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Abstract: Let V be a smooth variety. A hypersurface arrangementM in V is a union of smooth hypersurfaces,
which locally looks like a union of hyperplanes. We say M is free if all these local models can be chosen to
be free hyperplane arrangements. In this paper, we use Saito’s criterion to study the freeness of hypersurface
arrangements consisting of hyperplanes and spheres, and construct the bases for the derivation modules
explicitly.
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1 Introduction
A hypersurface arrangementM in a smooth variety V is a reduced divisor D consisting of a union of smooth
hypersurfaces, such that at each point D is locally analytically isomorphic to a hyperplane arrangement. For
hypersurface arrangements, many researchers made focus on the study of Milnor �bers, higher homotopy
groups and Alexander invariants of the hypersurface complements, such as [1–4]. Besides the topological
properties, the freeness of a hypersurface arrangement could also be considered. We say a hypersurface
arrangement is free if D is itself a free divisor on V. The study of free hyperplane arrangements was initiated
by H. Terao in [5], and has been playing the central role in this area. Recently, there have been several studies
to determine when a hyperplane arrangement is free, e.g., [6–9] and so on. However, it is still very di�cult
to determine the freeness. Freeness of hyperplane arrangements implies several interesting geometric and
combinatorial properties of the arrangements, for example see [6, 10, 11]. Therefore, there were many works
on the freeness of hyperplane arrangements, especially on Coxeter arrangements and the cones over Catalan
and Shi arrangements[12–16].

In [17], H. Schenck and S. Tohǎneanu studied the freeness of Conic-Line arrangements in P2 and their
results are the �rst to give an inductive criterion for freeness of nonlinear arrangements. Until now, the
papers about the freeness of hypersurface arrangements are few. In this paper,wewill consider the freeness of
hypersurface arrangements consisting of hyperplanes and spheres, andwill construct bases for thederivation
modules of hypersurface arrangements.
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The paper is organized as follows: in Section 2, we recall the basic de�nitions and generalize Saito’s
criterion to hypersurface arrangements consisting of hyperplanes and spheres. In Section 3, for the hyper-
surface arrangement consisting of n spheres, the hypersurface arrangement containing a free hyperplane
arrangement and n spheres, we present the constructions of bases for the derivation modules respectively.

2 Preliminaries and Notations
We begin with some basic concepts and notations of arrangements, for more information see P. Orlik and H.
Terao [18].

Let V be an `-dimensional vector space on K with a coordinate system {x1, . . . , x`} ⊂ V*. Let S = S(V*)
be the symmetric algebra of V* and DerK(S) be the module of derivations

DerK(S) = {θ : S → S| θ(fg) = fθ(g) + gθ(f ), f , g ∈ S}.

De�ne Di = ∂/∂xi , 1 ≤ i ≤ `, then D1, . . . , D` is a basis for DerK(S) over S.

De�nition 2.1. A nonzero element θ ∈ DerK(S) is of polynomial degree p if θ =
∑`

k=1 fkDk and the maximum
of the degrees of coe�cient polynomials f1, . . . , f` (get rid of 0) is p. In this case we write pdegθ = p.

De�nition 2.2. For a hypersurface arrangementM in V, the derivation module D(M) is de�ned by

D(M) = {θ ∈ DerK(S)| θ(αX) ∈ αXS for all X ∈M},

where X = ker(αX),M is called free if D(M) is free.

De�nition 2.3. Let M be a free hypersurface arrangement and let {θ1, . . . , θ`} be a basis for D(M). We call
pdegθ1, . . . , pdegθ` the exponents ofM and write

expM = {pdegθ1, . . . , pdegθ`}.

De�nition 2.4. Given derivations θ1, . . . , θ` ∈ D(M), de�ne the coe�cient matrix M(θ1, . . . , θ`) by Mi,j =
θj(xi), thus

M(θ1, . . . , θ`) =


θ1(x1) . . . θ`(x1)

. . . . .

. . . . .

. . . . .
θ1(x`) . . . θ`(x`)

 ,

and θj =
∑̀
i=1

Mi,jDi.

De�nition 2.5. LetM be a hypersurface arrangement, the product

Q(M) =
∏
X∈M

αX

is called a de�ning polynomial ofM, where X = ker(αX).

For hyperplane arrangements, Saito’s criterion provides a wonderful method to prove the freeness. Next, we
will prove it also holds forM, whereM is a hypersurface arrangement inR` consisting of linear hyperplanes
and spheres.

