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Abstract: We de�ne a new algebraic structure for singular knots and links. It extends the notion of a bikei
(or involutory biquandle) from regular knots and links to singular knots and links. We call this structure a
singbikei. This structure results from the generalized Reidemeister moves representing singular isotopy. We
give several examples on singbikei and we use singbikei to distinguish several singular knots and links.
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1 Introduction
Singular knots and links are viewed diagrammatically as knots and links with some of the crossings being 4-
valent rigid vertices. The theory of Vassiliev Invariants of knots and links shed the light on studying singular
knots and links as a larger space that involves usual knots and links as a subspace. See [1 - 3]. Since then,
many knot and link invariants have been generalized to singular knots and links. For example see [4 - 8].

Kei and quandles are algebraic structures, which were constructed to describe knots and links via
generators and relations resulting from the arcs and the crossings of a knot or link diagram, and respecting
the invariance of these diagrams under the Reidemeister moves. See [9 - 17].

Kei and quandles for singular knotswere constructed in [18, 19], respectively. This paper introduces a new
algebraic structure that generalizes involutory biquandles to singular knots. We call this structure singbikei.
We give a plethora of non-trivial natural algebraic objects in examples that satisfy the axioms of this new
algebraic structure. As a byproduct of this structure, we show how to apply the theory for distinguishing
singular knots by giving several examples.

This paper is organized as follow. In Section 2 we give the basic concepts and terminology for kei and
bikei. We also de�ne singular knots and links and their isotopy invariance. In Section 3 we introduce the
structure of a bikei for singular knots and links and we give several examples on this new structure with
some related results. In Section 4 we give some examples of singular knots and links and distinguish them
using several singular bikei colorings.

2 Basic concepts and terminology
Most of the basic concepts and terminology in this research can be found in [8].
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We begin this section with the de�nition of a kei, and after the de�nition we will see how the axioms of a
kei result from the three Reidemeister moves. The coloring of a regular crossing is drawn as in the following
�gure.

Fig. 1. The coloring of a regular crossing with one operation

De�nition 2.1. Akei (involutory quandle) is a set X with a binary operation▷: X×X → X satifying the following
three axioms:
(i) x▷ x = x, for all x ∈ X.
(ii) (x▷ y) ▷ y = x, for all x, y ∈ X.
(iii) (x▷ y) ▷ z = (x▷ z) ▷ (y▷ z), for all x, y, z ∈ X.

The three axiomsof a kei result from the invariance of the threeReidemeistermoves as in the following�gures.

Fig. 2. The coloring of Reidemeister moves

Reidemeister move RI
Reidemeister move RII

Reidemeister move RIII

Now, instead of one operation at a crossing, two operations are de�ned, and instead of coloring the arcs from
the top, the arcs are colored from left to right, so we get:
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Fig. 3. The coloring of a regular crossing with two operations

Next we give the de�nition of a bikei. After this we will see how the axioms of a bikei result from the three
Reidemeister moves.

De�nition 2.2. A bikei (involutory biquandle) is a set X with two binary operations ∗, ∗ :X × X → X such that
for all x, y, z ∈ X, we have

x∗x = x∗x (i)

x∗(y∗x) = x∗y (ii.i)
x∗(y∗x) = x∗y (ii.ii)
(x∗y)∗y = x (ii.iii)
(x∗y)∗y = x (ii.iv)

(x∗y)∗(z∗y) = (x∗z)∗(y∗z) (iii.i)
(z∗y)∗(x∗y) = (z∗x)∗(y∗x) (iii.ii)
(y∗x)∗(z∗x) = (y∗z)∗(x∗z) (iii.iii)

The axioms of a bikei result from the invariance of the three Reidemeister moves as in �gures 4, 6 and 7.

Fig. 4. Reidemeister move RI for bikei

Fig. 5. Reidemeister move RII for bikei
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The Reidemeister move RII means that the over crossing and under crossing operations do not depend on
which way the crossing is rotated.

