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Abstract: The restricted triangulation existence problem on a given graph decides whether there exists a
triangulation on the graph’s vertex set that is restricted with respect to its edge set. Let G = C(n, S) be a
circulant graphon n verticeswith jumpvalue set S.We consider the restricted triangulation existenceproblem
for G. We determine necessary and su�cient conditions on S for which G admitting a restricted triangulation.
We characterize a set of jump values S(n) that has the smallest cardinalitywith C(n, S(n)) admits a restricted
triangulation. We present the measure of non-triangulability of Kn − G for a given G.
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1 Introduction
A graph is an ordered pair G = (V , E), where V is a set of vertices, and E is a set of edges. An order of G is the
number of its vertices while a size of G is the number of its edges. A graph is called geometric, if its edges are
straight-line segments.

A triangulation Tn of a �nite set of points V in the plane is a maximally connected, straight-line planar
graph with vertex set V. Each bounded face is a triangle, and the triangulation includes the boundary of the
convex hull.

Let n ≥ 3. A circulant graph G = C(n, S) is a graph on the vertex set V(G) = {v0, v1, . . . , vn−1} such that
each vertex vi is adjacent to vertices vi±a where i = 0, 1, . . . , n − 1 and the subscript index i ± a is reduced
modulo n for all a ∈ S. That is, vivj is an edge of C(n, S) if and only if ∣j − i∣ ∈ S or n − ∣j − i∣ ∈ S. A set
S ⊆ {1, 2, . . . , ⌊n/2⌋} is called a set of jump values of G = C(n, S). When discussing circulant graphs, we will
often assume that the vertices are the corners of a regular n-gon, labeled in clockwise order and the edges are
straight line segments. Hence, circulant graphs can be considered as geometric graphs.

Circulant graphs include the family of cycles C(n, {1}) and the family of complete graphs Kn =
C(n, {1, 2, . . . , ⌊n/2⌋}). Clearly, when G1 = C(n, S1) and G2 = C(n, S2) are two circulant graphs such that
∣S1∣ < ∣S2∣, then the size of G1 is smaller than the size of G2 (i.e., ∣E(G1)∣ < ∣E(G2)∣). Hence, for simplicity we
shall say that G1 = C(n, S1) is a smaller size circulant graph than G2 = C(n, S2) when ∣S1∣ < ∣S2∣.

Let E be some set of edges spanned by V. We say that a triangulation Tn of V is restrictedwith respect to
E if E(Tn) ⊆ E. The restricted triangulation existence problem, on a given graph G(V , E), is to decide whether
there exists a triangulationofV that is restrictedwith respect to E. This problemwasproven to beNP-complete
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(see [1, 2]). In section 2, we solve this problem for a certain geometric graph – a circulant graph. We give a
characterization of a circulant graph G to admit a restricted triangulation.

Another relatedproblem is beginningwith aproblempresented byMichaPerles onDIMACSWorkshopon
Geometric Graph Theory in 2002, which asks to determine the largest possible number h(n) such that every
geometric graph on n vertices with at least (n2) − h(n) edges has a non-crossing Hamiltonian path which has
been studied by Černý et al. [3]. The authors in [4]motivated by Perles problemproved that if Fn is a subgraph
of a convex complete graph Kn, where Fn contains no boundary edges of Kn and ∣E(Fn)∣ ≤ n−3, then Kn − Fn
admits a restricted triangulation.

In section 3, we characterize a circulant graph G as a subgraph of a convex complete graph Kn and
∣E(G)∣ ≤ L(n) such that Kn − G allows a restricted triangulation.

We obtain a set of jump values S(n) = {a1, a2, . . . , a`} that has the smallest cardinality ∣S(n)∣ such that
C(n, S(n)) admits a restricted triangulation. That is, C(n, S(n)) is the smallest size circulant graph admitting
a restricted triangulation.

Let vivj be an edge in a convex graph G, the distance between vi and vj in G is the length of a shortest
(vi , vj)-path in G. A span of vivj is de�ned as the distance between its two end points vi and vj. In otherwords,
a natural number d = min{∣j − i∣, n − ∣j − i∣} such that vivj can be written as vivi+d or vivi−d, is a span of vivj.
Hence, we can see that H = C(n, {d}) is a circulant graph in which vivj ∈ E(H) and each edge in H has a
span d. Let E(Tn) be a set of edges of Tn and D(Tn) be a set of spans of all edges in E(Tn).

1.1 Importance of the triangulations and circulant graphs

Circulant graphs are an important class of interconnection networks in parallel and distributed computing. It
can be used in the design of local area networks (see [5, 6]). On the other hand, computing a triangulation on
a given graph has several important applications in di�erent areas such as nondense matrix computations
[7], database management [8] and arti�cial intelligence [9]. Moreover, triangulations are used in many areas
of engineering and scienti�c applications such as �nite element methods, approximation theory, numerical
computation, computer-aided geometric design, computational geometry, etc. (see [10, 11]).

2 Restricted triangulation on G
In this section, we characterize a set of jump values S∗ to a circulant graph C(n, S∗) admitting a restricted
triangulation (Theorem 2.8). Also, we de�ne the ‘smallest’ cardinality set of jump values S(n) such that
C(n, S(n)) still admits a restricted triangulation. We give a characterization of a circulant graph C(n, S) that
can be redrawn to admit a restricted triangulation (Corollary 2.13). These results are then applied to determine
the convex skewness of the circulant graphs G in section (2.2).

Lemma 2.1. If Tn is a restricted triangulation of a circulant graph G = C(n, S), then S contains D(Tn).

Proof. Suppose Tn is a restricted triangulation of G = C(n, S). Let d ∈ D(Tn). By de�nition of span of edges,
there is an edge vivj in Tn such that vivj = vivi±d where d = min{∣j − i∣, n − ∣j − i∣}. Since Tn is a restricted
triangulation of G, then E(Tn) ⊂ E(G). Hence, vivi±d ∈ E(G). Thus, d ∈ S (by de�nition of S)

The following proposition proves that any circulant graph C(n, S) does not admit a restricted triangulation
unless 1, 2 ∈ S.

