
Open Access. © 2018 László, published by De Gruyter. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

Open Math. 2018; 16: 276–288

Open Mathematics

Research Article

Szilárd László*

A primal-dual approach of weak vector
equilibrium problems
https://doi.org/10.1515/math-2018-0028
Received August 6, 2017; accepted February 28, 2018.

Abstract: In this paper we provide some new su�cient conditions that ensure the existence of the solution
of a weak vector equilibrium problem in Hausdor� topological vector spaces ordered by a cone. Further, we
introduce a dual problem and we provide conditions that assure the solution set of the original problem
and its dual coincide. We show that many known problems from the literature can be treated in our primal-
dual model. We provide several coercivity conditions in order to obtain the existence of the solution of the
primal-dual problems without compactness assumption. We apply the obtained results to perturbed vector
equilibrium problems.
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1 Introduction
A considerable number of problems that arise inmathematics can be treated in the framework of equilibrium
problems, just to mention optimization problems, �xed points, saddle points or variational inequalities, as
well asmany important problems in physics andmathematical economics, such as location problems orNash
equilibria in game theory.

The scalar equilibrium theory has been initiated by Ky Fan [1], his minimax inequality still being
considered one of the most notable results in this �eld. Recall, that the classical scalar equilibrium problem
[1, 2], de�ned by a bifunction ϕ ∶ K × K Ð→ R, consists in �nding x0 ∈ K such that

ϕ(x0, y) ≥ 0, ∀y ∈ K.

The pioneeringwork of Giannessi [3], led to several extensions of the scalar equilibriumproblem to the vector
case. These vector equilibrium problems, much like their scalar counterpart, o�er a uni�ed framework for
treating vector optimization, vector variational inequalities or cone saddle point problems, to name just a
few [4–11].

Let X and Z be Hausdor� topological vector spaces, let K ⊆ X be a nonempty set and let C ⊆ Z be a convex
and pointed cone. Assume that the interior of the cone C, denoted by int C, is nonempty and consider the
mapping F ∶ K × K × K Ð→ Z. The weak vector equilibrium problem governed by the vector trifunction F
consists in �nding x0 ∈ K, such that

F(x0, y, x0) /∈ − int C, ∀y ∈ K. (1)
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The dual vector equilibrium problem of (1) is de�ned as: Find x0 ∈ K, such that

F(x0, y, y) /∈ − int C, ∀y ∈ K. (2)

We underline that for Z = R and C = R+ = [0,∞), the previous problems reduce to the scalar equilibrium
problems studied by Inoan and Kolumbán in [12].

The study of the problems (1) and (2) is motivated by the following setting. Assume that the weak vector
equilibriumproblem,which consists in �nding x0 ∈ K such that f(x0, y) /∈ − int C for all y ∈ K, has no solution
though the diagonal condition f(x, x) = 0, for all x ∈ K holds. Then, we may study instead a perturbed
equilibrium problem (see also [13, 14]) and provide assumptions on the perturbation function g, such that
the problem which consists in �nding x0 ∈ K such that f(x0, y) + g(x0, y) /∈ − int C for all y ∈ K, has a
solution. But in this case the latter problem is the dual of the following problem: Find x0 ∈ K, such that
F(x0, y, x0) /∈ − int C, for all y ∈ K, with the trifunction F(x, y, z) = f(x, z) + g(x, y). Moreover, for an
appropriate perturbation g the primal problem, that is, to �nd x0 ∈ K such that g(x0, y) /∈ − int C for all
y ∈ K has a solution. Hence, it is worthwhile to obtain conditions that assure that the solution sets of (1) and
(2) coincide. This setting may have some important consequences. Indeed, by taking X a Banach space and
g(x, y) = ε∥x − y∥e, where ε > 0 and e ∈ C ∖ {0}, a solution of the perturbed vector equilibrium problem is
called ε-equilibrium point, see [15, 16]. Further, special cases of the perturbed vector equilibrium problems
lead to some deep results such as Deville-Godefroy-Zizler perturbed equilibrium principle or Ekeland vector
variational principle, see [14].

Moreover, take F(x, y, z) = ⟨Az, y − x⟩, where A ∶ K Ð→ L(X, Z) is a given operator and L(X, Z) denotes
the set of all linear and continuous operators from X to Z. For x∗ ∈ L(X, Z) and x ∈ X, we denote by ⟨x∗, x⟩
the vector x∗(x) ∈ Z. In this setting (1) becomes: �nd x0 ∈ K, such that ⟨Ax0, y − x0⟩ /∈ − int C for all y ∈ K,
which is the weak vector variational inequality of Stampacchia, see [17]. On the other hand (2) becomes: �nd
x0 ∈ K, such that ⟨Ay, y − x0⟩ /∈ − int C for all y ∈ K, which is the weak vector variational inequality of Minty,
see [17].

In this paper, we obtain some existence results of the solution for the vector equilibrium problem (1)
and (2). Someof our conditions arenew in the literature. Several examples and counterexamples circumscribe
our research and show that our conditions are essential. The paper is organized as follows. In the next
section, we introduce some preliminary notions and the necessary apparatus that we need in order to
obtain our results. In section 3 we state our results concerning on weak vector equilibrium problems. Our
conditions, which ensure the existence of a solution of the abovementioned vector equilibrium problems are
considerably weakening the existing conditions from the literature. We also emphasize the case when the set
K is a closed subset of a re�exive Banach space. Finally, we apply our results to vector equilibrium problems
given by the sum of two bifunctions which can be seen as perturbed equilibrium problems.

