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Abstract: In this paper we propose a new parametric linearizing approach for globally solving quadratically
inequality constrained quadratic programs. By utilizing this approach, we can derive the parametric linear
programs relaxation problem of the investigated problem. To accelerate the computational speed of the
proposed algorithm, an interval deleting rule is used to reduce the investigated box. The proposed algorithm
is convergent to the global optima of the initial problem by subsequently partitioning the initial box and
solving a sequence of parametric linear programs relaxation problems. Finally, compared with some existing
algorithms, numerical results show higher computational efficiency of the proposed algorithm.
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1 Introduction

In this paper we consider the following quadratically inequality constrained quadratic programs:

=

n 0 n 0
min Ho(z) = ¥ dizi+ ¥ ¥ PjZjZk
k=1 j=1k=1
. n . n n .
(QICQP) : 4 g t. Hi(z) = k21 dizy + 21 kle}kz,-zk <b,i=1,...,m,
= j=1k=

zeZ°={zeR": I’ <z <u’},

where p;k, ! and b; are all arbitrary real numbers; I° = (19,...,19)7,u® = (u3,...,u%)”. The investigated
problem (QICQP) has a broad applications in investment portfolio, management decision, route optimization,
engineering optimization, production planning and so on. In addition, the investigated problem (QICQP)
usually owns multiple local optima which are not global optima, that is to say, in this kind of problems
there are important theoretical and computational complexities. Therefore, it is very necessary to present
an effective global optimization algorithm for solving the (QICQP).

In last decades, for the problem (QICQP) and its special cases many methods have been developed
and described in the existent literature. For example, semi-definite relaxation method [1], reformulation-
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convexification approach [2], branch-and-reduce approaches [3-7], approximation algorithms [8-10], simpli-
cial branch-and-bound method [11], branch-and-cut method [12], rectangle branch-and-bound algorithms
[13,14], robust solution approach [15], and so on. In addition, some algorithms for geometric programming
[16-20] and multiplicative (or fractional) programming [21-25] also can be used to solve the (QICQP). Although
these methods can be used to solve the investigated problem (QICQP) or its special forms, less work has been
still done for globally solving the investigated quadratically inequality constrained quadratic programs.

In this paper, we will present a new branch-and-bound algorithm for globally solving the (QICQP). Firstly,
we present a new parametric linearizing technique. By utilizing this method, we can convert the (QICQP)
into a parametric linear programs relaxation problem, which can be used to compute the lower bounds
of the optimal values of the initial problem (QICQP) and its subproblems. Secondly, based on the branch-
and-bound framework, by successive partitioning of the initial box and by solving those derived parametric
linear programs relaxation problems, a new branch-and-bound algorithm is designed for globally solving the
(QICQP). Thirdly, to accelerate the computational efficiency of the proposed branch-and-bound algorithm, an
interval deleting rule is used to reduce the investigated box. Fourthly, the proposed algorithm is convergent
to the global optima of the initial problem (QICQP) by successively partitioning of the initial box and by
solving those derived parametric linear programs relaxation problems. Finally, compared with some existent
algorithms, numerical results demonstrate the computational efficiency of the proposed algorithm.

The remaining sections of this article are organized as follows. First of all, we present a new parametric
linearizing technique for deriving the parametric linear programs relaxation problem of the (QICQP) in
Section 2. Secondly, based on the branch-and-bound framework, by combing the derived parametric linear
programs relaxation problem with the interval deleting rule, a branch-and-bound algorithm is established
for globally solving the (QICQP) in Section 3. Thirdly, compared with the existent methods, some numerical
examples in existent literatures are used to verify the computational efficiency of the proposed algorithm in
Section 4. Finally, some concluding remarks are presented.

2 New parametric linearizing approach

In this section, we propose a new parametric linearizing approach for deriving the parametric linear programs
relaxation problem of the (QICQP). The detailed parametric linearizing approach is presented as follows:

Assume that Z = {(z1,22,...,zn)" € R" : lj < zj < ujj = 1,...,n} € Z°% X = (Ax)nxn € R™"
is a symmetric matrix, and Ay € {0, 1}. For convenience, for any z € Z, forany k € {1,2,...,n}, some
expressions are introduced as follows:

Zk(Aki) = b + N (uge = L)

Zi(1 = M) = I+ (1 = M) (U = L),

hi(2) = 2is

R (2, Z, M) = [2i() 17 + 22 (e) [21 = 26 ()],
(2, Z, M) = [2e(Oa) 12 + 2201 = M) [2k = 2k () -

Obviously, we have z(0) = Iy, zx(1) = uy.

