
Open Access. © 2018 Tang and Yang, published by De Gruyter. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

Open Math. 2018; 16: 447–452

Open Mathematics

Research Article

Xiaomin Tang* and Yu Yang

Biderivations of the higher rank Witt algebra
without anti-symmetric condition
https://doi.org/10.1515/math-2018-0042
Received November 8, 2017; accepted February 26, 2018.

Abstract: The Witt algebra Wd of rank d(≥ 1) is the derivation algebra of Laurent polynomial algebras in d
commuting variables. In this paper, all biderivations ofWd without anti-symmetric condition are determined.
As anapplications, commutative post-Lie algebra structures onWd are obtained.Our conclusions recover and
generalize results in the related papers on low rank or anti-symmetric cases.
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1 Introduction
Let F be a �eld of characteristic zero. We denote by Z the sets of all integers. We �x a positive integer d ≥ 1
and denote by Wd the derivation Lie algebra of the Laurent polynomial algebra A = F [z±11 ,⋯, z±1d ] in d
commuting variables z1,⋯, zd over F. It is well known that the in�nite-dimensional Lie algebraWd is called
the Witt algebra of rank d. Its representations have attracted a lot of attention from many mathematicians
[1–5]. According to their notations, the Witt algebra can be described as follows.

For i ∈ {1, 2, ..., d}, set ∂i = zi ∂zi . For any n ∈ Zd (considered as row vectors, i.e., n = (n1,⋯, nd) where
ni ∈ Z), set zn = zn11 zn22 ⋯z

nd
d . We �x the vector space Fd of 1 × d matrices. Denote the standard basis by

e1, e2, ..., ed, which are the row vectors of the identity matrix Id. Let (⋅, ⋅) be the standard symmetric bilinear
form such that (u, v) = uvT ∈ F, where vT is the matrix transpose. For u ∈ Fd and r ∈ Zd, we denote D(u, r) =
zr∑d

i=1 ui∂i. Then we have

[D (u, r) , D (v, s)] = D (w, r + s) , u, v ∈ Fd , r, s ∈ Zd , (1)

where w = (u, s) v − (v, r) u. Therefore, the Witt algebra of rank d is the F-linear space

Wd = spanF{D(u, r)∣u ∈ Fd , r ∈ Zd
}

with brackets determined by (1). Note that D(u, r) is linear only with respect to the �rst component u. It is
clear thatWd has a basis as

{D(e1, r), D(e2, r),⋯, D(ed , r)∣r ∈ Zd
}.

Recall that
h = {D (u, 0) ∣u ∈ Fd

} = spanF{D(e1, 0), D(e2, 0),⋯, D(ed , 0)}
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is the Cartan subalgebra ofWd.
It is well-known that derivations and generalized derivations are very important subjects in the research

of both algebras and their generalizations. In recent years, biderivations have interested a great number
of authors, see [6–16]. In [7], Brešar et al. showed that all biderivations on commutative prime rings are
inner biderivations, and determined the biderivations of semiprime rings. The notion of biderivations of Lie
algebras was introduced in [15]. Since then, biderivations of Lie algebras have been studied bymany authors.
Itmay be useful and interesting for computing the biderivations of some important Lie algebras. In particular,
the authors in [11] determined anti-symmetric biderivations for allWd. All biderivations ofW1 without anti-
symmetric condition were later obtained in [14]. In the present paper, we shall use the methods of [14] to
determine all biderivations ofWd for all d ≥ 1.

Next, let us introduce the de�nition of biderivation. For an arbitrary Lie algebra L, a bilinear map f ∶
L × L → L is called a biderivation of L if it is a derivation with respect to both components. Namely, for each
x ∈ L, both linear maps φx and ψx form L into itself given by φx = f(x, ⋅) and ψx = f(⋅, x) are derivations of L,
i.e.,

f([x, y], z) = [x, f(y, z)] + [f(x, z), y],
f(x, [y, z]) = [f(x, y), z] + [y, f(x, z)] (2)

for all x, y, z ∈ L. Denote by B(L) the set of all biderivations of L. For λ ∈ C, it is easy to verify that the bilinear
map f ∶ L × L → L given by f(x, y) = λ[x, y] for all y ∈ L is a biderivation of L. Such biderivation is said to be
inner. Recall that f is anti-symmetric if f(x, y) = −f(y, x) for all x, y ∈ L.

