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Abstract: A set in the complex plane which involves n parameters in [0, 1] is given to localize all eigenvalues
di�erent from 1 for stochastic matrices. As an application of this set, an upper bound for the moduli of the
subdominant eigenvalues of a stochastic matrix is obtained. Lastly, we �x n parameters in [0, 1] to give
a new set including all eigenvalues di�erent from 1, which is tighter than those provided by Shen et al.
(Linear Algebra Appl. 447 (2014) 74-87) and Li et al. (Linear and Multilinear Algebra 63(11) (2015) 2159-2170)
for estimating the moduli of subdominant eigenvalues.
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1 Introduction
Stochastic matrices and eigenvalue localization of stochastic matrices play key roles in many application
�elds, such as Computer Aided Geometric Design [1], Birth-Death Processes [2–5], and Markov chains [6]. An
entrywise nonnegative matrix A = [aij] ∈ Rn×n is called row stochastic (or simply stochastic) if all its row
sums are 1,that is,

n
∑

j=1
aij = 1, for each i ∈ N = {1, 2, . . . , n}.

Let us denote the ith deleted column sum of the moduli of o�-diagonal entries of A by

Ci(A) = ∑
j≠i

∣aji ∣.

Obviously, 1 is an eigenvalue of a stochasticmatrix with a corresponding eigenvector e = [1, 1, . . . , 1]T . From
the Perron-Frobenius Theorem [7], for any eigenvalue λ of A, that is, λ ∈ σ(A), we have ∣λ∣ ≤ 1 [8]. Here we call
∣λ∣ a moduli of subdominant eigenvalue of a stochastic matrix A if 1 > ∣λ∣ > ∣η∣ for every eigenvalue η di�erent
from 1 and λ [8–10].

Since the subdominant eigenvalue of a stochastic matrix is crucial for bounding the convergence rate of
stochastic processes [8, 11–14], it is interesting to give a set to localize all eigenvalues di�erent from 1, or an
upper bound for the moduli of its subdominant eigenvalue [8, 15].

One can use the well-known Geršgorin circle set [16] to localize all eigenvalues for a stochastic matrix.
However, this set always includes the trival eigenvalue 1, and thus it is not always precise for capturing

Xiaoxiao Wang: School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, China 650091,
E-mail: 1944287231@qq.com
*Corresponding Author: Chaoqian Li: School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, China
650091, E-mail: lichaoqian@ynu.edu.cn
Yaotang Li: School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, P. R. China 650091

https://doi.org/10.1515/math-2018-0030


A Geršgorin-type eigenvalue localization set with n parameters for stochastic matrices | 299

all eigenvalues di�erent from 1 of a stochastic matrix. Therefore, several authors have tried to modify the
Geršgorin circle set to localize more precisely all eigenvalues di�erent from 1. In [8], Cvetković et al. gave the
following set.

Theorem 1.1 ([8, Theorem 3.4]). Let A = [aij] ∈ Rn×n be a stochastic matrix. If λ ∈ σ(A)/{1}, then

λ ∈ Γ(A) = {z ∈ C ∶ ∣z − γ(A)∣ < 1 − trace(A) + (n − 1)γ(A)},

where γ(A) = max
i∈N

(aii − li(A)), li(A) = min
j≠i

aji and trace(A) is the trace of A.

However, the set provided by Theorem 1.1 is not e�ective in some cases, such as, for the class of stochastic
matrices

SM0 = {A ∈ Rn×n
∶ A is stochastic, and aii = li = 0, for each i ∈ N},

for more details, see [15]. To overcome this drawback, Li and Li [15] provided another set as follows.

Theorem 1.2 ([15, Theorem 6]). Let A = [aij] ∈ Rn×n be a stochastic matrix. If λ ∈ σ(A)/{1}, then

λ ∈ Γ̃(A) = {z ∈ C ∶ ∣z + γ̃(A)∣ < trace(A) + (n − 1)γ̃(A) − 1},

where γ̃(A) = max
i∈N

(Li(A) − aii) and Li(A) = max
j≠i

aji.

Recently, by taking respectively

li(A) = min
j≠i

aji , vi(A) = max
⎧
⎪⎪
⎨
⎪⎪
⎩

0, 1
2

min
k,m≠i,
k≠m

{aki + ami}

⎫
⎪⎪
⎬
⎪⎪
⎭

=
1
2

min
k,m≠i,
k≠m

{aki + ami},

and
qi(A) =

1
n − 1 ∑j≠i

aji

to modify the Geršgorin circle set, Shen et al. [12], and Li et al. [11] gave three sets to localize all eigenvalues
di�erent from 1.