Theorem 2.1. For any k < {1,2,...,n}, for any z € Z, consider the functions hi(z), hy, (2, Z, \) and
hi (2, Z, M), then, the following conclusions hold:

(2, Z, M) < hiae(2) < hia(2, Z, M) (1)
”ul_ilIHILO[hkk(Z) -hu(z,Z, \q)] =0 (2)

and ~
lim [hkk(z, Z, )\kk)_hkk(z)] =0. (3)

[u-1]|—0
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Proof. (i) By the mean value theorem, for any z € Z, there exists a point & = azy + (1 — a)zx(Akk), Where o €

[0, 1], such that
zi = [zk(wa) 1° + 262k - 2 () 1

If Ay = 0, then we have
€k 2 I = zi (M) and zg — zx (M) = 2k — Ik 2 0.

If My = 1, then it follows that
€ < ug =z (M) and zy — zi (M) =z — U < 0.

Thus, we can get that
hi(2) = 24
= [z 1 + 262k - 2z (M) ]
> [zk(A) 1 + 2z (i) [2k — 2 ()]
= hkk(za Z, M)

Similarly, if Ay, = 0, then we have

& < uk = zi(1 - M) and zy — zx (M) = zx — I 2 0.
If \yx = 1, then it follows that

&k 2 I = 2k (1 = M) and zx — zx(Akk) = 2k — Ux < 0.

Thus, we can get that
hi(2) = z;
= [zi(Mi) 1” + 282k — 2 () ]
< [2e(a) 1? + 22i(1 = M) 2k = 2 (Vi) ]
= hi(z, Z, k) -

Therefore, for any z € Z, we have that

h (2, Z, M) < b (2) < ha (2, Z, M)«

(ii) Since
hik(2) = Mg (2, Z, M) = zi = {[2e(a) 1 + 2z (i) [z — 2 (i) 1
= (zk - zt(O))?
< (ux - Iy)?,
we have
Hulfilﬂlo[hkk(z) - hu(2,Z, \) ] = 0.
Also since

(2, Z, M) — P (2) = [2e(Niae) 12 + 220(1 = M) (26— zi(Dik) ] - 22
= (zi(Akk) + z1) (2 (k) — 2k)
+2z;(1 = M) (2k — zi( Mk )
= [zk = zik(Mwa) 1226 (1 = i) = zi( M) = 2]
= [zk = zi(Mwi) 1 [20 (1 = Ari) = Zi( M) ]
+[zk = 2k (M) ]2 (1 = M) — 2]
< Z(Hk - lk)z.

Therefore, it follows that

Hul—ill\.\llo[ﬁkk(z’ Z, /\kk) - hkk(z)] =0.

The proof is completed.

(4)

(5)
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Without loss of generality, forany z € Z, foranyj e {1,2,...,n}, ke {1,2,...,n}, j + k, we define

Zj (M) = b+ N (w - ),

Zk(Nji) = L+ Ne(ur = li),

zj(1 = Xj) = b+ (1= M) (w5 = 1),

Zk(l - Ajk) = lk + (1 - /\jk)(uk - lk),

(2 = zi) (i) = (L = wie) + Nae(uj = lie = I + ),

(27 = 2i) (1 = Aje) = (4 = i) + (1= Nae) (w5 = B = T + ue).
Obviously, we have (zj — zx)(0) = [ —ux, (zj—zx)(1) = uj — Ix.