In this paper, we will prove that every biderivation of Wd without anti-symmetric condition is inner. As
an application, we characterize the commutative post-Lie algebra structures onWd.

2 Biderivations of the Witt algebras
We �rst give some lemmas which will be useful for our proof.

Lemma 2.1 ([17]). Every derivation ofWd is inner.

Lemma 2.2. Suppose that f ∈ B(Wd). Then there are linear maps φ and ψ fromWd into itself such that

f(x, y) = [φ(x), y] = [x,ψ(y)]

for all x, y ∈Wd.

Proof. Since f is a biderivation of Wd, then for a �xed element x ∈ Wd the map φx ∶ L → L given by φx(y) =
f(x, y) is a derivation ofWd by (2). Therefore, from Lemma 2.1 we know that φx is an inner derivation ofWd.
Therefore, there is a map φ ∶Wd →Wd such that φx = adφ(x), i.e., f(x, y) = [φ(x), y]. Since f is bilinear, it is
easy to verify thatφ is linear. Similarly, if we de�ne amapψz fromWd into itself given byψz(y) = f(y, z) for all
y ∈Wd, then one can obtain a linearmapψ fromWd into itself such that f(x, y) = ad(−ψ(y))(x) = [x,ψ(y)].
The proof is completed.

Lemma 2.3. Let f ∈ B(Wd) and φ, ψ be determined by Lemma 2.2. For any i, j ∈ {1,⋯, d} and r, s ∈ Zd, we
assume that

φ(D(ei , r)) =
d
∑
k=1
∑
n∈Zd

a(i,r)k,n D(ek , n), (3)

ψ(D(ej , s)) =
d
∑
k=1
∑
n∈Zd

b(j,s)k,n D(ek , n) (4)
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where a(i,r)k,n , b(j,s)k,n ∈ F. Then

d
∑
k=1
∑
n∈Zd

a(i,r)k,n skD(ej , n + s) −
d
∑
k=1
∑
n∈Zd

a(i,r)k,n njD(ek , n + s)

=
d
∑
k=1
∑
n∈Zd

b(j,s)k,n niD(ek , n + r) −
d
∑
k=1
∑
n∈Zd

b(j,s)k,n rkD(ei , n + r). (5)

Proof. Lemma 2.2 tells us that

f(D(ei , r), D(ej , s)) = [φ(D(ei , r)), D(ej , s)] = [D(ei , r),ψ(D(ej , s))]

for all i, j ∈ {1,⋯, d} and r, s ∈ Zd. From (3) and (4), the conclusion follows by direct computations.

Lemma 2.4. Let f ∈ B(Wd) andφ,ψ be determined by Lemma 2.2. Then the Cartan subalgebra h is an invariant
subspace of both maps φ and ψ.

Proof. Note that D(ei , 0), i = 1,⋯d span the Cartan subalgebra h, so it is enough to prove that
φ(D(ei , 0)),ψ(D(ei , 0)) ∈ h for each i ∈ {1, 2,⋯, d}. For any �xed i ∈ Z, applying (3) for r = 0 we have
that

φ(D(ei , 0)) =
d
∑
k=1
∑
n∈Zd

a(i,0)k,n D(ek , n). (6)

We will prove that a(i,0)k,n = 0 in (6) for all n ∈ Zd
∖ {0}, and so that φ(D(ei , 0)) = ∑d

k=1 a
(i,0)
k,0 D(ek , 0) ∈ h. The

proof of ψ(D(ei , 0)) ∈ h is similar.
Now for an arbitrary s ∈ Zd

∖ {0}, we assume that sj ≠ 0 for some j ∈ {1, 2,⋯, d}. It follows by letting
r = 0 in (5) that

d
∑
k=1
∑
n∈Zd

a(i,0)k,n skD(ej , n + s) −
d
∑
k=1
∑
n∈Zd

a(i,0)k,n njD(ek , n + s) =
d
∑
k=1
∑
n∈Zd

b(j,s)k,n niD(ek , n). (7)

It is clear that the right-hand side of (7) does not contain any non-zero elements in h, thereby the left-hand
side is so. From this, one has that

d
∑
k=1

a(i,0)k,−s skD(ej , 0) +
d
∑
k=1

a(i,0)k,−s sjD(ek , 0) = 0,

which implies that

(2a(i,0)j,−s sj +
d
∑
k=1
k≠j

a(i,0)k,−s sk)D(ej , 0) +
d
∑
k=1
k≠j

a(i,0)k,−s sjD(ek , 0) = 0. (8)

Thanks to sj ≠ 0, we have by (8) that a(i,0)k,−s = 0 for every k ≠ j. Once again applying (8), we see that 2a(i,0)j,−s sj =
0, i.e., a(i,0)j,−s = 0. In other words, a(i,0)k,−s = 0 for all k = 1,⋯, d. Notice the arbitrariness of s, the proof is
completed.