2 Preliminaries
Let X be a real Hausdor� topological vector space. For a non-empty set D ⊆ X, we denote by intD its interior,
by clD its closure and by coD its convex hull. Recall that a set C ⊆ X is a cone, i� tk ∈ C for all c ∈ C and t ≥ 0.
The cone C is convex if C+ C = C, and pointed if C∩(−C) = {0}. Note that a closed, convex and pointed cone
C induce a partial ordering on Z, that is z1 ≤ z2 ⇔ z2 − z1 ∈ C. In the sequel when we use int C, we tacitly
assume that the cone C has nonempty interior. Following the same logical approach, one can introduce the
strict inequality z1 < z2⇔ z2 − z1 ∈ int C, or z1 < z2⇔ z2 − z1 ∈ C ∖ {0}. These relations lead to saying, that
z1 /< z2⇔ z2− z1 /∈ − int C, or z1 /< z2⇔ z2− z1 /∈ −C∖{0}. It is an easy exercise to show that int C+C = int C.

Let Z be another Hausdor� topological vector space, let K ⊆ X be a nonempty set and let C ⊆ Z be a
convex and pointed cone.

A map f ∶ K ⊆ X Ð→ Z is said to be C-upper semicontinuous at x ∈ K i� for any neighborhood V of f(x)
there exists a neighborhood U of x such that f(u) ∈ V − C for all u ∈ U ∩ K. Obviously, if f is continuous at
x ∈ K, then it is also C-upper semicontinuous at x ∈ K. If the cone C has nonempty interior then according to
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[18], f is C-upper semicontinuous at x ∈ K, if and only if, for any k ∈ int C, there exists a neighborhood U of x
such that

f(u) ∈ f(x) + k − int C for all u ∈ U ∩ K.

De�nition 2.1. Let K ⊆ X be convex. The function f ∶ K → Z is called C-convex on K, i� for all x, y ∈ K and
t ∈ [0, 1] one has

tf(x) + (1 − t)f(y) − f(tx + (1 − t)y) ∈ C.

Note that the function f ∶ K → Z is C-convex, i� for all x1, x2, . . . , xn ∈ K, n ∈ N and λi ≥ 0, i ∈ {1, 2, . . . , n},
with∑n

i=1 λi = 1, one has
n
∑
i=1
λi f(xi) − f (

n
∑
i=1
λixi) ∈ C.

We will use the following notations for the open, respectively closed, line segments in X with the endpoints
x and y

]x, y[ ∶= {z ∈ X ∶ z = x + t(y − x), t ∈]0, 1[},
[x, y] ∶= {z ∈ X ∶ z = x + t(y − x), t ∈ [0, 1]}.

The line segments ]x, y], respectively [x, y[ are de�ned similarly. Further, we need the following notions,
see [3].

De�nition 2.2. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone
with nonempty interior and let K be a nonempty subset of X. Consider the mapping F ∶ K × K × K Ð→ Z.
(a) We say that F is weakly C-pseudomonotone with respect to the third variable, if for all x, y ∈ K

F(x, y, x) /∈ − int C Ô⇒ F(x, y, y) /∈ − int C.

Assume now, that K is a nonempty convex subset of X.
(b) We say that F is weakly explicitly C-quasiconvex with respect to the second variable, if for all x, y, z ∈ K and

for all t ∈]0, 1[ one has
F(x, (1 − t)x + ty, z) − F(x, x, z) ∈ − int C,

or
F(x, (1 − t)x + ty, z) − F(x, y, z) ∈ − int C.

(c) We say that F is weakly C-hemicontinuous with respect to the third variable, if for all x, y ∈ K such that
F(x, y, (1 − t)x + ty) /∈ − int C for all t ∈]0, 1] one has

F(x, y, x) /∈ − int C.

In subsequent section, the notion of a KKM map and the well-known intersection Lemma due to Ky Fan [19]
will be needed.

De�nition 2.3 (Knaster-Kuratowski-Mazurkiewicz). Let X be aHausdor� topological vector space and let M ⊆
X. The application G ∶ M ⇉ X is called a KKM application if for every �nite number of elements x1, x2, . . . , xn ∈
M one has

co{x1, x2, . . . , xn} ⊆
n
⋃
i=1

G(xi).

Lemma 2.4 (Fan [19]). Let X be a Hausdor� topological vector space, M ⊆ X and G ∶ M ⇉ X be a KKM
application. If G(x) is closed for every x ∈ M, and there exists x0 ∈ M, such that G(x0) is compact, then
⋂x∈M G(x) ≠ ∅.
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3 The coincidence of solution sets and solution existence
In this section we provide several conditions, some of them new in the literature, that assure the existence
of solution of problem (1) and (2), respectively. Further, we give conditions that assure the coincidence of the
solution sets of these problems. Hence, we can deduce the existence of a solution of the dual problem from
the nonemptyness of the solution set of the primal problem and vice versa.

In what follows we provide a Minty type result (see [17, 20]) for the problems (1) and (2). More precisely,
we provide conditions that assure the coincidence of the solutions set of problems (1) and (2), respectively.

Theorem 3.1. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone with
nonempty interior and let K be a nonempty subset of X. Consider the mapping F ∶ K × K × K Ð→ Z. Then, the
following statements hold.
(i) If F is weakly C-pseudomonotone with respect to the third variable, then every x ∈ K which solves (1) is also

a solution of (2).
(ii) Assume that K is convex and F(x, x, y) ∈ −C for all x, y ∈ K, x ≠ y. If F is weakly explicitly C-quasiconvex

with respect to the second variable and is weakly C-hemicontinuous with respect to the third variable, then
every x ∈ K which solves (2) is also a solution of (1).

Proof. ”(i)” Let x0 ∈ K be a solution of (1). Then F(x0, y, x0) /∈ − int C for all y ∈ K. On the other hand F is
weakly C-pseudomonotonewith respect to the third variable, hence F(x0, y, x0) /∈ − int C implies F(x0, y, y) /∈
− int C for all y ∈ K.

”(ii)” Let x0 ∈ K be a solution of (2). Then F(x0, y, y) /∈ − int C for all y ∈ K. Let z ∈ K, z ≠ x0. Since K is
convex we obtain that (1 − t)x0 + tz ∈ K for all t ∈ [0, 1].