In a similar way as in Theorem 2.1, we can get the following Theorem 2.2:

Theorem 2.2, Foreachj=1,2,...,n,k=1,2,...,n, forany z € Z, we have:
(i) The following inequalities hold:

[z (M) 1 + 225 (i) [2 = 21 ()] < 27 < [25(Ni) 1% + 225(1 = M) [z - 21 () s
Zi(Ni) 17 + 2z (i) [2i - 2 (i) ] < 2k < [zie(Ai) 1P + 220 (1 = N [z - zie(Nie) 1
(z1 - z1)” < [(z1 - 2) (\) ) + 2(z5 - zi) (1 - Ma) 25 — 2k — (25 = 21) (M) ]
(zj—z1)* 2 [(z7 - 21) Ni) 12 + 225 — z1) i) [27 — 21 — (25— 2) (i) -

(ii) The following limitations hold:

Hulfilfunﬁo[zf ~ (5] + 27\ [z - 21 (A) ]3] = 0,

m [[z;(A\i)]” +22;(1 = Mi)[z - z(Ai) ] - 2] = 0,

[u=t]—0
”ul_illﬁl_)o[zf —{LzeOi)]* + 2z (i) [z - 2 (M) ]3] = 0,
Hul_iﬁ‘n_)o[[zk()‘ik)]z +22,(1 - M) [z — 2k (M) ] - 24 = O,

i (G- 2)(Ni)1* + 2(25 = 21) (1= M) [z — 2= (25 = 20) ()] = (27 - 26)*] = O,

i 1z 20)* = {[(z - 2 ()] + 225 - 20 i) [(75 - 21) = (25 - 2) (Ai) 1] = 0.
Proof. (i) From the inequality (1), replacing Ak by Aj, and replacing zj by z;, we can get that
(2101 + 221N [z - 21(N)] < 57 < [21(4)]” + 25(1 - M) [ - 21 () ).
From the inequality (1), replacing Ay by Aj, we can get that
(2O ]2 + 2z [2k - 2] < 2k < [2e(i) 17 + 22i(1 = Aje) (21 - 2 (Vi) -
From (1), replacing Ax and z; by Aj, and (zj — zx), respectively, we can get that
(21~ 21)” < [(2 - 2) ) ) + 2(2; = 21) (1= 50 [z - 20) = (2= 21) (),
(21— 21)" 2 [(2 - 200 (A ] + 22 - 20) () [(2) - 21) = (27— 2) (i) ]
(ii) From the limitations (2) and (3), replacing Ay and zj by \j, and z;, we have
Jim (77 - {2501 + 2200 7 - 2(40 1} = 0
and

Jim 11200017 + 2211 - 40 (7 - 21(40)] - 57 = 0.
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From the limitations (2) and (3), replacing A by Ay, it follows that

uufzrunao[zi ~{l2k)]1” + 2ze(Ni) 21 - 2k (M) 1}] = O

and
uulfizlﬁlo[[zk(kjk)]z +22(1 = Nio) [z — ze(Ni) ] - 2] = 0.

By the limitations (2) and (3), replacing Ay and z by \jx and (z; — z), respectively, we can get that

Hm [[(z - zi) (i) + 2(z5 - 2) (1= i) [25 - 2k - (25— 2) (i) ] - (25— 20)°] = 0

[u-1] -0
and
”ul—ilI”n—»O[(Zj -2 = {[(z = 2) Vi) I* + 2(2 = 2) i) [2 — 26— (2 = 2) (\i) 1] = .
The proof is completed. O

Without loss of generality, forany z € Z, foranyj e {1,2,...,n},ke{1,2,...,n},j# k, define
hj(z) = zjz = M
(2, Z, i) = 3{[z:(Ni0) 1% + 2210 [27 - 21(Aik) ]

+{zk(Ai) 12 + 22 [2k - zie (Vi) ]
3 ~{[(z7 = 2) ()] + 2(2 = 2) (1 = i) [z = 2x = (25 = z) (\) 1} ),
(2, Z, M) = ${12i(0i) 1P + 22i(1 = M) [z - 21 (Ain)]

+[Zk()\jk)]2 + ZZk(l — )\jk)[zk — Zk(Ajk)]

~{[(z = 20 )1 + 2(2 - 21) M) [27 — 21— (2 = 20) (\r) 133+

Theorem 2.3. Foreachk = 1,2,...,n, consider the functions h].k(z, Z, Xjk), hjx(2) and ﬁjk(z, Z, \jk), then,
for any z € Z, we have the following conclusions:

hi (2, Z, \ji) < hi(2) < (2, Z, M) (6)
”ul_ilﬁll'l_)()[hjk(Z) - hy(2,Z, Xi)] = 0 (7)

and
”ul_ilIl"ﬂ_)O[hjk(Z, Z, >\jk) - hjk(Z)] =0. (8)

