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Abstract: In this paper we propose a new parametric linearizing approach for globally solving quadratically
inequality constrained quadratic programs. By utilizing this approach, we can derive the parametric linear
programs relaxation problem of the investigated problem. To accelerate the computational speed of the
proposed algorithm, an interval deleting rule is used to reduce the investigated box. The proposed algorithm
is convergent to the global optima of the initial problem by subsequently partitioning the initial box and
solving a sequence of parametric linear programs relaxation problems. Finally, compared with some existing
algorithms, numerical results show higher computational e�ciency of the proposed algorithm.
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1 Introduction
In this paper we consider the following quadratically inequality constrained quadratic programs:

(QICQP) ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min H0(z) =
n
∑
k=1

d0kzk +
n
∑
j=1

n
∑
k=1

p0jkzjzk

s.t. Hi(z) =
n
∑
k=1

dikzk +
n
∑
j=1

n
∑
k=1

pijkzjzk ≤ bi , i = 1, . . . ,m,

z ∈ Z0 = {z ∈ Rn
∶ l0 ≤ z ≤ u0},

where pijk , d
i
k and bi are all arbitrary real numbers; l0 = (l01, . . . , l0n)T , u0 = (u01, . . . , u0n)T . The investigated

problem (QICQP) has a broad applications in investment portfolio,management decision, route optimization,
engineering optimization, production planning and so on. In addition, the investigated problem (QICQP)
usually owns multiple local optima which are not global optima, that is to say, in this kind of problems
there are important theoretical and computational complexities. Therefore, it is very necessary to present
an e�ective global optimization algorithm for solving the (QICQP).

In last decades, for the problem (QICQP) and its special cases many methods have been developed
and described in the existent literature. For example, semi-de�nite relaxation method [1], reformulation-
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convexi�cation approach [2], branch-and-reduce approaches [3-7], approximation algorithms [8-10], simpli-
cial branch-and-bound method [11], branch-and-cut method [12], rectangle branch-and-bound algorithms
[13,14], robust solution approach [15], and so on. In addition, some algorithms for geometric programming
[16-20] andmultiplicative (or fractional) programming [21-25] also can be used to solve the (QICQP). Although
these methods can be used to solve the investigated problem (QICQP) or its special forms, less work has been
still done for globally solving the investigated quadratically inequality constrained quadratic programs.

In this paper, wewill present a newbranch-and-bound algorithm for globally solving the (QICQP). Firstly,
we present a new parametric linearizing technique. By utilizing this method, we can convert the (QICQP)
into a parametric linear programs relaxation problem, which can be used to compute the lower bounds
of the optimal values of the initial problem (QICQP) and its subproblems. Secondly, based on the branch-
and-bound framework, by successive partitioning of the initial box and by solving those derived parametric
linear programs relaxation problems, a new branch-and-bound algorithm is designed for globally solving the
(QICQP). Thirdly, to accelerate the computational e�ciency of the proposed branch-and-bound algorithm, an
interval deleting rule is used to reduce the investigated box. Fourthly, the proposed algorithm is convergent
to the global optima of the initial problem (QICQP) by successively partitioning of the initial box and by
solving those derived parametric linear programs relaxation problems. Finally, compared with some existent
algorithms, numerical results demonstrate the computational e�ciency of the proposed algorithm.

The remaining sections of this article are organized as follows. First of all, we present a new parametric
linearizing technique for deriving the parametric linear programs relaxation problem of the (QICQP) in
Section 2. Secondly, based on the branch-and-bound framework, by combing the derived parametric linear
programs relaxation problem with the interval deleting rule, a branch-and-bound algorithm is established
for globally solving the (QICQP) in Section 3. Thirdly, compared with the existent methods, some numerical
examples in existent literatures are used to verify the computational e�ciency of the proposed algorithm in
Section 4. Finally, some concluding remarks are presented.

2 New parametric linearizing approach
In this section,wepropose anewparametric linearizing approach for deriving theparametric linear programs
relaxation problem of the (QICQP). The detailed parametric linearizing approach is presented as follows:

Assume that Z = {(z1, z2, . . . , zn)T ∈ Rn
∶ lj ≤ zj ≤ uj , j = 1, . . . , n} ⊆ Z0, λ = (λjk)n×n ∈ Rn×n

is a symmetric matrix, and λjk ∈ {0, 1}. For convenience, for any z ∈ Z, for any k ∈ {1, 2, . . . , n}, some
expressions are introduced as follows:

zk(λkk) = lk + λkk(uk − lk),
zk(1 − λkk) = lk + (1 − λkk)(uk − lk),
hkk(z) = z2k ,
hkk(z, Z, λkk) = [zk(λkk)]2 + 2zk(λkk)[zk − zk(λkk)],
hkk(z, Z, λkk) = [zk(λkk)]2 + 2zk(1 − λkk)[zk − zk(λkk)].

Obviously, we have zk(0) = lk , zk(1) = uk .