Theorem 1.3 ([11, 12]). Let A = [aij] ∈ Rn×n be a stochastic matrix. If λ ∈ σ(A)/{1}, then

λ ∈ Γ
stol

(A) = ⋃
i∈N

(Γ
stol
i (A) = {z ∈ C ∶ ∣aii − z − li(A)∣ < Cli(A)}) ,

λ ∈ Γ
stov

(A) = ⋃
i∈N

(Γ
stov
i (A) = {z ∈ C ∶ ∣aii − z − vi(A)∣ < Cvi(A)})

and
λ ∈ Γ

stoq
(A) = ⋃

i∈N
(Γ

stoq
i (A) = {z ∈ C ∶ ∣aii − z − qi(A)∣ < Cqi(A)}) ,

where
Cli(A) = ∑

j≠i
∣aji − li(A)∣ = ∑

j≠i
aji −∑

j≠i
li(A) = Ci(A) − (n − 1)li(A),

Cvi(A) = ∑
j≠i

∣aji − vi(A)∣ = Ci(A) − (n − 3)vi(A) − 2li(A)

and Cqi(A) = ∑
j≠i

∣aji − qi(A)∣.

Remark here that Shen et al. [12] used these three sets to localize any real eigenvalue di�erent from 1, which
are generalized to localize all eigenvalues di�erent from 1 by Li et al. [11].

Also in [11], Li et al. provided another two modi�cations of the Geršgorin circle set by taking respectively

Li(A) = max
j≠i

aji , and Vi(A) =
1
2

max
k,m≠i,
k≠m

{aki + ami}.
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Theorem 1.4 ([11, Theorems 3.3 and 3.8]). Let A = [aij] ∈ Rn×n be a stochastic matrix. If λ ∈ σ(A)/{1}, then

λ ∈ Γ
stoL

(A) = ⋃
i∈N

(Γ
stoL
i (A) = {z ∈ C ∶ ∣Li(A) − aii + z∣ < CLi(A)})

and
λ ∈ Γ

stoV
(A) = ⋃

i∈N
(Γ

stoV
i (A) = {z ∈ C ∶ ∣Vi(A) − aii + z∣ < CVi(A)}) ,

where
CLi(A) = ∑

j≠i
∣Li(A) − aji ∣ = (n − 1)Li(A) − Ci(A)

and
CVi(A) = ∑

j≠i
∣Vi(A) − aji ∣ = (n − 3)Vi(A) + 2Li(A) − Ci(A).

Note that li(A), vi(A), qi(A), Vi(A) and Li(A) are all in the interval [min
j≠i

aji , max
j≠i

aji]. So it is natural to ask

whether or not there is an optimal value in [min
j≠i

aji , max
j≠i

aji] such that the set, which is obtained by using

this value to modify the Geršgorin circle set, captures all eigenvalues di�erent from 1 of a stochastic matrix
most precisely. To answer this question, we give a set in Section 2 with n parameters in [0, 1] to localize
all eigenvalues di�erent from 1 for a stochastic matrix, and show that this set would reduce to Γ stol

(A),
Γ stov

(A), Γ stoq
(A), Γ stoV

(A) and Γ stoL
(A) by taking some �xed parameters. And we use this set in Section

3 to give an upper bound for the moduli of its subdominant eigenvalue for a stochastic matrix. In section 4,
by choosing special values of these n parameters in [0, 1] for the upper bound obtained in Section 3, we give
a new set including all eigenvalues di�erent from 1, which is better than Γ stol

(A) and Γ stoL
(A) in the sense

of estimating the moduli of subdominant eigenvalues.

2 A Geršgorin-type eigenvalue localization set with n parameters
We �rst begin with an important lemma, which is used to give somemodi�cations of the Geršgorin circle set.

Lemma 2.1 ([8, 11, 12]). Let A = [aij] ∈ Rn×n be a stochastic matrix. For any d = [d1, d2, . . . , dn]T ∈ Rn, if
µ ∈ σ(A)/{1}, then −µ is an eigenvalue of the matrix

B = edT − A.

Lemma 2.1 shows that once an eigenvalue localization set for B = edT −A is given, we can get a set to localize
all eigenvalues di�erent from 1 for the stochastic matrix A [11]. Now we present the following choice of d:

d = Lαi
(A), (1)

where Lαi
(A) = [Lα1

1 (A), Lα2
2 (A), . . . , Lαn

n (A)]T , αi ∈ [0, 1] for i ∈ N and

Lαi
i (A) = αiLi(A) + (1 − αi)li(A) = αi max

j≠i,
j∈N

aji + (1 − αi)min
j≠i,
j∈N

aji , i ∈ N .

By Lemma 2.1 and (1),we can obtain the following set to localize all eigenvalues di�erent from1of a stochastic
matrix.