Proof. First of all, from the conclusions (i) of Theorem 2.2, it follows that
hi(2) = 2y = w
> 3{[z(\)1* + 22N [25 - 2i(Ai) ]
+zi (M) 1P + 2ze(Ni) [z — 2z (M) ]
~{[(z1 - z0) N1 + 2(z — z1) (1 = Xa) [z — zic = (25— 20) (i) 13
= hy (2, Z, N

and L ,
hi(2) = zjzy = A0 ”*_EZ"_Z“
< 3{[z(Ni) 1 + 225(1 = X [2 - 2i(A) ]
+[2eNi) 1 + 2211 - M) [2k -z (i) ]
{5 - 20) (N ]* +2(z - 2) i) [2 - 2k = (2 - z1) (i) 11}
= hjk(Z, Z, Ajk)-



412 —— H.Jiao, R.Chen DE GRUYTER

Secondly, from the inequalities (4) and (5), we have

hj(2) - by (2, Z, Aji)

2z = hy (2, Z, M)
z? +zi7(z,-fzk)2

= T = ()T + 225N [25 - 21 ()]
+ze i) 17 + 2ze(i) 2k = 2 (i) ]
~{[(z - z2) N1 + 2(z - zi) (1 = Ma) [ -
=z —z) (M) 1}
=3[z —{[z1(Mi) 1 + 22N (2 — 21 (M) 1]
+3z; = {[zc i) 17 + 221N [2k — 21 (i) 1]
+3{{(zj - z) i)
+2(z5 - z1) (1 - M) [z — 2z = (25 — zi) (i) ]}
-(z - 21)*}

T - 1)+ Y- L)% + (ue+u - L - 1)

IN

Thus, we can get that lim,_;_o[hjx(2) - hy(z, 2, Ajk)] =
Also from the inequalities (4) and (5), we get that

]k(z Z, /\jk) h}k(z) = ]k(z Z, /\jk) ZjZy
—2{[Zz(>\]k)] +22j(1 = X)) [27 - 2 (Njr) ]
+[2e (Vi) 12 + 2201 = N [z — 2k (Vi) ]
~{[(z - z1) M)
+2(zj — zi) N [2) — 2 = (2 — z) (Ni) I}

2 2 2
z; +z;—(2j—2zx)

3z 01 + 225(1 - M) [2 - 21 ()] - 2]
+3 [z 1 + 220 (1 = M) [zi — 2 (i) ] — 2]
+3{(z - 2)* —{[(z - z21) \) I?

+2(zj - zi) M) [z — 2k = (2 — 2) Vi) 13}

= (25 = zj(M\i)) (zk = zk(Njx))

< (u,- - I}')Z + (uk - lk)z + (uk +Uj - lk - I}')z.

Thus, it follows that lim”u_l”_,o [ij(Z, Z, )\jk) - hjk(Z)] =0. O

Without loss of generality, for any Z = [I, u] c Z°, for any parameter matrix A = (Ajk)nxn, for any z € Z and
i<{0,1,...,m}, welet
pkkhkk(z Z, Mkk)s 1fpkk >0,

fi (2,2, A :{
fkk( k) pkkhkk(z Zy Mek) s 1fpkk <0,

pkkhkk(z Z, \kk)s lfpkk >0,

fi 2,7, \ {
il 2 Piachiac (2 Z, M) i Pl < 0,

i pih. (z,Z, \; ,ifp‘ >0,j=k,
f’k(z’ Z, )\jk) _ { ]ikijk( ]k) ) lik ]

] pjkh,-k(z, Z, )\jk), lfp]-k < 0, ] * k,
Pichi(z, Z, Ni), if ply > 0, j # k,

i
(2, Z,0) =1 P i pl <0, j
Fi(2: 22 250 {p}l'khjk(z’ Z, Ni), if py < 0, j # k.

