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Abstract: This paper is devoted to pose several interpolation problems on the open unit disk D of the complex
plane in a recursive and linear way. We look for interpolating sequences (z,) in D so that given a bounded
sequence (an) and a suitable sequence (wy,), there is a bounded analytic function f on D such that f(z1) = wy
and f(zn+1) = anf(zn) + Wny1. We add a recursion for the derivative of the type: f'(z1) = wi and f'(zn4+1) =
ay [(1-|zn|?)/(1=|zns1)?) ] f' (2n) + Wh, 1, where (a) is bounded and (wy,) is an appropriate sequence, and we
also look for zero-sequences verifying the recursion for f'. The conditions on these interpolating sequences
involve the Blaschke product with zeros at their points, one of them being the uniform separation condition.
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1 Introduction

Interpolation problems on the unit disk D are a classical branch of complex analysis. Several types of
interpolating sequences for different classes of analytic functions have been addressed since the middle of
the last century, beginning with the celebrated works of W.K. Hayman [1], D.J. Newman [2] and L. Carleson [3]
about the so-called “universal” interpolation problem, which consists in characterizing the sequences (z,)
in D verifying that for any bounded sequence (wy), there is a bounded analytic function f on D such that
f(zn) = wn.

On the other hand, recursion appears in many areas of mathematics: formulas, algorithms, optimiza-
tion..., providing alternative definition procedures. Since there exists a specific theory for recursive numerical
sequences and interpolating sequences have not been studied from a recursive perspective, we think it is
interesting to pose recursive-type interpolation problems.

We want to emphasize that our approach converts the universal interpolation problem and other prob-
lems related to it into trivial cases of those that we introduce. Furthermore, most conditions involved are new
and depend not only on the separation of the points of the sequence in D, but also on the sequences that we
employ to define recursion.

We begin with the necessary notation. Let H* be the space of all analytic functions f on D such that
[flleo = SUp,ep |f(2)| < oo and let I* be the Banach space of all sequences of complex numbers (wy) such
that | (Wn)| oo = SUP, [Wn| < co. Weput Z = (z,) for any sequence of different points in D verifying the Blaschke
condition },,(1-|zn|) < oo, which characterizes the zero-sequences of functions in H*. For two points z and
w in D, we write
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so that p = |+ is their pseudo-hyperbolic distance. Let B be the Blaschke product with zeros at Z, that is,
z
B(2) - [T 2 v(zn, 2).
n 2n

If E is a subsequence of Z, we put B, for the Blaschke product with zeros at E and for a fixed m € N, we denote
By {2,y by Bm. We write c for strictly positive constants that may change from one occurrence to the next one.

First, we recall that Z is interpolating if given any (wy) € [, there exists f € H™ such that f(zn) = wy.
Interpolating sequences are characterized by the well-known Carleson’s theorem:

Theorem 1.1 ([3]). Z is interpolating if and only if
|Bm(zm)|2c VmeN. )]
Sequences satisfying (1) are called uniformly separated (u.s.). From the Schwarz lemma, it follows that

If(2) - f(w) < c|[fllec p(2, W) @)

and thus, it is said that Z is interpolating in differences if given (wy) verifying |w; — wj| < ¢ p(z;, 2;), there is
f € H™ such that f(z») = wn. These sequences are the union of two u.s. [4], characterized as follows.

Lemma 1.2 ([5]). For a sequence Z, the following are equivalent

(a) Z is the union of two u.s. sequences.

(b) For each z;, there exists z; such that |B;(z;)| > ¢ p(zi, z;).

(c) Z is either u.s. or it can be rearranged Z = (an) U (3n), Where (an) and (Bn) are u.s. sequences, p(cn, fn) =
p(an, Z ~ {an}) = 0, and p(am, i) 2 ¢, if zi + Ba.

Finally, since |f'(z)|(1 - |z]*) < ¢ |f] s, it is said that Z is double interpolating if given (w») € > and (w})
satisfying (wj(1 — |zn|?)) € I°°, there is f € H™ such that f(zn) = Wy and f'(zn) = wp. It is proved in [6] that
these sequences are also the u.s. ones.