Fig. 6. Rotated coloring crossing

The Reidemeister move RIII gives us what is called the exchange laws:

Fig. 7. Reidemeister move RIII for bikei

Let X and Y be bikei with operations ∗X, ∗X and ∗Y , ∗Y respectively. Then a map f ∶ X Ð→ Y is a bikei
homomorphism if for all x, x′ ∈ X we have

f(x∗Xx′) = f(x)∗Y f(x′) and f(x∗Xx′) = f(x)∗Y f(x′).

A bikei isomorphism is a bijective bikei homomorphism, and two bikei are isomorphic if there is a bikei
isomorphism between them.

Remark 2.3. Every Kei is a bikei with the operations x∗y = x▷ y and x∗y = x.

Typical examples of bikei include the following :
– A non-empty set X with operation x∗y = x∗y = σ(x), where σ is any involution from X to X, is a bikei. It

is called a constant action bikei.
– LetΛ = Z[t, s]/(t2−1, s2−1, (s− t)(1− s)), then anyΛ - module X with x∗y = tx+(s− t)y, and x∗y = sx,

is called an Alexander bikei.
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– A group X = G with x∗y = yx−1y and x∗y = x is a bikei. It is called the core bikei of the group G.

A singular link in S3 is the image of a smooth immersion of n circles in S3 that has �nitelymany double points,
called singular points.

Two singular knots K1 and K2 are isotopy equivalent if we can get one of them from the other by a �nite
sequence of the generalized Reidemeister moves RI, RII, RIII, RIVa, RIVb and RV in the following �gure.

Fig. 8. Generalized Reidemeister moves RI, RII, RIII, RIVa, RIVb and RV

3 Construction of singbikei
We will de�ne the notion of a singbikei and give some examples and use them to construct an invariant of
singular knots and links. The invariant is the set of colorings of a given singular knot or link by a singbikei.
We draw the colorings of the regular and singular crossings as in the following �gure.

The colorings of a regular crossing The colorings of a singular crossing

Since our singular crossings are unoriented, we need the operations to be symmetric in the sense that if we
rotate the crossing in the right diagram of the above �gure by 90, 180 or 270 degrees, the operations should
stay the same in order for colorings to be well-de�ned. Therefore we get the following three axioms:

x = R1(y, R2(x, y)) = R2(R2(x, y), R1(x, y)) (1)
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y = R2(R1(x, y), x) = R1(R2(x, y), R1(x, y)) (2)
R(x, y) = (R2(y, R2(x, y)), R1(R1(x, y), x)) (3)

We have 5 generalized Reidemeister moves; I, II, III are for regular crossings; IV, V are for singular crossings.
Next we show how the generalized Reidemeister moves induce relations considering the colorings of the
singular crossings.

Fig. 9. Reidemeister move RIVa

Fig. 10. Reidemeister move RIVb

Fig. 11. Reidemeister move RV

The following de�nition is coming from the generalized Reidemeistermoves and the axioms are justi�ed from
the �gures [9-11].

De�nition 3.1. Let (X, ∗, ∗) be a bikei. Let R1 and R2 be two maps from X × X to X. Then (X, ∗, ∗, R1, R2) is
called a singbikei if, in addition to the three axioms 3.1, 3.2 and 3.3, the following axioms are satis�ed

R1(x∗y, z∗y) = R1(x, z)∗(y∗x) (4)
R2(x∗y, z∗y) = R2(x, z)∗(y∗z) (5)
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(y∗x)∗R1(x, z) = (y∗z)∗R2(x, z) (6)
R1(x∗y, z∗y) = R1(x, z)∗(y∗x) (7)
R2(x∗y, z∗y) = R2(x, z)∗(y∗z) (8)

(y∗x)∗R1(x, z) = (y∗z)∗R2(x, z) (9)
R1(x, y) = R2(y∗x, x∗y)∗R1(y∗x, x∗y) (10)
R2(x, y) = R1(y∗x, x∗y)∗R2(y∗x, x∗y) (11)

The following straightforward lemma makes the set of colorings of a singular knot or link by a singbikei an
invariant of singular knots and links.

Lemma 3.2. The set of colorings of a singular knot by a singbikei does not change by the Reidemeister moves
RI, RII, RIII, RIVa, RIVb and RV.