HiL(z, Z,\) = Zn:(dizk +]j(k(z, Z, ki) + Zn: Zn: jjk(z, Z, k).

k=1 j=1 k=1,k#j

HP(Z,Z,A):i(d;;zwfik(z,z,xkk)ni Z Fi (2 Zo M)

k=1 j=1 k=1,k#j

Theorem 2.4. ForVzeZ=[l,u] c Zo,for any given parameter matrix A = (Aji)nxn, foreachi=0,1,...,m,
we have the following conclusions:

Hi(z,Z,)\) <Hi(z) <H{ (z,Z, \),
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lim [Hi(z) - H (2, Z,\)] =
[u-1]—0
and

im [H{(z,Z,)) - Hi(z)] =
Ju-1-0

Proof. First of all, from the inequalities (1) and (6), for any j, k € {1, ..., n}, we have
)j(k(z, Z, \k) < DiaZi Sfik(z, Z, Mk)s 9)
112 2, 3) < Dz < T2, 2, ). (10)
By the above inequalities (9) and (10), for any z € Z ¢ Z°, we can get that
HL(2,2,)) = i (dizi+ £ (2,2, 00)) + i 1§ 11252, 250)
< Z dizic + Z Piazi + Z Z P;kZJZk = Hi(z)

j=1k= 1k¢]

Z(dkzk +fkk(Z Z, M) + S 5 f}k(z Z, Ajk)
j=1k=1,k+j

= H,.U(z, Z,\).

Therefore, we have Hf (z, Z, \) < Hi(z) < HY (z, Z, \).
Secondly,

n . n .
Hi(z) -H(2,Z,)) Z dizi+ ¥ Dizi + .
k=1 k=1

k#j
(2 dizc+ 3 [y (2.2, >+i S f(z 2,00

Il
M:

1[p ka _jjkk(z’ Z’ /\kk)]

n n . .
+E X [Pz £ (22,20
j=1 k=1,kj ik

Z p;(k[hkk(z) ~hy(z,Z, M)

k=1,p;(k>0

n . —
+ Y Pulh(2) — h(z, Z, M) ]
k=1,p}, <0

+y T p;?k[h;k(z)—h,»k(z,z, ol
1,k+j,p

k

£ Y phlh() -z 2 0]

From the limitations (2),(3),(7) and (8), lim”u,lnﬁo[hkk(Z) - hkk(ZLZ’ Mx)] = O, lim”u,lnﬁo [Hkk(Z, Z, Mek) —
hia(z)] = 0, limyy gy —o[hjuc(2) — hy (2, Z, Nj)] = 0 and limyy o[ hjx (2, Z, Ajk) = hjx(2)] = 0
Therefore, it follows that
lim [Hi(z) - Hi(z,Z, AN]=

u-t]—~0

Similarly, we can prove that

u hIIF [H (z,Z,)\) - Hi(2)] =

The proof is completed. O

By Theorem 2.4, we can construct the parametric linear programs relaxation problem (PLPRP) of the (QICQP)

over Z as follows:
min Hé(z, Z,\),

(PLPRP) : { s.t. H'(z,Z,A\)<b;, i=1,...,m,
zeZ={z:1<z<uj.
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where

Hi(z,Z,)\) = Z(dkzk +fkk(z Z, M) + Z Z f (2 Z, ).
j=1k=1,k+j

Based on the former parametric linearizing technique, each feasible solution of the (QICQP) must be also
feasible to the (PLPRP) in the sub-region Z; and the minimum value of the (PLPRP) must be less than or equal
to that of the (QICQP) in the sub-region Z. Hence, the (PLPRP) offers a reliable lower bound for the minimum
value of the (QICQP) in the sub-region Z. In addition, Theorem 2.4 ensures that the optimal solution of the
(PLPRP) will sufficiently approximate the optimal solution of the (QICQP) as |u —I| — 0, and this guarantees
the global convergence of the proposed algorithm.

3 Branch-and-bound global optimization algorithm

In this section, a new branch-and-bound global optimization algorithm is proposed for solving the (QICQP). In
this algorithm, there are the following several important techniques: branching, bounding the lower bound,
bounding upper bound and interval deleting.

Branching: The branching step will generate a more refined box partition. Here we choose a typical box-
bisection method, which is sufficient to ensure the global convergence of the proposed branch-and-bound
method. For any selected box Z = [I',u'] ¢ Z°. Set n ¢ argmax{u; - I; : i = 1,2,..., n}, by partitioning
[5;7, E;,] into [g;, (g;] + E;,) /2] and [(g;] +E;7) /2, E;]], we can subdivide Z' into two new sub-boxes Z * and Z'2.