Proposition 2.2. Let n ≥ 4 be a natural number. Suppose the circulant graph C(n, S) admits a restricted
triangulation. Then 1, 2 ∈ S.

Proof. Suppose that C(n, S) is a circulant graph. Let Tn be a restricted triangulation of C(n, S).
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It is well known that any triangulation on a set of point in the plane includes the boundary of the convex
hull. For our case, vivi+1 ∈ E(Tn) for each i = 0, 1, . . . , n−1 which yields 1 ∈ D(Tn) and then 1 ∈ S by Lemma
2.1.

Everymaximal outer planar graph (as a special case, triangulation on a convex polygone) has at least two
vertices of degree 2 (see [12]). Hence, if vi+1 is a vertex of degree 2 in T, then the diagonal edge vivi+2 must be
in E(Tn) because vi+1 is incident just on two edges of Tn which are the boundary edges vivi+1 and vi+1vi+2.
Thus, 2 ∈ D(Tn) since 2 is the distance between vi and vi+1. Then 2 ∈ S by Lemma 2.1.

It is not di�cult to verify that the converse of Proposition 2.2 is not true. For instance, G1 = C(12, S1) where
S1 = {1, 2, 3} does not admit any restricted triangulation, while each of G2 = C(12, S2) and G3 = C(12, S3)
admits a restricted triangulation with S2 = {1, 2, 4} and S3 = {1, 2, 3, 5}. Note that ∣S2∣ = ∣S1∣ while S3 =
S1 ∪ {5}. Hence, the question arises: what conditions on S do guarantee that C(n, S) admits a restricted
triangulation and what is the smallest cardinality ∣S∣ of the set of jump values S for which C(n, S) admits a
restricted triangulation?

The following proposition proves that the circulant graph C(n, Sn) admits a restricted triangulation
where Sn is a set of ascending values {a1, a2, . . . , as} in which a1 = 1, a2 = 2, as = ⌊ n2 ⌋ and ai+1 − ai ∈ Sn for
each i ∈ {1, 2, . . . , s − 1}.

Proposition 2.3. Let n ≥ 4 be a natural number. Suppose Sn is a set of ascending values {1, 2, a3, . . . , as} in
which as = ⌊ n2 ⌋ and Sn has the property ai+1 − ai ∈ Sn for each i ∈ {1, 2, . . . , s − 1}. Then the circulant graph
C(n, Sn) admits a restricted triangulation.

Proof. Suppose that C(n, Sn) is a circulant graph. Since as ∈ Sn is a jump value, then v0vas and vn−as v0 are
two edges in C(n, Sn). Thus, we can de�ne G1 and G2 to be two subgraphs of C(n, Sn), induced by the vertices
v0, v1, v2, . . . , vas and vn−as , vn−as+1, . . . , vn−1, v0, respectively. See Figure 1.

Fig. 1. Qaji+2(ai) on G1

v0 v1 v2
va3

va4
vaji

vai

vasvai+1

vn−as

G2

A3(v2)

A4(v3)

A7(v6)
Aaji+1(vaji)

B4(v3)

Q4(v6)

Qaji+2(vai)
Q8(v8)

Baji+1(ai)
B7(v8)

B3(ai)

B4(ai)

We shall construct the triangulation TG1 of G1, and then G2 can be triangulated in a similar way.
(∗) It is important to mention that in the following argument the property ai+1 − ai ∈ Sn, for each two

consecutive values ai and ai+1 in Sn, and 1, 2 ∈ Sn, are basic tools to construct TG1 .
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Let ai , ai+1 be two consecutive vertices in Sn and ai+1 − ai = aji ∈ Sn for some aji ∈ {1, 2, a3, . . . , ai}
(since Sn is a set of ascending values). Let v0vai vai+1 . . . vai+1v0 be a convex (aji + 2)-gon in G1 denoted by
Qaji+2(vai). Clearly G1 = ∪s−1

i=1 Qaji+2(vai). First, we prove Qaji+2(vai) can be triangulated by edges of C(n, Sn)
for each i = 1, . . . , s − 1 .

Note that a1 = 1, a2 = 2 and a3 ∈ {3, 4} (otherwise, if a3 = 5 then a3 − a2 = 5 − 2 = 3 ∉ Sn, a
contradiction). It is easy to see that Q3(v1)(= v0v1v2v0) is triangulated by v0v1v2v0 andwhen a3 = 3 we have
Q3(v2)(= v0v2v3v0) is triangulated by v0v2v3v0, and also when a3 = 4 we have that Q4(v2)(= v0v2v3v4v0)
is triangulated by the boundary edges v0v2v3v4v0 together with the diagonal edge v2v4.

Now we obtain a triangulation for Qaji+2(vai), i = 3, . . . , s − 1.
Let Aai+1(vai) = v0v1 . . . vai v0, be a convex (ai + 1)-gon in G1. Clearly, A3(v2)(= v0v1v2v0) is a triangle

that is trivially triangulated by T1 = v0v1v2v0. If i = 3, then either a3 = 3 and A4(v3)(= v0v1v2v3v0) is a
quadrilateral that is triangulated by T2 = v0v2 ∪ v0v1v2v3v0, or a3 = 4 and A5(v4)(= v0v1v2v3v4v0) is a
pentagon triangulated by T2 = v0v2v4 ∪ v0v1v2v3v4v0.

Let Baji+1(vai) = Qaji+2(vai) − v0. Then Baji+1(vai) = vai vai+1 . . . vai+aji vai (since ai+1 − ai = aji ) which
is equivalent to the convex polygon v0v1 . . . vaji v0 (by considering ai = 0). Thus, Baji+1(vai) is equivalent
Aaji+1(vaji ).

