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Abstract: The restricted triangulation existence problem on a given graph decides whether there exists a
triangulation on the graph’s vertex set that is restricted with respect to its edge set. Let G = C(n, S) be a
circulant graph on n vertices with jump value set S. We consider the restricted triangulation existence problem
for G. We determine necessary and sufficient conditions on S for which G admitting a restricted triangulation.
We characterize a set of jump values S(n) that has the smallest cardinality with C(n, S(n)) admits a restricted
triangulation. We present the measure of non-triangulability of K, — G for a given G.

Keywords: Triangulation, Circulant Graph

MSC: 32C25

1 Introduction

A graph is an ordered pair G = (V, E), where V is a set of vertices, and E is a set of edges. An order of G is the
number of its vertices while a size of G is the number of its edges. A graph is called geometric, if its edges are
straight-line segments.

A triangulation T, of a finite set of points V in the plane is a maximally connected, straight-line planar
graph with vertex set V. Each bounded face is a triangle, and the triangulation includes the boundary of the
convex hull.

Let n > 3. A circulant graph G = C(n, S) is a graph on the vertex set V(G) = {vo, v1, ..., Vvn_1} such that
each vertex v; is adjacent to vertices v;., wherei = 0,1,...,n — 1 and the subscript index i + a is reduced
modulo n for all a € S. That is, v;v; is an edge of C(n,S) if and only if |j —i| € Sorn - |j — i € S. A set
Sc{1,2,...,|n/2]} is called a set of jump values of G = C(n, S). When discussing circulant graphs, we will
often assume that the vertices are the corners of a regular n-gon, labeled in clockwise order and the edges are
straight line segments. Hence, circulant graphs can be considered as geometric graphs.

Circulant graphs include the family of cycles C(n, {1}) and the family of complete graphs K, =
C(n,{1,2,...,|n/2]}). Clearly, when G1 = C(n, S1) and G, = C(n, S») are two circulant graphs such that
IS1| < |S2|, then the size of G; is smaller than the size of G, (i.e., |[E(G1)| < |[E(G2)|). Hence, for simplicity we
shall say that G; = C(n, S1) is a smaller size circulant graph than G, = C(n, S2) when [S1] < |S2].

Let E be some set of edges spanned by V. We say that a triangulation T, of V is restricted with respect to
Eif E(Tn) c E. The restricted triangulation existence problem, on a given graph G(V, E), is to decide whether
there exists a triangulation of V that is restricted with respect to E. This problem was proven to be NP-complete
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(see [1, 2]). In section 2, we solve this problem for a certain geometric graph — a circulant graph. We give a
characterization of a circulant graph G to admit a restricted triangulation.

Another related problem is beginning with a problem presented by Micha Perles on DIMACS Workshop on
Geometric Graph Theory in 2002, which asks to determine the largest possible number h(n) such that every
geometric graph on n vertices with at least (g) — h(n) edges has a non-crossing Hamiltonian path which has
been studied by Cerny et al. [3]. The authors in [4] motivated by Perles problem proved that if F,, is a subgraph
of a convex complete graph K, where F, contains no boundary edges of K, and |E(Fr)| < n-3, then K, - Fy,
admits a restricted triangulation.

In section 3, we characterize a circulant graph G as a subgraph of a convex complete graph K, and
|E(G)| < L(n) such that K, — G allows a restricted triangulation.

We obtain a set of jump values S(n) = {a1, az, ..., a,} that has the smallest cardinality |S(n)| such that
C(n, S(n)) admits a restricted triangulation. That is, C(n, S(n)) is the smallest size circulant graph admitting
a restricted triangulation.

Let v;v; be an edge in a convex graph G, the distance between v; and v; in G is the length of a shortest
(vi, vj)-pathin G. A span of v;v; is defined as the distance between its two end points v; and v;. In other words,
a natural number d = min{|j - i|, n - |j — i|} such that v;v; can be written as v;v;,4 oOr v;v;_4, is a span of v;v;.
Hence, we can see that H = C(n, {d}) is a circulant graph in which v;v; ¢ E(H) and each edge in H has a
span d. Let E(T,) be a set of edges of T, and D(T,) be a set of spans of all edges in E(Ty).

1.1 Importance of the triangulations and circulant graphs

Circulant graphs are an important class of interconnection networks in parallel and distributed computing. It
can be used in the design of local area networks (see [5, 6]). On the other hand, computing a triangulation on
a given graph has several important applications in different areas such as nondense matrix computations
[7], database management [8] and artificial intelligence [9]. Moreover, triangulations are used in many areas
of engineering and scientific applications such as finite element methods, approximation theory, numerical
computation, computer-aided geometric design, computational geometry, etc. (see [10, 11]).

2 Restricted triangulationon G

In this section, we characterize a set of jump values S* to a circulant graph C(n, S*) admitting a restricted
triangulation (Theorem 2.8). Also, we define the ‘smallest’ cardinality set of jump values S(n) such that
C(n, S(n)) still admits a restricted triangulation. We give a characterization of a circulant graph C(n, S) that
can be redrawn to admit a restricted triangulation (Corollary 2.13). These results are then applied to determine
the convex skewness of the circulant graphs G in section (2.2).