Consequently, we have
F(x0, (1 − t)x0 + tz, (1 − t)x0 + tz) /∈ − int C

for all t ∈ [0, 1].
But F is weakly explicitly quasiconvex relative the second variable, hence for all t ∈]0, 1[ one has

F(x0, (1 − t)x0 + tz, (1 − t)x0 + tz) − F(x0, x0, (1 − t)x0 + tz) ∈ − int, C

or
F(x0, (1 − t)x0 + tz, (1 − t)x0 + tz) − F(x0, z, (1 − t)x0 + tz) ∈ − int C.

Since F(x, x, y) ∈ −C for all x, y ∈ K, x ≠ y and C + int C = int C the �rst relation cannot hold. Hence, for all
t ∈]0, 1[ one has

F(x0, (1 − t)x0 + tz, (1 − t)x0 + tz) − F(x0, z, (1 − t)x0 + tz) ∈ − int C.

Since F(x0, (1 − t)x0 + tz, (1 − t)x0 + tz) /∈ − int C, for all t ∈ [0, 1], and by assumption F(x0, z, z) /∈ − int C,
we have that for all t ∈]0, 1],

F(x0, z, (1 − t)x0 + tz) /∈ − int C.

Taking into account the fact that F is weakly C-hemicontinuous with respect to the third variable, we obtain

F(x0, z, x0) /∈ − int C.

Since z is arbitrary, it follows that x0 is a solution of (1).

Remark 3.2. Note that the assumptions F(x, x, y) ∈ −C for all x, y ∈ K, x ≠ y and F is weakly explicitly C-
quasiconvex with respect to the second variable in the hypothesis (ii) of Theorem 3.1 can be replaced by the
assumption

F(x, (1 − t)x + ty, z) − F(x, y, z) ∈ − int C,

for all t ∈]0, 1[, as follows directly from the proof.
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However, inwhat followswe show that the latter assumption in the hypothesis (ii) of Theorem3.1 is essential.
More precisely, we give an example of a trifunction F which is not weakly explicitly C-quasiconvex with respect
to the second variable but all the other assumptions of Theorem 3.1 (ii) hold, meanwhile the problem (2) has a
solution, but the problem (1) has no solution.

Example 3.3 (see also [21], Example 3.2). Let us consider the trifunction F ∶ [−1, 1]×[−1, 1]×[−1, 1] Ð→ R2,

F(x, y, z) = ((f(y) − f(x))g(z), (f(y) − f(x))g(z)) ,

where f ∶ [−1, 1] Ð→ [0, 1], f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−2x − 1, if x ∈ [−1,−1
2
]

2x + 1, if x ∈ (−1
2
, 0]

−2x + 1, if x ∈ (0, 1] ,

and g ∶ [−1, 1] Ð→ [−1, 1], g(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−2
3
x + 1

3
, if, x ∈ [−1, 1

2
]

−2x + 1, if, x ∈ (1
2
, 1] .

Further, consider C = R2
+ = {(x1, x2) ∈ R2 ∶ x1 ≥ 0, x2 ≥ 0} the nonnegative orthant ofR2, which is obviously

a convex and pointed cone, with nonempty interior. We consider the problems (1) and (2) de�ned by the
trifunction F and by the cone C. Obviously the set K = [−1, 1] is convex. Further F(x, x, y) = (0, 0) ∈ −C for
all x, y ∈ K and since the functions f and g are continuous, from F(x, y, (1− t)x+ ty) /∈ − int C for all t ∈]0, 1]
one has F(x, y, x) /∈ − int C, by taking the limit t Ð→ 0. Hence, F is weakly C-hemicontinuous with respect to
the third variable. We show that F is not weakly explicitly C-quasiconvex with respect to the second variable.
Indeed, for x = −1, y = − 1

2 , z =
1
2 and all t ∈]0, 1[ one has F(x, (1 − t)x + ty, z) − F(x, x, z) = (0, 0) /∈ − int C

and F(x, (1 − t)x + ty, z) − F(x, y, z) = (0, 0) /∈ − int C.
We show that x0 = − 1

2 ∈ K is a solution of the (2), but is not a solution of (1). Indeed, it can easily be
veri�ed that (f(y) − f (− 1

2)) ⋅ g(y) ≥ 0 for all y ∈ K, hence F (− 1
2 , y, y) /∈ − int C. In other words x0 = − 1

2 is a
solution of (2).

On the other hand, for y = 3
4 ∈ K we obtain (f(y) − f (− 1

2)) ⋅ g (−
1
2) = − 1

2 ⋅
2
3 < 0 which shows that

F (− 1
2 , y,−

1
2) ∈ − int C. Hence, x0 = − 1

2 is not a solution of (1).

Remark 3.4. In order to use Fan’s Lemma to obtain solution existence for the problem (1) we need conditions
that assure for every y ∈ K the closedness of the sets G(y) = {x ∈ K ∶ F(x, y, x) /∈ − int C}.

Lemma 3.5. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone with
nonempty interior and let K be a nonempty, convex and closed subset of X. Let y ∈ K and consider the mapping
F ∶ K × K × K Ð→ Z. Assume that one of the following conditions hold.
(a) The mapping x Ð→ F(x, y, x) is C-upper semicontinuous on K.
(b) For every x ∈ K and for every net (xα) ⊆ K, lim xα = x there exists a net zα ⊆ Z, lim zα = z such that

F(xα, y, xα) − zα ∈ −C and F(x, y, x) − z ∈ C.
Then, the set G(y) = {x ∈ K ∶ F(x, y, x) /∈ − int C} is closed.

Proof. Let us prove (a). Consider the net (xα) ⊆ G(y) and let lim xα = x0. Assume that x0 /∈ G(y). Then
F(x0, y, x0) ∈ − int C. According to the assumption, the function x Ð→ F(x, y, x) is C-upper semicontinuous
at x0, hence for every k ∈ int C there existsU, a neighborhoodof x0, such that F(x, y, x) ∈ F(x0, y, x0)+k−int C
for all x ∈ U . But then, for k = −F(x0, y, x0) ∈ int C, one obtains that there exists α0 such that F(xα, y, xα) ∈
− int C, for α ≥ α0, which contradicts the fact that (xα) ⊆ G(y0). Hence G(y) ⊆ K is closed.