If i = 3, we have a4 − a3 = aj3 ∈ Sn for some aj3 ∈ {1, 2, a3}. Then, Baj3+1(a3)(= va3va3+1 . . . va4va3 =
va3va3+1 . . . va3+aj3 va3 ) is equivalent to Aaj3+1(aj3)(= v0v1 . . . vaj3 v0) which is triangulated by T ∈ {T1, T2}.
Then, Baj3+1(a3) can be triangulated by T′ equivalent to T. Hence, T3 = T′ ∪ va3v0va4 is a triangulation of
Qaj3+2(va3).

Recursively, if we have i = s − 1 then as − as−1 = ajs−1 ∈ Sn for some ajs−1 ∈ {1, 2, a3, . . . , as−1}. Then,
Bajs−1+1(vas−1) is equivalent to Aajs−1+1(ajs−1) which is triangulated by T ∈ {T1, T2, T3, . . . , Ts−2} (depending
on the value of ajs−1 ∈ {1, 2, a3, . . . , as−1}). Then, Bajs−1+1(vas−1) can be triangulated by T′ equivalent to T.
Hence, Ts−1 = T′ ∪ vas−1v0vas is a triangulation of Qajs−1+2(vas−1).

Since, G1 = ∪s−1
i=1 Qaji+2(vai), then let TG1 = ∪

s−1
i=1 Ti be the triangulation of G1. In a similar way we obtain

TG2 . Thus, Tn = TG1∪TG2∪{vas vn−as}, where as ≠ n−as; otherwise {vas vn−as} = ∅ is a restricted triangulation
of G.

Corollary 2.4. Let n ≥ 4 be a natural number. Suppose G = C(n, S) is a circulant graph. Then G admits a
restricted triangulation if one of the following conditions hold.
(1) S = {1, 2, a3, a4, . . . , ⌊ n2 ⌋} where a′is are consecutive odd values.
(2) S = {1, 2, a3, a4, . . . , ⌊ n2 ⌋} where a′is are consecutive even values.

Proof. In both cases a1 = 1, a2 = 2 and ⌊ n2 ⌋ are in S. Further, for each ai+1, ai ∈ Sn, ai+1 − ai ∈ {1, 2} ⊆ Sn.
Then the circulant graph C(n, S) admits a restricted triangulation by Proposition 2.3.

Now, we shall de�ne a smallest size circulant graph that admits a restricted triangulation. Before proceeding,
we present some ingredients that will be used to prove the main results in this section.
– When n is even number, then n can be written as n = t.2r′ for some positive natural number r′ and some

positive odd natural number t.
– Let Sα be a set of jump values obtaining by next algorithm where α = ⌊ t

3 ⌋ and β = ⌈ t
3 ⌉ with t =

{
n, n is odd ;
t, n = t.2r′ .

– Let S1 = {1, 2, 4, 8, . . . , c} with c = 2r where r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, n is odd ;
r′ − 1, t = 1;
r′, t ≥ 3.

– If we have a set B = {b1, b2, . . . , bk} of positive integers, then de�ne a.B to be {a.b1, a.b2, . . . , a.bk}
where a ≥ 1 is an integer number.
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Algorithm (A)
1- If α = 0, then let Sα = {β} and Stop. If α = 1, then let Sα = {1, β} and Stop. If 2 ≤ α ≤ 4, then let

Sα = {1, 2,α, β} and Stop. Otherwise, let L = 0 be the number of starting level. Let S(L) = {1, 2, β},
a0 = α, and let L = L + 1.

2- If a0 is odd and divisible by 3, then let a1,L = a0
3 and a2,L = 2.a1,L. Otherwise, let a1,L = ⌊ a0

2 ⌋ and a2,L =
⌈ a0

2 ⌉.
3- Let S(L) = {a1,L , a2,L , a0}. Let Sα = ⋃L

l=0 S(l).
4- If 3 ∈ {a1,L , a2,L} and each of α and ⌊α2 ⌋ is odd and not divisible by 3, then do the following:

(i)- Let L = 0 be the number of starting level. Let S(L) = {1, 2, 3,α−3,α, β}, a0 = α−3, and let L = L+1.
(ii)- If a0 is odd and not divisible by 3, then let a1,L = a2,L = a0 − 3. If a0 is odd and divisible by 3, then

let a1,L = a0
3 and a2,L = 2.a1,L. Otherwise, a1,L = a2,L = a0

2 .
(iii)- Let S(L) = {a1,L , a2,L , a0}. Let Sα = ⋃L

l=0 S(l).
(iv)- If a1,L ≤ 3, then arrange Sα to be a set of ascending values and stop. Otherwise, let a0 = a1,L and

L = L + 1 and then repeat Step (ii).
5- If a1,L ≤ 4, then arrange Sα to be a set of ascending values and stop. Otherwise, let a0 = a1,L and L = L+1

and then repeat Step (2).

Note that, Sα that obtained by Algorithm (A) is a set of ascending values 1, 2, ai−1, ai , ai+1, . . . ,α, β.

Lemma 2.5. Suppose Sα = {a1, a2, . . . ,α, β} is a set obtained by Algorithm (A). Then 1, 2 ∈ Sα and ai+1−ai ∈
Sα for each ai+1, ai belong to Sα.

Proof. ByAlgorithm (A) step (1), we get 1, 2 ∈ Sα. Suppose that, ai, ai+1 are two consecutive values belonging
to Sα.

If ai+1 = a0 is an odd and divisible by 3 number, then by Algorithm (A) Step (2), ai = a2,L = 2.ai+1
3 . Thus,

ai+1 − ai = ai+1 − 2.ai+1
3 = ai+1

3 = ai−1 ∈ Sα (where ai−1 = a1,L = ai+1
3 ∈ Sα).

If 3 ∈ Sα and ai+1 = a0 is an odd and not divisible by 3 number, then by Algorithm (A) Step (4), ai =
ai+1 − 3. Thus, ai+1 − ai = 3 ∈ Sα.