Lemma 2.1. If Ty is a restricted triangulation of a circulant graph G = C(n, S), then S contains D(Ty).

Proof. Suppose Ty, is a restricted triangulation of G = C(n, S). Let d € D(T,). By definition of span of edges,
there is an edge v;v; in Ty such that v;v; = v;v;.q where d = min{|j - i|,n — |j - i|}. Since Ty is a restricted
triangulation of G, then E(Tr) c E(G). Hence, v;v;.4 € E(G). Thus, d € S (by definition of S) O

The following proposition proves that any circulant graph C(n, S) does not admit a restricted triangulation
unless 1,2 € S.

Proposition 2.2. Let n > 4 be a natural number. Suppose the circulant graph C(n, S) admits a restricted
triangulation. Then 1,2 € S.

Proof. Suppose that C(n, S) is a circulant graph. Let T, be a restricted triangulation of C(n, S).
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It is well known that any triangulation on a set of point in the plane includes the boundary of the convex
hull. For our case, v;v;1 € E(Ty) foreachi =0, 1,...,n—-1whichyields 1 € D(T,) and then 1 € S by Lemma
2.1.

Every maximal outer planar graph (as a special case, triangulation on a convex polygone) has at least two
vertices of degree 2 (see [12]). Hence, if v, is a vertex of degree 2 in T, then the diagonal edge v;v;,, must be
in E(T,) because v, is incident just on two edges of T, which are the boundary edges v;vi,; and viy1Visa.
Thus, 2 € D(Tr) since 2 is the distance between v; and v;,;. Then 2 € S by Lemma 2.1. O

It is not difficult to verify that the converse of Proposition 2.2 is not true. For instance, G1 = C(12, S1) where
S1 ={1, 2, 3} does not admit any restricted triangulation, while each of G, = C(12, S,) and G3 = C(12, S3)
admits a restricted triangulation with S, = {1,2,4} and S5 = {1, 2, 3, 5}. Note that |S;| = |S1| while S5 =
S1 U {5}. Hence, the question arises: what conditions on S do guarantee that C(n, S) admits a restricted
triangulation and what is the smallest cardinality |S| of the set of jump values S for which C(n, S) admits a
restricted triangulation?

The following proposition proves that the circulant graph C(n, S,) admits a restricted triangulation
where Sy is a set of ascending values {a1, a>, ..., as} in whicha; = 1, a2 = 2, as = | 5] and a;;1 - a; € Sy for
eachie{1,2,...,s-1}.

Proposition 2.3. Let n > 4 be a natural number. Suppose Sy is a set of ascending values {1, 2, as, ..., as} in
which as = | 5| and Sy has the property a;.1 — a; € Sy for eachi € {1,2,...,s - 1}. Then the circulant graph
C(n, Sn) admits a restricted triangulation.

Proof. Suppose that C(n, Sy) is a circulant graph. Since as € Sy, is a jump value, then vov,, and vy_q v are

two edgesin C(n, Sn). Thus, we can define G, and G, to be two subgraphs of C(n, Sy ), induced by the vertices
V0, V1, V2, ..., Va, and Vn_a,, Vn—a,+1, - - - » Vn—1, Vo, respectively. See Figure 1.

Fig. 1. Qaji+2(ai) on G1

Qa)-l.+2(Va,~)

We shall construct the triangulation T, of G1, and then G, can be triangulated in a similar way.
() It is important to mention that in the following argument the property a;;1 — a; € S, for each two
consecutive values g; and a;,; in Sy, and 1, 2 € Sy, are basic tools to construct Tg, .
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Let a;, ai+1 be two consecutive vertices in S, and a;.1 — a; = aj, € Sy for some aj, € {1,2,as,...,a;}
(since Sy is a set of ascending values). Let voVq,Va+1 . - - Va,,, Vo be a convex (aj, + 2)-gon in G; denoted by
Qa}.i+2(vai). Clearly G; = u?;ll Qa,.i+2 (vq,)- First, we prove Qa;i+2(Vai) can be triangulated by edges of C(n, Sx)
foreachi=1,...,s-1.

Note that a; = 1, a; = 2 and as € {3, 4} (otherwise, if a3 = 5thenas —a, = 5-2 =3 ¢ Sy, a
contradiction). It is easy to see that Q3 (v1)(= vov1v2Vo) is triangulated by vov1v2vo and when a3 = 3 we have
Q3(v2) (= vovav3vo) is triangulated by vovav3ve, and also when as = 4 we have that Q4(v2)(= vovavivave)
is triangulated by the boundary edges vov,v3v4 Vo together with the diagonal edge v, vy.

Now we obtain a triangulation for Qa;,~+2(thi)’ i=3,...,s—1.

Let Ag,+1(Va;) = VoVi ... Vg Vo, be a convex (a; + 1)-gon in G;. Clearly, A3(v2)(= vovivaVo) is a triangle
that is trivially triangulated by T1 = vovivave. If i = 3, then either as = 3 and A4(v3)(= vovivavsvy) is a
quadrilateral that is triangulated by T» = vova U voVv1VaV3Vo, or az = 4 and As(v4)(= vovivaVsvav) is a
pentagon triangulated by T> = voVvaV4 U VoViVaV3VaVo.