Theorem 2.2. Let A = [aij] ∈ Rn×n be a stochastic matrix. If λ ∈ σ(A)/{1}, then for any αi ∈ [0, 1], i ∈ N,

λ ∈ Γ
stoLα

(A) = ⋃
i∈N

Γ
stoLαi
i (A),

where
Γ
stoLαi
i (A) = {z ∈ C ∶ ∣αiLi(A) + (1 − αi)li(A) − aii + z∣ ≤ CLαi

i (A)}
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and
CLαi

i (A) = ∑
j≠i

∣Lαi
i (A) − aji ∣ = ∑

j≠i
∣αiLi(A) + (1 − αi)li(A) − aji ∣. (2)

Proof. Let Bαi
= edT − A = [bαi

ij ], where d = Lαi
(A) = [Lα1

1 (A), Lα2
2 (A), . . . , Lαn

n (A)]T . By applying the
Geršgorin circle theorem to Bαi , we have that for any λ̂ ∈ σ(Bαi

),

λ̂ ∈ ⋃

i∈N
{z ∈ C ∶ ∣bαi

ii − z∣ ≤ Ci(Bαi
)}.

By Lemma 2.1, we have for λ ∈ σ(A)/{1}, then −λ ∈ σ(Bαi
), that is,

−λ ∈ ⋃

i∈N
{z ∈ C ∶ ∣bαi

ii − z∣ ≤ Ci(Bαi
)}.

Furthermore, note that for any i ∈ N,

bαi
ii = Lαi

i (A) − aii = αiLi(A) + (1 − αi)li(A) − aii

and

Ci(Bαi
) = ∑

j≠i
∣Lαi

i (A) − aji ∣ = CLαi
i (A).

Hence,
λ ∈ Γ

stoLα
(A) = ⋃

i∈N
Γ
stoLαi
i (A),

where Γ stoLαi
i (A) = {z ∈ C ∶ ∣αiLi(A) + (1 − αi)li(A) − aii + z∣ ≤ CLαi

i (A)}.

Example 2.3. Consider the �rst 50 stochastic matrices generated by the MATLAB code

k = 10;A = rand(k, k);A = inv(diag(sum(A′))) ∗ A,

and take αi ∈ [0, 1] for i = 1, 2, . . . , 10 by the MATLAB code

alpha = rand(1, k).

By drawing the sets Γ stoLα
(A) in Theorem 2.2 and

Γ = (Γ(A)⋂ Γ̃(A))

in Theorems 1.1 and 1.2, it is not di�cult to see that the number of Γ stoLα
(A) ⊂ Γ is 46, that if 1 ∉ Γ , then

1 ∉ Γ stoLα
(A), and that if 1 ∈ Γ , then Γ stoLα

(A) may not contain the trivial eigenvalue 1 (also see Table 1).
So, by these examples, we conclude that the set in Theorem 2.2 captures all eigenvalues di�erent from 1 of a
stochastic matrix more precisely than the sets in Theorem 1.1 and Theorem 1.2 in some cases.

Table 1. Comparisons of Γ stoLα(A) and Γ = (Γ (A)⋂ Γ̃ (A))

1 ∈ Γ stoLα(A) 1 ∉ Γ Γ stoLα
(A)⊈Γ ,

Γ⊈Γ stoLα (A) Γ stoLα(A) ⊂ Γ
Number 8 2 4 46

The i-th happens 3,4,7,14,
38,39,40,42 25, 31 3, 7, 11, 35 otherwise

Remark 2.4. (I) When αi = 1 for each i ∈ N, then Lαi
i (A) = Li(A) and CLαi

i (A) = CLi(A) for any i ∈ N, which
implies Γ stoLα

(A) reduces to Γ stoL
(A) in Theorem 1.4;
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(II) When αi =
Vi(A)−li(A)
Li(A)−li(A) ∈ [0, 1] and Li(A) > li(A) for each i ∈ N, then Lαi

i (A) = Vi(A) and CLαi
i (A) =

CVi(A) for any i ∈ N. On the other hand, if for some i ∈ N, Li(A) = li(A), then for any αi ∈ [0, 1] we also have
Lαi
i (A) = Vi(A) and CLαi

i (A) = CVi(A). These imply Γ stoLα
(A) reduces to Γ stoV

(A) in Theorem 1.4;
(III) When αi =

qi(A)−li(A)
Li(A)−li(A) ∈ [0, 1] and Li(A) > li(A) for each i ∈ N, then Lαi

i (A) = qi(A) and CLαi
i (A) =

Cqi(A) for any i ∈ N. On the other hand, if for some i ∈ N, Li(A) = li(A), then for any αi ∈ [0, 1] we also have
Lαi
i (A) = qi(A) and CLαi