Theorem 2.1. For any k ∈ {1, 2, . . . , n}, for any z ∈ Z, consider the functions hkk(z), hkk(z, Z, λkk) and
hkk(z, Z, λkk), then, the following conclusions hold:

hkk(z, Z, λkk) ≤ hkk(z) ≤ hkk(z, Z, λkk); (1)

lim
∥u−l∥→0

[hkk(z) − hkk(z, Z, λkk)] = 0 (2)

and
lim

∥u−l∥→0
[hkk(z, Z, λkk) − hkk(z)] = 0. (3)
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Proof. (i) By the mean value theorem, for any z ∈ Z, there exists a point ξk = αzk + (1−α)zk(λkk), where α ∈

[0, 1], such that
z2k = [zk(λkk)]2 + 2ξk[zk − zk(λkk)].

If λkk = 0, then we have
ξk ≥ lk = zk(λkk) and zk − zk(λkk) = zk − lk ≥ 0.

If λkk = 1, then it follows that

ξk ≤ uk = zk(λkk) and zk − zk(λkk) = zk − uk ≤ 0.

Thus, we can get that
hkk(z) = z2k

= [zk(λkk)]2 + 2ξk[zk − zk(λkk)]
≥ [zk(λkk)]2 + 2zk(λkk)[zk − zk(λkk)]
= hkk(z, Z, λkk).

Similarly, if λkk = 0, then we have

ξk ≤ uk = zk(1 − λkk) and zk − zk(λkk) = zk − lk ≥ 0.

If λkk = 1, then it follows that

ξk ≥ lk = zk(1 − λkk) and zk − zk(λkk) = zk − uk ≤ 0.

Thus, we can get that
hkk(z) = z2k

= [zk(λkk)]2 + 2ξk[zk − zk(λkk)]
≤ [zk(λkk)]2 + 2zk(1 − λkk)[zk − zk(λkk)]
= hkk(z, Z, λkk).

Therefore, for any z ∈ Z, we have that

hkk(z, Z, λkk) ≤ hkk(z) ≤ hkk(z, Z, λkk).

(ii) Since
hkk(z) − hkk(z, Z, λkk) = z2k − {[zk(λkk)]2 + 2zk(λkk)[zk − zk(λkk)]}

= (zk − zk(λkk))2

≤ (uk − lk)2,
(4)

we have
lim

∥u−l∥→0
[hkk(z) − hkk(z, Z, λkk)] = 0.

Also since
hkk(z, Z, λkk) − hkk(z) = [zk(λkk)]2 + 2zk(1 − λkk)[zk − zk(λkk)] − z2k

= (zk(λkk) + zk)(zk(λkk) − zk)
+2zk(1 − λkk)(zk − zk(λkk))

= [zk − zk(λkk)][2zk(1 − λkk) − zk(λkk) − zk]
= [zk − zk(λkk)][zk(1 − λkk) − zk(λkk)]
+[zk − zk(λkk)][zk(1 − λkk) − zk]

≤ 2(uk − lk)2.

(5)

Therefore, it follows that
lim

∥u−l∥→0
[hkk(z, Z, λkk) − hkk(z)] = 0.

The proof is completed.
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Without loss of generality, for any z ∈ Z, for any j ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , n}, j ≠ k, we de�ne

zj(λjk) = lj + λjk(uj − lj),
zk(λjk) = lk + λjk(uk − lk),
zj(1 − λjk) = lj + (1 − λjk)(uj − lj),
zk(1 − λjk) = lk + (1 − λjk)(uk − lk),
(zj − zk)(λjk) = (lj − uk) + λjk(uj − lk − lj + uk),
(zj − zk)(1 − λjk) = (lj − uk) + (1 − λjk)(uj − lk − lj + uk).

Obviously, we have (zj − zk)(0) = lj − uk , (zj − zk)(1) = uj − lk .
In a similar way as in Theorem 2.1, we can get the following Theorem 2.2:

Theorem 2.2. For each j = 1, 2, . . . , n, k = 1, 2, . . . , n, for any z ∈ Z, we have:
(i) The following inequalities hold:

[zj(λjk)]2 + 2zj(λjk)[zj − zj(λjk)] ≤ z2j ≤ [zj(λjk)]2 + 2zj(1 − λjk)[zj − zj(λjk)],
zk(λjk)]2 + 2zk(λjk)[zk − zk(λjk)] ≤ z2k ≤ [zk(λjk)]2 + 2zk(1 − λjk)[zk − zk(λjk)],
(zj − zk)2 ≤ [(zj − zk)(λjk)]2 + 2(zj − zk)(1 − λjk)[zj − zk − (zj − zk)(λjk)],
(zj − zk)2 ≥ [(zj − zk)(λjk)]2 + 2(zj − zk)(λjk)[zj − zk − (zj − zk)(λjk)].