Let Bg; +1(Va;) = Qqj+2(Va;) = vo. Then Bg; +1(Va;) = VaiVag+1 - - - Va+a; Va; (Since aiv1 — a; = a;,) which
is equivalent to the convex polygon vov; ... Vg, Vo (by considering a; = 0). Thus, Ba;,~+1(vtli) is equivalent
Aa;i+1 (Va,-i )

Ifi = 3, we have a, — a3 = aj, € Sy for some aj, € {1, 2, as}. Then, B,,}.3+1(a3)(: VasVas+1 -« Va,Va; =
Va;Vas+1 -« - - Vas+a;, Va;) IS equivalent to Ag; +1(aj;)(= VoVi ... Vay, Vo) which is triangulated by T € {T1, T>}.
Then, By, +1(as3) can be triangulated by T’ equivalent to T. Hence, T3 = T’ U V4, VoV, is a triangulation of

Qa,-3 +2 (Va3 )

Recursively, if we have i = s — 1 then as — as—1 = aj,_, € Sy for some q;_, € {1,2,as,...,as-1}. Then,
Ba,-571+l (Va,_,) is equivalent to Aa;571+1 (aj,_,) which is triangulated by T € {T1, T», T3, ..., Ts—2} (depending
on the value of a;,_, € {1,2,as,...,as-1}). Then, Bg;_ +1 (va,_,) can be triangulated by T’ equivalent to T.

Hence, Ts_1 = T U vq,_,VoVq, is a triangulation of Qq;,_,+2(Va,,)-
Since, G1 = U{_} Qq; +2(va,), then let T, = U2 T; be the triangulation of G;. In a similar way we obtain

Te,.Thus, Tn = Tg, U T, U{Va,Vn-a, }, Where as + n—as; otherwise {v4,vn_q, } = @isarestricted triangulation
of G. O

Corollary 2.4. Let n > 4 be a natural number. Suppose G = C(n,S) is a circulant graph. Then G admits a
restricted triangulation if one of the following conditions hold.

1)S={1,2, a3, as,...,| 5]} where ajs are consecutive odd values.

2)S={1,2, a3, as,...,| 5|} where ajs are consecutive even values.

Proof. Inboth cases a; = 1, a; = 2 and | 5 | are in S. Further, for each a;,1, a; € Sn, aiz1 —a; € {1,2} € Sn.
Then the circulant graph C(n, S) admits a restricted triangulation by Proposition 2.3. O

Now, we shall define a smallest size circulant graph that admits a restricted triangulation. Before proceeding,

we present some ingredients that will be used to prove the main results in this section.

— When n is even number, then n can be writtenas n = t.2" for some positive natural number r’ and some
positive odd natural number ¢.

- Let S, be a set of jump values obtaining by next algorithm where o = |[£] and 8 = [{] with t =

n, nisodd;
{t, n=t2".
0, nisodd;
- LetS;1=1{1,2,4,8,...,c}withc=2"wherer={r' -1, t=1;
r, t>3.
- If we have a set B = {b1, by, ..., by} of positive integers, then define a.B to be {a.b1,a.b,,...,a.by}

where a > 1 is an integer number.
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Algorithm (4)
1-If o = O, then let S, = {3} and Stop. If o = 1, then let S, = {1, 3} and Stop. If 2 < a < 4, then let
So = {1,2,a, 3} and Stop. Otherwise, let L = O be the number of starting level. Let S(L) = {1, 2, 8},
ao=ca,andletL = L + 1.
2-If ap is odd and divisible by 3, then let a;,; = % and ay, = 2.a;,. Otherwise, let a; 1, = [“—ZOJ and ay | =
%1,
3-Let S(L) = {a1,, a1, ao}. Let So = Uk S(1).
4-1f3 € {a1,1, a»,1 } and each of - and | § | is odd and not divisible by 3, then do the following:
(i)- Let L = O be the number of starting level. Let S(L) = {1, 2,3,a-3,, 8}, a0 = a—3,and let L = L+1.
(ii)- If ao is odd and not divisible by 3, then let a; | = a>,; = ao — 3. If ao is odd and divisible by 3, then
leta;; = % and a1 = 2.a;,1. Otherwise, ai,p = ay, 1 = 3.
(iii)- Let S(L) = {a1.1, a2, ao}. Let S, = UL, S(1).
(iv)- If a1,1 < 3, then arrange S, to be a set of ascending values and stop. Otherwise, let ap = a;,; and
L = L + 1 and then repeat Step (ii).
5-1f a;,1 < 4, then arrange S, to be a set of ascending values and stop. Otherwise, let ap = a;pand L =L +1
and then repeat Step (2).

Note that, S, that obtained by Algorithm (A) is a set of ascending values 1, 2, a;_1, a;, Qjs1, ..., , B.

Lemma 2.5. Suppose S, = {a1, a, ..., a, 3} is aset obtained by Algorithm (A). Then 1,2 € S, and a;+1 —a; €
S« for each ai,1, a; belong to Sa.