Bounding the lower bound: For each sub-box Z ¢ 7%, which has not been deleted, the bounding the
lower bound step needs to solve the parametric linear programs relaxation problem over each sub-box, and
denote by LBs = min{LB(Z)|Z € 25}, where {25 denotes the set of sub-box which has not been deleted after
s iteration.

Bounding the upper bound: The bounding upper bound step needs to judge the feasibility of the
midpoint of each investigated sub-box Z and the optimal solution of the (PLPRP) over the investigated sub-
box Z, where Z € (). In addition, we need to calculate the objective function values of each known feasible
solutions for the (QICQP), and denote by UBs = min{Hy(z) : z € ©} the best upper bound, where O is the
known feasible point set.

Interval deleting: To improve the convergent speed of the branch-and-bound algorithm, an interval
deleting rule is introduced as follows. For convenience, for any z € Z,i € {0,1,...,m},q € {1,...,n},
and denote by HUB the current upper bound of the (QICQP), we let

H{“(Z, Z, )\) = Zn:ai,-()\)z,- + Bi()\), RLB,'()\) = imin{ai,-()\)lj, ai,-()\)u,-} + ﬁi()\).

j=1 j=1

Theorem 3.1. For any investigated sub-box Z = (Zj)1xn € Z°, we have the following conclusions:

(i) If RLBo()\) > HUB, then the whole investigated sub-box Z should be deleted.

(ii) If RLBo()\) < HUB, then: for any q € {1,2,...,n}, if aog(A) > O, the interval Z, should be re-
placed by [l, TUB=RLBo() rmintany (Mly.co(Mte} 1~ 7.+ if 00, (\) < 0, the interval Z, should be replaced by

q(A)
[HUB RLBO()\)+m1n{aoq(>\)l ozoq(a)?)uq}

ug]NZg.
(iii) If RLB; (/\) > b for somei € {1 .., m}, then the whole investigated sub-box Z should be deleted.

(iv) If RLB;(\) < b; foreachi € {1,...,m}, then, forany q € {1,2,...,n}, if ajg(A) > O, the interval Z,
bi—RLB;(X)+min{a;y (A)l, 00 (M)t }

can be replaced by [l, ey 1N Zg; if ig(X) < O, the interval Z4 can be replaced by
[b -RLB; (/\)+m121{qo(¢,;,\§/\)1 (it} ug] N Ze.

Proof. In a similar way as in the proof of Theorem 3 in [14], we may draw the conclusions for Theorem 3.1, so
here it is omitted. O

From Theorem 3.1, we can construct an interval deleting step to compress the investigated box for improving
the convergent speed of the proposed branch-and-bound algorithm.
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3.1 New branch-and-bound algorithm

For any sub-box Z° ¢ Z°, we denote by LB(Z®) the optimal value of the (PLPRP) over the sub-box Z°, and
denote by z° = z(Z®) the optimal solution of the (PLPRP) over the sub-box Z°. Based on the branch-and-
bound framework, combining the former branching step, bounding the lower bound step, bounding upper
bound step and interval deleting step together, a new branch-and-bound algorithm is designed as follows.

Branch-and-Bound Algorithm Steps
Initializing step. Given the initial convergent error ¢, the initial randomly generated parameter matrix .
Solve the (PLPRP) over the initial box Z° to obtain its optimal solution z° and optimal value LB(Z°),
denote by the initial lower bound LBy = LB(Z°). If 2° is a feasible solution of the (QICQP), we denote by the
initial upper bound UBg = Ho(zo). Otherwise, we denote by the initial upper bound UBg = +oo.
If UBo—LBy < ¢, the proposed algorithm terminates, Zisa global e-optimal solution of the initial problem
(QICQP). Otherwise, set 2o = {Z°}, A =@, s = 1.

Branching step. Let UBs = UBs_1. Partition the investigated sub-box Z*~! into two sub-boxes Z%1, 252 by
the selected branching rule, and denote by A = A U {Z°7'} the set of the deleting sub-boxes.

Interval deleting step. For each investigated sub-box 75t t =1, 2, use the former interval deleting rule to
compress the investigated sub-box, still denote by Z* the remaining sub-box.

Bounding the lower bound step. For each remaining sub-box Z>‘, where t = 1, 2, solve the (PLPRP) over Z%*
to obtain its optimal solution z* and optimal value LB(Z*"), and let 25 = {Z|Z € 25_1 U {Z5',Z%%},Z ¢ A}
and LBs = min{LB(Z)|Z € £2}.