(ii) The following limitations hold:

lim
∥u−l∥→0

[z2j − {[zj(λjk)]2 + 2zj(λjk)[zj − zj(λjk)]}] = 0,

lim
∥u−l∥→0

[[zj(λjk)]2 + 2zj(1 − λjk)[zj − zj(λjk)] − z2j ] = 0,

lim
∥u−l∥→0

[z2k − {[zk(λjk)]2 + 2zk(λjk)[zk − zk(λjk)]}] = 0,

lim
∥u−l∥→0

[[zk(λjk)]2 + 2zk(1 − λjk)[zk − zk(λjk)] − z2k] = 0,

lim
∥u−l∥→0

[[(zj − zk)(λjk)]2 + 2(zj − zk)(1 − λjk)[zj − zk − (zj − zk)(λjk)] − (zj − zk)2] = 0,

lim
∥u−l∥→0

[(zj − zk)2 − {[(zj − zk)(λjk)]2 + 2(zj − zk)(λjk)[(zj − zk) − (zj − zk)(λjk)]}] = 0.

Proof. (i) From the inequality (1), replacing λkk by λjk, and replacing zk by zj, we can get that

[zj(λjk)]2 + 2zj(λjk)[zj − zj(λjk)] ≤ z2j ≤ [zj(λjk)]2 + 2zj(1 − λjk)[zj − zj(λjk)].

From the inequality (1), replacing λkk by λjk, we can get that

[zk(λjk)]2 + 2zk(λjk)[zk − zk(λjk)] ≤ z2k ≤ [zk(λjk)]2 + 2zk(1 − λjk)[zk − zk(λjk)].

From (1), replacing λkk and zk by λjk and (zj − zk), respectively, we can get that

(zj − zk)2 ≤ [(zj − zk)(λjk)]2 + 2(zj − zk)(1 − λjk)[(zj − zk) − (zj − zk)(λjk)],

(zj − zk)2 ≥ [(zj − zk)(λjk)]2 + 2(zj − zk)(λjk)[(zj − zk) − (zj − zk)(λjk)].

(ii) From the limitations (2) and (3), replacing λkk and zk by λjk and zj, we have

lim
∥u−l∥→0

[z2j − {[zj(λjk)]2 + 2zj(λjk)[zj − zj(λjk)]}] = 0

and
lim

∥u−l∥→0
[[zj(λjk)]2 + 2zj(1 − λjk)[zj − zj(λjk)] − z2j ] = 0.
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From the limitations (2) and (3), replacing λkk by λjk, it follows that

lim
∥u−l∥→0

[z2k − {[zk(λjk)]2 + 2zk(λjk)[zk − zk(λjk)]}] = 0

and
lim

∥u−l∥→0
[[zk(λjk)]2 + 2zk(1 − λjk)[zk − zk(λjk)] − z2k] = 0.

By the limitations (2) and (3), replacing λkk and zk by λjk and (zj − zk), respectively, we can get that

lim
∥u−l∥→0

[[(zj − zk)(λjk)]2 + 2(zj − zk)(1 − λjk)[zj − zk − (zj − zk)(λjk)] − (zj − zk)2] = 0

and
lim

∥u−l∥→0
[(zj − zk)2 − {[(zj − zk)(λjk)]2 + 2(zj − zk)(λjk)[zj − zk − (zj − zk)(λjk)]}] = 0.

The proof is completed.

Without loss of generality, for any z ∈ Z, for any j ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , n}, j ≠ k, de�ne

hjk(z) = zjzk =
z2j +z

2
k−(zj−zk)

2

2 ,
hjk(z, Z, λjk) =

1
2{[zj(λjk)]

2
+ 2zj(λjk)[zj − zj(λjk)]

+[zk(λjk)]2 + 2zk(λjk)[zk − zk(λjk)]
−{[(zj − zk)(λjk)]2 + 2(zj − zk)(1 − λjk)[zj − zk − (zj − zk)(λjk)]}},

hjk(z, Z, λjk) = 1
2{[zj(λjk)]

2
+ 2zj(1 − λjk)[zj − zj(λjk)]

+[zk(λjk)]2 + 2zk(1 − λjk)[zk − zk(λjk)]
−{[(zj − zk)(λjk)]2 + 2(zj − zk)(λjk)[zj − zk − (zj − zk)(λjk)]}}.