i (A) = Cqi(A). These imply Γ stoLα
(A) reduces to Γ stoq

(A) in Theorem 1.3;
(IV) When αi =

vi(A)−li(A)
Li(A)−li(A) ∈ [0, 1] and Li(A) > li(A) for each i ∈ N, then Lαi

i (A) = vi(A) and CLαi
i (A) =

Cvi(A) for any i ∈ N. On the other hand, if for some i ∈ N, Li(A) = li(A), then for any αi ∈ [0, 1] we also have
Lαi
i (A) = vi(A) and CLαi

i (A) = Cvi(A). These imply Γ stoLα
(A) reduces to Γ stov

(A) in Theorem 1.3;
(V) When αi = 0 for each i ∈ N, then Lαi

i (A) = li(A) and CLαi
i (A) = Cli(A) for any i ∈ N, which implies

Γ stoLα
(A) reduces to Γ stol

(A) in Theorem 1.3.

Hence, we say that the set Γ stoLα
(A) is a generalization of Γ stol

(A), Γ stov
(A) and Γ stoq

(A) in Theorem 1.3,
and Γ stoV

(A) and Γ stoL
(A) in Theorem 1.4. Moreover, according to αi ∈ [0, 1] in Theorem 2.2, we can get the

following result easily.

Remark 2.5. Let A = [aij] ∈ Rn×n be a stochastic matrix. If λ ∈ σ(A)/{1}, then

λ ∈ Γ
[0,1]

(A) = ⋂

α∈[0,1]
Γ
stoLα

(A).

Furthermore, Γ [0,1]
(A) ⊆ (Γ stoL

(A)⋂Γ stoV
(A)⋂Γ stoq

(A)⋂Γ stov
(A)⋂Γ stol

(A)).

The set Γ [0,1]
(A) in Remark 2.5 is not of much practical use because it involves some parameters αi. In fact,

we can take some special αi in practice, which is illustrated by the following example.

Example 2.6. Consider the third stochastic matrix A in Example 2.3. By Table 1, we have that

1 ∈ Γ
stoLα

(A), Γ stoLα
(A) ⊈ Γ , and Γ ⊈ Γ

stoLα
(A),

which is shown in Figure 1, where Γ stoLα
(A) is drawn slightly thicker than Γ . Furthermore, we take the �rst 3

vectors
α
(j)

= [α
(j)
1 ,α(j)

2 , . . . ,α(j)
10 ], j = 1, 2, 3

generated by the MATLAB code alpha = rand(1, 10), that is,

α
(1)

= [0.8147, 0.9058, 0.1270, 0.9134, 0.6324, 0.0975, 0.2785, 0.5469, 0.9575, 0.9649],

α
(2)

= [0.1576, 0.9706, 0.9572, 0.4854, 0.8003, 0.1419, 0.4218, 0.9157, 0.7922, 0.9595],

and

α
(3)

= [0.6557, 0.0357, 0.8491, 0.9340, 0.6787, 0.7577, 0.7431, 0.3922, 0.6555, 0.1712].

By Remark 2.5, we have that for any λ ∈ σ(A)/{1},

λ ∈ (Γ
stoLα

(1)

(A)⋂Γ
stoLα

(2)

(A)⋂Γ
stoLα

(3)

(A)) .

We draw this set in the complex plane, see Figure 2. It is easy to see

1 ∉ (Γ
stoLα

(1)

(A)⋂Γ
stoLα

(2)

(A)⋂Γ
stoLα

(3)

(A))

and
(Γ

stoLα
(1)

(A)⋂Γ
stoLα

(2)

(A)⋂Γ
stoLα

(3)

(A)) ⊂ Γ .
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Fig. 1. Γ stoLα(A) ⊈ Γ , and Γ ⊈ Γ stoLα(A)

Fig. 2. (Γ stoLα
(1)
(A)⋂Γ stoLα

(2)
(A)⋂Γ stoLα

(3)
(A)) ⊂ Γ

This example shows that we can take some special αi to get a set which is tighter than the sets in Theorems
1.1 and 1.2.

It is well-known that an eigenvalue inclusion set leads to a su�cient condition for nonsingular matrices,
and vice versa [12, 16]. Hence, from Theorem 2.2 or Remark 2.5, we can get a nonsingular condition for
stochastic matrices.

Proposition 2.7. Let A = [aij] ∈ Rn×n be a stochastic matrix. If for some ᾱi ∈ [0, 1], i ∈ N,

∣ᾱiLi(A) + (1 − ᾱi)li(A) − aii ∣ > CLᾱi
i (A), i ∈ N, (3)

where CLᾱi
i is de�ned as (2), then A is nonsingular.
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Proof. Suppose that A is singular, that is, 0 ∈ σ(A). From Theorem 2.2, we have that for any αi ∈ [0, 1], i ∈ N,

0 ∈ Γ
stoLα

(A) = ⋃
i∈N

Γ
stoLαi
i (A).

