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Abstract: The Witt algebra 20, of rank d(> 1) is the derivation algebra of Laurent polynomial algebras in d
commuting variables. In this paper, all biderivations of 20, without anti-symmetric condition are determined.
As an applications, commutative post-Lie algebra structures on 23, are obtained. Our conclusions recover and
generalize results in the related papers on low rank or anti-symmetric cases.
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1 Introduction

Let IF be a field of characteristic zero. We denote by Z the sets of all integers. We fix a positive integer d > 1
and denote by 20, the derivation Lie algebra of the Laurent polynomial algebra A = F[z1',-,z5"'] in d
commuting variables z1, ---, z4 over F. It is well known that the infinite-dimensional Lie algebra 23, is called
the Witt algebra of rank d. Its representations have attracted a lot of attention from many mathematicians
[1-5]. According to their notations, the Witt algebra can be described as follows.

Forie {1,2,...,d}, seto; = zi%. For any n ¢ Z“ (considered as row vectors, i.e., n = (n1, -, ny) where
n; € 7), set z" = Z'l’lzg’z---zgd. We fix the vector space F4 of 1 x d matrices. Denote the standard basis by
e1, €z, ..., €4, which are the row vectors of the identity matrix I. Let (-, -) be the standard symmetric bilinear
form such that (u, v) = uv’ € F, where v7 is the matrix transpose. For u € F¢ and r ¢ Z¢, we denote D(u, r) =
z Zl‘-il u;0;. Then we have

[D(u,r),D(v,s)]:D(w,r+s),u,veIE‘d, r,seZq, )
where w = (u, s) v — (v, r) u. Therefore, the Witt algebra of rank d is the [F-linear space
W, = spang{D(u, r)|u e F*, re 2%}

with brackets determined by (1). Note that D(u, r) is linear only with respect to the first component u. It is
clear that 20, has a basis as
{D(e1,r),D(ez,1),-, D(eq,r)|reZ}.

Recall that
b= {D(u,0)ucF"} = spang{D(e1,0), D(e:,0), -, D(eq, 0)}
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is the Cartan subalgebra of 25,.

It is well-known that derivations and generalized derivations are very important subjects in the research
of both algebras and their generalizations. In recent years, biderivations have interested a great number
of authors, see [6-16]. In [7], BreSar et al. showed that all biderivations on commutative prime rings are
inner biderivations, and determined the biderivations of semiprime rings. The notion of biderivations of Lie
algebras was introduced in [15]. Since then, biderivations of Lie algebras have been studied by many authors.
It may be useful and interesting for computing the biderivations of some important Lie algebras. In particular,
the authors in [11] determined anti-symmetric biderivations for all 23,. All biderivations of 25; without anti-
symmetric condition were later obtained in [14]. In the present paper, we shall use the methods of [14] to
determine all biderivations of 25, for all d > 1.

Next, let us introduce the definition of biderivation. For an arbitrary Lie algebra L, a bilinear map f :
L x L — L is called a biderivation of L if it is a derivation with respect to both components. Namely, for each
x € L, both linear maps ¢ and 1x form L into itself given by ¢x = f(x, -) and ¢x = f(+, x) are derivations of L,
ie.,

f([X, )/]’Z) = [x,f(y,z)] + [f(X,Z), y]’

f 1y, 2]) = [f(x, ), 2] + [y, f(x, 2)] ©)
forall x, y, z € L. Denote by B(L) the set of all biderivations of L. For A € C, it is easy to verify that the bilinear
mapf:LxL — Lgivenby f(x,y) = A\[x,y] forall y € L is a biderivation of L. Such biderivation is said to be
inner. Recall that f is anti-symmetric if f(x,y) = —f(y, x) forall x, y € L.

In this paper, we will prove that every biderivation of 27, without anti-symmetric condition is inner. As
an application, we characterize the commutative post-Lie algebra structures on 20,,.

2 Biderivations of the Witt algebras

We first give some lemmas which will be useful for our proof.
Lemma 2.1 ([17]). Every derivation of 20 is inner.
Lemma 2.2. Suppose that f € B(20,). Then there are linear maps ¢ and v from 28, into itself such that

flx,y) =[o(x),y] =[x, ¥(y)]
forallx,y € 20,.