Example 3.3. It is known that every kei is a bikei with the operations x∗y = x▷ y and x∗y = x. Then X is a bikei
with these operations so (X, ∗, ∗, R1, R2) is a singbikei if R1, R2 ∶ X × X Ð→ X satisfy the following equations:

x = R1(y, R2(x, y)) = R2(R2(x, y), R1(x, y))
y = R2(R1(x, y), x) = R1(R2(x, y), R1(x, y))

R(x, y) = (R2(y, R2(x, y)), R1(R1(x, y), x))
(y▷ x) ▷ R1(x, z) = (y▷ z) ▷ R2(x, z)
R1(x▷ y, z▷ y) = R1(x, z) ▷ y
R2(x▷ y, z▷ y) = R2(x, z) ▷ y

R1(x, y) = R2(y, x▷ y) ▷ R1(y, x▷ y)
R2(x, y) = R1(y, x▷ y)

Example 3.4. Let X be a set and σ ∶ X Ð→ X be any involution on X, (i.e any map such that σ2 = IdX) with
x∗y = x∗y = σ(x).
Let R1, R2 : X × X Ð→ X be two maps, then (X, ∗, ∗, R1, R2) is a singbikei if R1 and R2 satisfy the following
equations:

x = R1(y, R2(x, y)) = R2(R2(x, y), R1(x, y))
y = R2(R1(x, y), x) = R1(R2(x, y), R1(x, y))

R(x, y) = (R2(y, R2(x, y)), R1(R1(x, y), x))
R1(σ(x), σ(z)) = σ(R1(x, z))
R2(σ(x), σ(z)) = σ(R2(x, z))

R1(x, y) = σ(R2(σ(y), σ(x))
R2(x, y) = σ(R1(σ(y), σ(x))

Proposition 3.5. Let X = Zn and σ ∶ Zn Ð→ Zn be given by one of the following rules

σ(x) = (n − 1)x + d, where d is arbitrary in Zn

or

σ(x) = x

or

σ(x) = x + n
2 , where n is even
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then σ is an involution.

Proof. 1. If σ is given by σ(x) = (n − 1)x + d, then

σ(σ(x)) = σ((n − 1)x + d)
= (n − 1)[(n − 1)x + d] + d

= (n − 1)2x + (n − 1)d + d

= (n − 1)2x + nd
= x

2. If σ is given by σ(x) = x, then

σ(σ(x)) = σ(x)
= x

3. If σ is given by σ(x) = x + n
2 , where n is even, then

σ(σ(x)) = σ(x + n
2)

= [x + n
2 ] + n

2
= x + n
= x

This completes the proof.

Sometimes these are theonly linear (i.e functionsof the form f(x) = ax+b ) involutionsσ on Zn and sometimes
Zn has other linear involutions. For example if X = Z8, in addition to the previous solutions,

σ(x) = 5x + 4
σ(x) = 3x + 2
σ(x) = 3x + 6

are also linear involutions in Z8.

Lemma 3.6. If n is prime, then the only linear formulas for an involution σ on Zn are:

σ(x) = (n − 1)x + d, d ∈ Zn or σ(x) = x.

Proof. The general linear formula of σ is σ(x) = cx + d, where c, d ∈ Zn.
Since σ is an involution, we have

σ(σ(x)) = c[cx + d] + d

= c2x + cd + d

= c2x + (c + 1)d
= x

Since c2 = 1 in Zn and n is prime, we have

c2 ≡ 1 (mod n)
(c2 − 1) ≡ 0 (mod n)

(c − 1)(c + 1) ≡ 0 (mod n)
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n/(c − 1)(c + 1) Ô⇒ n/(c − 1) or n/(c + 1)
c − 1 ≡ 0 (mod n) or c + 1 ≡ 0 (mod n)

c ≡ 1 (mod n) or c ≡ −1 (mod n)
c ≡ 1 (mod n) or c ≡ n − 1 (mod n)

c = 1 or c = n − 1 in Zn

So, we have two cases:
If c = n − 1, then

σ(σ(x)) = (n − 1)2x + nd

= n2x − 2nx + x
= x.