For (b) consider the net (xα) ⊆ G(y) and let lim xα = x0. Assume that x0 /∈ G(y). Then F(x0, y, x0) ∈
− int C. But by the assumption there exists a net zα ⊆ K, lim zα = z such that F(xα, y, xα) − zα ∈ −C and
F(x0, y, x0) − z ∈ C. From the latter relation we get z ∈ − int C, and since − int C is open we have zα ∈ − int C
for every α ≥ α0. But then, F(xα, y, xα) ∈ zα−C and int C+C = int C leads to F(xα, y, xα) ∈ − int C for α ≥ α0,
contradiction.
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In what follows we provide an example to emphasize that the condition (b) in Lemma 3.5 is in general weaker
than condition (a).

Example 3.6. Let C = {(x1, x2) ∈ R2 ∶ x21 ≤ x22, x2 ≥ 0}. Obviously, C is a closed convex and pointed cone in
R2 with nonempty interior. Consider the trifunction

F ∶ [0, 1] × [0, 1] × [0, 1] Ð→ R2, F(x, y, z) = { (x + y, 2x − z) if 0 ≤ x ≤ 1
2 ,

(2x + y, z − x) if 1
2 < x ≤ 1.

Then, for every �xed y ∈ [0, 1] the mapping x Ð→ F(x, y, x) is continuous, hence it is also C-upper semicon-
tinuous, at every x ∈ [0, 1] ∖ { 1

2}. We show that x Ð→ F(x, y, x) is not C-upper semicontinuous at the point
x = 1

2 for every �xed y ∈ [0, 1]. For this it is enough to show that for all ε > 0 there exists (c1, c2) ∈ int C and
x ∈ ] 12 − ε,

1
2 + ε[ such that (c1, c2) + F( 12 , y,

1
2) − F(x, y, x) /∈ int C. Hence, for �xed ε > 0 (ε < 2) let (c1, c2) =

(ε−1, 1) ∈ int C. Consider x = 1
2 +

ε
2 ∈ ] 12 − ε,

1
2 + ε[ . Then, (c1, c2) + F(

1
2 , y,

1
2) − F(x, y, x) = (− 3

2 ,
3
2) /∈ int C.

Next, we show that condition (b) in Lemma 3.5 holds for x = 1
2 and every �xed y ∈ [0, 1]. Obviously, instead

of nets one can consider sequences, hence let (xn) ⊆ [0, 1], xn Ð→ 1
2 , n Ð→∞.Wemust show, that there exists

a sequence (zn) ⊆ R2, lim zn = z such that F(xn , y, xn) − zn ∈ −C and F ( 1
2 , y,

1
2) − z ∈ C.

Let zn = (xn+y, xn). Then F(xn , y, xn)−zn = (0, 0) ∈ −C for every n ∈ N, such that xn ≤ 1
2 and F(xn , y, xn)−

zn = (xn ,−xn) ∈ −C for every n ∈ N, such that xn > 1
2 . Obviously lim zn = z = ( 1

2 + y, 12), hence F ( 1
2 , y,

1
2)− z =

(0, 0) ∈ C.

Now we are able to prove the following existence result concerning on the solution of the problem (1).

Theorem 3.7. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone
with nonempty interior, and let K be a nonempty, convex and closed subset of X. Consider the mapping F ∶
K × K × K Ð→ Z satisfying
(i) ∀y ∈ K, one of the conditions (a), (b) in Lemma 3.5 is satis�ed,
(ii) ∀x ∈ K, the mapping y Ð→ F(x, y, x) is C-convex,
(iii) ∀x ∈ K, F(x, x, x) /∈ − int C,
(iv) There exists K0 ⊆ X a nonempty and compact set and y0 ∈ K, such that F(x, y0, x) ∈ − int C, for all x ∈

K ∖ K0.
Then, there exists an element x0 ∈ K such that F(x0, y, x0) /∈ − int C, for all y ∈ K.

Proof. We consider the set-valued map G ∶ K ⇉ K, G(y) = {x ∈ K ∶ F(x, y, x) /∈ − int C}. From (i) via Lemma
3.5 we obtain that G(y) is closed for all y ∈ K. Moreover, (iii) assures that G(y) ≠ ∅, since y ∈ G(y).

We show next that G is a KKM mapping. Assume the contrary. Then, there exists y1, y2, ..., yn ∈ K and
y ∈ co{y1, y2, ..., yn} such that y /∈ ∪ni=1G(yi). In other words, there exists λ1, λ2, ..., λn ≥ 0 with∑n

i=1 λi = 1
such that y = ∑n

i=1 λiyi /∈ G(yi) for all i ∈ {1, 2, ..., n}, that is F (∑n
i=1 λiyi , yi ,∑n

i=1 λiyi) ∈ − int C, for all
i ∈ {1, 2, ..., n}. But then, since − int C is convex, one has

n
∑
i=1
λiF (

n
∑
i=1
λiyi , yi ,

n
∑
i=1
λiyi) ∈ − int C.

From assumption (ii), we have that
n
∑
i=1
λiF (

n
∑
i=1
λiyi , yi ,

n
∑
i=1
λiyi) − F (

n
∑
i=1
λiyi ,

n
∑
i=1
λiyi ,

n
∑
i=1
λiyi) ∈ C,

or equivalently, F (∑n
i=1 λiyi ,∑n

i=1 λiyi ,∑n
i=1 λiyi) ∈ ∑n

i=1 λiF (∑n
i=1 λiyi , yi ,∑n

i=1 λiyi) − C.
On the other hand,∑n

i=1 λiF (∑n
i=1 λiyi , yi ,∑n

i=1 λiyi) ∈ − int C and int C + C = int C, hence

F (
n
∑
i=1
λiyi ,

n
∑
i=1
λiyi ,

n
∑
i=1
λiyi) ∈ − int C,

which contradicts (iii). Consequently, G is a KKM application.
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We show that G(y0) is compact. For this is enough to show that G(y0) ⊆ K0. Assume the contrary, that is
G(y0) /⊆ K0. Then, there exits z ∈ G(y0) ∖ K0. This implies that z ∈ K ∖ K0, and according to (iv) F(z, y0, z) ∈
− int C, which contradicts the fact that z ∈ G(y0).