Otherwise, byAlgorithm (A) Step (2), ai = ⌈ ai+1
2 ⌉ (where ⌈ ai+1

2 ⌉ = a2,L ∈ Sα). Hence, ai+1−ai = ai+1−⌈ ai+1
2 ⌉ =

⌊ ai+1
2 ⌋ = ai−1 ∈ Sα (where ai−1 = ⌊ ai+1

2 ⌋ = a1,L ∈ Sα). In case when, ⌈ ai+1
2 ⌉ = ⌊ ai+1

2 ⌋ = ai+1
2 , then we have ai = ai+1

2 .
Thus, ai+1 − ai = ai+1 − ai+1

2 = ai+1
2 = ai ∈ Sα.

Theorem 2.6. Let S(n) = S1 ∪ c.Sα, where n ≥ 4. Then C(n, S(n)) admits a restricted triangulation.

Proof. Suppose that C(n, S(n)) is a circulant graphand letα,β, c and t is de�nedas above.We shall construct
a restricted triangulation Tn of C(n, S(n)).

When n is even and t = 1, S(n) = S1 (In this case, β = 1 and then Sα = {1} and then c.Sα = {c} and
c ∈ S1). Then let Tn = ⋃r

i=0{vj2i v(j+1)2i , j = 0, 1, . . . , n
2i − 1}. The circulant graph when n = 8 is depicted in

Figure 2.
When n is even and t ≥ 3, S(n) = S1 ∪ c.Sα. In this case, and also when n is odd (which means t = n),

we have t-gon which is induced by the vertices v0, vc , v2.c , . . . , v(t−2).c , v(t−1).c (the shaded part in Figure 3).
We shall triangulate this t-gon by T′ which is obtained by one of the following three cases depending on

Sα. According to S1, let T = ⋃r
i=0{vj2i v(j+1)2i , j = 0, 1, . . . , n

2i −1}which triangulates unshaded part, between
n-gon and t-gon, in Figure 3. Then, let Tn = T ∪ T′ or Tn = T′ be a triangulation to C(n, S(n)) when n is even
with t ≥ 3 or when n is odd, respectively.

Case (1) When α = t−2
3 , then t = 2β + α (since β = α + 1). Let△ = v0vαvα+βv0 be a triangle. Then there

are three (α + 1)-gons G1, G2 and G3 induced by the vertices v0, vc , v2.c , . . . , vα.c; v(α).c , v(α+1).c , . . . , v2α.c

and v(α+β).c , v(2α+2).c , . . . , v(3α+1).c, respectively. See Figure 4.
Case (2)When α = t−1

3 , then t = 2α + β (since β = α + 1). Let△ = v0vαv2αv0 be a triangle. Then there are
three (α+1)-gons G1, G2 and G3, induced by the vertices v0, vc , v2.c , . . . , vα.c; v(α).c , v(α+1).c , . . . , v2α.c and
v(2α).c , v(2α+1).c , . . . , v(3α).c, respectively. See Figure 5.
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Fig. 2. n = 8 = 23, t = 1, r = r′ − 1 = 2,
T8 = {vjv(j+1) , j = 0, . . . , 7} ∪ {v2jv2(j+1) , j =
0, . . . , 3} ∪
{v4jv4(j+1) , j = 0, 1}.

v0
v1

v2

v3
v4

v5

v6

v7

Fig. 3. n = 56 = 7.23, t = 7, r = r′ = 3, T56 = {vjv(j+1) , j =
0, . . . , 55}∪{v2jv2(j+1) , j = 0, . . . , 27}∪{v4jv4(j+1) , j = 0, . . . , 13}∪
{v8jv8(j+1) , j = 0, . . . , 6}.

v0 v2 v4
v6

v8 = vc
v10

v12

v14

v16 = v2c

v18
v20

v22
v24v26v28v30

v32
v34

v36

v38

v
(t−2).c = v40

v42

v44

v46

v
(t−1).c = v48

v50
v52

v54

t-gon=7-gon

Fig. 4. n = 164, t = 41, r = 2, α = 13, and β = 14.

v0 v8
v16

v24

v32

v40

v48

v56

v64
v72v80v88

v96

v2α.c
v
(2α+1).c

v112

v120

v128

v136

v144

v152
v
(3α+1).c

G1G2

G3

Fig. 5. n = 152, t = 19, r = 3, α = 6, and β = 7.

v0 v8
v16

v24

v32

v40

vα.c

v56

v64
v72v80

v88

v2α.c

v104

v112

v120

v128

v136

v3α.c

G1G2

G3

Case (3) When α = t
3 , then t = 3α. There are three (α + 1)-gons G1, G2 and G3 induced by the

vertices v0, vc , v2.c , . . . , vα.c; v(α).c , v(α+1).c , . . . , v2α.c and v2α.c , v(2α+1).c , . . . , v(3α−1).c , v0, respectively.
See Figure 6.

In each case, G1, G2 and G3 are of the same order. Suppose that R is an r-gon in Gi, for some i ∈ {1, 2, 3}
such that V(R) = {vh , vh+ai , vh+ai+1, . . . , vh+ai+1} for some vh ∈ V(Gi) and two consecutive jump values ai
and ai+1 in Sα.

Without loss of generality assume that R is a subgraph of G1 and h = 0.
By Lemma 2.5, we have 1, 2 ∈ Sα and ai+1 − ai ∈ Sα for each ai+1, ai belonging to Sα. Hence, we can use

the argument (∗) of Proposition 2.3 to show that R can be triangulated by Tr. Moreover, similar as in the proof
of Proposition 2.3 we can consider G1 as a �nite union of such polygons. Then we can assume that TG1 is a
�nite union of the restricted triangulation of these polygons.