Next we consider the following three quantities for the terms of a sequence T = (¢,) € [:

I(tm) = p(2m; Zm+1) +[1 = tm|

H(tm) = ”THoo P(Zm,zm+1) + P(Zm+1,Zm+2) + |tm - tm+1‘

A(tm) = p(Zm, Zm+1) {p(Zm, Zm+1) + |1 + tml}.
We need them to take suitable target spaces in our interpolation problems and they also appear in the results
we get (Section 2).

We write I'(tm) = O(I'(tm+1)) (resp. A(tm) = O(A(tm+1))) if there exists a constant cr,z > 0 such that
I'(tm) < cr,zT(tms1) (resp. A(tm) < cr1,z A(tms+1)) for all m € N. We write I7(tm) ~ II(tms+1) if II(tm) <
cr,z I (tms1) and 11 (tms1) < €77 I (tn) for some constants cr z, 7, > 0 and forall m € N.

From now on A = (an) and A’ = (ay) will denote sequences in I°°. Our purpose is to examine the
following distinguished sequences of D:

Definition 1.3. We say that Z is A-interpolating if given (wy) verifying
n
(O aiaier ... anwi) + wnia| < c 3)
i=1
and

[Wnit| < cT'(an), (4)

there exists f € H* such that

{f(zl) - w1 .

f(zn+1) = anf(Zn) + Wnit.
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Clearly if | Al|oo < 1, then the sum in (3) is bounded by %

Definition 1.4. We say that Z is A-interpolating in differences if given (wy) satisfying (3) and

[Wne1 — Wnaa| < cII(an),

there is f € H* verifying recursion (5).

— 463

(6)

Definition 1.5. We say that Z is (A, A")-interpolating if given (wy,) satisfying (3) and (4) and (wy,) verifying

n
| Zal{ar{-ﬂ coan(1- ‘Zi|2)Wl{ +(1- ‘Zn+1|2)W;z+l| <c
i=1
and
Whial(1 - |znia]’) < c T(an),
there exists f € H™ satisfying recursion (5) and
f(z1) =w}
f (Zn+1) an

Z
_|‘ n‘ |2f (Zn)+Wn+1

Definition 1.6. We say that Z is zero and A’-interpolating if given (wy,) verifying (7),
Wil(1- |z ]*) < c A(d))

and
|W;z+1|(1 - ‘Zn+1‘2) < CA(a;,),

there is f € H* vanishing on Z and satisfying recursion (9).

Recursion (5) is equivalent to f(zn) = pun, where

H1=Wwi
n
pne1 = (Xt Qi Qi1+ o« QnWi) + Wiy,

and recursion (9) is equivalent to f'(z,) = up, with

[ = wi
Zl 1 aj al+l a;l(l ~ |Zi|2)Wz{ ’

+ W .
I’LYH—I |Zn+1|2 n+1

@)

(8)

9)

(10)

(1)

(12)

(13)

Thus, we must have (3) and (7) to state that sequences (un) and (u (1 — |zn|*)) are bounded. We impose that
data sequences (wy) and (wy,) verify (4), (6), (8) and (11), because they are intrinsic to recursions (a technical

reason justifies (10)). In effect, (4) and (6) are obtained taking into account (2) in the inequalities

Wnsa| < If(zn) = f(zne1)| + [f(20)] 1 - an]

and

Wit = Wnaa| < |an||[f(zn) = f(zne1)| + [f (2n+1) = f(Zn+2)| + [f (Zne1)] |@n = ansal,

respectively. On the other hand,

' (2)(1 = 2l*) = f (W) (1~ [w*)| < ¢ [f]l (2, W),

f(2) = F(w) + f () (1 = [w* )iz, W)| < ¢ [ ]oe p(2, W)°

(14)

(15)
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and
72) ~F0) [ ()1~ ) + 7 ) (1~ ) 2B < ez, ) 16

See [7] for (14), [8] for (15) and [9] for (16). Thus, (8) is obtained using (14) in the inequality
Wiit|(1 = [20s1]*) < I (Zna1) (1 = [znea*) = £ (20) (1 = |za*)] + [ (20) (1 = |z*)[1 = @i -
If on the right of this last inequality, we put
F (Zna1) (1 = lznea?) + ' (z0) (1 = lzal)| + I (z0)](1 = |zaf)[1 + a3,

then (11) is obtained using (16) for the first summand and (15) for the second one.