Bounding the upper bound step. For each sub-box Z*, if its midpoint z™? is the feasible point of the initial

problem (QICQP), let © := O U {zmid}, denote by the new upper bound UBs = min,.g Ho(z); if the optimal
solution z*! of the (PLPRP) is the feasible point of the initial problem (QICQP), denote by the new upper
bound UBs = min{UBs, Ho(z*")}, and denote by z° the best existent feasible point such that UBs = Ho(z®).

Terminating judgement step. If UB; — LB;s < ¢, the proposed algorithm terminates, z° is a global e-optimal
solution of the initial problem (QICQP). Otherwise, denote by s = s + 1, and go to the Branching step.

3.2 Global convergence of the proposed algorithm

Without loss of generality, we assume that v is the global optimal value of the initial problem (QICQP). If the
proposed algorithm terminates after s finite iterations, where s is a finite number such that s > 0, then it
follows that

UBs < LBs +e.

From the bounding the upper bound step of the proposed algorithm, we know that there must exist a feasible
point z° of the initial problem (QICQP) such that

v < UBs = Ho(2%).
By the branch-and-bound structure of the proposed algorithm, we have
LBy <v.
Combining the above several inequalities together, it follows that

V<UBs=Ho(z’) <LBs+e<V+e.
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Therefore, z° is an e-global optimal solution of the initial problem (QICQP).
If the proposed algorithm does not terminate after finite iterations, for this case, the detailed convergent
conclusions are given as follows.

Theorem 3.2. Ifthe proposed algorithm does not terminate after finite iterations, then it will generate an infinite
partitioning sequence { Z°} of the initial box Z°, and any accumulation point of the sequence { Z° } will be a global
optimum solution of the initial problem (QICQP).

Proof. First of all, in the proposed algorithm the selected branching method is the bisection of box, so that
the branching process is exhaustive, that is to say, the branching step will ensure that the intervals of all
variables tend to O, i.e., |u - I| - O.

Secondly, from Theorem 2.4, the optimal solution of the (PLPRP) will sufficiently approximate the optimal
solution of the (QICQP) as |u — 1| — 0, and this ensures that the limitation lims—,.. (UBs — LBs) = 0 holds. So
that the bounding operation is consistent.

Thirdly, in the proposed algorithm the subdivided box which attains the actual lower bound is selected
for further partition at the later immediate iteration, so that the used selecting operation is bound improving.

From [26, Theorem IV.3], the sufficient condition of global convergence of the branch-and-bound al-
gorithm is that the branching method is exhaustive, the bounding method is consistent and the selecting
method is improvement, therefore, the proposed algorithm is convergent to the global optimal solution of
the initial (QICQP). O

4 Numerical experiments

Given the convergent error ¢ = 10~° and the parameter matrix A = (Aj)nxn € R™", where \j € {0, 1},
compared with the existing methods, several numerical examples in existing literature are tested on mi-
crocomputer, the procedure is coded in C++ software, the parametric linear programs relaxation problems
are solved by the simplex method. These examples and their numerical results are listed as follows. In
the following Tables 1 and 2, the number of iteration and running time in seconds for the algorithm are
represented by “Iteration" and “Time(s)", respectively.

Example 4.1 ([16]).

min Hy(z) = z1
_1 1 1.2 1.2
s.t. Hi(2) 715221 + 51222— 1—3621 - 31—622 <1,
HZ(Z) = ﬁZl + HZZ - 72'1 - 722 S _1,
1<z1<5.5,1<2z,<5.5.

Example 4.2 ([16]).

min H()(Z) =212 — 221 +2Zy + 1

s.t. Hi(z) = 823 — 621 - 162, < 11,
Hy(z)=-25+321+22, <7,
1<2z1<2.5,1<2,<2.225.

Example 4.3 ([4,5,17]).

min Ho(z) = 23 + 23
s.t. Hi(z) =0.3z12z2 > 1,
2<2z1<5, 1<2,<3.
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Example 4.4 ([5,14,17,18]).

min Ho(z) =21

s.t. Hi(z) = 4z, - 42% <1,
Hy)(z)=-z1-2z,<-1,
0.01 <21,z <15.