Proof. By Algorithm (A) step (1), we get 1, 2 € S,. Suppose that, a;, a;,; are two consecutive values belonging
to S,.

If a;,1 = ap is an odd and divisible by 3 number, then by Algorithm (A) Step (2), a; = a» 1 = 2"3—’“ Thus,
dis1—a; = Ajrq1 — 2‘;—‘“ = %l = q; 1 € So (Where a;_y = ay,p = %51 € Sa).

If 3 € S, and a1 = ao is an odd and not divisible by 3 number, then by Algorithm (A) Step (4), a; =
ai;1 — 3. Thus, aj.1 —a; =3 € S,.

Otherwise, by Algorithm (A) Step (2), a; = [*4* | (where [“#1] = a, ; € So). Hence, aj.1—a; = a1 —[ 5] =
| %42 | = aj_1 € Sa (Where a;_y = | %2 | = ay,1 € So). In case when, [ %42 ] = | %42 | = %1 then we have a; = %51,

Aiv1 _

Thus, aj1 - a; = i — %52 = %L = a; € Sa. O

1

Theorem 2.6. Let S(n) = S1 U ¢.Sq, where n > 4. Then C(n, S(n)) admits a restricted triangulation.

Proof. Suppose that C(n, S(n)) isacirculant graph and let o, 3, c and t is defined as above. We shall construct
a restricted triangulation T, of C(n, S(n)).

When nisevenand ¢t = 1, S(n) = S1 (In this case, 3 = 1 and then S, = {1} and then c.S, = {c} and
ceSy). Thenlet T, = U{zo{vjz,-v(jﬂ)z,-,j =0,1,..., 5 — 1}. The circulant graph when n = 8 is depicted in
Figure 2.

When nisevenandt > 3, S(n) = S1 U ¢.S. In this case, and also when n is odd (which means t = n),
we have t-gon which is induced by the vertices vo, Ve, Va.c, + - - » V(t-2).c» V(¢-1).c (the shaded part in Figure 3).

We shall triangulate this t-gon by T’ which is obtained by one of the following three cases depending on
S«. According to S1,let T = U;zo{ijiV(j+1)2i,j =0,1,..., % — 1} which triangulates unshaded part, between
n-gon and ¢-gon, in Figure 3. Then, let T, = Tu T’ or T, = T’ be a triangulation to C(n, S(n)) when n is even
with t > 3 or when n is odd, respectively.

Case (1) When a = %, then t = 28 + a (since 8 = a+ 1). Let A = voVaVa4pVo be a triangle. Then there
are three (o + 1)-gons G1, G» and G3 induced by the vertices vo, Ve, Va.cs +++» Va.c; V(a).cr V(as1).cr -2 V2a.c
and V(a+8).c» V(2a+2).cs - - + » V(3a+1).c» T€SPECtively. See Figure 4.

Case (2) When a = %, then t = 2a + 3 (since 8 = a + 1). Let A = vov4Vaa Vo be a triangle. Then there are
three (« + 1)-gons G1, G» and G3, induced by the vertices vo, V¢, Va.cy « - - Vaucs V(a).cs V(a+1).cr - +» V2a.c and
V(2a).cs V(2a+1).cs - - - » V(3a).c» TE€SPEctively. See Figure 5.
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. _ _ 3 _ _ o - Vs j =

; . s U{VyiVs(iz1ys j=0,..., U{VaiVacintys J=0,.0ns U
Ts = {vjv(js1), J = 0., TH U {VajVa(ian) J = 2V2(41)> ] 4Vage1). ]
0,...,3}U {Vajs(jen) J =0, 6}.

{vajvagisry, 1=0,1}.

Vo V(t-1).c = V48 .
vy Vi '
vy
\4
y t-gon=7-gon 12
Ve V2 ) V14
=V2c
Vs V3
v N A
4 V30 vyg V26
Fig.4.n=164,t=41,r=2,a =13,and 3 = 14. Fig.5.n=152,t=19,r=3,a=6,and 3 =7.

V(3a+1).cvg

V152
2

V88 Vgo vgo V72

Case (3) When o = %, then t = 3a. There are three (o + 1)-gons Gi, G, and Gs; induced by the
vertices vo, Ve, Va.cs -+ +» Vaues V(a).cr V(a+1).cr -+ 5 V2a.c @0A Vaa.c, V(aa+1).cs - -+ » V(3a—1).c» V0, T€Spectively.
See Figure 6.

In each case, G1, G, and G3 are of the same order. Suppose that R is an r-gon in G;, for some i€ {1,2,3}
such that V(R) = {Vn, Vhia;» Vhsaj+1> - - - » Vheay,, ; fOT Some vy, € V(G;) and two consecutive jump values a;
and a;,1in S,.

Without loss of generality assume that R is a subgraph of G; and h = 0.

By Lemma 2.5, we have 1, 2 € S, and a;,1 — a; € S,, for each a;,1, a; belonging to S,,. Hence, we can use
the argument () of Proposition 2.3 to show that R can be triangulated by T,. Moreover, similar as in the proof
of Proposition 2.3 we can consider G1 as a finite union of such polygons. Then we can assume that Tg, is a
finite union of the restricted triangulation of these polygons.