We introduce these interpolating sequences because they provide a generalization of the usual interpola-
tion problems, in the sense that (0)-interpolating sequences, (0)-interpolating in differences and ((0), (0))-
interpolating are interpolating, interpolating in differences and double interpolating, respectively.

Extending recursion to an arbitrary order or increasing the degree of derivability are projects certainly
cumbersome, so that we confine ourselves to order one and the first derivative. Nevertheless, we think it
would be interesting to consider these types of sequences for other spaces of analytic functions, such as
the Lipschitz class and the Bloch space, for which the pseudo-hyperbolic distance in (2) is replaced by the
Euclidean and hyperbolic distance, respectively (interpolating sequences for these spaces are characterized
in [10] and [11]).

While the proofs of results turn out to be rather standard (Carleson’s theorem is used repeatedly), we
appreciate the following separation conditions, which are consistent with the problems posed and appear in
a natural way.

Definition 1.7. We say that (Z, A) satisfies condition (S) if
|Bm+1(zZm+1)| 2 cI'(am) VmeN,

and condition (D) if
|Bm+1(zZm+1)| 2 cII(am) VYmeN.

We say that (Z, A") satisfies condition (M) if
|Bmi1(zms1)|> > c A(a),) VmeN.

We name (S), (D) and (M) to the above conditions because these are the initials of simple, differences and
mixed, respectively, and we will see in the next section that condition (S) is related to interpolating sequences
in a simple sense; (D), in a differences sense, and (M), in a mixed sense (zero and interpolating).

Since p(zm, Zm+1) > |Bm+1(Zm+1)|, it follows that if (Z, A") verifies (M), then (Z, -A") satisfies (S). All
conditions imply (b) in Lemma 1.2 so that Z is the union of two u.s. sequences. Note that if |A| < 1 (resp.
[A]| < 1), then (S) (resp. (M)) = u.s.

2 Statement of results

Our results are the following ones.

Proposition 2.1.
(i) If Z is A-interpolating and I'(an) = O(I'(an+1)), then (Z, A) verifies (S).
(ii) If Z is A-interpolating in differences and II(an) ~ II(@n+1), then (Z, A) verifies (D).
(iii) IfZis (A, A")-interpolating, I'(an) = O(I'(an+1)) and I'(ay) = O(I'(an.1)), then Z is u.s.
(iv) IfZ is zero and A’-interpolating and A(ay) = O(A(ay,,)), then (Z, A") verifies (M).
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Proposition 2.2.
(@) If (Z, A) verifies (S), then Z is A-interpolating.
(i) If (Z, A) verifies (D) and A is such that
|@ns1| < 7l|an| 17)
forsomer € (0, 1), then Z is A-interpolating in differences.
(iii) IfZis u.s., then Z is (A, A")-interpolating for any sequences A and A’
(iv) If (Z,A") verifies (M), A(ay) = O(A(an.,)) and

n
|} a5--an|A(at) + 3 |ai afyr-ap|A(aioy) < c A(ap-1) Yn>2, (18)
i=2

then Z is zero and A’-interpolating.

3 Proof of results

Proof of Proposition 2.1. (i) For a fixed m € N, let (wy,) be defined by wipy1 = I'(adm), Wm+2 = —@ms1Wms1 and
wyp=0ifn+ m+1, m+ 2. Since I'(an) = O(I"(an+1)), it follows that

[Wm2| < [Alleo I'(am) < €4,z |Alleo I'(@m+1)
and wpn4, also verifies (4). Since the operator
R :H” — {(wn) [ (wn) verifies (3) and (4)}

defined by R(f) = (un), where u; = f(z1) and un+1 = f(zn+1) — anf(2n), is linear and onto, a standard
argument using the closed graph theorem gives the existence of f, €¢ H such that R(fin) = (wn) and ||fm | <
c||(wn)| e = c. Since fm(zm+1) = Wm+1 and fm(zn) = 0if n # m + 1, there is gm € H” such that fin = gmBm+1
and ||gm| oo = |fm o Thus,
I'(am) = [fm(Zm+1)] € € |Bms1(Zms1)]

and (S) holds.