In particular,
0 ∈ Γ

stoLᾱ
(A) = ⋃

i∈N
Γ
stoLᾱi
i (A).

Hence, there is an index i0 ∈ N such that

∣ᾱi0Li0(A) + (1 − ᾱi0)li0(A) − ai0 i0 ∣ ≤ CLᾱi
i0 (A).

This contradicts (3). The conclusion follows.

3 An upper bound for the moduli of subdominant eigenvalues
By using the set Γ stoLα

(A) in Theorem 2.2, we can give a bound to estimate the moduli of subdominant
eigenvalues of a stochastic matrix.

Theorem 3.1. Let A = [aij] ∈ Rn×n be a stochastic matrix. If λ ∈ σ(A)/{1}, then

∣λ∣ ≤ ρ
[0,1], (4)

where ρ[0,1]
= max

i∈N
min

αi∈[0,1]
{

n
∑

j=1
∣αiLi(A) + (1 − αi)li(A) − aji ∣} .

Proof. Let

fi(αi) =
n
∑

j=1
∣αiLi(A) + (1 − αi)li(A) − aji ∣

= CLαi
i (A) + ∣αiLi(A) + (1 − αi)li(A) − aii ∣,αi ∈ [0, 1], i ∈ N,

where
CLαi

i (A) = ∑
j≠i

∣αiLi(A) + (1 − αi)li(A) − aji ∣.

Therefore, each fi(αi), i ∈ N is a continuous function of αi ∈ [0, 1], and there are α̃i ∈ [0, 1], i ∈ N such that

fi(α̃i) = min
αi∈[0,1]

{CLαi
i (A) + ∣αiLi(A) + (1 − αi)li(A) − aii ∣} , i ∈ N . (5)

For these α̃i ∈ [0, 1], i ∈ N, by Theorem 2.2 we have

λ ∈ Γ
stoLα̃

(A) = ⋃
i∈N

Γ
stoLα̃i
i (A).

Hence, there is an index i0 ∈ N such that

∣α̃i0Li0(A) + (1 − α̃i0)li0(A) − ai0 i0 + λ∣ ≤ CLα̃i0
i0 (A)},

which gives

∣λ∣ ≤ CLα̃i0
i0 (A) + ∣α̃i0Li0(A) + (1 − α̃i0)li0(A) − ai0 i0 ∣. (6)

By (5) we have
∣λ∣ ≤ min

αi0∈[0,1]
{CLαi0

i0 (A) + ∣αi0Li0(A) + (1 − αi0)li0(A) − ai0 i0 ∣} ,
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which implies

∣λ∣ ≤ max
i∈N

min
αi∈[0,1]

{CLαi
i (A) + ∣αiLi(A) + (1 − αi)li(A) − aii ∣}

= max
i∈N

min
αi∈[0,1]

⎧
⎪⎪
⎨
⎪⎪
⎩

n
∑

j=1
∣αiLi(A) + (1 − αi)li(A) − aji ∣

⎫
⎪⎪
⎬
⎪⎪
⎭

= ρ
[0,1].

The conclusion follows.

As in the proof of Theorem 3.1, we can give another bound to estimate themoduli of subdominant eigenvalues
by using the sets Γ stol

(A), Γ stov
(A) and Γ stoq

(A)in Theorem 1.3, Γ stoL
(A) and Γ stoV

(A) in Theorem 1.4,
respectively.

Theorem 3.2. Let A = [aij] ∈ Rn×n be a stochastic matrix. If λ ∈ σ(A)/{1}, then

∣λ∣ ≤ min{ρL , ρV , ρq , ρv , ρl}, (7)

where
ρL = max

i∈N
{aii + nLi(A) − Ci(A)} ,

ρV = max
i∈N

{aii + (n − 2)Vi(A) + 2Li(A) − Ci(A)} ,

ρq = max
i∈N

⎧
⎪⎪
⎨
⎪⎪
⎩

n
∑

j=1
∣aji − qi(A)∣

⎫
⎪⎪
⎬
⎪⎪
⎭

,

ρv = max
i∈N

{aii − (n − 4)vi(A) − 2li(A) + Ci(A)}

and
ρl = max

i∈N
{aii − (n − 2)li(A) + Ci(A)} .

Proof. We �rst prove ∣λ∣ ≤ ρL. From Theorem 1.4,

λ ∈ Γ
stoL

(A) = ⋃
i∈N

Γ
stoL
i (A).