Therefore σ(x) = (n − 1)x + d, where d ∈ Zn.
If c = 1, then

σ(σ(x)) = x + 2d
= x, when 2d = 0 we get d = 0 or 2d = n.

– If d = 0, then σ(x) = x.
– If d = n

2 , then n is even and prime. Therefore n = 2 so d = 1, then σ(x) = x + 1, which is included in the
case when c = n − 1.

So σ must be σ(x) = (n − 1)x + d, d ∈ Zn or σ(x) = x.

Theorem 3.7. Let X = Zn andσ ∶ Zn Ð→ Zn bean involution and x∗y = x∗y = σ(x). Then R1, R2 : Zn×Zn Ð→ Zn
given below make (Zn , ∗, ∗, R1, R2) a singbikei.
(1) If σ(x) = (n − 1)x + d, d ∈ Zn then

R1(x, y) = (n − 1)y + c when (n − 2)d = (n − 2)c and
R2(x, y) = (n − 1)x + c.

(2) If σ(x) = x, then
R1(x, y) = (n − 1)y + c and
R2(x, y) = (n − 1)x + c.

(3) If σ(x) = x + n
2 , where n is even, then

R1(x, y) = (n − 1)y + c when (n − 1) n
2 = n

2 and
R2(x, y) = (n − 1)x + c.

Proof. We show that R1 and R2 satisfy all the equations in Example 3.4,

1. If σ(x) = (n − 1)x + d, where d ∈ Zn, then
R1(y, R2(x, y)) = (n − 1)2x + (n − 1)c + c

= n2x − 2nx + x + nc
= x

R2(R2(x, y), R1(x, y)) = (n − 1)2x + (n − 1)c + c

= n2x − 2nx + x + nc
= x

R2(R1(x, y), x) = (n − 1)2y + (n − 1)c + c
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= n2y − 2ny + y + nc
= y

R1(R2(x, y), R1(x, y)) = (n − 1)2y + (n − 1)c + c

= n2y − 2ny + y + nc
= y

(R2(y, R2(x, y)), R1(R1(x, y), x)) = ((n − 1)y + c, (n − 1)x + c)
= R(x, y)

R1(σ(x), σ(z)) = R1((n − 1)x + d, (n − 1)z + d)
= (n − 1)[(n − 1)z + d] + c

= (n − 1)2z + (n − 1)d + c

= (n − 1)2z + (n − 2)d + d + c

= (n − 1)2z + (n − 2)c + d + c

= (n − 1)2z + (n − 1)c + d
= (n − 1)[(n − 1)z + c] + d
= (n − 1)R1(x, z) + d
= σ(R1(x, z))

R2(σ(x), σ(z)) = R2((n − 1)x + d, (n − 1)z + d)
= (n − 1)[(n − 1)x + d] + c

= (n − 1)2x + (n − 1)d + c

= (n − 1)2x + (n − 2)d + d + c

= (n − 1)2x + (n − 2)c + d + c

= (n − 1)2x + (n − 1)c + d
= (n − 1)[(n − 1)x + c] + d
= (n − 1)R2(x, z) + d
= σ(R2(x, z))

Let I = σ(R2(σ(y), σ(x)).
I = σ(R2((n − 1)y + d, (n − 1)x + d))
= (n − 1)[(n − 1)[(n − 1)y + d] + c] + d

= (n − 1)[(n − 1)2y + (n − 1)d + c] + d

= (n − 1)3y + (n − 1)2d + (n − 1)c + d
= −y + 2d + (n − 1)c
= (n − 1)y + 2d + c + (n − 2)c
= (n − 1)y + 2d + c + (n − 2)d
= (n − 1)y + c
= R1(x, y)

Let H = σ(R1(σ(y), σ(x)).
H = σ(R1((n − 1)y + d, (n − 1)x + d))
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= (n − 1)[(n − 1)[(n − 1)x + d] + c] + d

= (n − 1)[(n − 1)2x + (n − 1)d + c] + d

= (n − 1)3x + (n − 1)2d + (n − 1)c + d
= −x + 2d + (n − 1)c
= (n − 1)x + 2d + c + (n − 2)c
= (n − 1)x + 2d + c + (n − 2)d
= (n − 1)x + c
= R2(x, y)