Obtain TG2 (on G2) and TG3 (on G3) by "rotating" the edges of TG1 , see Figures 4, 5 and 6. Let T′ = TG1 ∪
TG2 ∪ TG3 ∪△ for case (1) and case (2), and let T′ = TG1 ∪ TG2 ∪ TG3 for case (3).

This completes the proof.
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Fig. 6. n = 120, t = 15, r = 3, and α = 5.

v0 v8

v16

v24

v32

v40 = vα.c
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v56v64

v72

v2α.c = v80

v88

v96

v104

v112

G1

G2

G3

De�nition 2.7. Let n ≥ 4 and t be de�ned as above, and let ak be a natural number such that ⌈ t
3 ⌉ ⋅c ≤ ak ≤ ⌊ n2 ⌋.

Then de�ne S∗ to be a set of ascending natural numbers such that,
(1) S∗ = {1, 2, a3, a4, . . . , ak},
(2) there is {x, z} ⊂ S∗ such that n = x + y + z where y ∈ {0, ai} for some i ∈ {1, . . . , k},
(3) ai+1 − ai ∈ S∗ for each i = 1, . . . , k − 1.

It is clear that, S∗ = Sn when ak = ⌊ n2 ⌋. Our main result, Theorem 2.8, proves the su�cient and necessary
condition for a circulant graph C(n, S) to admit a restricted triangulation.

Theorem 2.8. Suppose G = C(n, S) is a circulant graph. G admits a restricted triangulation if and only if S
contains S∗.

Proof. Let G have a restricted triangulation Tn. We shall prove that S contains S∗. By Lemma 2.1, it is enough
to prove S∗ = D(Tn).

Arrange the spans of D(Tn) to be ascending values.
Since, the circulant graph C(n, D(Tn)) admits Tn, then by Proposition 2.2, we have {1, 2} ⊆ D(Tn).
Let ∣D(Tn)∣ = s, then ds is the maximum span in D(Tn).
(⋆) Let t be de�ned as before. Suppose that ds < ⌈ t

3 ⌉ ⋅ c. Without loss of generality assume that, c = 1 and
ds = ⌈ t

3 ⌉ −1. Thus, ds = t−b
3 −1, b ∈ {0, 1, 2} and then 3ds + b+3 = t. Let R be a convex r-gon induced by the

vertices vds , v2ds , v3ds , v3ds+1, . . . , v3ds+b+1, v3ds+b+2, vt (recall that, vt = v3ds+b+3). Suppose that Tr = Tn(R)
is a subgraph of Tn that triangulates R and let e be an edge in Tr such that the span of e is the maximumwith
respect to D(Tr). Then:
– either e = v2ds vt which yields that its span t − 2ds ∈ D(Tr) ⊂ D(Tn); but t − 2ds > ds + 1 (by above

assumption, t − 2ds = ds + b + 3 > ds + 1), which is a contradiction with maximality of ds ∈ D(Tn);
– or, e = vds v3ds which yields that 3ds − ds = 2ds ∈ D(Tr) ⊂ D(Tn); but 2ds > ds, which also contradicts

the maximality of ds ∈ D(Tn).
Hence, R is not triangulated by Tn which is a contradiction with C(n, S) admitting a restricted triangulation
Tn. Thus, ds ≥ ⌈ t

3 ⌉ ⋅ c.
Now, in order to check property (ii) of S∗ we have to consider two cases:
Case (1) If ds = n

2 , then n = 2.ds. Hence let x = z = ds and y = 0.
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Case (2) If ⌈ t
3 ⌉ ⋅ c ≤ ds ≤ n−1

2 , then Tn contains a triangle△ = vhvh+ds vh+ds+di vh for some di ∈ D(Tn) and
vh ∈ V(G). The span of the edge vh+ds+di vh ∈ E(Tn) is n−(ds +di) ∈ D(Tn) (by de�nition of the span of edge).
Hence let x = ds, y = di and z = n − (ds + di), then n = x + y + z.

To check the property (iii) of S∗, assume that di and di+1, i ∈ {1, 2, . . . , s − 1} are two consecutive spans
in D(Tn).

If ds = n
2 , then let T1 and T2 be two subgraphs of Tn induced by the vertices v0, v1, v2, . . . , vx;

vx , vx+1, . . . , vx+y−1, v0 respectively (x = n
2 ). Let R be a polygon induced by the vertices vj , vj+di , . . . ,

vj+di+1 where vj ∈ V(Ti) and vjvj+di and vjvj+di+1 are two diagonals in Ti for some i ∈ {1, 2}.
If ⌈ t

3 ⌉ ⋅ c ≤ ds ≤ n−1
2 , then let T1, T2 and T3 be three subgraphs of Tn induced by the vertices v0, v1, v2,

. . . , vx, vx , vx+1, . . . , vx+y, and vx+y , vx+y+1, . . . , vx+y+z−1, v0 respectively. Let R be a polygon induced by
the vertices vj , vj+di , . . . , vj+di+1 where vj ∈ V(Ti) and vjvj+di and vjvj+di+1 are two diagonals in Ti for some
i ∈ {1, 2, 3}.

Assumewithout loss of generality that vjvj+di and vjvj+di+1 are twodiagonals in T1. Then, j < j+di < j+di+1
(by de�nitions of T1 and R). It is clear that, vjvj+di . . . vj+di+1vj ⊂ T1. Let Tr = T1(R) be a subgraph of T1 that
triangulates R with the boundary edges vjvj+di . . . vj+di+1vj of R.

Suppose that vj+di vj+di+1 ∉ E(Tr). Then there is di < d < di+1 such that vjvj+d ∈ E(Tr). This implies that,
d ∈ D(Tr) ⊂ D(Tn), a contradiction with di and di+1 are two consecutive spans in D(Tn).