(ii) For a fixed m € N, let (wy,) be defined by w41 = IT(am) and the other terms as in (i). This sequence
satisfies (6), because taking into account that I7(an) ~ IT1(an+1),

_ - < ,
[(Wins1 = Wma2| = |1 + Gma1| Wine1 < (1 + |4 o) I (am)
‘Wm - Wm+1| =Wmsl = H(am) < CQl,Z H(am_l) ifm>2,

[Winz = Wonss| = Wnez < |Al oo I(am) < caz |Aloo T (amsn)-

Condition (D) is obtained proceeding exactly as in the proof of (i).

!
(iii) Let (wn ) be defined as in (i) and let (wy,) be defined by wy,,; = %,
— [4m+1

and wj, = 0if n #+ m + 1, m + 2. We have that w},,, also satisfies (8), because

I'(am)

W, = —a, —
m+2 m+1 1-— |Zm+2|2

Winsal (1 = |Zme2|) < A" o T'(am) < car,z A" oo T(@msn)-

Proceeding as in (i), there exists gm € H such that f = gmB2.1. Since p(zm, Zm+1) < I'(am) (see definition
of I') and |Bm+1(2Zm+1)| < p(Zm, Zm+1), We have

p(Zm,Zm+1) < F(am) = lfm(zm+1)| < C|Bm+1(25m-¢—1)|2 <cC |Bm+1(Zm+1)| P(Zm, Zm+1)-

Thus, it follows that Z \ {z1} isu.s. and sois Z.
(iv) Let (wy,) be defined as in (iii) replacing I" by A. Since A(ayp) = 0(A(ay,1)), then wy,,, verifies (11).
Proceeding as in (i), there is g, € H* such that f;, = gnBBm+1. A simple calculation gives

|Bm+1(zm+1)‘
1-|zms1]?

B’ (zm+1)| = (19)
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and then,
‘Bm+1 (Zm+1 ) |2

A a, ! !
) (zmi)| = (8B B (zmin)| < ¢ EmetZmst)
1 ‘Zm+1|

1- |Zm+1 |
Thus, (M) holds. O

Proof of Proposition 2.2. Let (un) be as in (12) and (yy,) as in (13).

(i) We situate ourselves in (c) of Lemma 1.2. If Z is u.s., then Carleson’s theorem provides f performing
the interpolation f(z,) = pn. Otherwise, Z is the union of E = (z2,z) and F = (zam+1), both u.s. Let g ¢ H™
such that g(zam) = uam. We look for a function h € H* such that h(zam+1) = Am, where

_ Ham+1 — g(sz+1)

A
" Be(zam+1)

>

because then f1 = g + Bgh is in H™ and performs the above interpolation on Z \ {z1}. Since |Bg(z2m+1)| >
|Bam+1(22m+1)| and [Bam+1(Z22m+1)| = ¢ I'(aam ) (condition (S)), we have |Bg(z2m+1)| = ¢ I'(@zm ). Then,

lt2m+1 — pam| + |8(22m) — 8(Zam+1)|

‘)\m|SC

F(aZm)
Taking into account that
H2m+1 = A2m 2m + Wam+1 (20)
and using (3) and (4),
|,u2m+1 - ,U2m| < ‘1 - a2m| |N2m| + |W2m+1| < CF(GZm)-
By (2)

lg(z2m) — &(z2m+1)| € € p(Z2m, Zoms1) < ¢ I'(a@2m).
Thus, (A\n) € [ and Carleson’s theorem provides h. Putting

Bl(Z)
B1(Zl) ’

it follows that f is in H*>* and performs the above interpolation on Z.
(ii) The proof is as in (i). Now we have

f(2) =fi1(2) + (m1 - f1(z1))

|p2me1 — pome2| + |8(22m+2) — 8(Z2m+1)]

Am| <€
| m| H(“Zm)

By (20) and using (3) and (6),

|p2m+1 = pam+2] € (Wame1 = Wama2| + [p2om+1] |@om — @oms1| + |@2m| (Jpam+1| + |p2m]) < c{II(am) + |azm|}

|02m - aZm+1|

and by (17), it turns out that |azm| < T

< cII(azm)- On the other hand, by (2)

Ig(z2m+2) — 8(Z2m+1)| € € p(Z2m+1, Z2m+2) < c I (a2m).-

Thus, (An) € I* and the proof continues as in (i).