Hence, G(y0) is a closed subset of the compact set K0 which shows that G(y0) is compact.
Thus, according to Ky Fan’s Lemma, ⋂y∈K G(y) ≠ ∅. In other words, there exists x0 ∈ K, such that

F(x0, y, x0) /∈ − int C for all y ∈ K.

Remark 3.8. The approach, based on Ky Fan’s Lemma, in the proof of Theorem 3.7, is well known in the
literature, see, for instance, [11, 21–25]. Note that condition (iv) combined with condition (iii) in Theorem 3.7
ensure that y0 ∈ K ∩ K0, hence K ∩ K0 ≠ ∅, and since K ∩ K0 is compact one can assume directly that K0 ⊆ K.
Further, if K is compact condition (iv) is automatically satis�ed with K0 = K.

In what follows, inspired from [26], we provide another coercivity condition concerning a compact set and its
algebraic interior. Let U, V ⊆ X be convex sets and assume that U ⊆ V. We recall that the algebraic interior of
U relative to V is de�ned as

coreVU = {u ∈ U ∶ U∩]u, v] ≠ ∅, ∀v ∈ V}.

Note that coreVV = V . Our coercivity condition concerning the problem (1) becomes:
There exists a nonempty compact convex subset K0 of K such that for every x ∈ K0 ∖ coreKK0 there exists

an y0 ∈ coreKK0 such that F(x, y0, x) ∈ −C.
In the following results we use the coercivity conditions emphasized above and we drop the closedness

condition on K. However, condition (iii) also changes.

Theorem 3.9. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone with
nonempty interior, and let K be a nonempty, convex subset of X. Consider the mapping F ∶ K × K × K Ð→ Z
satisfying
(i) ∀y ∈ K, one of the conditions (a), (b) in Lemma 3.5 is satis�ed,
(ii) ∀x ∈ K, the mapping y Ð→ F(x, y, x) is C-convex,
(iii) ∀x ∈ K, F(x, x, x) ∈ −C ∖ − int C,
(iv) There exists a nonempty compact convex subset K0 of K with the property that for every x ∈ K0 ∖ coreKK0,

there exists an y0 ∈ coreKK0 such that F(x, y0, x) ∈ −C.
Then, there exists an element x0 ∈ K such that F(x0, y, x0) /∈ − int C, for all y ∈ K.

Proof. K0 is compact, hence, according to Theorem 3.7 there exists x0 ∈ K0 such that F(x0, y, x0) /∈
− int C, ∀y ∈ K0. We show, that F(x0, y, x0) /∈ − int C, ∀y ∈ K. First we show, that there exists z0 ∈ coreKK0

such that F(x0, z0, x0) ∈ −C. Indeed, if x0 ∈ coreKK0 then let z0 = x0 and the conclusion follows from
(iii). Assume now, that x0 ∈ K0 ∖ coreKK0. Then, according to (iv), there exists z0 ∈ coreKK0 such that
F(x0, z0, x0) ∈ −C.

Let y ∈ K. Then, since z0 ∈ coreKK0, there exists λ ∈ [0, 1] such that λz0 + (1 − λ)y ∈ K0, consequently
F(x0, λz0 + (1 − λ)y, x0) /∈ − int C. From (ii) we have

λF(x0, z0, x0) + (1 − λ)F(x0, y, x0) − F(x0, λz0 + (1 − λ)y, x0) ∈ C

or, equivalently

(1 − λ)F(x0, y, x0) − F(x0, λz0 + (1 − λ)y, x0) ∈ C − λF(x0, z0, x0) ⊆ C.

Assume that F(x0, y, x0) ∈ − int C. Then,

−F(x0, λz0 + (1 − λ)y, x0) ∈ −(1 − λ)F(x0, y, x0) + C ⊆ int C,

in other words
F(x0, λz0 + (1 − λ)y, x0) ∈ − int C,

a contradiction. Hence, F(x0, y, x0) /∈ − int C, for all y ∈ K.



A primal-dual approach of weak vector equilibrium problems | 283

Remark 3.10. According to Theorem 3.1, under the extra assumption that F is weakly C-pseudomonotone with
respect to the third variable Theorem 3.7 and Theorem 3.9 provide the solution existence of (2).

Using the same technique as in the proof of Theorem 3.7, based on Fan’s Lemma, on can easily obtain solution
existence of (2). However, note that depending on the structure of the trifunction F, the conditions may
signi�cantly di�er to those assumed in the hypothesis of Theorem 3.7 or Theorem 3.9. In what follows we
state a result concerning the closedness of the set G(y) = {x ∈ K ∶ F(x, y, y) /∈ − int C}.

Lemma 3.11. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone with
nonempty interior and let K be a nonempty, convex and closed subset of X. Let y ∈ K and consider the mapping
F ∶ K × K × K Ð→ Z. Assume that one of the following conditions hold.
(a) The mapping x Ð→ F(x, y, y) is C-upper semicontinuous on K.
(b) For every x ∈ K and for every net (xα) ⊆ K, lim xα = x, there exists a net zα ⊆ Z, lim za = z, such that

F(xα, y, y) − zα ∈ −C and F(x, y, y) − z ∈ C.
Then, the set G(y) = {x ∈ K ∶ F(x, y, y) /∈ − int C} is closed.

The proof is similar to the proof of Lemma 3.5 therefore we omit it. Our coercivity condition concerning the
problem (2) is the following:

There exists a nonempty compact convex subset K0 of K such that for every x ∈ K0 ∖ coreKK0 there exists
an y0 ∈ coreKK0 such that F(x, y0, y0) ∈ −C. As we have mentioned before, it is an easy exercise to provide
solution existence of (2) under similar conditions to those in the hypotheses of Theorem 3.7 and Theorem 3.9.