2. If σ(x) = x, then

R1(y, R2(x, y)) = R1(y, (n − 1)x + c)
= (n − 1)[(n − 1)x + c] + c

= (n − 1)2x + (n − 1)c + c

= n2x − 2nx + x + nc
= x

R2(R2(x, y), R1(x, y)) = R2((n − 1)x + c, (n − 1)y + c)
= (n − 1)[(n − 1)x + c] + c

= (n − 1)2x + (n − 1)c + c

= n2x − 2nx + x + nc
= x

R2(R1(x, y), x) = R2((n − 1)y + c, x)
= (n − 1)[(n − 1)y + c] + c

= (n − 1)2y + (n − 1)c + c

= n2y − 2ny + y + nc
= y

R1(R2(x, y), R1(x, y)) = R1((n − 1)x + c, (n − 1)y + c)
= (n − 1)[(n − 1)y + c] + c

= (n − 1)2y + (n − 1)c + c

= n2y − 2ny + y + nc
= y

(R2(y, R2(x, y)), R1(R1(x, y), x)) = (R2(y, (n − 1)x + c), R1((n − 1)y + c, x))
= ((n − 1)y + c, (n − 1)x + c)
= R(x, y)

R1(σ(x), σ(z)) = R1(x, z)
= σ(R1(x, z))

R2(σ(x), σ(z)) = R2(x, z)



480 | K. Bataineh, H. Ghaith

= σ(R2(x, z))

σ(R2(σ(y), σ(x)) = σ(R2(y, x))
= R2(y, x)
= (n − 1)y + c
= R1(x, y)

σ(R1(σ(y), σ(x)) = σ(R1(y, x))
= R1(y, x)
= (n − 1)x + c
= R2(x, y)

3. If σ(x) = x + n
2 , where n is even, then

R1(y, R2(x, y)) = R1(y, (n − 1)x + c)
= (n − 1)[(n − 1)x + c] + c

= (n − 1)2x + (n − 1)c + c

= n2x − 2nx + x + nc
= x

R2(R2(x, y), R1(x, y)) = R2((n − 1)x + c, (n − 1)y + c)
= (n − 1)[(n − 1)x + c] + c

= (n − 1)2x + (n − 1)c + c

= n2x − 2nx + x + nc
= x

R2(R1(x, y), x) = R2((n − 1)y + c, x)
= (n − 1)[(n − 1)y + c] + c

= (n − 1)2y + (n − 1)c + c

= n2y − 2ny + y + nc
= y

R1(R2(x, y), R1(x, y)) = R1((n − 1)x + c, (n − 1)y + c)
= (n − 1)[(n − 1)y + c] + c

= (n − 1)2y + (n − 1)c + c

= n2y − 2ny + y + nc
= y

(R2(y, R2(x, y)), R1(R1(x, y), x)) = (R2(y, (n − 1)x + c), R1((n − 1)y + c, x))
= ((n − 1)y + c, (n − 1)x + c)
= R(x, y)

R1(σ(x), σ(z)) = R1(x + n
2 , z +

n
2)
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= (n − 1)[z + n
2 ] + c

= (n − 1)z + (n − 1)n2 + c

= R1(x, z) + n
2

= σ(R1(x, z))

R2(σ(x), σ(z)) = R2(x + n
2 , z +

n
2)

= (n − 1)[x + n
2 ] + c

= (n − 1)x + (n − 1)n2 + c

= R2(x, z) + n
2

= σ(R2(x, z))

σ(R2(σ(y), σ(x)) = σ(R2(y + n
2 , x +

n
2))

= (n − 1)[y + n
2 ] + c + n

2
= (n − 1)y + (n − 1)n2 + c + n

2
= (n − 1)y + c
= R1(x, y)

σ(R1(σ(y), σ(x)) = σ(R1(y + n
2 , x +

n
2))

= (n − 1)[x + n
2 ] + c + n

2
= (n − 1)x + (n − 1)n2 + c + n

2
= (n − 1)x + c
= R2(x, y)

So (Zn , ∗, ∗, R1, R2) is a singbikei.

