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1 Introduction and Preliminaries
Let F (called feasible sets) be a

:::::::::
set system

::
on

::
E
::::
(i.e.

:
a
::::::::::
non-empty

::::::
family

::::::
F ⊆ 2E

::::::
where

::
2E

::
is
:::
the

:::
set

:::
of

::
all

::::::
subsets

::
of

::
a

::::
�nite

:::
set

::
E). We can suppose ∪F = E in this paper, since E ∖∪F ≠ ∅will bring x ∈ E ∖∪F to own

nothing in F which is not interesting for studying. Actually, such supposition is also done in [1].
Let ω ∶ E → R+ be a weighting on E. Abbreviating ω(X) = ∑

x∈X
ω(x), especially ω(∅) = 0, we want to �nd

an A ∈ F satisfying ω(A) = max{ω(X) ∣ X ∈ F}. We call this problem (F ,ω). An element of F is optimal
if it has the maximal weight. The greedy algorithm for (E,F) attempts to solve the above problem. In fact,
Helman et al. [2] point that obtaining an exact characterization of the class of problems for which the greedy
algorithm returns an optimal solution has been an open problem. The process of greedy algorithm (cf.[3,p.14])
is as follows.
(1) Set X = ∅.
(2) Set T = {x ∈ E ∖ X ∣ X ∪ x ∈ F},
If T = ∅, stop;
If T ≠ ∅, choose x ∈ T such that ω(x) ≥ ω(y) for all y ∈ T.
(3) Set X = X ∪ x and go to (2).
Björner et al. indicate [1] that greedoids were invented around 1980 by Korte and Lovász. The relative
de�nitions to greedoids are reviewed as follows.

De�nition 1.1 ([1,3]). Let F be a set system on E.
(1) A greedoid is a pair (E,F), where F satis�es the following conditions:
(G1) For every non-empty X ∈ F , there is an x ∈ X such that X ∖ {x} ∈ F . (accessible)
(G2) For X, Y ∈ F such that ∣X∣ > ∣Y ∣, there is an x ∈ X ∖ Y such that Y ∪ {x} ∈ F . (exchangeable)
(2) A greedoid (E,F) has the interval property (or to be an interval greedoid) if A ⊆ B ⊆ C, A, B, C ∈ F and
x ∈ E ∖ C, then A ∪ {x} ∈ F and C ∪ {x} ∈ F imply B ∪ {x} ∈ F .
(3) A maximal element in (F , ⊆) is called a basis.
(4) A loop in (E,F) is an element x ∈ E that is contained in no basis.
(5) A language L over E is a non-empty set L ⊆ E∗ (the free monoid of all words over the alphabet E) of words
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over the alphabet E; it is called simple if every word in L is
::::::
simple

:::
(i.e.

::
it

::::
does

:::
not

::::::
contain

::::
any

:::::
letter

::::
more

::::
than

::::
once).

A greedoid language over E is a pair (E,L), where L is a simple language L ⊆ E∗s (the set of simple words
in E∗) satisfying the following conditions:
(L1) If α = βγ and α ∈ L, then β ∈ L. (hereditary)
(L2) If α, β ∈ L and ∣α∣ > ∣β∣, then α contains a letter x such that βx ∈ L. (exchange).

Björner et al. indicate [1] that greedoids were originally developed to give a uni�ed approach to the optimality
of various greedy algorithms known in combinatorial optimization. Such algorithms can be loosely character-
ized as having locally optimal strategy and no backtracking. Nowadays, researchers provide di�erent greedy
algorithms to characterize the di�erent kinds of greedoids (cf. [1,2,3,4]). Helman et al. [2] characterize greedy
structures. [2, Theorem 1] is the best and main result in [2]. That is, let (E,F) be an accessible set system.
Then (E,F) has an optimal greedy basis for every positive weighted linear function if and only if (E,F)
is a

::::::::::::::::
matroid embedding

:
(cf. [2, De�nition 2], i.e. A matroid embedding is an accessible set system which is

extensible, closure-congruent, and the hereditary closure of which is a matroid). Below [2, De�nition 2],
Helman et al. say that (S, C1) in [2, Example 1] is a matroid embedding, yet not a greedoid. Combining [2,
Example 2] and the de�nition of a matroid embedding, (S, C2) in [2, Example 2] is a greedoid, yet not a
matroid embedding. In other words, [2, Theorem 1] does not characterize a greedoid structure with greedy
algorithm. Korte et al. say [4, p.358, Theorem 14.7]: Let (E,F) be a greedoid. The greedy algorithm �nds
a set F ∈ F of maximum weight for each modular weight function if and only if (E,F) has the so-called