As in the proof of Theorem 3.1, we have that there is an index i0 ∈ N such that

∣Li0(A) − ai0 i0 + λ∣ ≤ CLi0(A),

and

∣λ∣ ≤ ∣ai0 i0 − Li0(A)∣ + CLi0(A)
≤ ai0 i0 + Li0(A) + (n − 1)Li0(A) − Ci0(A)
= ai0 i0 + nLi0(A) − Ci0(A)
≤ max

i∈N
{aii + nLi(A) − Ci(A)} ,

i.e., ∣λ∣ ≤ ρL. Similarly, by

λ ∈ Γ
stoV

(A), λ ∈ Γ
stoq

(A), λ ∈ Γ
stov

(A), and λ ∈ Γ
stol

(A),

we can get respectively
∣λ∣ ≤ ρV , ∣λ∣ ≤ ρq , ∣λ∣ ≤ ρv , and ∣λ∣ ≤ ρl .

The conclusion follows.

By the choices of αi in Remark 2.4, it is easy to get the relationships between ρ[0,1], ρL , ρV , ρq , ρv and ρl as
follows.
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Theorem 3.3. Let A = [aij] ∈ Rn×n be a stochastic matrix. Then

ρ
[0,1]

≤ min{ρL , ρV , ρq , ρv , ρl},

where ρ[0,1], ρL , ρV , ρq , ρv , and ρl are de�ned in Theorem 3.1 and Theorem 3.2, respectively.

As in the proof of Theorem 3.2, by Theorems 1.1 and 1.2 two upper bounds for the subdominant eigenvalue of
a stochastic matrix are obtained easily.

Proposition 3.4. Let A = [aij] ∈ Rn×n be a stochastic matrix and λ ∈ σ(A)/{1} be its subdominant eigenvalue.
Then

∣λ∣ ≤ 1 − trace(A) + nγ(A), and ∣λ∣ ≤ trace(A) + nγ̃(A) − 1,

consequently,
∣λ∣ ≤ min{1 − trace(A) + nγ(A), trace(A) + nγ̃(A) − 1}. (8)

For the comparison of ρ[0,1] and the upper bound

Λ ∶= min{1 − trace(A) + nγ(A), trace(A) + nγ̃(A) − 1}

in (8), we conclude here that by taking some special αi and the fact that Λ is given by Theorems 1.1 and 1.2,
an upper bound can be obtained, which is better than

min{1 − trace(A) + nγ(A), trace(A) + nγ̃(A) − 1}.

4 Special choices of αi for the set Γ stoLα(A)
In this section, we choose αi for the set Γ stoLα

(A) to give a set, which is tighter than the sets Γ stol
(A) and

Γ stoL
(A) by determining the optimal value of αi for estimating the moduli of subdominant eigenvalues of a

stochastic matrix.
For a given stochastic matrix A = [aij] ∈ Rn×n, let

N+(A) = {i ∈ N ∶ ∆i(A) ≥ 0}

and
N−(A) = {i ∈ N ∶ ∆i(A) < 0},

where∆i(A) = nLi(A) + (n − 2)li(A) − 2Ci(A). Obviously, N = N+(A)⋃N−(A).

Proposition 4.1. Let A = [aij] ∈ Rn×n be a stochastic matrix. If λ ∈ σ(A)/{1}, then

∣λ∣ ≤ ρ
0,1, (9)

where
ρ

0,1
= max{ max

i∈N+(A)
{aii − (n − 2)li(A) + Ci(A)} , max

i∈N−(A)
{aii + nLi(A) − Ci(A)}} .

Proof. Note that

CLαi
i (A) + ∣αiLi(A) + (1 − αi)li(A) − aii ∣

= ∑

j≠i
∣αiLi(A) + (1 − αi)li(A) − (αiaji + (1 − αi)aji)∣

+∣αiLi(A) + (1 − αi)li(A) − aii ∣
≤ αi∑

j≠i
∣Li(A) − aji ∣ + (1 − αi)∑

j≠i
∣li(A) − aji ∣
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+αiLi(A) + (1 − αi)li(A) + aii
= (n − 1) (αiLi(A) − (1 − αi)li(A)) + (1 − 2αi)Ci(A)
+αiLi(A) + (1 − αi)li(A) + aii

= aii − (n − 2)li(A) + Ci(A) + αi (nLi(A) + (n − 2)li(A) − 2Ci(A))
= aii − (n − 2)li(A) + Ci(A) + αi∆i(A).

Hence, from Theorem 3.1, we have

∣λ∣ ≤ max
i∈N

min
αi∈[0,1]

⎧
⎪⎪
⎨
⎪⎪
⎩

n
∑

j=1
∣αiLi(A) + (1 − αi)li(A) − aji ∣

⎫
⎪⎪
⎬
⎪⎪
⎭

= max
i∈N

min
αi∈[0,1]

{CLαi
i (A) + ∣αiLi(A) + (1 − αi)li(A) − aii ∣}

≤ max
i∈N

min
αi∈[0,1]

{aii − (n − 2)li(A) + Ci(A) + αi∆i(A)}

= max{ max
i∈N+(A)

min
αi∈[0,1]

{aii − (n − 2)li(A) + Ci(A) + αi∆i(A)} ,

max
i∈N−(A)

min
αi∈[0,1]

{aii − (n − 2)li(A) + Ci(A) + αi∆i(A)}} . (10)

Furthermore, let
f(α) = aii − (n − 2)li(A) + Ci(A) + α∆i(A), α ∈ [0, 1].