Proof. Since f is a biderivation of 24, then for a fixed element x € 25, the map ¢« : L — L given by ¢x(y) =
f(x,y) is a derivation of 2, by (2). Therefore, from Lemma 2.1 we know that ¢, is an inner derivation of 25,.
Therefore, there is a map ¢ : 2J; — 25, such that ¢, = adé(x), i.e., f(x,y) = [¢(x), y]. Since f is bilinear, it is
easy to verify that ¢ is linear. Similarly, if we define a map ¢, from 25, into itself given by ¢, (y) = f(y, z) forall
y € 204, then one can obtain a linear map v from 2, into itself such that f (x, y) = ad(-4(y))(x) = [x, ¥ (¥)].
The proof is completed. O

Lemma 2.3. Let f € B(2,) and ¢, 1) be determined by Lemma 2.2. For any i,j € {1,---,d} and r,s ¢ 74, we
assume that

d .
s(D(ei, 1)) =Y. > al’D(ex, n), 3)
k=1 nezd
d .
¥(D(ej,s)) = Y. . by D(ex, n) )

k=1 nezd
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@) 3 3ss)
where ag,’s bk’n ¢ F. Then

d
> a,((’n’)skD(ej, n+s)—-y > a(' n;D(ex, n +5)
nez

d
Z
k=1 k=1 nezd
d . d .
= Z > b(]”:)niD(ek,n‘F N-> 3 b,((”’ns)rkD(ei,n +7). (5)
k=1 nezd k=1 nezd

Proof. Lemma 2.2 tells us that

f(D(ei,r),D(ej,s)) = [¢(D(ei, 1)), D(ej, s)] = [D(ei, ), ¥(D(ej, s))]
foralli,je {1,---,d}andr,s ¢ 74. From (3) and (4), the conclusion follows by direct computations. O

Lemma 2.4. Letf € B(2,) and ¢, 1) be determined by Lemma 2.2. Then the Cartan subalgebra |y is an invariant
subspace of both maps ¢ and ).

Proof. Note that D(e;,0),i = 1,---d span the Cartan subalgebra §, so it is enough to prove that
¢(D(ei,0)),v(D(e;,0)) € b for each i € {1,2,-,d}. For any fixed i ¢ Z, applying (3) for r = 0 we have
that

#(D(e;,0)) = z > a"”D(ex, ). 6)

k=1 nezd

We will prove that a(’ %)~ 0in (6) forall n € Z% « {0}, and so that ¢(D(e;, 0)) = ¢_, a(’ O)D(ek, 0) € bh. The
proof of (D (e;, 0)) € b is similar.

Now for an arbitrary s € VAN {0}, we assume that s; # O for some j € {1, 2, ---, d}. It follows by letting
r = 01n (5) that

d d
I ay"VsiD(ej,n+s) - ) al"VmD(e,n+s)=3 3 bV nD(er, n). @)
k=1 nezd k=1 nezd k=1 nezd

It is clear that the right-hand side of (7) does not contain any non-zero elements in fj, thereby the left-hand
side is so. From this, one has that

d
> a(’ 0)skD(e,, 0) + Z a,((l OS)S,D(ek, 0)=0,
k=1 k=1

which implies that

(2a(’ Vs; + Z a(’ %sK)D(ej, 0) + Z a(l %s;D(ex, 0) = 0. ®)
k¢1 k;ll

@, o) (1 0)

Thanks to s; # 0, we have by (8) that a, "/ = 0 for every k # j. Once again applying (8), we see that 2a;

0, i.e., a].(”_? = 0. In other words, a,((’_os) = O forall k = 1,---, d. Notice the arbitrariness of s, the proof is
completed. O

Lemma 2.5. Letf € B(20,) and ¢, ¢ be determined by Lemma 2.2. Then we have

¢(D(ei,r))sa§i”)D(ei,r) mod b, 9
¥(D(ej,5)) = b D(ej,s) mod b (10)

foralli,je{1,--,d}andr,s e Z\ {0}.
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Proof. We will only prove (10), the proof for (9) is similar. Continuing the use of the assumptions (3) and (4),
we also have that (7) holds. This, together with Lemma 2.4 meaning a(’ 0 _oforalln ez~ {0}, yields that

d
<za<’ V'si0D(ejss) = 32 3 by mib(ei n). (1)
k=1 pez4
n+0

Therefore, from (11) we see that b(i's)ni =0foralli=1,-dand (k,n) # (j,s) with n # 0. This implies that
b(’ S) = 0 forall (k, n) # (j, s) since n # 0. It has been obtained that

d
W(D(ej,8)) = 3 b(’ D (ex, 0) + b(’ ")D(e;, 5),
k=1

which proves (10). O

Lemma 2.6. Let f € B(20,) and ¢, ¢ be determined by Lemma 2.2. Then there is A € F such that
#(D(ei,r)) = AD(e;, 1), (D(ej,s)) = AD(ej,s)

foralli,je{1,---,d}andr,s € VAN {0}.
Proof. We use the assumptions (3) and (4). With Lemmas 2.4 and 2.5, Equation (5) becomes

d
(Z ai)si)D(ej, 5) +aly siD(ej, r+5) - aly r;D(ei, + 5)

- _(Z b(’ s)rk)D(ei, )+ b;fs’s)siD(e,-, r+s)- b;”'s’s)r,-D(e,-, r+s).
It follows that
Zd:a(”)s —Zb(’S)rk—O Vs,reZ?\ {0}, withs #r, (12)
(l r)sl = b(] s)sl, .(”,’) rj = b;”s’s)rj, Vs, reZ4\ {0}, i+]. (13)