Example 3.8. As examples on the last theorem, we give
1. let X = Z10, with

σ(x) = 9x + 3
R1(x, y) = 9y + 8
R2(x, y) = 9x + 8

then (Z10, ∗, ∗, R1, R2) is a singbikei.
2. let X = Z8, with

σ(x) = x + 4
R1(x, y) = 7y + 5
R2(x, y) = 7x + 5

then (Z8, ∗, ∗, R1, R2) is a singbikei.
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Example 3.9. LetΛ = Z[t, s]/(t2−1, s2−1, (s−t)(1−s))be the quotient of the ring of two-variable polynomials
with integer coe�cients such that s2 = t2 = 1 by the ideal generated by (s-t)(1-s). Let R1, R2 : X × X Ð→ X be
two maps. Then any Λ - module X with x∗y = tx + (s − t)y, and x∗y = sx, is a singbikei if R1 and R2 satisfy the
following equations:

x = R1(y, R2(x, y)) = R2(R2(x, y), R1(x, y))
y = R2(R1(x, y), x) = R1(R2(x, y), R1(x, y))

R(x, y) = (R2(y, R2(x, y)), R1(R1(x, y), x))
R1(sx, sz) = sR1(x, z)
R2(sx, sz) = sR2(x, z)

t(ty + (s − t)x) + (s − t)R1(x, z) = t(ty + (s − t)z) + (s − t)R2(x, z)
R1(tx + (s − t)y, tz + (s − t)y) = tR1(x, z) + (s − t)(sy)
R2(tx + (s − t)y, tz + (s − t)y) = tR2(x, z) + (s − t)(sy)

R1(x, y) = tR2(sy, tx+(s − t)y) + (s − t)R1(sy, tx + (s − t)y)
R2(x, y) = sR1(sy, tx + (s − t)y)

We call such a singbikei an Alexander singbikeis. For example,

1. Z10 with x∗y = 9x + 2y and x∗y = x, R1(x, y) = 8x + 3y and R2(x, y) = 7x + 4y satisfy all the equations
in Example 3.9. So (Z10, ∗, ∗, R1, R2) is an Alexander singbikei.

2. Z13 with x∗y = 12x + 2y and x∗y = x, R1(x, y) = 9x + 5y and R2(x, y) = 8x + 6y satisfy all the equations
in Example 3.9. So (Z13, ∗, ∗, R1, R2) is an Alexander singbikei.

Example 3.10. Let X = G be a group with x∗y = yx−1y and x∗y = x.
Let R1, R2 : X × X Ð→ X be two maps, then (X, ∗, ∗, R1, R2) is a singbikei if R1 and R2 satisfy the following

equations:

x = R1(y, R2(x, y)) = R2(R2(x, y), R1(x, y))
y = R2(R1(x, y), x) = R1(R2(x, y), R1(x, y))

R(x, y) = (R2(y, R2(x, y)), R1(R1(x, y), x))
R1(x, z)(x−1yx−1)R1(x, z) = R2(x, z)(z−1yz−1)R2(x, z)

R1(yx−1y, yz−1y) = yR−11 (x, z)y
R2(yx−1y, yz−1y) = yR−12 (x, z)y

R1(x, y) = R1(y, yx−1y)R−12 (y, yx−1y)R1(y, yx−1y)
R2(x, y) = R1(y, yx−1y)

Proposition 3.11. The following maps

R1(x, y) = (xy−1)nx
R2(x, y) = (xy−1)n−1x, n ∈ N

with the condition

(yx−1)n2+1 = 1

are solutions for the system in Example 3.10.
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Proof. We show that R1 and R2 satisfy the equations in Example 3.10.