Then when ∆i(A) ≥ 0, f(α) reaches its minimum aii − (n − 2)li(A) + Ci(A) at α = 0, and when ∆i(A) < 0,
f(α) reaches its minimum

aii − (n − 2)li(A) + Ci(A) +∆i(A) = aii + nLi(A) − Ci(A)

at α = 1. Therefore, Inequality (10) is equivalent to

∣λ∣ ≤ max{ max
i∈N+(A)

{aii − (n − 2)li(A) + Ci(A)} ,

max
i∈N−(A)

{aii + nLi(A) − Ci(A)}} .

The conclusion follows.

By the proof of Proposition 4.1, it is not di�cult to see that the upper bound ρ0,1 is larger than ρ[0,1] in Theorem
3.1, but ρ0,1 depends only on the entries of a stochastic matrix. Moreover, ρ0,1

≤ ρL and ρ0,1
≤ ρl, which are

given as follows.

Proposition 4.2. Let A = [aij] ∈ Rn×n be a stochastic matrix. Then

ρ
0,1

≤ min{ρl , ρL},

where ρl , ρL and ρ0,1 are de�ned in Theorem 3.2 and Proposition 4.1, respectively.

Proof. By the proof of Proposition 4.1, we have that ρ0,1 is equivalent to the last of Inequality (10), that is,

ρ
0,1

= max{ max
i∈N+(A)

min
αi∈[0,1]

{aii − (n − 2)li(A) + Ci(A) + αi∆i(A)} ,

max
i∈N−(A)

min
αi∈[0,1]

{aii − (n − 2)li(A) + Ci(A) + αi∆i(A)}} .

Also let
f(α) = aii − (n − 2)li(A) + Ci(A) + α∆i(A), α ∈ [0, 1].
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Then when ∆i(A) ≥ 0, f(α) is a monotonically increasing function of α, and when ∆i(A) < 0, f(α) is a
monotonically decreasing function of α.

For the case that Li(A) = max
j≠i,
j∈N

aji > li(A) = min
j≠i,
j∈N

aji , i ∈ N, we will prove ρ0,1
< ρL. Note that

f(0) = aii − (n − 2)li(A) + Ci(A), and f(1) = aii + nLi(A) − Ci(A).

Since f(α) is increasing when∆i(A) ≥ 0, we have

max
i∈N+(A)

{aii − (n − 2)li(A) + Ci(A)} = max
i∈N+(A)

min
αi∈[0,1]

{aii − (n − 2)li(A) + Ci(A) + αi∆i(A)}

≤ max
i∈N+(A)

{aii − (n − 2)li(A) + Ci(A) +∆i(A)}

= max
i∈N+(A)

{aii + nLi(A) − Ci(A)} ,

which implies
ρ

0,1
≤ max

i∈N
{aii + nLi(A) − Ci(A)} = ρL .

Then similarly as in the proof of ρ0,1
≤ ρL, we can obtain easily ρ0,1

≤ ρl .
For the case that Li(A) = li(A) for some i ∈ N, we have∆i(A) = 0 and

aii + nLi(A) − Ci(A) = aii + (n − 2)Vi(A) + 2Li(A) − Ci(A)

=

n
∑

j=1
∣aji − qi(A)∣

= aii − (n − 4)vi(A) − 2li(A) + Ci(A)
= aii − (n − 2)li(A) + Ci(A).

Similarly as in the case Li(A) > li(A), i ∈ N, we can also obtain easily

ρ
0,1

≤ ρL and ρ
0,1

≤ ρl .

The conclusion follows.

By propositions 4.1 and 4.2, we know that the optimal values of αi, i ∈ N for the bound

max
i∈N

min
αi∈[0,1]

{aii − (n − 2)li(A) + Ci(A) + αi∆i(A)} ,

which could be obtained by using the set Γ stoLα
(A) in Theorem 2.2, are αi = 0 for i ∈ N+(A) and αi = 1 for

i ∈ N−(A) such that

ρ
0,1

= max{ max
i∈N+(A)

{aii − (n − 2)li(A) + Ci(A)} , max
i∈N−(A)

{aii + nLi(A) − Ci(A)}} .

is less than or equal to the bounds obtained byusing the sets in Theorem 1.3 and 1.4 respectively. This provides
a choice of αi, i ∈ N for the set Γ stoLα

(A) to localize all eigenvalues di�erent from 1 of a stochastic matrix.
For a stochastic matrix A = [aij] ∈ Rn×n and

d = Lαi
(A) = [Lα1

1 (A), Lα2
2 (A), . . . , Lαn

n (A)]T

de�ned as (1), we take αi = 0 for i ∈ N+(A) and αi = 1 for i ∈ N−(A), that is,

Lαi
i (A) = {

L0
i (A) = li(A), i ∈ N+(A),

L1
i (A) = Li(A), i ∈ N−(A).