Obtain Tg, (on G) and Tg, (on Gs) by "rotating" the edges of T, , see Figures 4, 5and 6. Let T' = Tg, U
Tg, U T, U A for case (1) and case (2), and let T’ = T, u Tg, U T, for case (3).

This completes the proof. O
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Fig.6.n=120,t=15,r=3,and a = 5.

Definition 2.7. Let n > 4 and t be defined as above, and let a; be a natural number such that [£]-c < a; < |
Then define S* to be a set of ascending natural numbers such that,

(1) S* = {1, 2,43,04, ..., ak},

(2) thereis {x,z} c S* such that n = x +y + zwhere y € {0, a;} forsomeiec {1,...,k},

3) ajs1 —a; € S* foreachi=1,...,k-1.

.

(ST~

It is clear that, S* = S, when a; = |5 ]. Our main result, Theorem 2.8, proves the sufficient and necessary
condition for a circulant graph C(n, S) to admit a restricted triangulation.

Theorem 2.8. Suppose G = C(n, S) is a circulant graph. G admits a restricted triangulation if and only if S
contains S*.

Proof. Let G have a restricted triangulation T,. We shall prove that S contains S*. By Lemma 2.1, it is enough
to prove S* = D(Tn).

Arrange the spans of D(Ty) to be ascending values.

Since, the circulant graph C(n, D(Tr)) admits Ty, then by Proposition 2.2, we have {1, 2} € D(Ty).

Let [D(Tn)| = s, then ds is the maximum span in D(Ty).

(x) Let t be defined as before. Suppose that ds < [%] -¢. Without loss of generality assume that, ¢ = 1 and
ds = [g] —1.Thus, ds = % -1,b€{0,1,2}and then 3ds + b + 3 = t. Let R be a convex r-gon induced by the
Vertices vy , Vad,, Vad» V3d,+1s - « - » Vado+b+1> V3d,+b+2, Ve (tecall that, ve = v34_,p43). Suppose that T; = Tx(R)
is a subgraph of T, that triangulates R and let e be an edge in T, such that the span of e is the maximum with
respect to D(T,). Then:

- either e = v,4,v¢ which yields that its span t — 2ds € D(T,;) ¢ D(Tn); but t — 2ds > ds + 1 (by above

assumption, t — 2ds = ds + b + 3 > ds + 1), which is a contradiction with maximality of ds € D(T»);

— or, e = v4 V3, Which yields that 3ds — ds = 2ds € D(T,) c D(Tn); but 2ds > ds, which also contradicts
the maximality of ds € D(Tx).
Hence, R is not triangulated by T, which is a contradiction with C(n, S) admitting a restricted triangulation
Ty. Thus, ds > [£] - c.
Now, in order to check property (ii) of S* we have to consider two cases:
Case (1)If ds = 5, thenn = 2.d;. Hencelet x = z = ds and y = 0.
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Case (2) If [g] -c<ds < "T‘l, then T, contains a triangle A = vVypVy, g, Vhid,+a,Vn for some d; € D(Ty) and
vy € V(G). The span of the edge vy, 4,+a,Vh € E(Tn) is n—(ds + d;) € D(Tx) (by definition of the span of edge).
Henceletx =ds,y=d;jandz=n-(ds + d;), thenn=x+y + z.

To check the property (iii) of S*, assume that d; and d;, 1, i € {1, 2,...,s — 1} are two consecutive spans
in D(Ty).

If ds = g, then let T; and T, be two subgraphs of T, induced by the vertices vo, v1,V2, ..., Vx;
Vx, Vx+l, ..+ Vaty-1, Vo Tespectively (x = 2). Let R be a polygon induced by the vertices vj, vj.4,, ...,
Vjid,,, Where v; € V(T;) and vjvj,q, and v;vj.q,,, are two diagonals in T; for some i € {1, 2}.

If [%] -c<ds < "%1, then let T, T, and T3 be three subgraphs of T, induced by the vertices vy, v1, v2,
ce s Vi Vi Vsl ooy Viays @NA Viry, Vigyst, - -5 Veay+z—1, Vo Tespectively. Let R be a polygon induced by
the vertices vj, vj.q,, - - - » Vjsd,,, Where v; € V(T;) and v;v;,q4, and v;vj,q,,, are two diagonals in T; for some
ie{1,2,3}.

Assume without loss of generality that v;v;, 4, and v;vj,4,,, are two diagonalsin T1. Then, j < j+d; < j+diq
(by definitions of T; and R). It is clear that, v;Vj.q4, ... Vj14,,,Vj ¢ T1. Let T, = T1(R) be a subgraph of T; that
triangulates R with the boundary edges v;vj,q; . . . Vj14,,, Vj Of R.

Suppose that vj,4,Vj+q,,, ¢ E(Tr). Then there is d; < d < di;1 such that v;v;,4 € E(Ty). This implies that,
d € D(Tr) c D(Ty), a contradiction with d; and d;, are two consecutive spans in D(Ty).