Theorem 2.3. For each k = 1, 2, . . . , n, consider the functions hjk(z, Z, λjk), hjk(z) and hjk(z, Z, λjk), then,
for any z ∈ Z, we have the following conclusions:

hjk(z, Z, λjk) ≤ hjk(z) ≤ hjk(z, Z, λjk), (6)

lim
∥u−l∥→0

[hjk(z) − hjk(z, Z, λjk)] = 0 (7)

and
lim

∥u−l∥→0
[hjk(z, Z, λjk) − hjk(z)] = 0. (8)

Proof. First of all, from the conclusions (i) of Theorem 2.2, it follows that

hjk(z) = zjzk =
z2j +z

2
k−(zj−zk)

2

2
≥ 1

2{[zj(λjk)]
2
+ 2zj(λjk)[zj − zj(λjk)]

+[zk(λjk)]2 + 2zk(λjk)[zk − zk(λjk)]
−{[(zj − zk)(λjk)]2 + 2(zj − zk)(1 − λjk)[zj − zk − (zj − zk)(λjk)]}}

= hjk(z, Z, λjk)

and
hjk(z) = zjzk =

z2j +z
2
k−(zj−zk)

2

2
≤ 1

2{[zj(λjk)]
2
+ 2zj(1 − λjk)[zj − zj(λjk)]

+[zk(λjk)]2 + 2zk(1 − λjk)[zk − zk(λjk)]
−{[(zj − zk)(λjk)]2 + 2(zj − zk)(λjk)[zj − zk − (zj − zk)(λjk)]}}

= hjk(z, Z, λjk).
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Secondly, from the inequalities (4) and (5), we have

hjk(z) − hjk(z, Z, λjk) = zjzk − hjk(z, Z, λjk)

=
z2j +z

2
k−(zj−zk)

2

2 − 1
2{[zj(λjk)]

2
+ 2zj(λjk)[zj − zj(λjk)]

+[zk(λjk)]2 + 2zk(λjk)[zk − zk(λjk)]
−{[(zj − zk)(λjk)]2 + 2(zj − zk)(1 − λjk)[zj − zk
−(zj − zk)(λjk)]}},

= 1
2 [z

2
j − {[zj(λjk)]2 + 2zj(λjk)[zj − zj(λjk)]}]

+ 1
2 [z

2
k − {[zk(λjk)]2 + 2zk(λjk)[zk − zk(λjk)]}]

+ 1
2{{[(zj − zk)(λjk)]2

+2(zj − zk)(1 − λjk)[zj − zk − (zj − zk)(λjk)]}
−(zj − zk)2}

≤ 1
2(uj − lj)2 + 1

2(uk − lk)2 + (uk + uj − lj − lk)2.

Thus, we can get that lim∥u−l∥→0[hjk(z) − hjk(z, Z, λjk)] = 0.
Also from the inequalities (4) and (5), we get that

hjk(z, Z, λjk) − hjk(z) = hjk(z, Z, λjk) − zjzk
= 1

2{[zj(λjk)]
2
+ 2zj(1 − λjk)[zj − zj(λjk)]

+[zk(λjk)]2 + 2zk(1 − λjk)[zk − zk(λjk)]
−{[(zj − zk)(λjk)]2

+2(zj − zk)(λjk)[zj − zk − (zj − zk)(λjk)]}}

−
z2j +z

2
k−(zj−zk)

2

2
= 1

2 [[zj(λjk)]
2
+ 2zj(1 − λjk)[zj − zj(λjk)] − z2j ]

+ 1
2 [[zk(λjk)]

2
+ 2zk(1 − λjk)[zk − zk(λjk)] − z2k]

+ 1
2{(zj − zk)2 − {[(zj − zk)(λjk)]2

+2(zj − zk)(λjk)[zj − zk − (zj − zk)(λjk)]}}
= (zj − zj(λjk))(zk − zk(λjk))
≤ (uj − lj)2 + (uk − lk)2 + (uk + uj − lk − lj)2.

Thus, it follows that lim∥u−l∥→0[hjk(z, Z, λjk) − hjk(z)] = 0.

Without loss of generality, for any Z = [l, u] ⊆ Z0, for any parameter matrix λ = (λjk)n×n, for any z ∈ Z and
i ∈ {0, 1, . . . ,m}, we let

f ikk(z, Z, λkk) = {
pikkhkk(z, Z, λkk), if p

i
kk > 0,

pikkhkk(z, Z, λkk), if p
i
kk < 0,

f
i
kk(z, Z, λkk) = {

pikkhkk(z, Z, λkk), if p
i
kk > 0,

pikkhkk(z, Z, λkk), if p
i
kk < 0,

f ijk(z, Z, λjk) = {
pijkhjk(z, Z, λjk), if p

i
jk > 0, j ≠ k,

pijkhjk(z, Z, λjk), if p
i
jk < 0, j ≠ k,

f
i
jk(z, Z, λjk) = {

pijkhjk(z, Z, λjk), if p
i
jk > 0, j ≠ k,

pijkhjk(z, Z, λjk), if p
i
jk < 0, j ≠ k.

HL
i (z, Z, λ) =

n
∑
k=1

(dikzk + f ikk(z, Z, λkk)) +
n
∑
j=1

n
∑

k=1,k≠j
f ijk(z, Z, λjk).

HU
i (z, Z, λ) =

n
∑
k=1

(dikzk + f
i
kk(z, Z, λkk)) +

n
∑
j=1

n
∑

k=1,k≠j
f
i
jk(z, Z, λjk).