However, by using Theorem 3.1 we obtain the following existence result concerning the existence of the
solution of (1).

Theorem 3.12. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone
with nonempty interior and let K be a nonempty, convex subset of X. Consider the mapping F ∶ K × K × K Ð→ Z
satisfying
(i) ∀y ∈ K, one of the conditions (a), (b) in Lemma 3.11 is satis�ed,
(ii) ∀x ∈ K, the mapping y Ð→ F(x, y, y) is C-convex,
(iii) ∀x ∈ K, F(x, x, x) ∈ −C ∖ − int C and F(x, x, y) ∈ −C for all x, y ∈ K, x ≠ y,
(iv) There exists a nonempty compact convex subset K0 of K with the property that for every x ∈ K0 ∖ coreKK0,

there exists an y0 ∈ coreKK0 such that F(x, y0, y0) ∈ −C.
(v) F is weakly explicitly C-quasiconvex with respect to the second variable,
(vi) F is weakly C-hemicontinuous with respect to the third variable.
Then, there exists an element x0 ∈ K such that F(x0, y, x0) /∈ − int C for all y ∈ K.

Proof. Similarly to theproof of Theorem3.9 one canprove that (i)-(iv) assure thenonemptyness of the solution
set of (2). On the other hand, (iii), (v) and (vi) via Theorem 3.1 assure the nonemptyness of the solution set
of (1).

Remark 3.13. Note that Condition (iv) in the hypotheses of Theorem 3.7, Theorem 3.9 and Theorem 3.12 is
usually hard to be veri�ed. However, it is well known that in a re�exive Banach space X, the closed ball with
radius r > 0, Br ∶= {x ∈ X ∶ ∥x∥ ≤ r}, is weakly compact. Therefore, if we endow the re�exive Banach space X
with the weak topology, we can take K0 = Br ∩ K, hence, condition (iv) in Theorem 3.7 becomes : there exists
r > 0 and y0 ∈ K, such that for all x ∈ K satisfying ∥x∥ > r one has that F(x, y0, x) ∈ − int C.

Furthermore, it can easily be checked, that in this setting condition (iv) in the hypothesis of Theorem 3.7 can
be weakened by assuming that there exists r > 0, such that for all x ∈ K satisfying ∥x∥ > r, there exists some
y0 ∈ K, (which may depend by x), with ∥y0∥ < ∥x∥ and for which the condition F(x, y0, x) ∈ −C holds. However,
in this case the diagonal condition (iii) becomes

∀x ∈ K, F(x, x, x) ∈ −C ∖ − int C.



284 | S. László

Another coercivity condition (iv) which ensures the solution existence in a re�exive Banach space context is the
following: assume that there exists r > 0, such that, for all x ∈ K satisfying ∥x∥ ≤ r, there exists y0 ∈ K with
∥y0∥ < r, and F(x, y0, x) ∈ −C. Note that in this case one can work with the diagonal condition (iii)

∀x ∈ K, F(x, x, x) /∈ − int C.

Remark 3.14. Taking into account that for r > 0, K0 = Br ∩ K = {x ∈ K ∶ ∥x∥ ≤ r}, coreKK0 = {x ∈ K ∶ ∥x∥ < r}
and K∖coreKK0 = {x ∈ K ∶ ∥x∥ = r}, it is an easy veri�cation that the condition (iv) in the hypothesis of Theorem
3.9, in a re�exive Banach space setting becomes: there exists r > 0 such that for all x ∈ K, ∥x∥ = r, there exists
y0 ∈ K with ∥y0∥ < r and F(x, y0, x) ∈ −C.

4 On the perturbed weak vector equilibrium problems
In this section, we obtain the existence of a solution of a perturbed weak vector equilibrium problem. Let X
and Z be the Hausdor� topological vector spaces and K be a nonempty, convex and closed subset of X. We
consider further C ⊆ Z a convex and pointed cone with nonempty interior.

Let f ∶ K × K Ð→ Z be a bifunction and assume that f is diagonal null, that is f(x, x) = 0 for all x ∈ K.
Consider the weak vector equilibrium problem, which consists in �nding x0 ∈ K such that

f(x0, y) /∈ − int C, ∀y ∈ K. (3)

Let g ∶ K × K Ð→ Z be another bifunction. We associate with (3) the following perturbed vector equilibrium
problem. Find x0 ∈ K such that

f(x0, y) + g(x0, y) /∈ − int C, ∀y ∈ K. (4)

As it was emphasized before, (4) can be considered as a particular case of the primal problem (1) with the
trifunction F1 ∶ K × K × K → Z, F1(x, y, z) = f(z, y) + g(x, y). Note that in this case the dual of (4) is the
following problem. Find x0 ∈ K such that

g(x0, y) /∈ − int C, ∀y ∈ K. (5)

On the other hand, (4) can be considered as a particular instance of the dual problem (2) with the trifunction
F2 ∶ K × K × K → Z, F2(x, y, z) = f(x, z) + g(x, y). In this case the primal problem is given by (5).

Hence, by using the results from the previous sections one can easily obtain the existence of a solution for
(4). For instance, it is an easy exercise that the C−convexity of the mappings y Ð→ f(x, y) and y Ð→ g(x, y)
for every x ∈ K assure the C−convexity of the mapping y Ð→ F1(x, y, x) for every x ∈ K and the C−convexity
of the mapping y Ð→ F2(x, y, y) for every x ∈ K, respectively. We will use condition (b) of Lemma 3.5, since
this assumption is new in the literature. However in the forthcoming results this condition can always be
replaced by condition (a) of Lemma 3.5, namely C-upper semicontinuity. An easy consequence of Theorem
3.7 is the following result.