R1(y, R2(x, y)) = R1(y, (xy−1)n−1x)
= [yx−1(yx−1)n−1]ny
= (yx−1)n2y
= xy−1y
= x

R2(R2(x, y), R1(x, y)) = R2((xy−1)n−1x, (xy−1)nx)
= [(xy−1)n−1xx−1(yx−1)n]n−1(xy−1)n−1x
= [yx−1]n−1(xy−1)n−1x
= x

R2(R1(x, y), x) = R2((xy−1)nx, x)
= [(xy−1)nxx−1]n−1(xy−1)nx
= [xy−1]n2−n(xy−1)nx
= [xy−1]n2x
= yx−1x
= y

R1(R2(x, y), R1(x, y)) = R1((xy−1)n−1x, (xy−1)nx)
= [(xy−1)n−1xx−1(yx−1)n]n(xy−1)n−1x
= [yx−1]n(xy−1)n−1x
= yx−1x
= y

(R2(y, R2(x, y)), R1(R1(x, y), x)) = (R2(y, (xy−1)n−1x), R1((xy−1)nx, x))
= ([yx−1(yx−1)n−1]n−1y, [(xy−1)nxx−1]n(xy−1)nx)
= ([(yx−1)n]n−1y, [(xy−1)n]n(xy−1)nx)
= ((yx−1)n2−ny, (xy−1)n2(xy−1)nx)
= (xy−1(xy−1)ny, (xy−1)n2+1(xy−1)n−1x)
= ((xy−1)n+1y, (xy−1)n−1x)
= ((xy−1)nxy−1y, (xy−1)n−1x)
= ((xy−1)nx, (xy−1)n−1x)
= R(x, y)

R1(x, z)(x−1yx−1)R1(x, z) = R2(x, z)(z−1yz−1)R2(x, z)
(xz−1)nx[x−1yx−1](xz−1)nx = (xz−1)n−1x[z−1yz−1](xz−1)n−1x

(xz−1)nyx−1(xz−1)nx = (xz−1)nyz−1(xz−1)n−1x
= (xz−1)nyx−1xz−1(xz−1)n−1x
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= (xz−1)nyx−1(xz−1)nx

R1(yx−1y, yz−1y) = yR−11 (x, z)y
(yx−1yy−1zy−1)nyx−1y = y[(xz−1)nx]−1y

y(x−1z)nx−1y = y(xz−1)nx−1y

R2(yx−1y, yz−1y) = yR−12 (x, z)y
(yx−1yy−1zy−1)n−1yx−1y = y[(xz−1)n−1x]−1y

yx−1(zx−1)n−1y = yx−1(zx−1)n−1y

R1(x, y) = R1(y, yx−1y)R−12 (y, yx−1y)R1(y, yx−1y)
(xy−1)nx = (yy−1xy−1)ny[(yy−1xy−1)n−1y]−1(yy−1xy−1)ny

= (xy−1)nyy−1(yx−1)n−1(xy−1)ny
= (xy−1)nxy−1y
= (xy−1)nx

R2(x, y) = R1(y, yx−1y)
(xy−1)n−1x = (yy−1xy−1)ny

= (xy−1)ny
= (xy−1)n−1xy−1y
= (xy−1)n−1x

This completes the proof.

Remark 3.12. From the proposition above, note that:
(a) If n = 1, then R1(x, y) = xy−1x and R2(x, y) = x with the condition (yx−1)2 = 1 is a solution for Example

3.10.
(b) If n = 2, then R1(x, y) = xy−1xy−1x and R2(x, y) = xy−1x with the condition (yx−1)5 = 1 is a solution for

Example 3.10.

4 Applications
In this section we use singbikei and coloring invariants to distinguish singular knots and links.

Example 4.1. Consider the two singular knots in the graph below.
(a) Let X = G be a group generated by (yx−1)2 = 1 with x∗y = yx−1y and x∗y = x, R1(x, y) = xy−1x and
R2(x, y) = x.
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Fig. 12. The singular knots in Example 4.1 (a).

(a) (b)

In Figure 12 (a), the relations at the crossings give

x = (xy−1)3x
x = yz−1y

z = xy−1x

Thus the set of colorings is {(x, y, z) ∈ G × G × G ∶ x = y = z}.
In Figure 12 (b), the relations at the crossings give

x = y

x = yz−1y

z = (yx−1)2y

Thus the set of colorings is {(x, y, z) ∈ G × G × G ∶ x = y = z}.
The solution set is the same for both of the sets of colorings above. Therefore, this coloring invariant fails

to distinguish these two singular knots.
(b) Let X = G be a group generated by (yx−1)5 = 1 with x∗y = yx−1y and x∗y = x, R1(x, y) = (xy−1)2x and
R2(x, y) = xy−1x.