Theorem 2.4. For ∀ z ∈ Z = [l, u] ⊆ Z0, for any given parameter matrix λ = (λjk)n×n, for each i = 0, 1, . . . ,m,
we have the following conclusions:

HL
i (z, Z, λ) ≤ Hi(z) ≤ HU

i (z, Z, λ),
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lim
∥u−l∥→0

[Hi(z) − HL
i (z, Z, λ)] = 0

and
lim

∥u−l∥→0
[HU

i (z, Z, λ) − Hi(z)] = 0.

Proof. First of all, from the inequalities (1) and (6), for any j, k ∈ {1, . . . , n}, we have

f ikk(z, Z, λkk) ≤ pikkz
2
k ≤ f

i
kk(z, Z, λkk), (9)

f ijk(z, Z, λjk) ≤ pijkzjzk ≤ f
i
jk(z, Z, λjk). (10)

By the above inequalities (9) and (10), for any z ∈ Z ⊆ Z0, we can get that

HL
i (z, Z, λ) =

n
∑
k=1

(dikzk + f ikk(z, Z, λkk)) +
n
∑
j=1

n
∑

k=1,k≠j
f ijk(z, Z, λjk)

≤
n
∑
k=1

dikzk +
n
∑
k=1

pikkz
2
k +

n
∑
j=1

n
∑

k=1,k≠j
pijkzjzk = Hi(z)

≤
n
∑
k=1

(dikzk + f
i
kk(z, Z, λkk)) +

n
∑
j=1

n
∑

k=1,k≠j
f
i
jk(z, Z, λjk)

= HU
i (z, Z, λ).

Therefore, we have HL
i (z, Z, λ) ≤ Hi(z) ≤ HU

i (z, Z, λ).
Secondly,

Hi(z) − HL
i (z, Z, λ) =

n
∑
k=1

dikzk +
n
∑
k=1

pikkz
2
k +

n
∑
j=1

n
∑

k=1,k≠j
pijkzjzk

−[
n
∑
k=1

dikzk +
n
∑
k=1

f ikk(z, Z, λkk) +
n
∑
j=1

n
∑

k=1,k≠j
f ijk(z, Z, λjk)]

=
n
∑
k=1

[pikkz
2
k − f ikk(z, Z, λkk)]

+
n
∑
j=1

n
∑

k=1,k≠j
[pijkzjzk − f ijk(z, Z, λjk)]

=
n
∑

k=1,pikk>0
pikk[hkk(z) − hkk(z, Z, λkk)]

+
n
∑

k=1,pikk<0
pikk[hkk(z) − hkk(z, Z, λkk)]

+
n
∑
j=1

n
∑

k=1,k≠j,pijk>0
pijk[hjk(z) − hjk(z, Z, λjk)]

+
n
∑
j=1

n
∑

k=1,k≠j,pijk<0
pijk[hjk(z) − hjk(z, Z, λjk)].

From the limitations (2),(3),(7) and (8), lim∥u−l∥→0[hkk(z) − hkk(z, Z, λkk)] = 0, lim∥u−l∥→0[hkk(z, Z, λkk) −
hkk(z)] = 0, lim∥u−l∥→0[hjk(z) − hjk(z, Z, λjk)] = 0 and lim∥u−l∥→0[hjk(z, Z, λjk) − hjk(z)] = 0.

Therefore, it follows that
lim

∥u−l∥→0
[Hi(z) − HL

i (z, Z, λ)] = 0.

Similarly, we can prove that
lim

∥u−l∥→0
[HU

i (z, Z, λ) − Hi(z)] = 0.

The proof is completed.

By Theorem 2.4, we can construct the parametric linear programs relaxation problem (PLPRP) of the (QICQP)
over Z as follows:

(PLPRP) ∶

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

min HL
0(z, Z, λ),

s.t. HL
i (z, Z, λ) ≤ bi , i = 1, . . . ,m,

z ∈ Z = {z ∶ l ≤ z ≤ u}.
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where
HL
i (z, Z, λ) =

n
∑
k=1

(dikzk + f ikk(z, Z, λkk)) +
n
∑
j=1

n
∑

k=1,k≠j
f ijk(z, Z, λjk).

Based on the former parametric linearizing technique, each feasible solution of the (QICQP) must be also
feasible to the (PLPRP) in the sub-region Z; and theminimum value of the (PLPRP)must be less than or equal
to that of the (QICQP) in the sub-region Z. Hence, the (PLPRP) o�ers a reliable lower bound for the minimum
value of the (QICQP) in the sub-region Z. In addition, Theorem 2.4 ensures that the optimal solution of the
(PLPRP) will su�ciently approximate the optimal solution of the (QICQP) as ∥u− l∥ → 0, and this guarantees
the global convergence of the proposed algorithm.

3 Branch-and-bound global optimization algorithm
In this section, anewbranch-and-boundglobal optimizationalgorithm isproposed for solving the (QICQP). In
this algorithm, there are the following several important techniques: branching, bounding the lower bound,
bounding upper bound and interval deleting.