Lemma 2.5. Let f ∈ B(Wd) and φ, ψ be determined by Lemma 2.2. Then we have

φ(D(ei , r)) ≡ a(i,r)i,r D(ei , r) mod h, (9)

ψ(D(ej , s)) ≡ b(j,s)j,s D(ej , s) mod h (10)

for all i, j ∈ {1,⋯, d} and r, s ∈ Zd
∖ {0}.
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Proof. We will only prove (10), the proof for (9) is similar. Continuing the use of the assumptions (3) and (4),
we also have that (7) holds. This, together with Lemma 2.4 meaning a(i,0)k,n = 0 for all n ∈ Zd

∖ {0}, yields that

(
d
∑
k=1

a(i,0)k,0 sk)D(ej , s) =
d
∑
k=1
∑

n∈Zd

n≠0

b(j,s)k,n niD(ek , n). (11)

Therefore, from (11) we see that b(j,s)k,n ni = 0 for all i = 1,⋯d and (k, n) ≠ (j, s) with n ≠ 0. This implies that
b(j,s)k,n = 0 for all (k, n) ≠ (j, s) since n ≠ 0. It has been obtained that

ψ(D(ej , s)) =
d
∑
k=1

b(j,s)k,0 D(ek , 0) + b(j,s)j,s D(ej , s),

which proves (10).

Lemma 2.6. Let f ∈ B(Wd) and φ, ψ be determined by Lemma 2.2. Then there is λ ∈ F such that

φ(D(ei , r)) = λD(ei , r), ψ(D(ej , s)) = λD(ej , s)

for all i, j ∈ {1,⋯, d} and r, s ∈ Zd
∖ {0}.

Proof. We use the assumptions (3) and (4). With Lemmas 2.4 and 2.5, Equation (5) becomes

(
d
∑
k=1

a(i,r)k,0 sk)D(ej , s) + a(i,r)i,r siD(ej , r + s) − a(i,r)i,r rjD(ei , r + s)

= −(
d
∑
k=1

b(j,s)k,0 rk)D(ei , r) + b(j,s)j,s siD(ej , r + s) − b(j,s)j,s rjD(ei , r + s).

It follows that
d
∑
k=1

a(i,r)k,0 sk =
d
∑
k=1

b(j,s)k,0 rk = 0, ∀s, r ∈ Zd
∖ {0}, with s ≠ r, (12)

a(i,r)i,r si = b(j,s)j,s si , a(i,r)i,r rj = b(j,s)j,s rj , ∀s, r ∈ Zd
∖ {0}, i ≠ j. (13)

Although r ≠ 0, but we still can �nd a subset {s̃(1),⋯, s̃(d)} of Zd such that s̃(1),⋯, s̃(d) are F-linearly
independent with s̃(t) ≠ r, t = 1,⋯, d. Let s run over the vectors s̃(1),⋯, s̃(d) in (12), then we see that

⎛
⎜
⎜
⎝

s̃(1)

⋮

s̃(d)

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

a(i,r)1,0
⋮

a(i,r)d,0

⎞
⎟
⎟
⎠

= 0,

which implies that
a(i,r)1,0 = ⋯ = a(i,r)d,0 = 0.

Similarly, we have
b(j,s)1,0 = ⋯ = b(j,s)d,0 = 0.

Next, by taking s = (1,⋯, 1) ≐ e in (13), we have a(i,r)i,r = b(j,e)j,e for all i ≠ j. This tells us that a(i,r)i,r = b(1,e)1,e for
any i ≠ 1 and a(i,r)i,r = b(2,e)2,e for any i ≠ 2. It follows that a(i,r)i,r is a constant denoted by λ for all i = 1,⋯, d and
r ∈ Zd

∖ {0}. Similarly, we obtain that b(j,s)j,s is a constant denoted by µ for all j = 1,⋯, d and s ∈ Zd
∖ {0}.

Finally, by a(2,e)2,e = b(1,e)1,e we have λ = µ, which completes the proof.