For this choice, the set Γ stoLα
(A) reduces to

Γ
stoL0,1

(A) ∶=
⎛

⎝
⋃

i∈N+(A)
Γ
stoL0

i (A)
⎞

⎠
⋃

⎛

⎝
⋃

i∈N−(A)
Γ
stoL1

i (A)
⎞

⎠

,

where Γ stoL0

i (A) = Γ stol
i (A) and Γ stoL1

i (A) = Γ stoL
i (A). Hence, we have the following result.
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Theorem 4.3. Let A = [aij] ∈ Rn×n be a stochastic matrix. If λ ∈ σ(A)/{1}, then

λ ∈ Γ
stoL0,1

(A) =
⎛

⎝
⋃

i∈N+(A)
Γ
stol
i (A)

⎞

⎠
⋃

⎛

⎝
⋃

i∈N−(A)
Γ
stoL
i (A)

⎞

⎠

. (11)

Example 4.4. Consider the stochastic matrix

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.2656 0.0471 0.1452 0.0758 0.2199 0.2463
0.2634 0.3368 0.0475 0.1143 0.1354 0.1026
0.0591 0.2002 0.1831 0.1916 0.1814 0.1846
0.2699 0.2753 0.1655 0.1941 0.0788 0.0165
0.1443 0.0598 0.1205 0.2582 0.2839 0.1332
0.2355 0.1027 0.1399 0.2358 0.2111 0.0750

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By computations, we have that N+(A) = {2, 4, 6}, N−(A) = {1, 3, 5}, and

Γ
stoL0,1

(A) = Γ
stol
2 (A)⋃Γ

stol
4 (A)⋃Γ

stol
6 (A)⋃Γ

stoL
1 (A)⋃Γ

stoL
3 (A)⋃Γ

stoL
5 (A).

By drawing the sets Γ stol
(A), Γ stoL

(A) and Γ stoL0,1
(A) in the complex plane (see Figure 3), it is not di�cult to

see that for any λ ∈ σ(A)/{1},
λ ∈ Γ

stoL0,1
(A),

and that although Γ stoL0,1
(A) ⊈ Γ stol

(A) and Γ stol
(A) ⊈ Γ stoL0,1

(A), the set Γ stoL0,1
(A) is better than Γ stol

(A)
and Γ stoL

(A) for estimating the moduli of subdominant eigenvalues.

Fig. 3. Γ stol(A), Γ stoL(A) and Γ stoL0,1(A)

5 Conclusions
In this paper, a set with n parameters in [0, 1] is given to localize all eigenvalues di�erent from 1 for a
stochastic matrix A, that is,

σ(A)/{1} ⊆ Γ
stoLα

(A), for any αi ∈ [0, 1], i ∈ N .
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In particular, when αi = 0 for each i ∈ N, Γ stoLα
(A) reduces to the set Γ stol

(A), which consists of n sets
Γ stol
i (A), and when αi = 1 for each i ∈ N, Γ stoLα

(A) reduces to the set Γ stoL
(A), which consists of n sets

Γ stoL
i (A). The sets Γ stol

(A) and Γ stoL
(A) are used to estimate the moduli of subdominant eigenvalues, that

is, for any λ ∈ σ(A)/{1},
∣λ∣ ≤ ρl = max

i∈N
{aii − (n − 2)li(A) + Ci(A)}

and
∣λ∣ ≤ ρL = max

i∈N
{aii + nLi(A) − Ci(A)} .

Moreover, by taking αi = 0 for i ∈ N+(A) and αi = 1 for i ∈ N−(A), we give a set Γ stoL0,1
(A), which consists of

∣N+(A)∣ sets Γ stol
i (A) and ∣N−(A)∣ sets Γ stoL

i (A) where ∣N+(A)∣ + ∣N−(A)∣ = n. By using Γ stoL0,1
(A), we can

get an upper bound for the moduli of subdominant eigenvalues which is better than ρl and ρL, i.e, for any
λ ∈ σ(A)/{1},

∣λ∣ ≤ ρ
0,1

≤ min{ρl , ρL},

where
ρ

0,1
= max{ max

i∈N+(A)
{aii − (n − 2)li(A) + Ci(A)} , max

i∈N−(A)
{aii + nLi(A) − Ci(A)}} .
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