Hence, vj+di vj+di+1 ∈ E(Tr) ⊂ E(Tn). Then di+1 − di ∈ D(Tn).
Thus, D(Tn) = S∗. This completes the proof of the necessity.
To show the su�ciency, suppose that S∗ ⊆ S. Then, C(n, S∗) is a subgraph of C(n, S).
Let△ = v0vxvx+yvx+y+z be a triangle (since, x+y+z = n). Clearly, E(△) ⊂ E(G). Then there are three poly-

gons G1, G2 and G3, induced by the vertices v0, v1, v2, . . . , vx; vx , vx+1, . . . , vx+y and vx+y , vx+y+1, . . . , vx+y+z
respectively, and G2 = ∅ where y ∈ {0, 1}.

Suppose that R is an r-gon in Gi, for some i ∈ {1, 2, 3} such that V(R) = {vh , vh+ai , vh+ai +1, . . . ,
vh+ai+1} for some vh ∈ V(Gi) and two consecutive jump values ai and ai+1 in S∗.

Without loss of generality assume that R is a subgraph of G1 and h = 0.
Since S∗ = {1, 2, a3, a4, . . . , ak} and satis�es that ai+1−ai ∈ S∗ for each i = 1, . . . , k−1, then we can use

argument (∗) of Proposition 2.3 to show that R can be triangulated by Tr. Consider G1 as a �nite union of such
polygons. Then we can assume that TG1 is a �nite union of the restricted triangulation of those polygons.

Obtain TG2 (on G2) and TG3 (on G3) in a similar way. Then TG1 ∪ TG2 ∪ TG3 is a triangulation of C(n, S∗).
Since C(n, S∗) is a spanning subgraph of G, then TG1 ∪ TG2 ∪ TG3 is a triangulation of G.

This completes the proof.

Corollary 2.9. S(n) is S∗.

Proof. By de�nition of S(n), either S(n) = S1 (when n is even and t = 1) or S(n) = Sα (when n is odd) or else
S(n) = S1 ∪ c.Sα. By de�nition of S1, we have that S1 is a set of ascending values and contains 1, 2; also Sα
is a set of ascending values by Algorithm (A) and contains 1, 2 by Lemma 2.5. Thus S(n) is a set of ascending
values containing 1, 2.

Now, let ` denote the cardinality of S(n).
When S(n) = S1, a` = 2r = n

2 . Let x = z = a` and y = 0 then we have n = x + y + z.
When S(n) = Sα or S(n) = S1 ∪ c.Sα, we have by de�nition of β, a` = ⌈ t

3 ⌉ ⋅ c. To get n = x + y + z we have
three cases. When α = t−2

3 , β = α + 1 and t = 3.α + 2. Let x = c.α, y = z = c.β (since, n = c.t). When α = t−1
3 ,

β = α + 1 and t = 3.α + 1. Let x = y = c.α, z = c.β. When α = t
3 , let x = y = z = c.α (since β = α).

Let ai and ai+1 be any two consecutive values in S(n). If ai , ai+1 ∈ S1, then ai = 2i and ai+1 = 2i+1 and
then ai+1 − ai = 2i+1 − 2i = 2i ∈ S1. If ai = 2r, then ai is the last value in S1 and the �rst in c.Sα (recall that,
c = 2r) and if ai , ai+1 ∈ Sα then by Lemma 2.2, ai+1 − ai ∈ Sα. Thus, ai+1 − ai ∈ S(n) for each ai+1, ai ∈ S(n).

This completes the proof.

Corollary 2.10. Let n ≥ 4 be a natural number. Suppose G = C(n, S) is a circulant graph. Then G admits a
restricted triangulation if one of the following conditions hold.
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(1) When n is odd, S contains {2} and all odd values ai ≤ as where ⌈ n3 ⌉ ≤ as ≤ ⌊ n2 ⌋.
(2) When n is even, S contains {1} and all even values ai ≤ as where ⌈ t

3 ⌉ ⋅ c ≤ as ≤ ⌊ n2 ⌋.

Proof. In both cases a1 = 1, a2 = 2 belong to a set of ascending values S, and ⌈ t
3 ⌉ ⋅ c ≤ as ≤ ⌊ n2 ⌋ (when n is an

odd natural number, ⌈ t
3 ⌉ ⋅ c = ⌈ n3 ⌉). Further, for each ai+1, ai ∈ S, ai+1 − ai ∈ {1, 2} ⊂ S.

To show the property (2) of S∗ we have to consider two cases.
Case (1) When n is an odd natural number. Let n ≥ 7 (When n = 5, then S = {1, 2} and clearly C(5, S)

admits a restricted triangulation T5 = {v0v1v2v3v4v0}∪ {v0v2, v0v3}). If ⌈ n3 ⌉ is an odd number, then ⌈ n3 ⌉ = ai
for some i ∈ {3, . . . , s}. If ⌈ n3 ⌉ is an even number, then ⌈ n3 ⌉ + 1 = ai for some i ∈ {4, . . . , s}.

Whether ⌈ n3 ⌉ is odd or even, we have n − 2ai is odd and 1 ≤ n − 2ai ≤ ai. Then n − 2ai = aj for some
j ∈ {1, . . . , i}. Let x = y = ai, z = aj. Thus, n = x + y + z.

Case (2) When n is an even natural number, we have r ≥ 1 and then c(≥ 2) is even. Hence, ⌈ t
3 ⌉ ⋅ c is

even and then ⌈ t
3 ⌉ ⋅ c = ai for some i ∈ {2, . . . , s}. Now, we have n − 2ai is even and either n − 2ai = 0 or

2 ≤ n −2ai ≤ ai. If n −2ai = 0, let x = z = ai, y = 0. If 2 ≤ n −2ai ≤ ai, then n −2ai = aj for some j ∈ {2, . . . , i}
and let x = z = ai, y = aj. Thus, n = x + y + z.

By Theorem 2.8, the circulant graph C(n, S) admitting a restricted triangulation.

Proposition 2.11 ([13]). Suppose G = C(n, {a1, a2, . . . , ak}) and H = C(n, {b1, b2, . . . , bk}) with
{a1, a2, . . . , ak} = q.{b1, b2, . . . , bk}, where the multiplication is reduced modulo n and gcd(q, n) = 1. Then
G is isomorphic to H.