Branching: The branching step will generate a more re�ned box partition. Here we choose a typical box-
bisection method, which is su�cient to ensure the global convergence of the proposed branch-and-bound
method. For any selected box Z

′

= [l
′

, u
′

] ⊆ Z0. Set η ∈ argmax{u
′

i − l
′

i ∶ i = 1, 2, . . . , n}, by partitioning
[z
′

η , z
′

η] into [z
′

η , (z
′

η + z
′

η)/2] and [(z
′

η + z
′

η)/2, z
′

η], we can subdivide Z
′

into two new sub-boxes Z
′1 and Z

′2.
Bounding the lower bound: For each sub-box Z ⊆ Z0, which has not been deleted, the bounding the

lower bound step needs to solve the parametric linear programs relaxation problem over each sub-box, and
denote by LBs = min{LB(Z)∣Z ∈ Ωs}, where Ωs denotes the set of sub-box which has not been deleted after
s iteration.

Bounding the upper bound: The bounding upper bound step needs to judge the feasibility of the
midpoint of each investigated sub-box Z and the optimal solution of the (PLPRP) over the investigated sub-
box Z, where Z ∈ Ωs. In addition, we need to calculate the objective function values of each known feasible
solutions for the (QICQP), and denote by UBs = min{H0(z) ∶ z ∈ Θ} the best upper bound, where Θ is the
known feasible point set.

Interval deleting: To improve the convergent speed of the branch-and-bound algorithm, an interval
deleting rule is introduced as follows. For convenience, for any z ∈ Z, i ∈ {0, 1, . . . ,m}, q ∈ {1, . . . , n},
and denote by HUB the current upper bound of the (QICQP), we let

HL
i (z, Z, λ) =

n
∑
j=1

αij(λ)zj + βi(λ), RLBi(λ) =
n
∑
j=1

min{αij(λ)lj ,αij(λ)uj} + βi(λ).

Theorem 3.1. For any investigated sub-box Z = (Zj)1×n ⊆ Z0, we have the following conclusions:
(i) If RLB0(λ) > HUB, then the whole investigated sub-box Z should be deleted.
(ii) If RLB0(λ) ≤ HUB, then: for any q ∈ {1, 2, . . . , n}, if α0q(λ) > 0, the interval Zq should be re-
placed by [lq , HUB−RLB0(λ)+min{α0q(λ)lq ,α0q(λ)uq}

α0q(λ)
]⋂ Zq; if α0q(λ) < 0, the interval Zq should be replaced by

[
HUB−RLB0(λ)+min{α0q(λ)lq ,α0q(λ)uq}

α0q(λ)
, uq]⋂ Zq.

(iii) If RLBi(λ) > bi for some i ∈ {1, . . . ,m}, then the whole investigated sub-box Z should be deleted.
(iv) If RLBi(λ) ≤ bi for each i ∈ {1, . . . ,m}, then, for any q ∈ {1, 2, . . . , n}, if αiq(λ) > 0, the interval Zq
can be replaced by [lq , bi−RLBi(λ)+min{αiq(λ)lq ,αiq(λ)uq}

αiq(λ)
]⋂ Zq; if αiq(λ) < 0, the interval Zq can be replaced by

[
bi−RLBi(λ)+min{αiq(λ)lq ,αiq(λ)uq}

αiq(λ)
, uq]⋂ Zq.

Proof. In a similar way as in the proof of Theorem 3 in [14], we may draw the conclusions for Theorem 3.1, so
here it is omitted.

From Theorem 3.1, we can construct an interval deleting step to compress the investigated box for improving
the convergent speed of the proposed branch-and-bound algorithm.
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3.1 New branch-and-bound algorithm

For any sub-box Zs ⊆ Z0, we denote by LB(Zs) the optimal value of the (PLPRP) over the sub-box Zs, and
denote by zs = z(Zs) the optimal solution of the (PLPRP) over the sub-box Zs. Based on the branch-and-
bound framework, combining the former branching step, bounding the lower bound step, bounding upper
bound step and interval deleting step together, a new branch-and-bound algorithm is designed as follows.

Branch-and-Bound Algorithm Steps
Initializing step. Given the initial convergent error ε, the initial randomly generated parameter matrix λ.

Solve the (PLPRP) over the initial box Z0 to obtain its optimal solution z0 and optimal value LB(Z0),
denote by the initial lower bound LB0 = LB(Z0). If z0 is a feasible solution of the (QICQP), we denote by the
initial upper bound UB0 = H0(z0). Otherwise, we denote by the initial upper bound UB0 = +∞.

IfUB0−LB0 ≤ ε, the proposed algorithm terminates, z0 is a global ε-optimal solution of the initial problem
(QICQP). Otherwise, setΩ0 = {Z0}, Λ = ∅, s = 1.