Hence, Vj.q4,Vj+q,,, € E(Ty) ¢ E(Tn). Then diy1 — di € D(Tn).

Thus, D(Tr) = S*. This completes the proof of the necessity.

To show the sufficiency, suppose that S* c S. Then, C(n, S*) is a subgraph of C(n, S).

Let A = VoVxVxiyVx+y+z be a triangle (since, x +y+z = n). Clearly, E(A) c E(G). Then there are three poly-
gons G1, G, and G3, induced by the vertices vo, Vi, Va, ..., Vx; Vi, Via1s -« s Vary QA Viay, Vidysts oo oy Viaytz
respectively, and G, = @ wherey € {0, 1}.

Suppose that R is an r-gon in G;, for some i € {1, 2,3} such that V(R) = {Vn, Vhiq;> Vhra; +15 -+ »
Vhea,,, ; for some v, € V(G;) and two consecutive jump values a; and a;1 in S™.

Without loss of generality assume that R is a subgraph of G; and h = 0.

Since S* = {1, 2, as, a4, ..., a;} and satisfies that a;,; —a; € S* foreachi =1,..., k-1, then we can use
argument () of Proposition 2.3 to show that R can be triangulated by T,. Consider G; as a finite union of such
polygons. Then we can assume that T, is a finite union of the restricted triangulation of those polygons.

Obtain Tg, (on G») and Tg, (on G3) in a similar way. Then T¢, u Tg, U Tg, is a triangulation of C(n, S*).
Since C(n, S*) is a spanning subgraph of G, then T, u Tg, U Tg, is a triangulation of G.

This completes the proof. O

i+1

Corollary 2.9. S(n)isS*.

Proof. By definition of S(n), either S(n) = S; (when nisevenand t = 1) or S(n) = S (When n is odd) or else
S(n) = S1 U c.Sq. By definition of S1, we have that S; is a set of ascending values and contains 1, 2; also S,
is a set of ascending values by Algorithm (A) and contains 1, 2 by Lemma 2.5. Thus S(n) is a set of ascending
values containing 1, 2.

Now, let ¢ denote the cardinality of S(n).

When S(n) =S1,a,=2"=5.Letx=z=asandy = O thenwehaven=x+y +z.

When S(n) = Sq 0or S(n) = Sy U ¢.Sa, we have by definition of 3, a, = [£]-c. To get n = x + y + z we have
three cases. When o = %, B=a+landt=3.a+2.Letx =c.a,y =2z =c.p(since, n = c.t). When o = %,
B=a+landt=3.a+1.Letx=y=c.o,z=c.5. When a = é,letx:y:z:c.a(sinceﬂ:a).

Let a; and a;,; be any two consecutive values in S(n). If a;, a;.1 € S1, then a; = 2! and aj;; = 2" and
then aj,q — a; = 21 =21 = 21 € S;. If a; = 2, then q; is the last value in S; and the first in ¢.S, (recall that,
c¢=2")andif a;, aj;1 € So then by Lemma 2.2, a;,1 — a; € Sq. Thus, a;;1 — a; € S(n) for each a;,1, a; € S(n).

This completes the proof. O

Corollary 2.10. Let n > 4 be a natural number. Suppose G = C(n, S) is a circulant graph. Then G admits a
restricted triangulation if one of the following conditions hold.
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Proof. In both cases a; = 1, a; = 2 belong to a set of ascending values S, and [%] c<as<|
odd natural number, [%] -¢ = [§]). Further, for each a;;1, a; €S, ajy1 —a; € {1,2} c S.

To show the property (2) of S* we have to consider two cases.

Case (1) When n is an odd natural number. Let n > 7 (When n = 5, then S = {1, 2} and clearly C(5, S)
admits a restricted triangulation Ts = {vov1VaVv3vavo} U {voVa, Vovs}). If [g] is an odd number, then [g] = a;

2| (when nis an

forsomeie {3,...,s}.If[3]is an even number, then [3] + 1 = a; for some i e {4,...,s}.

Whether [ %] is odd or even, we have n - 2a; is odd and 1 < n - 2a; < a;. Then n - 2a; = a; for some
je{1,...,i}.Letx=y=a;,z=a;. Thus,n=x+y +z.

Case (2) When n is an even natural number, we have r > 1 and then c¢(> 2) is even. Hence, [%] -Cis
even and then [{]- ¢ = a; for some i € {2,...,s}. Now, we have n - 2q; is even and either n — 2a; = 0 or
2<n-2a;<a;.Ifn-2a;=0,letx=z=a;,y=0.1f2 <n-2a; < a;, thenn-2a; = agjforsomeje {2,...,i}
andletx=z=a;,y=a;. Thus,n=x+y+z.

By Theorem 2.8, the circulant graph C(n, S) admitting a restricted triangulation. O

Proposition 2.11 ([13]). Suppose G = C(n,{ai,az,...,ax}) and H = C(n,{b1,b2,...,by}) with
{ai,az,...,ax} = q.{b1, ba, ..., by}, where the multiplication is reduced modulo n and gcd(q, n) = 1. Then
G is isomorphic to H.