Example 2.12. Let n = 9 and S(n) = {1, 2, 3}.
When S1 = {2, 3, 4}, then we have S1 = {2, 6, 4} = 2.{1, 3, 2} = 2.S(n).
When S2 = {1, 3, 4}, then we have S2 = {8, 12, 4} = 4.{2, 3, 1} = 4.S(n).

The next corollary considers circulant graph G = C(n, S) admits a restricted triangulation when there is an
integer q ≥ 1 with gcd(q, n) = 1 such that S∗ ⊆ q ⋅ S.

Corollary 2.13. let G = C(n, S) be a circulant graph. Suppose there is an integer q ≥ 1 with gcd(q, n) = 1 such
that S∗ ⊆ q.S or q.S∗ ⊆ S where the multiplication is reduced modulo n. Then G has a con�guration that admits
a restricted triangulation.

Proof. Suppose that, q ≥ 1 is an integer such that gcd(q, n) = 1 and S∗ ⊆ q.S or q.S∗ ⊆ S. Then, there
is a set S′ ⊂ S such that S∗ = q.S′ or q.S∗ = S′. Thus, by Proposition 2.11, the subgraph H = C(n, S′) of
C(n, S) is isomorphic to C(n, S∗). By Theorem 2.8, H = C(n, S′) admits a restricted triangulation. Thus, G
has a con�guration that admits a restricted triangulation. This completes the proof.

2.1 An application

The skewness of a graph G, denoted sk(G), is the minimum number of edges to be deleted from G such that
the resulting graph is planar. The convex skewness of a convex graph G, denoted skc(G) is the minimum
number of edges to be removed from G so that the resulting graph is a convex plane graph (see [14]).

Proposition 2.14. Let G = C(n, S) be a circulant graph and let q ≥ 1 be an integer such that gcd(q, n) = 1.
Then skc(G) = E(G) − (2n − 3) if S∗ ⊆ S, or qS∗ ⊆ S, or S∗ ⊆ qS.

Proof. If S∗ ⊆ S, then G = C(n, S) admits a restricted triangulation, by Theorem 2.8. If qS∗ ⊆ S or S∗ ⊆ qS,
then G = C(n, S) admits a restricted triangulation, by Corollary 2.13.

It is known that, any triangulation T of a convex n-gon has 2n−3 edges (n−3 of them are non-boundary
edges). If anynewstraight line segment is added to the triangulation, itwill intersectwith somenon-boundary
edge of T. Hence, we have skc(G) = E(G) − (2n − 3).
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3 Kn − G admits a restricted triangulation
In this section we turn to another question: which circulant graph G on n vertices does satisfy that Kn − G
admits a restricted triangulation and what is the largest size of G such that Kn − G still admits a restricted
triangulation? We answered the �rst question by Corollary 3.1 and Corollary 3.3. We show that C(n, S(n)) is
a smallest size circulant graph that admits a restricted triangulation, in order to answer the second question
by Theorem 3.5. In what follows, letN = {1, 2, . . . , ⌊n/2⌋}.

Corollary 3.1. Let G = C(n, S) be a circulant graph. Then Kn − G admits a restricted triangulation if one of the
following conditions hold.
(1) If there is S∗ such that S ∩ S∗ = ∅.
(2) S contains all odd i ofN except {1, ⌊n/2⌋}.
(3) S contains all even i ofN except {2, ⌊n/2⌋}.

Proof. First, it is well known that Kn − C(n, S) = C(n,N − S).
Suppose that S ∩ S∗ = ∅. Then, N − S contains S∗ which yields that the circulant graph C(n,N − S)

admits the restricted triangulation by Theorem 2.8, and this shows the property (1).
In (2),N − S contains all even values ofN together with {1, ⌊n/2⌋}. In (3),N − S contains all odd values

ofN together with {2, ⌊n/2⌋}. By Corollary 2.4, C(n,N −S) admits the restricted triangulation for both cases.
This completes the proof.

De�nition 3.2 ([14]). Let Kn be a convex complete graph with n vertices. F is said to be potentially triangulable
in Kn if there exists a con�guration of F in Kn such that Kn − F admits a triangulation.

Corollary 3.3. Let G = C(n, S) be a circulant graph. Suppose S∗ ⊆ q.(N − S) for some an integer q ≥ 1 with
gcd(q, n) = 1. Then G is potentially triangulable in Kn.

Proof. Suppose that, q ≥ 1 is an integer such that gcd(q, n) = 1 and S∗ ⊆ q.(N − S) for some S∗. Then, there
is a set S′ ⊂ N − S such that S∗ = q.S′. Then by Proposition 2.11, the subgraph C(n, S′) of C(n,N − S) is
isomorphic to C(n, S∗). By Theorem 2.8, C(n, S′) has a con�guration that admits a restricted triangulation.
Thus, C(n,N − S)(= Kn − G) admits a restricted triangulation. This completes the proof.

To answer the second part of the question, we shall determine the largest size L(n) of G for which Kn − G
admits a restricted triangulation. Before proceeding, let �rst ∣E(C(n, S(n)))∣ = E` where ∣S(n)∣ = `. Then we
deduce that,

E` = { n` −
n
2 , t = 1;

n`, otherwise.
The next result shows that whenever C(n, S) admits a restricted triangulation then ∣S∣ ≥ ∣S(n)∣. That is,

C(n, S), is not a smaller size than C(n, S(n)).

Theorem 3.4. C(n, S(n)) is the smallest size circulant graph admitting a restricted triangulation if n ≥ 4.

Proof. Recall that, S(n) = S1 ∪ c ⋅ Sα. By Theorem 2.6, C(n, S(n)) admits a restricted triangulation. Hence,
we just show that S(n) is the smallest cardinality set for which the conclusion remains true.