Branching step. Let UBs = UBs−1. Partition the investigated sub-box Zs−1 into two sub-boxes Zs,1, Zs,2 by
the selected branching rule, and denote by Λ = Λ ∪ {Zs−1} the set of the deleting sub-boxes.

Interval deleting step. For each investigated sub-box Zs,t , t = 1, 2, use the former interval deleting rule to
compress the investigated sub-box, still denote by Zs,t the remaining sub-box.

Bounding the lowerboundstep.For each remaining sub-box Zs,t, where t = 1, 2, solve the (PLPRP) over Zs,t

to obtain its optimal solution zs,t and optimal value LB(Zs,t), and let Ωs = {Z∣Z ∈ Ωs−1 ∪ {Zs,1, Zs,2}, Z /∈ Λ}

and LBs = min{LB(Z)∣Z ∈ Ωs}.

Bounding the upper bound step. For each sub-box Zs,t, if its midpoint zmid is the feasible point of the initial
problem (QICQP), let Θ ∶= Θ ∪ {zmid

}, denote by the new upper bound UBs = minz∈Θ H0(z); if the optimal
solution zs,t of the (PLPRP) is the feasible point of the initial problem (QICQP), denote by the new upper
bound UBs = min{UBs ,H0(zs,t)}, and denote by zs the best existent feasible point such that UBs = H0(zs).

Terminating judgement step. If UBs − LBs ≤ ε, the proposed algorithm terminates, zs is a global ε-optimal
solution of the initial problem (QICQP). Otherwise, denote by s = s + 1, and go to the Branching step.

3.2 Global convergence of the proposed algorithm

Without loss of generality, we assume that v is the global optimal value of the initial problem (QICQP). If the
proposed algorithm terminates after s �nite iterations, where s is a �nite number such that s ≥ 0, then it
follows that

UBs ≤ LBs + ε.

From the bounding the upper bound step of the proposed algorithm, we know that theremust exist a feasible
point zs of the initial problem (QICQP) such that

v ≤ UBs = H0(zs).

By the branch-and-bound structure of the proposed algorithm, we have

LBk ≤ v.

Combining the above several inequalities together, it follows that

v ≤ UBs = H0(zs) ≤ LBs + ε ≤ v + ε.
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Therefore, zs is an ε-global optimal solution of the initial problem (QICQP).
If the proposed algorithm does not terminate after �nite iterations, for this case, the detailed convergent

conclusions are given as follows.

Theorem 3.2. If the proposed algorithmdoes not terminate after �nite iterations, then it will generate an in�nite
partitioning sequence{Zs}of the initial box Z0, andanyaccumulationpoint of the sequence{Zs}will be a global
optimum solution of the initial problem (QICQP).

Proof. First of all, in the proposed algorithm the selected branching method is the bisection of box, so that
the branching process is exhaustive, that is to say, the branching step will ensure that the intervals of all
variables tend to 0, i.e., ∥u − l∥ → 0.

Secondly, fromTheorem 2.4, the optimal solution of the (PLPRP)will su�ciently approximate the optimal
solution of the (QICQP) as ∥u − l∥ → 0, and this ensures that the limitation lims→∞(UBs − LBs) = 0 holds. So
that the bounding operation is consistent.

Thirdly, in the proposed algorithm the subdivided box which attains the actual lower bound is selected
for further partition at the later immediate iteration, so that the used selecting operation is bound improving.

From [26, Theorem IV.3], the su�cient condition of global convergence of the branch-and-bound al-
gorithm is that the branching method is exhaustive, the bounding method is consistent and the selecting
method is improvement, therefore, the proposed algorithm is convergent to the global optimal solution of
the initial (QICQP).

4 Numerical experiments
Given the convergent error ε = 10−6 and the parameter matrix λ = (λjk)n×n ∈ Rn×n, where λjk ∈ {0, 1},
compared with the existing methods, several numerical examples in existing literature are tested on mi-
crocomputer, the procedure is coded in C++ software, the parametric linear programs relaxation problems
are solved by the simplex method. These examples and their numerical results are listed as follows. In
the following Tables 1 and 2, the number of iteration and running time in seconds for the algorithm are
represented by “Iteration" and “Time(s)", respectively.

Example 4.1 ([16]).

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min H0(z) = z1
s.t. H1(z) = 1

4 z1 +
1
2 z2 −

1
16 z

2
1 −

1
16 z

2
2 ≤ 1,

H2(z) = 1
14 z

2
1 +

1
14 z

2
2 −

3
7 z1 −

3
7 z2 ≤ −1,

1 ≤ z1 ≤ 5.5, 1 ≤ z2 ≤ 5.5.

Example 4.2 ([16]).

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min H0(z) = z1z2 − 2z1 + z2 + 1
s.t. H1(z) = 8z22 − 6z1 − 16z2 ≤ −11,

H2(z) = −z22 + 3z1 + 2z2 ≤ 7,
1 ≤ z1 ≤ 2.5, 1 ≤ z2 ≤ 2.225.

Example 4.3 ([4,5,17]).