Example 2.12. Letn =9 and S(n) ={1, 2,3}.
When S1 = {2, 3, 4}, thenwe have S1 = {2, 6,4} =2.{1, 3,2} = 2.5(n).
When S, = {1, 3, 4}, thenwe have S = {8,12,4} = 4.{2,3,1} = 4.5(n).

The next corollary considers circulant graph G = C(n, S) admits a restricted triangulation when there is an
integer g > 1 with gcd(g, n) = 1 suchthat S* c ¢q-S.

Corollary 2.13. let G = C(n, S) be a circulant graph. Suppose there is an integer q > 1 with gcd(q, n) = 1 such
that S* c q.S or q.S* c S where the multiplication is reduced modulo n. Then G has a configuration that admits
a restricted triangulation.

Proof. Suppose that, ¢ > 1 is an integer such that gcd(q,n) = 1 and S* ¢ ¢.S or q.S* ¢ S. Then, there
isaset S’ c Ssuch that S* = ¢.S’ or q.S* = S'. Thus, by Proposition 2.11, the subgraph H = C(n, S’) of
C(n, S) is isomorphic to C(n, S*). By Theorem 2.8, H = C(n, S’) admits a restricted triangulation. Thus, G
has a configuration that admits a restricted triangulation. This completes the proof. O

2.1 An application

The skewness of a graph G, denoted sk(G), is the minimum number of edges to be deleted from G such that
the resulting graph is planar. The convex skewness of a convex graph G, denoted sk(G) is the minimum
number of edges to be removed from G so that the resulting graph is a convex plane graph (see [14]).

Proposition 2.14. Let G = C(n, S) be a circulant graph and let q > 1 be an integer such that gcd(q, n) = 1.
Then skc(G) =E(G) - (2n-3)ifS* cS,0rqS* c S, or S* c ¢S.

Proof. 1f S* c S, then G = C(n, S) admits a restricted triangulation, by Theorem 2.8. If gS* < Sor S* c ¢§,
then G = C(n, S) admits a restricted triangulation, by Corollary 2.13.

It is known that, any triangulation T of a convex n-gon has 2n - 3 edges (n — 3 of them are non-boundary
edges). If any new straight line segment is added to the triangulation, it will intersect with some non-boundary
edge of T. Hence, we have sk.(G) = E(G) - (2n - 3). O
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3 K, - G admits a restricted triangulation

In this section we turn to another question: which circulant graph G on n vertices does satisfy that K, — G
admits a restricted triangulation and what is the largest size of G such that K, — G still admits a restricted
triangulation? We answered the first question by Corollary 3.1 and Corollary 3.3. We show that C(n, S(n)) is
a smallest size circulant graph that admits a restricted triangulation, in order to answer the second question
by Theorem 3.5. In what follows, let N = {1, 2, ..., |n/2]}.

Corollary 3.1. Let G = C(n, S) be a circulant graph. Then K, — G admits a restricted triangulation if one of the
following conditions hold.

(1) If there is S* such that SN S* = @.

(2) S contains all odd i of N except {1, |n/2]}.

(3) S contains all even i of N except {2, |n/2]}.

Proof. First, it is well known that K, — C(n, S) = C(n, N - S).

Suppose that S n S* = @. Then, A/ — S contains S* which yields that the circulant graph C(n, N - S)
admits the restricted triangulation by Theorem 2.8, and this shows the property (1).

In (2), N - S contains all even values of N together with {1, |[n/2]}.In (3), N - S contains all odd values
of N together with {2, |n/2]}. By Corollary 2.4, C(n, N —S) admits the restricted triangulation for both cases.

This completes the proof. O

Definition 3.2 ([14]). Let K be a convex complete graph with n vertices. F is said to be potentially triangulable
in K, if there exists a configuration of F in K, such that K, — F admits a triangulation.

Corollary3.3. Let G = C(n, S) be a circulant graph. Suppose S* c q.(N - S) for some an integer q > 1 with
gcd(g, n) = 1. Then G is potentially triangulable in K.

Proof. Suppose that, g > 1 is an integer such that gcd(q, n) = 1 and S* < q.(N - S) for some S*. Then, there
isasetS’ ¢ N - Ssuch that S* = ¢.S’. Then by Proposition 2.11, the subgraph C(n, S’) of C(n, N' - S) is
isomorphic to C(n, S*). By Theorem 2.8, C(n, S’) has a configuration that admits a restricted triangulation.
Thus, C(n, N - S)(= Kn — G) admits a restricted triangulation. This completes the proof. O

To answer the second part of the question, we shall determine the largest size L(n) of G for which K, - G
admits a restricted triangulation. Before proceeding, let first |[E(C(n, S(n)))| = & where [S(n)| = ¢. Then we
deduce that,
nt-2%, t=1;
€e = {né, ’ otherwise.
The next result shows that whenever C(n, S) admits a restricted triangulation then |S| > |S(n)|. That is,
C(n, S), is not a smaller size than C(n, S(n)).

Theorem 3.4. C(n, S(n)) is the smallest size circulant graph admitting a restricted triangulation if n > 4.