Assume that C(n, S) is a circulant graph that admits a restricted triangulation where S = {b1, b2, b3,
. . . , bs} is a set of ascending jump values to C(n, S).

By Theorem 2.8, S contains S∗. Thus, 1, 2 ∈ S and ⌈ t
3 ⌉ ⋅ c ≤ bs ≤ ⌊ n2 ⌋ and for any i ∈ {1, . . . , s − 1},

bi+1 − bi = bj ∈ S where j ∈ {1, . . . , i}.
In case when bi+1 is even we have, according to Sα (by Algorithm (A) step (2) where bi+1 = a0 is even)

and S1 (by de�nition of S1), that the di�erence between the two consecutive values bi and bi+1 is always bi.
If j ∈ {1, . . . , i−1}, then the number of values in S(n) is less than the number of values in S. If bi+1−bi =

bi ∈ S, then the number of values in S(n) is equal to the number of values in S. Thus, ∣S∣ ≥ ∣S(n)∣.
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In case when bi+1 is odd, then bj ≠ bi and there are three cases which are depending only on Sα.
Case (1): bj ∈ {1, 2}.
In this case, the di�erence between the two consecutive values bi and bi+1 is at most 2. According to

Algorithm (A), the di�erence between the two consecutive values is at most 2 only when bi = ⌊ bi+2
2 ⌋ and

bi+1 = ⌈ bi+2
2 ⌉ or when bi = 3 and bi = 5. Then the number of values in S(n) is equal to or less than the number

of values in S. Whereas Step (2) and Step (4) of Algorithm (A) give the di�erence between any two consecutive
values being at least 3, which implies ∣S∣ ≥ ∣S(n)∣.

For instance, take bi+1 = 13 then bi ∈ {11, 12}. Take S ∈ {S1, S2, S3, S4, S5, S6} where S1 =
{1, 2, 3, 5, 10, 12, 13}, S2 = {1, 2, 3, 6, 9, 12, 13}, S3 = {1, 2, 3, 5, 6, 11, 13}, S4 = {1, 2, 3, 6, 9, 11, 13},
S5 = {1, 2, 3, 5, 10, 11, 13}, or S6 = {1, 2, 3, 4, 7, 9, 11, 13}. Then the cardinality of S is 7. By Algorithm (A)
step (2):
– either, bi = 7 and bi−1 = 6 and then Sα = {1, 2, 3, 6, 7, 13}. Thus, the cardinality of Sα is 6;
– or, bi+2 = 25 and then bi+1 = 13 and bi = 12. Then, Sα = {1, 2, 3, 6, 12, 13, 25}. In this case, Take

S ∈ {S1, S2} where S1 = {1, 2, 3, 5, 10, 12, 13, 25}, and S2 = {1, 2, 3, 6, 9, 12, 13, 25}. Note that S is of
cardinality 8 while Sα is of cardinality 7.

Case (2): j ∈ {3, . . . , i − 2}.
In Sα, this case is satis�ed in step (4) of Algorithm (A) (when bi = a0 is odd and not divisible by 3). But in

this case, Algorithm (A) states bi to be bi+1 − 3 which is always even. Then by step (2) when bi(= a0) is even
we have that bi−1 = bi

2 . That is, the di�erence between the two consecutive values bi and bi−1 is always bi−1
(since bi = 2bi−1). While, in S, we have either bi − bi−1 = bi−1 and then ∣S∣ = ∣S(n)∣ or bi − bi−1 = bk ≠ bi−1
and then ∣S∣ > ∣S(n)∣. Thus, ∣S∣ ≥ ∣S(n)∣.

For instance, take bi+1 = 23 and S = {1, 2, 3, 6, 8, 9, 17, 23}. By Algorithm (A) we have Sα =
{1, 2, 3, 5, 10, 20, 23}. Note that S is of cardinality 8 while Sα is of cardinality 7.

Case (3): j = i − 1.
If bi+1 is not divisible by 3, then by Algorithm (A) step (2) we have bj = bi−1 = ⌊ bi+1

2 ⌋ and bi = ⌈ bi+1
2 ⌉ (where

bi−1 = b1,L and bi = b2,L), and then the di�erence between the two consecutive values bi and bi−1 is 1. While
in S, we have either bi − bi−1 = 1 and then ∣S∣ = ∣S(n)∣ or bi − bi−1 = bk ≠ 1 and then ∣S∣ > ∣S(n)∣.

If bi+1 is divisible by 3, then in Sα by Algorithm (A) step (2) (where bi+1 = a0 is odd and divisible by 3).
Then bi−1 = bi+1

3 and bi = 2.bi−1 (where bi−1 = a1,L and bi = a2,L). That is, the di�erence between the two
consecutive values bi and bi−1 is always bi−1 itself (since bi = 2.bi−1). While in S, either bi − bi−1 = bi−1 and
then ∣S∣ = ∣S(n)∣ or bi − bi−1 = bk for some k ∈ {1, 2, . . . i − 2} and then ∣S∣ > ∣S(n)∣.

This completes the proof.

Let L(n) = (n2) − E` (where (n2) is the size of Kn and E` is the size of C(n, S(n))). Then, we conclude that

L(n) =
⎧⎪⎪⎨⎪⎪⎩

n(n−2`)
2 , t = 1;

n(n−2`−1)
2 , otherwise.

By Theorem 3.4, we have that E` is the smallest number of edges of a circulant graph that admits a
restricted triangulation. The following result is to measure the non-triangulability of Kn − G.

Theorem 3.5. Let G = C(n, S) be a circulant graph. Then Kn − G admits no restricted triangulation if ∣E(G)∣ >
L(n).

Proof. Let ∣E(G)∣ > L(n). Then ∣E(Kn − G)∣ = (n2) − ∣E(G)∣ < (n2) − L(n) = E`. Then ∣N − S∣ < E`. By Theorem
3.4, C(n,N − S)(= Kn − G) admits no restricted triangulation.
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