Lemma 2.6. If θ1, . . . , θ` ∈ D(M), then detM(θ1, . . . , θ`) ∈ Q(M)S.



On the freeness of hypersurface arrangements consisting of hyperplanes and spheres | 439

Proof. Let X ∈M, and let X = ker(αX), then

detM(θ1, . . . , θ`) = f det



θ1(x1) . . . θ`(x1)
. . . . .
. . . . .

θ1(αX) . . . θ`(αX)
. . . . .
. . . . .

θ1(x`) . . . θ`(x`)


,

If αX =
∑̀
k=1
ckxk, then f = ck ∈ R; If αX =

∑̀
k=1

(xk − ak)2 − r, then f = 2(xk − ak). For any case, detM(θ1, . . . , θ`)

is divisible by αX. Since X is arbitrary, detM(θ1, . . . , θ`) ∈ Q(M)S.

Lemma 2.7. Let Mn be an n × n matrix with the (p, q) entry as follows:

Mpq =
{
xpxq if p ≠ q,
x2p − r if p = q,

where 1 ≤ p, q ≤ n, r ∈ R. Therefore,

detMn = (−r)n−1(
n∑
k=1

x2k − r).

Proof. We will prove the lemma by induction on n.
(1) For the case n = 1, M1 = x21 − r, then detM1 = x21 − r.

(2) We assume that for the case n the result holds, that is detMn = (−r)n−1(
n∑
k=1
x2k − r).

For the case n + 1 we have

Mn+1 =
(
Mn N
NT x2n+1 − r

)
,

where N = (x1xn+1, . . . , xnxn+1)T . Therefore,

detMn+1 = det
(
Mn N
NT x2n+1

)
+ det

(
Mn On×1
NT −r

)

= det
(
−rEn N
O1×n x2n+1

)
+ (−r) detMn

= (−r)n(x2n+1) + (−r)(−r)n−1(
n∑
i=1

x2i − r)

= (−r)n(
n+1∑
k=1

x2k − r),

where On×1, O1×n are the n × 1 and 1 × n null matrices respectively, and En is the n × n identity matrix.

Lemma 2.8. Let

S = {(x1, . . . , x`) |
∑̀
k=1

(xk − ak)2 = r ∈ R+}

be the (` − 1)-dimensional sphere in R` with center (a1, a2, . . . , a`) and radius
√
r, de�ne

θq =
∑̀
p=1

fpqDp , 1 ≤ q ≤ `,
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where

fpq =
{
(xp − ap)(xq − aq) if p ≠ q,
(xp − ap)2 − r if p = q.

Then θ1, . . . , θ` ∈ D({S}) and detM(θ1, . . . , θ`)
.= Q({S}).

Proof. We can see

θq =
∑̀
p=1

fpqDp = (xq − aq)
∑̀
p=1

(xp − ap)Dp − rDq ,

and

θq
[∑̀
k=1

(xk − ak)2 − r
]
= 2(xq − aq)

[∑̀
k=1

(xk − ak)2 − r
]
∈
[∑̀
k=1

(xk − ak)2 − r
]
S,

Thus θq ∈ D({S}) for 1 ≤ q ≤ `.
By Lemma 2.7, we obtain

detM(θ1, . . . , θ`) = (−r)`−1
[∑̀
k=1

(xk − ak)2 − r
] .= Q({S}).

Next, we will show Saito’s criterion for hypersurface arrangements.

Theorem 2.9. Given θ1, . . . , θ` ∈ D(M), the following two conditions are equivalent:
(1) detM(θ1, . . . , θ`)

.= Q(M).
(2) θ1, . . . , θ` form a basis for D(M) over S.

Proof. (1)⇒(2) The proof is exactly the same with that of Saito’s criterion in [18] .
(2)⇒(1) By Lemma 2.6, we can write detM(θ1, . . . , θ`) = fQ(M) for some f ∈ S. Fix X ∈ M, if X is a

hyperplane, then {X} is a free hyperplane arrangement; if X is a sphere, by Lemma 2.8 and (1)⇒(2), {X} is
a free hypersurface arrangement. Assume η1, . . . , η` is the basis of X, then QXη1, . . . , QXη` ∈ D(M), where
QX = Q(M)/αX. Since each QXηi is an S-linear combination of η1, . . . , η`, then there exists an ` × ` matrix N
with entries in S, such that

M(QXη1, . . . , QXη`) = M(θ1, . . . , θ`)N.

Thus we have
Q(M)Q`−1

X
.= detM(QXη1, . . . , QXη`) ∈ detM(θ1, . . . , θ`)S = fQ(M)S.