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

min H0(z) = z21 + z22
s.t. H1(z) = 0.3z1z2 ≥ 1,

2 ≤ z1 ≤ 5, 1 ≤ z2 ≤ 3.
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Example 4.4 ([5,14,17,18]).

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min H0(z) = z1
s.t. H1(z) = 4z2 − 4z21 ≤ 1,

H2(z) = −z1 − z2 ≤ −1,
0.01 ≤ z1, z2 ≤ 15.

Example 4.5 ([4,6,14]).

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

min H0(z) = 6z21 + 4z22 + 5z1z2
s.t. H1(z) = −6z1z2 ≤ −48,

0 ≤ z1, z2 ≤ 10.

Example 4.6 ([19]).

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min H0(z) = −z1 + z1z0.52 − z2
s.t. H1(z) = −6z1 + 8z2 ≤ 3,

H2(z) = 3z1 − z2 ≤ 3,
1 ≤ z1, z2 ≤ 1.5.

Example 4.7 ([14,20]).

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min H0(z) = −4z2 + (z1 − 1)2 + z22 − 10z23
s.t. H1(z) = z21 + z22 + z23 ≤ 2,

H2(z) = (z1 − 2)2 + z22 + z23 ≤ 2,
2 −

√
2 ≤ z1 ≤

√
2, 0 ≤ z2, z3 ≤

√
2.

Table 1. Numerical comparisons for Examples 4.1-4.7

Example Refs. Optimal value Optimal solution Iteration Time(s)
1 our 1.177124344 (1.177124344, 2.177124344) 22 0.0103

[16] 1.177124327 (1.177124327, 2.177124353) 434 1.0000
2 our -0.999999106 (2.000000, 1.000000) 21 0.0079

[16] -1.0 (2.000000, 1.000000) 24 0.0129
3 our 6.778046494 (2.000000000, 1.666747279) 12 0.0039

[4] 6.777778340 (2.000000000, 1.666666667) 30 0.0068
[5] 6.777782016 (2.000000000, 1.666666667) 40 0.0320
[17] 6.7780 (2.00003, 1.66665) 44 0.1800

4 our 0.500000000 (0.500000000, 0.500000000) 25 0.0070
[5] 0.500004627 (0.5 0.5) 34 0.0560
[14] 0.500000442 (0.500000000, 0.500000000) 37 0.0193
[17] 0.5 (0.5, 0.5) 91 0.8500
[18] 0.5 (0.5, 0.5) 96 1.0000

5 our 118.392375925 (2.560178568, 3.125000000) 46 0.0294
[4] 118.383672050 (2.555409888, 3.130613160) 49 0.0744
[6] 118.383756475 (2.5557793695, 3.1301646393) 210 0.7800
[14] 118.383671904 (2.555745855, 3.130201688) 59 0.0385

6 our -1.162882315 (1.499977112, 1.5) 37 0.0756
[19] -1.16288 (1.5, 1.5) 84 0.1257

7 our -11.363636364 (1.0, 0.181815071, 0.983332741) 98 0.1672
[14] -11.363636364 (1.0, 0.181818470, 0.983332113) 420 0.2845
[20] -10.35 (0.998712,0.196213,0.979216) 1648 0.3438
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Example 4.8 ([3,14]).

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max H0(z) =
n
∑
i=1

z2i

s.t. Hj(z) =
j
∑
i=1

zi ≤ j, j = 1, 2, . . . , n,

zi ≥ 0, i = 1, 2, . . . , n.

Table 2. Numerical results for Example 4.8

Refs. Dimension n Optimal value Iteration Time(s)
This paper 5 25.0 11 0.01632

10 100.0 30 0.22646
20 400.0 86 4.35751
30 900.0 204 31.2676
40 1600.0 300 80.161

[3] 5 25.0 141 10.11
10 100.0 283 21.86
20 400.0 651 47.00
30 900.0 965 106.33

[14] 5 25.0 12 0.01818
10 100.0 32 0.30216
20 400.0 88 6.01095
30 900.0 206 44.4965
40 1600.0 302 98.122

Compared with the existing algorithms, the numerical results for examples 1-8 show that the proposed
algorithm can be used to globally solve the quadratically inequality constrained quadratic programs with
higher computational e�ciency.

5 Concluding remarks
In this paper,wepropose anewbranch-and-bound algorithm for globally solving the quadratically inequality
constrained quadratic programs. In this algorithm,we present a newparametric linearizing technique,which
can be used to derive the parametric linear programs relaxation problemof the investigated problem (QICQP).
To accelerate the computational speedof theproposedbranch-and-boundalgorithm, an interval deleting rule
is used to reduce the investigated box. By subsequently partitioning the initial box and solving a sequence of
parametric linear programs relaxation problems, the proposed algorithm is convergent to the global optimaof
the initial problem (QICQP). Finally, compared with some existing algorithms, numerical results show higher
computational e�ciency of the proposed algorithm.
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