Although r # 0, but we still can find a subset {”s'(l), -~-,"s'(d)} of Z4 such that ”s'(l), -~-,"s'(d) are F-linearly
independent with 30 4 r,t=1,--,d.Let s run over the vectors §<1), ~-~,§(d) in (12), then we see that

SO fafy)

: :|=0,
) \at
which implies that
af <= <o.
Similarly, we have
i == b =0

Next, by taking s = (1, ---,1) = e in (13), we have a(’ ") = b(j’e) for all i # j. This tells us that al.(’ir") = bfée) for

anyi+ 1and a(’ o b(2 ©) for any i + 2. It follows that a(l oF

r € 24 « {0}. Similarly, we obtain that bg’ %) is a constant denoted by y forallj = 1, -, d and s € Z¢  {0}.
(2 e) b(l .e)

is a constant denoted by A foralli =1, -+, d and

Finally, by a; we have \ = p, Wthh completes the proof. O

Lemma 2.7. Letf € B(20,), and ¢, v be determined by Lemma 2.2, \ € F be given by Lemma 2.7. Then
(z)(D(ei’ 0)) = )\D(ei’ O)a d}(D(e]" 0)) = )‘D(ej’ O)

foralli,je{1,-,d}.
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Proof. We use the assumptions (3) and (4). By Lemma 2.4, we have
amam»—zﬁmm@bm,

¥(D(e;,0)) = z bV D(ex,0)
k=1

for all i, j € Z. Namely, it follows that, in (3) and (4), a(’ 0) _ b(j 9 _0forallnez?~ {0}. Note that Lemma

2.6 tells us that, in (3) and (4), a(’ - Si.k0n,rA and b(J s) = §jx0nsA forany i,j € Zand r,s € 29 \ {0}. All
these together with letting r = 0 i in (5), deduce that

a,E'OO)skD(e,-, s) = AsiD(ej, S).

M=

k=1

Then we have

sialy) +- +s(a(’°) A)++S afi’(;)) 0

forall s € Z4 \ {0}. Let s run over the vectors ey, e, ---, e4, we have a(l ©) = \and a(’ %) = 0 for every k # i.
This proves that ¢(D(e;, 0)) = AD(e;, 0). Similarly, we can obtain that w(D(e,, 0)) = )\D(e,-, 0). The proof is
completed. O

Our main result is the following.
Theorem 2.8. Every biderivation of 254 without anti-symmetric condition is inner.

Proof. Suppose that f is a biderivation of 2J,. Let ¢ be determined by Lemma 2.2, A € F be given by Lemma
2.7. Note that 20 is spanned by D(u, 0), D(u, r) for all u ¢ F and r € Z¢ \ {0}. Then by Lemmas 2.6 and 2.7,
we see that ¢(x) = Ax for all x € 27,4. Now, it follows by Lemma 2.2 that

f(x,y) =[o(x),y] = [M,y] = A[x, ¥]

for all x, y € 20,4, as desired. O

3 An application

The anti-symmetric biderivation can be applied to linear commuting maps, commuting automorphisms and
derivations, see [8]. Another application of biderivation without the anti-symmetric condition is the char-
acterization of post-Lie algebra structures. Post-Lie algebras have been introduced by Valette in connection
with the homology of partition posets and the study of Koszul operads [18]. As [19] point out, post-Lie algebras
are natural common generalization of pre-Lie algebras and LR-algebras in the geometric context of nil-affine
actions of Lie groups. Recently, many authors have studied some post-Lie algebras and post-Lie algebra
structures [19-23]. In particular, the authors of [19] study the commutative post-Lie algebra structure on Lie
algebra. Let us recall the following definition of a commutative post-Lie algebra.

Definition 3.1. Let (L, [, ]) be a Lie algebra over F. A commutative post-Lie algebra structure on L is a F-bilinear
product x o y on L and satisfies the following identities:

Xoy=yox,
[X,y]oz=xo(yoz)-yo(xoz),
xoly,z]=[xoy,z] +[y,xoz].

forallx,y, z € L. It is also said that (L, [, ], o) is a commutative post-Lie algebra.
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Lemma 3.2 ([14]). Let (L, [, ], o) be a commutative post-Lie algebra. If we define a bilinearmap f : L x L — L
given by f(x,y) =xoyforallx,y € L, then f is a biderivation of L.

Theorem 3.3. Any commutative post-Lie algebra structure on the generalized Witt algebra 20, is trivial.
Namely, x oy =0 forall x,y € 2,4.

Proof. Suppose that (204, [, ], o) is a commutative post-Lie algebra. By Lemma 3.2 and Theorem 2.8, we know
that there is A € F such that x oy = A\[x, y] for all x, y € 20,. Since the post-Lie algebra is commutative, so we
have A\[x, y] = A[y, x]. It implies that X\ = 0. The proof is completed. O
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