣ ≤ c ρ(z2m+1, z2m+2) ≤ cΠ(a2m).

Thus, (λn) ∈ l∞ and the proof continues as in (i).
(iii) Since Z is u.s., then Z is double interpolating and there is f in H∞ performing f(zn) = µn and

f ′(zn) = µ′n.
(iv) In case that Z = E ∪ F, where E = (z2m) and F = (z2m+1) are u.s., we know that there is g ∈ H∞

vanishing on E and satisfying g′(z2m) = µ′2m. We look for a function h1 ∈ H∞ such that h1(z2m+1) = λm,
where

λm = −g(z2m+1)
B2
E(z2m+1)

,

because then h2 = g + B2
Eh1 is in H∞, vanishes on Z ∖ {z1} and h′2(z2m) = µ′2m. We have

∣λm ∣ ≤ c ∣g(z2m+1)∣
Λ(a′2m)

.
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It follows from (13), taking into account (10) and (11), that

(1 − ∣z2∣2)∣µ′2∣ ≤ ∣a′1∣(1 − ∣z1∣2)∣w′1∣ + (1 − ∣z2∣2)∣w′2∣ ≤ cΛ(a′1). (21)

For n ≥ 2, by (13), (10), (11) and (18)

(1 − ∣zn+1∣2)∣µ′n+1∣ ≤ c {∣a′1 a′2 . . . a′n ∣Λ(a′1) +
n
∑
i=2

∣a′i a′i+1 . . . a′n ∣Λ(a′i−1)}

+ (1 − ∣zn+1∣2)∣w′n+1∣ ≤ c {Λ(a′n−1) + Λ(a′n)} ≤ cΛ(a′n).
(22)

Then, using (15), (21), (22) and Λ(a′n) = O(Λ(a′n+1)),

∣g(z2m+1)∣ = ∣g(z2m) − g(z2m+1) − g′(z2m)(1 − ∣z2m ∣2)ψ(z2m , z2m+1)∣ + (1 − ∣z2m ∣2)∣µ′2m ∣ρ(z2m , z2m+1)

≤ c {ρ(z2m , z2m+1)2 + Λ(a′2m)ρ(z2m , z2m+1)}.

Thus,

∣λm ∣ ≤ c (ρ(z2m , z2m+1)2

Λ(a′2m)
+ ρ(z2m , z2m+1)) ≤ c

and Carleson’s theorem provides h1 performing the above interpolation. We replace h2 by h2c, where h2c is
given by

h2c(z) = h2(z) − h2(z1)
B2

1(z)
B2

1(z1)
,

because then h2c also vanishes on z1. Finally, we look for h3 ∈ H∞ such that h3(z2m+1) = λ′m, where

λ
′
m = µ′2m+1 − h′2c(z2m+1)

(B′BE)(z2m+1)
,

because then f = h2c + BBEh3 is in H∞ and performs the desired interpolation on Z ∖ {z1}. Using (19),

∣λ′m ∣ ≤ c {∣µ′2m+1 + µ′2m ∣ + ∣h′2c(z2m) + h′2c(z2m+1)∣} (1 − ∣z2m+1∣2)
Λ(a′2m)

.

An easy computation shows that
∣z − w∣
1 − ∣z∣2

< 4 ρ(z,w), (23)

if ρ(z,w) < min(∣z∣, 1
2); then, using (21), (22), (23) and Λ(a′n) = O(Λ(a′n+1)),

∣µ′2m ∣ ∣∣z2m ∣2 − ∣z2m+1∣2∣ ≤ cΛ(a′2m−1)
∣z2m − z2m+1∣

1 − ∣z2m ∣2
≤ cΛ(a′2m)ρ(z2m , z2m+1) (24)

and taking into account (21), (22), (24) and Λ(a′n) = O(Λ(a′n+1)),

∣µ′2m+1 + µ′2m ∣(1 − ∣z2m+1∣2) ≤ ∣µ′2m+1∣(1 − ∣z2m+1∣2) + ∣µ′2m ∣(1 − ∣z2m ∣2)

+∣µ′2m ∣ ∣∣z2m ∣2 − ∣z2m+1∣2∣ ≤ c {Λ(a′2m) + Λ(a′2m)ρ(z2m , z2m+1)}.

On the other hand, by (16) and (24)

∣h′2c(z2m) + h′2c(z2m+1)∣ (1 − ∣z2m+1∣2)

≤ ∣h′2c(z2m)(1 − ∣z2m ∣2) + h′2c(z2m+1)(1 − ∣z2m+1∣2)∣

+∣µ′2m ∣ ∣∣z2m ∣2 − ∣z2m+1∣2∣ ≤ c {ρ(z2m , z2m+1)2 + Λ(a′2m)ρ(z2m , z2m+1)}.

Then,

∣λ′m ∣ ≤ c (1 + ρ(z2m , z2m+1)2

Λ(a′2m)
+ ρ(z2m , z2m+1)) ≤ c

and Carleson’s theorem provides h3 performing the above interpolation. We replace f by fc de�ned by

fc(z) = f(z) − (f ′(z1) − µ′1)
(BB1)(z)
(B′B1)(z1)

,

because then f ′c(z1) = µ′1 and so fc performs the desired interpolation on Z.
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