Therefore f divides Q`−1
X for all X ∈M. Since the polynomials {Q`−1

X }X∈M have no common factor, f ∈ R*.

Corollary 2.10. If S is an (` − 1)-dimensional sphere in R`, then {S} is a free hypersurface arrangement with

exp{S} = {2, . . . , 2},

where 2 appears ` times.

Proof. The result is obtained directly from Lemma 2.8 and Theorem 2.9.

3 Main results
In this section, we will consider the freeness for hypersurface arrangements containing hyperplanes and
spheres, and give the explicit bases for the derivation modules of the free ones. First, we show that the
hypersurface arrangement having n spheres is free.
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Theorem 3.1. LetMn be the hypersurface arrangement consisting of n spheres S1, . . . , Sn, where

Si = {(x1, . . . , x`) |
∑̀
k=1

(xk − ak)2 = ri , (a1, a2, . . . , a`) ∈ R`, ri ∈ R+}.

De�ne derivations φn1 , . . . , φn` by

M(φn1 , . . . , φn` ) = AnAn−1 · · ·A1,

where Ai is an ` × `matrix and the (p, q) entry of Ai is

(Ai)pq =
{
(xp − ap)(xq − aq) if p ≠ q,
(xp − ap)2 − ri if p = q.

Then φn1 , . . . , φn` form a basis for D(Mn) and expMn = {2n, . . . , 2n}, where 2n appears ` times.

Proof. We will prove this result by Theorem 2.9: Saito’s criterion. By Lemma 2.7, we obtain

detAi = (−ri)`−1
[∑̀
k=1

(xk − ak)2 − ri
]
.

Therefore,

detM(φn1 , . . . , φn` ) =
n∏
i=1

detAi

.=
n∏
i=1

[∑̀
k=1

(xk − ak)2 − ri
]

= Q(Mn).

Next, we will prove φni ∈ D(Mn) and degφni = 2n for any 1 ≤ i ≤ ` by induction on n.
The case n = 1 is clear according to Lemma 2.8 and Corollary 2.10. For the case n + 1, we notice that

φn+1i =
∑̀
p=1

φn+1i (xp)Dp

=
∑̀
p=1

[∑̀
q=1

(An+1)pqφni (xq)
]
Dp

=
∑̀
p=1

[∑
q ̸= p

(xp − ap)(xq − aq)φni (xq) + [(xp − ap)2 − rn+1]φni (xp)
]
Dp

=
∑̀
p=1

[
(xp − ap)

∑̀
q=1

(xq − aq)φni (xq)
]
Dp − rn+1

∑̀
p=1

φni (xp)Dp

=
∑̀
q=1

(xq − aq)φni (xq)
∑̀
p=1

(xp − ap)Dp − rn+1φni

= 1
2φ

n
i

[∑̀
q=1

(xq − aq)2
]∑̀
p=1

(xp − ap)Dp − rn+1φni .

Therefore, for 1 ≤ i ≤ ` and 1 ≤ j ≤ n,

φn+1i

[∑̀
k=1

(xk − ak)2 − rj
]
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= φni
[∑̀
q=1

(xq − aq)2
]∑̀
p=1

(xp − ap)2 − rn+1φni
[∑̀
k=1

(xk − ak)2 − rj
]

= φni
[∑̀
q=1

(xq − aq)2
][∑̀

p=1
(xp − ap)2 − rn+1

]
,

by induction hypothesis,

φni
[∑̀
q=1

(xq − aq)2
]
∈

n∏
j=1

[∑̀
k=1

(xk − ak)2 − rj
]
S,

hence,

φn+1i

[∑̀
k=1

(xk − ak)2 − rj
]
∈

n+1∏
j=1

[∑̀
k=1

(xk − ak)2 − rj
]
S.

This means φn+1i ∈ D(Mn+1) for any 1 ≤ i ≤ `, in addition,

pdegφn+1i = pdegφni + 2 = 2n + 2 = 2(n + 1).

We complete the induction, so by Saito’s criterion φn1 , . . . , φn` form a basis for Mn, and expMn =
{2n, . . . , 2n}.

Next, we will study the freeness for the hypersurface arrangements consisting of hyperplanes and spheres,
where all the spheres are centered at origin.