Theorem 4.1. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone
with nonempty interior, and let K be a nonempty, convex and closed subset of X. Consider the mappings f , g ∶
K × K Ð→ Z satisfying
(i) ∀y ∈ K, it holds that for every x ∈ K and for every net (xα) ⊆ K, lim xα = x there exists a net zα ⊆ Z, lim zα =

z such that f(xα, y) + g(xα, y) − zα ∈ −C and f(x, y) + g(x, y) − z ∈ C,
(ii) ∀x ∈ K, the mappings y Ð→ f(x, y) and y Ð→ g(x, y) are C-convex,
(iii) ∀x ∈ K, f(x, x) = 0 and g(x, x) /∈ − int C,
(iv) There exists K0 ⊆ X a nonempty and compact set and y0 ∈ K, such that f(x, y0) + g(x, y0) ∈ − int C, for all

x ∈ K ∖ K0.
Then, there exists an element x0 ∈ K such that f(x0, y) + g(x0, y) /∈ − int C, for all y ∈ K.

Proof. The conclusion follows by Theorem 3.7 by taking F1(x, y, z) = f(z, y) + g(x, y) in its hypothesis.
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Remark 4.2. Note that condition (i) in Theorem 4.1 is satis�ed if we assume separately for the bifunctions f
and g the following: for all y ∈ K, it holds that for every x ∈ K and for every net (xα) ⊆ K, lim xα = x there
exist the nets z1α, z2α ⊆ Z, lim z1α = z1, lim z2α = z2 such that f(xα, y) − z1α ∈ −C, g(xα, y) − z2α ∈ −C and
f(x, y) − z1 ∈ C, g(x, y) − z2 ∈ C.

Remark 4.3. The existence of a solution of (4) also follows via Theorem 3.9, if we replace the conditions (iii)
and (iv) in the hypothesis of Theorem 4.1 by the following.
(iii’) ∀x ∈ K, f(x, x) = 0 and g(x, x) ∈ −C ∖ − int C,
(iv’) There exists a nonempty compact convex subset K0 of K with the property that for every x ∈ K0 ∖ coreKK0,
there exists an y0 ∈ coreKK0 such that f(x, y0) + g(x, y0) ∈ −C.
Moreover, in this case we can drop the assumption that K is closed.

Next we obtain the existence of a solution of the perturbed problem (4) via duality. Note that in this case the
conditions can be assumed not for all x ∈ K, but relative to the solution of (5).

Theorem 4.4. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone with
nonempty interior and let K be a nonempty convex subset of X. Consider the mappings f , g ∶ K×K Ð→ Z. Let x0
be a solution of the problem (5), i.e. g(x0, y) /∈ − int C for all y ∈ K. Assume that the following statements hold.
(i) For all y ∈ K and t ∈]0, 1[ one has that g(x0, (1 − t)x0 + ty) − f((1 − t)x0 + ty, y) − g(x0, y) ∈ − int C,
(ii) For every y ∈ K the following implication holds. If f((1 − t)x0 + ty, y) + g(x0, y) /∈ − int C for all t ∈]0, 1],

then f(x0, y) + g(x0, y) /∈ − int C.
(iii) For all x ∈ K, f(x, x) = 0.
Then, x0 is a solution of (4), that is, f(x0, y) + g(x0, y) /∈ − int C for all y ∈ K.

Proof. Let y ∈ K. Since x0 is a solution of (5) one has, that g(x0, (1 − t)x0 + ty) /∈ − int C for all t ∈ [0, 1].
Hence, by using the fact that C + int C = int C, from (i) we have that f((1− t)x0 + ty, y)+ g(x0, y) /∈ −C, for all
t ∈]0, 1[ and y ∈ K. On the other hand, f(y, y) + g(x0, y) = g(x0, y) /∈ − int C, hence

f((1 − t)x0 + ty, y) + g(x0, y) /∈ − int C, for all t ∈]0, 1].

From (ii) we obtain that f(x0, y)+ g(x0, y) /∈ − int C. Since y ∈ K was arbitrary chosen the conclusion follows.

In what follows, we obtain the existence of a solution of (4) by assuming di�erent conditions for the
bifunctions f and g. We need the following notion.

De�nition 4.5. A bifunction f ∶ K × K Ð→ Z is said to be C-essentially quasimonotone relative to the second
variable, i� for all y1, y2, ..., yn ∈ K and all λ1, λ2, ..., λn ≥ 0 with∑n

i=1 λi = 1 one has

n
∑
i=1
λi f (

n
∑
i=1
λiyi , yi) /∈ − int C.

Lemma 4.6. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone with
nonempty interior and let K be a nonempty, convex subset of X. Consider the mapping F1 ∶ K × K × K Ð→
Z, F1(x, y, z) = f(z, y) + g(x, y) and assume that the bifunctions f , g ∶ K × K Ð→ Z satisfy
(i) f is C-essentially quasimonotone relative to the second variable,
(ii) y Ð→ g(x, y) is C-convex for all x ∈ K and g(x, x) ∈ C for all x ∈ K.
Then, the map G ∶ K ⇉ K, G(y) = {x ∈ K ∶ F1(x, y, x) /∈ − int C} is a KKM application.

Proof. We show at �rst that for all y1, y2, ..., yn ∈ K and λ1, λ2, ..., λn ≥ 0 with∑n
i=1 λi = 1, n ≥ 1 one has

n
∑
i=1
λiF1 (

n
∑
i=1
λiyi , yi ,

n
∑
i=1
λiyi) /∈ − int C.
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Assume the contrary, that is, there exist y1, y2, ..., yn ∈ K and there exist λ1, λ2, . . . , λn ≥ 0, with∑n
i=1 λi = 1

such that
n
∑
i=1
λiF1 (

n
∑
i=1
λiyi , yi ,

n
∑
i=1
λiyi) ∈ − int C.

This assumption is equivalent to

n
∑
i=1
λi (f (

n
∑
i=1
λiyi , yi) + g (

n
∑
i=1
λiyi , yi)) ∈ − int C.