Lemma 2.7. Let f ∈ B(Wd), and φ, ψ be determined by Lemma 2.2, λ ∈ F be given by Lemma 2.7. Then

φ(D(ei , 0)) = λD(ei , 0), ψ(D(ej , 0)) = λD(ej , 0)

for all i, j ∈ {1,⋯, d}.
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Proof. We use the assumptions (3) and (4). By Lemma 2.4, we have

φ(D(ei , 0)) =
d
∑
k=1

a(i,0)k,0 D(ek , 0),

ψ(D(ej , 0)) =
d
∑
k=1

b(j,0)k,0 D(ek , 0)

for all i, j ∈ Z. Namely, it follows that, in (3) and (4), a(i,0)k,n = b(j,0)k,n = 0 for all n ∈ Zd
∖ {0}. Note that Lemma

2.6 tells us that, in (3) and (4), a(i,r)k,n = δi,kδn,rλ and b(j,s)k,n = δj,kδn,sλ for any i, j ∈ Z and r, s ∈ Zd
∖ {0}. All

these together with letting r = 0 in (5), deduce that

d
∑
k=1

a(i,0)k,0 skD(ej , s) = λsiD(ej , s).

Then we have
s1a(i,0)1,0 +⋯ + si(a(i,0)i,0 − λ) + ⋯ + sda(i,0)d,0 = 0

for all s ∈ Zd
∖ {0}. Let s run over the vectors e1, e2,⋯, ed, we have a(i,0)i,0 = λ and a(i,0)k,0 = 0 for every k ≠ i.

This proves that φ(D(ei , 0)) = λD(ei , 0). Similarly, we can obtain that ψ(D(ej , 0)) = λD(ej , 0). The proof is
completed.

Our main result is the following.

Theorem 2.8. Every biderivation ofWd without anti-symmetric condition is inner.

Proof. Suppose that f is a biderivation of Wd. Let φ be determined by Lemma 2.2, λ ∈ F be given by Lemma
2.7. Note thatWd is spanned by D(u, 0), D(u, r) for all u ∈ Fd and r ∈ Zd

∖ {0}. Then by Lemmas 2.6 and 2.7,
we see that φ(x) = λx for all x ∈Wd. Now, it follows by Lemma 2.2 that

f(x, y) = [φ(x), y] = [λx, y] = λ[x, y]

for all x, y ∈Wd, as desired.

3 An application
The anti-symmetric biderivation can be applied to linear commuting maps, commuting automorphisms and
derivations, see [8]. Another application of biderivation without the anti-symmetric condition is the char-
acterization of post-Lie algebra structures. Post-Lie algebras have been introduced by Valette in connection
with the homology of partition posets and the study of Koszul operads [18]. As [19] point out, post-Lie algebras
are natural common generalization of pre-Lie algebras and LR-algebras in the geometric context of nil-a�ne
actions of Lie groups. Recently, many authors have studied some post-Lie algebras and post-Lie algebra
structures [19–23]. In particular, the authors of [19] study the commutative post-Lie algebra structure on Lie
algebra. Let us recall the following de�nition of a commutative post-Lie algebra.

De�nition 3.1. Let (L, [, ]) be a Lie algebra overF. A commutative post-Lie algebra structure on L is aF-bilinear
product x ○ y on L and satis�es the following identities:

x ○ y = y ○ x,
[x, y] ○ z = x ○ (y ○ z) − y ○ (x ○ z),
x ○ [y, z] = [x ○ y, z] + [y, x ○ z].

for all x, y, z ∈ L. It is also said that (L, [, ], ○) is a commutative post-Lie algebra.
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Lemma 3.2 ([14]). Let (L, [, ], ○) be a commutative post-Lie algebra. If we de�ne a bilinear map f ∶ L × L → L
given by f(x, y) = x ○ y for all x, y ∈ L, then f is a biderivation of L.

Theorem 3.3. Any commutative post-Lie algebra structure on the generalized Witt algebra Wd is trivial.
Namely, x ○ y = 0 for all x, y ∈Wd.

Proof. Suppose that (Wd , [, ], ○) is a commutative post-Lie algebra. By Lemma 3.2 and Theorem 2.8, we know
that there is λ ∈ F such that x ○ y = λ[x, y] for all x, y ∈Wd. Since the post-Lie algebra is commutative, so we
have λ[x, y] = λ[y, x]. It implies that λ = 0. The proof is completed.
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