Theorem 3.2. AssumeA is a free hyperplane arrangement with a homogeneous basis θ1, . . . , θ`, and expA =
{d1, . . . , d`}, S0i is the sphere centered at origin:

S0i = {(x1, . . . , x`) |
∑̀
k=1

x2k = ri ∈ R+}, 1 ≤ i ≤ n,

and
Mn = A ∪

{
S01, . . . , S0n

}
,

De�ne derivations φn1 , . . . , φn` by

M(φn1 , . . . , φn` ) = (AnAn−1 · · ·A1)M(θ1, . . . , θ`),

where Ai is an ` × `matrix and the (p, q) entry of Ai is

(Ai)pq =
{
xpxq if p ≠ q,
x2p − ri if p = q,

then φn1 , . . . , φn` form a basis for D(Mn) and expMn = {d1 + 2n, . . . , d` + 2n}.

Proof. By Lemma 2.7, we obtain

detAi = (−ri)`−1(
∑̀
k=1

x2k − ri).

SinceA is a free arrangement with a homogeneous basis θ1, . . . , θ`, by Saito’s criterion,

detM(θ1, . . . , θ`)
.= Q(A).

Therefore,

detM(φn1 , . . . , φn` ) =
n∏
i=1

(detAi) detM(θ1, . . . , θ`)
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.=
n∏
i=1

(
∑̀
k=1

x2k − ri)Q(A)

= Q(Mn).

Next, we will prove φni ∈ D(Mn) and degφni = di + 2n for any 1 ≤ i ≤ ` by induction on n.
For the case n = 1,

φ1
i =
∑̀
p=1

φ1
i (xp)Dp

=
∑̀
p=1

[∑̀
q=1

(A1)pqθi(xq)
]
Dp

=
∑̀
p=1

[∑
q ̸= p

xpxqθi(xq) + (x2p − r1)θi(xp)
]
Dp

=
∑̀
p=1

[
xp
∑̀
q=1

xqθi(xq)
]
Dp − r1

∑̀
p=1

θi(xp)Dp

=
∑̀
q=1

xqθi(xq)
∑̀
p=1

xpDp − r1θi

=
∑̀
q=1

xqθi(xq)θE − r1θi .

Since θE , θi ∈ D(A), we have φ1
i ∈ D(A) for any 1 ≤ i ≤ `. And

pdegφ1
i = pdeg

[∑̀
q=1

xqθi(xq)θE
]
= pdegθi + 2 = di + 2.

In addition,

φ1
i

(∑̀
k=1

x2k − r1
)
=
[∑̀
q=1

xqθi(xq)θE − r1θi
](∑̀

k=1

x2k − r1
)

=
∑̀
q=1

xqθi(xq)
(
2
∑̀
k=1

x2k
)
− 2r1

∑̀
q=1

xqθi(xq)

= 2
(∑̀
k=1

x2k − r1
)∑̀
q=1

xqθi(xq)

∈
(∑̀
k=1

x2k − r1
)
S,

that is, φ1
i ∈ D({S01}). Therefore, φ1

i ∈ D(A) ∩ D({S01}) = D(M1) for any 1 ≤ i ≤ `.
For the case n + 1, by the similar calculation of φ1

i , we get

φn+1i =
∑̀
q=1

xqφni (xq)θE − rn+1φni

= 1
2φ

n
i

(∑̀
q=1

x2q
)
θE − rn+1φni .

By induction hypothesis,

φni ∈ D(Mn) ⊆ D
( n⋃
i=1

{S0i }
)
,
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we obtain

φni
(∑̀
q=1

x2q
)
∈

n∏
j=1

(∑̀
k=1

x2k − rj
)
S.

Therefore,

φni
(∑̀
q=1

x2q
)
θE ∈ D

( n⋃
i=1

{S0i }
)
.

Combining θE ∈ D(A) with

D(Mn) = D
( n⋃
i=1

{S0i }
)⋂

D(A),

we conclude

φni
(∑̀
q=1

x2q
)
θE ∈ D(Mn).

Hence, φn+1i ∈ D(Mn) since φni ∈ D(Mn).
In addition, we have

φn+1i

(∑̀
k=1

x2k − rn+1
)

= φni
(∑̀
q=1

x2q
)∑̀
k=1

x2k − rn+1φni
(∑̀
k=1

x2k
)

=
(∑̀
k=1

x2k − rn+1
)
φni
(∑̀
q=1

x2q
)

∈
(∑̀
k=1

x2k − rn+1
)
S,

We obtain φn+1i ∈ D({S0n+1}) for any 1 ≤ i ≤ `, therefore

φn+1i ∈ D({S0n+1}) ∩ D(Mn) = D(Mn+1), 1 ≤ i ≤ `.