(iii) Since Z is u.s., then Z is double interpolating and there is f in H*™ performing f(zx) = pn and
f'(zn) = pin.

(iv) In case that Z = E U F, where E = (za2m) and F = (z2m+1) are u.s., we know that there is g ¢ H*
vanishing on E and satisfying g’(zam) = pb,. We look for a function hy € H* such that h1(z2m+1) = Am,

where
_ —g(sz+1 )

 Bi(zam+1)’

because then h; = g + Bzh; isin H*, vanishes on Z \ {z} and h}(z2m) = pt5,- We have

Am

g (z2m+1)|

[Am| < ¢ .
Ad)
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It follows from (13), taking into account (10) and (11), that
(1= |22*)[pb] < |d5|(1 = [z *)wi] + (1 = |22 [wh| < c A(d)). 3)

For n > 2, by (13), (10), (11) and (18)

n

(1= |zns1mea| < e {ldh ab ... an|A(ah) + Y |ai afs - aplAaiog)} 22
i=2

+ (1= |zne1|*)[Whaa| < c{A(an-1) + A(ay)} < c A(ap).
Then, using (15), (21), (22) and A(ay) = O(A(ap1)),
18(z2ms1)| =18 (z2m) — 8(z2ms1) — &' (Zam) (1 = |z2m* )10 (Z2ms Zame1 )] + (1 = [z2m ) [ om| p(Z2ms Zama1)

< c{p(z2m, Zam+1)* + A(@om) p(Z2m, Zams1) }-

Thus,
2
|)\m| <c (P(ZZm, Z,2m+l)
A(as,,)
and Carleson’s theorem provides h; performing the above interpolation. We replace h, by ha., where hy is
given by

+ P(ZZmyZZm+1)) <c

Bi(z)
Bi(z1)’

because then h,. also vanishes on z;. Finally, we look for h3 € H* such that h3(zam+1) = Ay, where

th(Z) = hz(Z) — hz(Z1)

)\;n _ //L;m+1 - h,20(22m+1)
(B’Bg)(z2m+1)

because then f = hy. + BBghs is in H* and performs the desired interpolation on Z \ {z; }. Using (19),

{Komer + Hom| + [hoe(Z2m) + hoe(Zome1)[} (1 = |Z2mea|*)

|Am| < €
m A(ah,,)

An easy computation shows that
|z - wl
1-|z|?

if p(z, w) < min(|z|, %); then, using (21), (22), (23) and A(ay) = O(A(an1)),

<4p(z,w), (23)

< CA(a;m)P(ZZm, ZZm+1) (24)

Z2m — 2
o] l22m|” = Z2mer|*| < € A(a3m-1) M

— |z2m|?
and taking into account (21), (22), (24) and A(ay) = O(A(@p.1)),
|H’2m+1 + #’2m|(1 - |ZZm+1|2) < ‘H£m+1|(1 - ‘22m+1‘2) + |,U’2m|(1 - |ZZm|2)
+oml [|z2m|* = |Zams1 *] < € {A(@om) + A(@om)p(Z2m, Zams1)}.
On the other hand, by (16) and (24)
e (Z2m) + e (zome1)| (1 = |z2ms[?)
< |hoe(zam) (1 = |z2m|*) + hoc(Zame1) (1 = |z2ma1 )]

+|ﬂ£m| ||ZZm|2 - ‘22m+1‘2‘ <cC {p(ZZMa ZZm+1)2 + A(aIZm)P(ZZm, 22m+1)}-

Then,
, Zoms 2 2
‘>\m| S C(l + % + p(ZZm, ZZm+1)) S C
2m
and Carleson’s theorem provides h; performing the above interpolation. We replace f by f. defined by
BB1)(z2)
z) =f(2) - (f (z1) - pi (%,
fC( ) f( ) (f( 1) :ul) (B,Bl)(zl)

because then f/(z1) = 1} and so f. performs the desired interpolation on Z. O
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