::::::::::::::::::
strong exchange axiom (see [2], [3, p.160], [4, p.358], or say: For all A ∈ F , B is a maximal in F and A ⊆ B. If
x ∈ E ∖ B with A ∪ {x} ∈ F , then there exists a y ∈ B ∖ A such that A ∪ {y} ∈ F and (B ∖ {y}) ∪ {x} ∈ F).
Actually, Korte et al. [3,p.160,Theorem 2.2] is the same result as [4, p.358, Theorem 14.7]. However, from [3],
it is easily seen that a greedoid can not be ensured to satisfy the strong exchange axiom. Hence, we may be
asserted that [3, p.160, Theorem 2.2] or [4, p.358, Theorem 14.7] is not a characterization for all of greedoids
with greedy algorithm, but only a characterization for a part of class of greedoids. In addition, among the
known characterizations relative to greedoids with greedy algorithm, we think [1, Theorem 8.5.2] (the same
as [3, p.157, Theorem 1.4]) to be better, that is: suppose (E,L) is a simple hereditary language, then (E,L) is
a greedoid if and only if greedy algorithm gives an optimal solution for every compatible objective function
on L. In the characterizations using De�nition 1.1 and the greedy algorithms for a greedoid (E,F) proved in
[1, Theorem 8.5.2] and [3, p.157, Theorem 1.4], F must be

::::::::::::
hereditary (i.e.

:::::::::::::::::::
X ⊆ Y , Y ∈ F ⇒ X ∈ F).

Now returning to our question: under what conditions on a greedoid, can every linear function be
optimized by the greedy algorithm? Up to now, we do not �nd an answer for all of greedoids. Though we
do not �nd out the solution to the open problem for all of greedoids, using the research methods in [1,2,3,4]
for reference, we can pay our attention to some special class of greedoids to look for the answer. By [1,3],
an interval greedoid (E,F0) does not ask F0 to be hereditary or satisfy strong exchange axiom. The authors
describe [1] that the ‘interval property’ characterizes a very large class of greedoids and interval greedoids
behave better than general greedoids in many respects. In some types of study, the interval property has to
be assumed to obtain meaningful results [1,3,5,6]. Hence, this paper will focus on interval greedoids in hope
to �nd the answer for the open problem.

We may �nd from De�nition 1.1 that for a greedoid (E,F), if F is hereditary, then (E,F) is interval. In
addition, it is necessary to generalize the results in [1, Theorem 8.5.2] and [3, p.157, Theorem 1.4] for interval
greedoids. This is done in this paper.

Lemma 1.2. Let F ⊆ 2E and x ∈ E be a loop. Then F is a set system on E ∖ {x}.

Proof. Suppose that a loop x is contained in a X ∈ F . Then, there is a basis BX satisfying X ⊆ BX according to
De�nition 1.1(3). This follows x ∈ BX, a contrary to the loop of x. Therefore, we demonstrate thatF is de�ned
on E ∖ {x}.

By Lemma 1.2, this paper only considers the set systems with no loops.
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Lemma 1.3 ([3, p.47]). For a given set system F on E, the property (G2) holds if and only if for any A ⊆ E, all
bases of A have the same cardinality.

According to Lemma 1.3, we can state that in a set system such that (G2), then X ⊆ E is a basis of A ⊆ E if and
only if X ∈ F , X ⊆ A satis�es ∣X∣ = max

Y∈F ,Y⊆A
∣Y ∣.

2 Main results
We give some notions for a set system (E,F):
(1) F(k) = {X ∈ F ∣ ∣X∣ = k};
(2) F∣A = {X ∣ X ⊆ A, X ∈ F} for any A ∈ F ;
(3) n = max

X∈F
∣X∣;

(4) Let ω ∶ E → R+ be a
:::::::::::::::::::
positive weight function

::::
(i.e.

:::::::
ω(x) > 0

:::
for

:::
any

::::::
x ∈ E). For X ⊆ E, de�ne ωX ∶ X → R+ as

ωX(x) = ω(x) for any x ∈ X.
We know that, generally, the solution of the greedy algorithm in Section 1 is not optimal. The already

existing greedy algorithms for greedoids (see [1, 3, 4]) are satis�ed (or say, characterized) by some di�erent
classes of greedoids. In order to search out a characterization of a type of greedy algorithms for some class
of interval greedoids, we provide a type of greedy algorithm (i.e. Algorithm 1) as follows. After that, we will
demonstrate under what conditions for a set system, Algorithm 1 has an optimal solution. We also �nd under
what conditions Algorithm 1 characterizes an interval greedoid.

Algorithm 1 (Interval Greedy Algorithm). Input:F , a set system on E; ω ∶ E → R+, a positive weight function;
n, max

X∈F
∣X∣.