Example 4.5 ([4,6,14]).
min Ho(z) = 621 + 425 + 5212,
s.t. Hi(z) = —6z1z, < 48,
0<2z,2zp<10.
Example 4.6 ([19]).

min Ho(z) = -z1 +2125° - 22

s.t. Hi(z) = -6z1 + 8z, < 3,
Hz(Z) =3z1-22<3,
1<2z1,z<1.5.

Example 4.7 ([14,20]).

min Ho(z) = 422 + (z1 - 1)* + 25 - 1023
s.t. Hi(z) =zi +25 + 25 < 2,
Hy(z)=(z1-2)° + 23 +25 < 2,

2-V2<z1<V2,0<20,25 <V2.

Table 1. Numerical comparisons for Examples 4.1-4.7

Example Refs. Optimalvalue Optimal solution Iteration  Time(s)
1 our 1.177124344 (1.177124344, 2.177124344) 22 0.0103
[16] 1.177124327 (1.177124327, 2.177124353) 434 1.0000

2 our -0.999999106 (2.000000, 1.000000) 21 0.0079
[16] -1.0 (2.000000, 1.000000) 24 0.0129

3 our 6.778046494 (2.000000000, 1.666747279) 12 0.0039
[4] 6.777778340 (2.000000000, 1.666666667) 30 0.0068

[5] 6.777782016 (2.000000000, 1.666666667) 40 0.0320

[17] 6.7780 (2.00003, 1.66665) 44 0.1800

4 our 0.500000000 (0.500000000, 0.500000000) 25 0.0070
[5] 0.500004627 (0.5 0.5) 34 0.0560

[14] 0.500000442 (0.500000000, 0.500000000) 37 0.0193

[17] 0.5 (0.5, 0.5) 91 0.8500

[18] 0.5 (0.5, 0.5) 96 1.0000

5 our 118.392375925 (2.560178568, 3.125000000) 46 0.0294
[4] 118.383672050 (2.555409888, 3.130613160) 49 0.0744

[6] 118.383756475 (2.5557793695, 3.1301646393) 210 0.7800

[14] 118.383671904  (2.555745855, 3.130201688) 59 0.0385

6 our -1.162882315 (1.499977112, 1.5) 37 0.0756
[19] -1.16288 (1.5, 1.5) 84 0.1257

7 our -11.363636364 (1.0, 0.181815071, 0.983332741) 98 0.1672
[14] -11.363636364 (1.0, 0.181818470, 0.983332113) 420 0.2845

[20] -10.35 (0.998712,0.196213,0.979216) 1648 0.3438
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Example 4.8 ([3,14]).
n
max Ho(z) = ¥ 2}
i=1

)]
s.t. Hi(z)=Yzi<j,j=1,2,...,n,
i=1

zi>0, i=1,2,...,n.

Table 2. Numerical results for Example 4.8

Refs. Dimensionn  Optimalvalue Iteration Time(s)
This paper 5 25.0 11 0.01632
10 100.0 30 0.22646
20 400.0 86 4.35751
30 900.0 204 31.2676
40 1600.0 300 80.161
[3] 5 25.0 141 10.11
10 100.0 283 21.86
20 400.0 651 47.00
30 900.0 965 106.33
[14] 5 25.0 12 0.01818
10 100.0 32 0.30216
20 400.0 88 6.01095
30 900.0 206 44.4965
40 1600.0 302 98.122

Compared with the existing algorithms, the numerical results for examples 1-8 show that the proposed
algorithm can be used to globally solve the quadratically inequality constrained quadratic programs with
higher computational efficiency.

5 Concluding remarks

In this paper, we propose a new branch-and-bound algorithm for globally solving the quadratically inequality
constrained quadratic programs. In this algorithm, we present a new parametric linearizing technique, which
can be used to derive the parametric linear programs relaxation problem of the investigated problem (QICQP).
To accelerate the computational speed of the proposed branch-and-bound algorithm, an interval deleting rule
is used to reduce the investigated box. By subsequently partitioning the initial box and solving a sequence of
parametric linear programs relaxation problems, the proposed algorithm is convergent to the global optima of
the initial problem (QICQP). Finally, compared with some existing algorithms, numerical results show higher
computational efficiency of the proposed algorithm.
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