From assumption (i) we have that∑n
i=1 λi f (∑n

i=1 λiyi , yi) /∈ − int C. But then, since int C + C = int C, we have

n
∑
i=1
λig (

n
∑
i=1
λiyi , yi) /∈ C.

Now using the fact that y Ð→ g (∑n
i=1 λiyi , y) is C-convex and g(x, x) ∈ C for all x ∈ K we obtain

n
∑
i=1
λig (

n
∑
i=1
λiyi , yi) − g (

n
∑
i=1
λiyi ,

n
∑
i=1
λiyi) ∈ C,

a contradiction.
Assume that G ∶ K ⇉ K, G(y) = {x ∈ K ∶ F(x, y, x) /∈ − int C} is not a KKM application. Then there

exists y1, y2, ..., yn ∈ K and y ∈ co{y1, y2, ..., yn} such that y /∈ ∪ni=1G(yi). In other words, there exists
λ1, λ2, ..., λn ≥ 0 with∑n

i=1 λi = 1 such that y = ∑n
i=1 λiyi /∈ G(yi) for all i ∈ {1, 2, ..., n}, that is

F (
n
∑
i=1
λiyi , yi ,

n
∑
i=1
λiyi) ∈ − int C, ∀i ∈ {1, 2, ..., n}.

But then, since − int C is convex one has

n
∑
i=1
λiF (

n
∑
i=1
λiyi , yi ,

n
∑
i=1
λiyi) ∈ − int C,

which contradicts the fact that
n
∑
i=1
λiF1 (

n
∑
i=1
λiyi , yi ,

n
∑
i=1
λiyi) /∈ − int C.

An easy consequence is the following theorem.

Theorem 4.7. Let X and Z be Hausdor� topological vector spaces, let C ⊆ Z be a convex and pointed cone with
nonempty interior and let K be a nonempty convex subset of X. Assume that the bifunctions f , g ∶ K × K Ð→ Z
satisfy
(i) There exists a nonempty compact convex subset K0 of K with the property that for every x ∈ K0 ∖ coreKK0,

there exists an y0 ∈ coreKK0 such that f(x, y0) + g(x, y0) ∈ −C.
(ii) ∀y ∈ K0, it holds that for every x ∈ K0 and for every net (xα) ⊆ K0, lim xα = x there exists a net zα ⊆

Z, lim zα = z such that f(xα, y) + g(xα, y) − zα ∈ −C and f(x, y) + g(x, y) − z ∈ C,
(iii) f is C-essentially quasimonotone relative to the second variable on K0, that is for all y1, y2, ..., yn ∈ K0 and

all λ1, λ2, ..., λn ≥ 0 with∑n
i=1 λi = 1 one has

n
∑
i=1
λi f (

n
∑
i=1
λiyi , yi) /∈ − int C,

(iv) y Ð→ g(x, y) and y Ð→ f(x, y) are C-convex on K for all x ∈ K0,
(v) ∀x ∈ K0, f(x, x) ∈ −C ∖ − int C and g(x, x) = 0.
Then, there exists x0 ∈ K, such that f(x0, y) + g(x0, y) /∈ − int C for all y ∈ K.
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Proof. Consider the mapping F ∶ K0 × K0 × K0 Ð→ Z, F(x, y, z) = f(z, y) + g(x, y). Lemma 4.6 assures that

G ∶ K0 ⇉ K0, G(y) = {x ∈ K0 ∶ F(x, y, x) /∈ − int C}

is a KKM mapping. On the other hand, (ii) assures that G(y) is closed for every y ∈ K0. Since K0 is compact
we have that G(y) is compact for every y ∈ K0, hence according to Lemma 2.4, ∩y∈K0G(y) ≠ ∅. In other words,
there exists x0 ∈ K0 such that f(x0, y) + g(x0, y) /∈ − int C for all y ∈ K0.

We show that the latter relation holds for every y ∈ K. First we show, that there exists z0 ∈ coreKK0

such that f(x0, z0) + g(x0, z0) ∈ −C. Indeed, if x0 ∈ coreKK0 then let z0 = x0 and the conclusion follows
from (v). Assume now, that x0 ∈ K0 ∖ coreKK0. Then, according to (i), there exists z0 ∈ coreKK0 such that
f(x0, z0) + g(x0, z0) ∈ −C.

Let y ∈ K. Then, since z0 ∈ coreKK0, there exists λ ∈ [0, 1] such that λz0 + (1 − λ)y ∈ K0, consequently
f(x0, λz0 + (1 − λ)y) + g(x0, λz0 + (1 − λ)y) /∈ − int C. From (iv) we have

λ(f(x0, z0) + g(x0, z0)) + (1 − λ)(f(x0, y) + g(x0, y))−

(f(x0, λz0 + (1 − λ)y) + g(x0, λz0 + (1 − λ)y)) ∈ C

or, equivalently

(1 − λ)(f(x0, y) + g(x0, y)) − (f(x0, λz0 + (1 − λ)y) + g(x0, λz0 + (1 − λ)y)) ∈

C − λ(f(x0, z0) + g(x0, z0) ⊆ C.

Assume that f(x0, y) + g(x0, y) ∈ − int C. Then,

−(f(x0, λz0 + (1 − λ)y) + g(x0, λz0 + (1 − λ)y)) ∈

−(1 − λ)(f(x0, y) + g(x0, y)) + C ⊆ int C,

in other words
f(x0, λz0 + (1 − λ)y) + g(x0, λz0 + (1 − λ)y) ∈ − int C,

a contradiction. Hence, f(x0, y) + g(x0, y) /∈ − int C, for all y ∈ K.

Remark 4.8. If K is also compact, then one can take K0 = K, thus, one can drop the assumption (i) and the
assumption that the map y Ð→ f(x, y) is C-convex for every x ∈ K in the hypothesis of Theorem 4.7. Moreover,
the assumptions imposed on the bifunctions f and g can be permuted, which might become useful in order to
chose the right perturbation bifunction, when we perturb a concrete problem.
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