Proof. Recall that, S(n) = S1 U ¢ - So. By Theorem 2.6, C(n, S(n)) admits a restricted triangulation. Hence,
we just show that S(n) is the smallest cardinality set for which the conclusion remains true.

Assume that C(n, S) is a circulant graph that admits a restricted triangulation where S = {b1, b, bs,
..., bs} is a set of ascending jump values to C(n, S).

By Theorem 2.8, S contains S*. Thus, 1,2 € Sand [£]-c < bs < |}|and foranyi e {1,...,s - 1},
bi+1—b,-:bjeSwhereje{l,...,i}.

In case when b;, is even we have, according to S, (by Algorithm (A) step (2) where b;,; = ao is even)
and S; (by definition of S1), that the difference between the two consecutive values b; and b, 1 is always b;.

Ifje{1,...,i-1}, then the number of values in S(n) is less than the number of valuesin S. If b;,1 — b; =
b; € S, then the number of values in S(n) is equal to the number of values in S. Thus, |S| > |S(n)|.
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In case when b;,; is odd, then b; # b; and there are three cases which are depending only on S...

Case (1): b; € {1, 2}.

In this case, the difference between the two consecutive values b; and b;,; is at most 2. According to
Algorithm (A), the difference between the two consecutive values is at most 2 only when b; = [”'T“J and
bij1 = [b =2 or when b; = 3 and b; = 5. Then the number of values in S(n) is equal to or less than the number
of values in S. Whereas Step (2) and Step (4) of Algorithm (A) give the difference between any two consecutive
values being at least 3, which implies |S| > |S(n)|.

For instance, take b;;; = 13 then b; ¢ {11,12}. Take S € {S1,S,,S3,S4,Ss5,S¢} where S; =
{1,2,3,5,10,12,13}, S, = {1,2,3,6,9,12,13}, S3 = {1,2,3,5,6,11,13}, S4 = {1,2,3,6,9, 11, 13},
Ss={1,2,3,5,10,11,13},0r S¢ = {1, 2, 3,4, 7,9, 11, 13}. Then the cardinality of S is 7. By Algorithm (A)
step (2):

— either, b; =7 and b;_; = 6 and then S, = {1, 2, 3, 6,7, 13}. Thus, the cardinality of S, is 6;
— of, biy; = 25 and then b;;y = 13 and b; = 12. Then, S, = {1,2,3,6,12,13,25}. In this case, Take

S €{S1,S,} where S; = {1,2,3,5,10,12,13,25},and S, = {1, 2,3,6,9,12,13, 25}. Note that S is of

cardinality 8 while S, is of cardinality 7.

Case (2):je{3,...,i-2}.

In S, this case is satisfied in step (4) of Algorithm (A) (when b; = ao is odd and not divisible by 3). But in
this case, Algorithm (A) states b; to be b;,; — 3 which is always even. Then by step (2) when b;(= ao) is even
we have that b;_; = %. That is, the difference between the two consecutive values b; and b;_; is always b;_;
(since b; = 2b;_1). While, in S, we have either b; — b;_1 = b;_; and then |S| = |S(n)| or b; — bi_1 = by + bi_1
and then |S| > |S(n)|. Thus, |S| > |S(n)|.

For instance, take b;;; = 23 and S = {1,2,3,6,8,9,17,23}. By Algorithm (A) we have S, =
{1,2,3,5,10, 20, 23}. Note that S is of cardinality 8 while S, is of cardinality 7.

Case (3):j=1i-1.

If b1 is not divisible by 3, then by Algorithm (A) step (2) we have b; = b;_; = [b’T“J and b; = [%] (where
bi—1 = by,; and b; = b,,1), and then the difference between the two consecutive values b; and b;_; is 1. While
in S, we have either b; — b;_; = 1 and then |S| = |S(n)| or b; — b;_1 = by #+ 1 and then |S| > |S(n)|.

If b;,1 is divisible by 3, then in S,, by Algorithm (A) step (2) (where b;,1 = do is odd and divisible by 3).
Then b;_; = % and b; = 2.b;_; (where b;_; = a;; and b; = a5, ). That is, the difference between the two
consecutive values b; and b;_; is always b;_ itself (since b; = 2.b;_;). While in S, either b; — b;_; = b;_; and
then |S| = [S(n)| or b; — b;_1 = by for some k € {1, 2,...i- 2} and then |S| > |S(n)|.

This completes the proof. O

Let L(n) = (5) - & (where (}) is the size of K, and & is the size of C(n, S(n))). Then, we conclude that
n(n-2¢) t=1:
L(n) _ 2 s - ’
%, otherwise.
By Theorem 3.4, we have that &, is the smallest number of edges of a circulant graph that admits a
restricted triangulation. The following result is to measure the non-triangulability of K, — G.

Theorem 3.5. Let G = C(n, S) be a circulant graph. Then K, — G admits no restricted triangulation if |[E(G)| >
L(n).

Proof. Let [E(G)| > L(n). Then |[E(Kx - G)| = (}) - |[E(G)| < (}) - L(n) = &. Then |V - S| < &. By Theorem
3.4, C(n, N - S)(= Ky — G) admits no restricted triangulation. O
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