Moreover,

pdegφn+1i = pdeg
[
φni (
∑̀
q=1

x2q)θE
]
= pdegφni + 2 = di + 2n + 2 = di + 2(n + 1), 1 ≤ i ≤ `.

We complete the induction.

Corollary 3.3. Let Mn = A ∪
{
S01, . . . , S0n

}
be the hypersurface arrangement de�ned in Theorem 3.2. Then A

is free if and only ifMn is free.

Proof. IfA is free we can obtain thatMn is free directly from Theorem 3.2. AssumeMn is free,A ⊆Mn, then
D(Mn) ⊆ D(A). Let φ1, . . . , φ` be a basis for D(Mn), then φi ∈ D(A) for 1 ≤ i ≤ `. Write φi =

∑
k≥0
φ(k)
i , where

φ(k)
i is zero or homogeneous of degree k ≥ 0. Since Q(A)S is generated by homogeneous polynomial Q(A),

each homogeneous component φ(k)
i
(
Q(A)

)
of φi

(
Q(A)

)
also lies in Q(A)S. This shows that φ(k)

i ∈ D(A) for
k ≥ 0. Since

[
Q(
⋃n
i=1{Si})

]
(0) ≠ 0, there exist φ(d1)

1 , . . . , φ(d`)
` such that

detM(φ(d1)
1 , . . . , φ(d`)

` ) .= Q(A).

By Saito’s criterion, φ(d1)
1 , . . . , φ(d`)

` form a basis for D(A).
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Remark 3.4. In Theorem 3.1 and Theorem 3.2 the preconditions did not impose the restrictions on the size
relations of r1, r2, . . . , rn. Hence, if r1 = r2 = · · · = rn, Theorem 3.1 and Theorem 3.2 also hold. In this case,
(M,m) is a hypersurface arrangement with a multiplicity mi for each hypersurface inM, we call it hypersurface
multiarrangement. As de�ned byG. Ziegler in [19], themodule of derivations consists of θ such that θ(αi) ∈ αmi

i S.

Example 3.5. LetM be a hypersurface arrangement with the de�ning polynomial

Q(M) = (x1 − x2)(x1 − x3)(x2 − x3)(x21 + x22 + x23 − 1).

In this case, the hyperplane arrangementA ⊆M is the Coxeter arrangement of type A2, it is a free arrangement
with expA = {0, 1, 2}. By Theorem 3.2, M is a free hypersurface arrangement and D(M) has the basis
φ1, φ2, φ3 as follows:

(φ1, φ2, φ3) = (D1, D2, D3)

 x21 − 1 x1x2 x1x3
x2x1 x22 − 1 x2x3
x3x1 x3x2 x23 − 1


1 x1 x21
1 x2 x22
1 x3 x23

 .

That is

φ1 = (x21 + x1x2 + x1x3 − 1)D1 + (x1x2 + x22 + x2x3 − 1)D2 + (x1x3 + x2x3 + x23 − 1)D3,
φ2 = x1(x21 + x22 + x23 − 1)D1 + x2(x21 + x22 + x23 − 1)D2 + x3(x21 + x22 + x23 − 1)D3,
φ3 = x1(x31 + x32 + x33 − x1)D1 + x2(x31 + x32 + x33 − x2)D2 + x3(x31 + x32 + x33 − x3)D3.

And expM = {pdegφ1, pdegφ2, pdegφ3} = {2, 3, 4}.

Example 3.6. LetM be a hypersurface arrangement with the de�ning polynomial

Q(M) = x1x2x3(x1 + x2)(x1 + x3)(x2 + x3)(x1 − x2)(x1 − x3)(x2 − x3)(x21 + x22 + x23 − 1)(x21 + x22 + x23 − 2).

In this case, the hyperplane arrangementA ⊆M is the Coxeter arrangement of type B3, it is a free arrangement
with expA = {1, 3, 5}. By Theorem 3.2, M is a free hypersurface arrangement and D(M) has the basis
φ1, φ2, φ3 as follows:

(φ1, φ2, φ3) = (D1, D2, D3)

 x21 − 2 x1x2 x1x3
x2x1 x22 − 2 x2x3
x3x1 x3x2 x23 − 2


 x21 − 1 x1x2 x1x3
x2x1 x22 − 1 x2x3
x3x1 x3x2 x23 − 1


 x1 x31 x51
x2 x32 x52
x3 x33 x53

 .

And expM = {pdegφ1, pdegφ2, pdegφ3} = {5, 7, 9}.
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