Fig. 13. The singular knots in Example 4.1 (b).

(a) (b)

In Figure 13 (a), the relations at the crossings give

x = (xy−1)3zy−1(xy−1)2x
(xy−1)2 = (yz−1)2

z = (xy−1)2x
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Thus the set of colorings is {(x, y, z) ∈ G × G × G ∶ 1 = (xy−1)3, (xy−1)2 = (yz−1)2}.
In Figure 13 (b), the relations at the crossings give

x = yz−1y

(xy−1)2 = (yz−1)2

z = yz−1(yx−1)3yz−1y.

Thus the set of colorings is {(x, y, z) ∈ G × G × G ∶ xy−1 = yz−1}.
One can always choose a group G such that these two coloring sets are distinct.

Example 4.2. Consider the two singular links in the graph below, let X = G be a group generated by (yx−1)5 = 1
with x∗y = yx−1y and x∗y = x, R1(x, y) = (xy−1)2x and R2(x, y) = xy−1x.

Fig. 14. The singular links in Example 4.2.

(a) (b)

In Figure 14 (a), the relations at the crossings give

x = xy−1x

x = yz−1y
z = y

Thus the set of colorings is {(x, y, z) ∈ G × G × G ∶ x = y = z}.
In Figure 14 (b), the relations at the crossings give

x = xy−1x

x = (yz−1)3y
z = (yz−1)2y

Thus the set of colorings is {(x, y, z) ∈ G × G × G ∶ x = y, 1 = (yz−1)3}.
One can always choose a group G such that these two coloring sets are distinct.

Example 4.3. Consider the two singular links in the graph below. Each of them has one singular crossing
followed by (n + 1) regular crossings, let X = G be a group generated by (yx−1)5 = 1 with x∗y = yx−1y and
x∗y = x, R1(x, y) = (xy−1)2x and R2(x, y) = xy−1x.
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Fig. 15. The singular links in Example 4.3.

(a) (b)

In Figure 15 (a), the relations at the crossings give

x = (xy−1)n+3x
y = (xy−1)n+2x

Thus the set of colorings is {(x, y) ∈ G × G ∶ 1 = (xy−1)n+3}.
In Figure 15 (b), the relations at the crossings give

x = (xy−1)2−ny
y = (xy−1)1−ny

Thus the set of colorings is {(x, y) ∈ G × G ∶ 1 = (xy−1)1−n}.
One can always choose a group G such that these two coloring sets are distinct.

Example 4.4. Consider the two singular knots in the graph below, let X =Gbe a group generated by (yx−1)5 = 1
with x∗y = yx−1y and x∗y = x, R1(x, y) = (xy−1)2x and R2(x, y) = xy−1x.

Fig. 16. The singular knots in Example 4.4.

(a) (b)

In Figure 16 (a), the relations at the crossings give

x = z

y = zy−1(xy−1)2z
z = zy−1(xy−1)3z

Thus the set of colorings is {(x, y, z) ∈ G × G × G ∶ x = z, 1 = (xy−1)4}.
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In Figure 16 (b), the relations at the crossings give

x = xy−1zy−1x
y = y

z = yx−1y

Thus the set of colorings is {(x, y, z) ∈ G × G × G ∶ z = yx−1y}.
Therefore, this coloring invariant distinguishes these two singular knots.

Example 4.5. Consider the two singular knots in the graph below, let X =G be a group generated by (yx−1)5 = 1
with x∗y = yx−1y and x∗y = x, R1(x, y) = (xy−1)2x and R2(x, y) = xy−1x.

Fig. 17. The singular knots in Example 4.5.

(a)
(b)

In Figure 17 (a), the relations at the crossings give

x = (xy−1)5x
y = (xy−1)4x

Thus the set of colorings is G × G.
In Figure 17 (b), the set of colorings isG. Therefore, this coloring invariant distinguishes these two singular

knots.
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