Output: S, the greedy solution.
1 Set S = ∅, j = 0.
2 If j < n − 1, then go to 3.
If j = n − 1, then go to 4.
If j ≥ n, then S ∶= S, stop.
3 Set Dj+1 = {e ∣ there exist Sj+1 ∈ F(j+1) and S ⊂ Sj+1 such that e ∈ E ∖ Sj+1 and Sj+1 ∪ {e} ∈ F}, and
Gj = {e ∈ E ∖ S ∣ S ∪ {e} ∈ F}.
3.1 If Dj+1 ∩ Gj ≠ ∅, then choose ej+1 ∈ Dj+1 ∩ Gj such that ω(ej+1) = max

e∈Dj+1∩Gj
ω(e), and set S ∶= S ∪ {ej+1},

j ∶= j + 1, go to 2.
3.2 If Dj+1 ∩ Gj = ∅, then S ∶= S, and j ∶= j + 1, go to 2.
4 Set Gj = {e ∈ E ∖ S ∣ S ∪ {e} ∈ F}.
4.1 If Gj ≠ ∅, then choose ej+1 ∈ Gj such that ω(ej+1) = max

e∈Gj
ω(e), and set S ∶= S ∪ {ej+1}, j ∶= j + 1, go to 2

4.2 If Gj = ∅, then S ∶= S and j ∶= j + 1, go to 2.

We say the greedy algorithm works if ω(S) ≥ ω(A) for ∀A ∈ F . In the process of Algorithm 1, we can use St+1
to stand for the solution when the cyclic variable j is t ≤ n − 1.

Example 2.1. Let E1 = {a1, a2, a3, a4} and F1 = {∅, {a1}, {a4}, {a1, a2}, {a1, a4}, {a1, a2, a3},
{a1, a3, a4}, {a1, a2, a3, a4}}. We can easily check that F1 satis�es (G1) and (G2) in De�nition 1.1 (1).

Let A = ∅, B = {a1, a2} and C = {a1, a2, a3}. We easily �nd A ⊂ B ⊂ C. For a4 ∈ E1 ∖ C, we obtain A ∪ {a4} =
{a4} ∈ F1, C∪{a4} = {a1, a2, a3, a4} ∈ F1 and B∪{a4} = {a1, a2, a4} /∈ F1. Using De�nition 1.1 (2), (E1,F1)
is not an interval greedoid.
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De�ne ω1 ∶ E1 → R+ as ω1(a1) = 5,ω1(a2) = 4,ω1(a3) = 3,ω1(a4) = 2. Then, we can demonstrate that
{a1, a2, a3, a4} is an optimal set. Applying Algorithm 1 on (F1,ω1), we look for the solution S of Algorithm
1 as follows: There is n = 4.

When j = 0, there are S0 = ∅, D1 = {a1, a2, a4}, G0 = {a1, a4}, and so S1 = {a1}.
When j = 1, there are D2 = {a3}, G1 = {a2, a4}, and so D2 ∩ G1 = ∅. Thus, we attain S2 = S1 = {a1}.
When j = 2, there are D3 = {a2, a4}, G2 = {a2, a4}, and so S3 = {a1, a2}.
When j = 3, there is j = n − 1. We �nd G3 = {a3}. Hence, there is S4 = {a1, a2, a3}.
When j = 4, there is j ≥ n. So, we obtain S = S4.
Actually, ω1({a1, a2, a3}) = 12 < 14 = ω1({a1, a2, a3, a4}) indicates that S is not optimal.

Remark 2.2. After analyzing Example 2.1, we attain some properties as follows.
(1) If we hope Algorithm 1 to work for (E,F), then (E,F) should be an interval greedoid.
(2) There are {a1}, {a4} ∈ F1 and {a2}, {a3} /∈ F1 holds. Hence, we can ask {x} ∈ F for any x ∈ E if we hope
Algorithm 1 to work for a set system F with any positive weight function ω.

Example 2.3. Let E2 = {a1, a2, a3, a4} and F2 = {∅, {a1}, {a4}, {a1, a2}, {a1, a4}, {a1, a2, a3},
{a1, a3, a4}}. We easily check up F2 to satisfy (G1) and (G2) and the interval property. Hence, (E2,F2) is an
interval greedoid.

De�ne ω2 ∶ E2 → R+ as ω2(a1) = 5,ω2(a2) = 4,ω2(a3) = 3,ω2(a4) = 2. Then, we can demonstrate that
{a1, a2, a3} is an optimal set. Applying Algorithm 1 on (F2,ω2), we look for the solution S of Algorithm 1 as
follows: There is n = 3.

When j = 0, there are S0 = ∅, D1 = {a1, a2, a4}, G0 = {a1, a4}, and so S1 = {a1}.
When j = 1, there are D2 = {a3}, G1 = {a2, a4}, and so D2 ∩ G1 = ∅. Thus, we attain S2 = S1 = {a1}.
When j = 2, there is j = n − 1. We �nd G2 = {a2, a4}. Hence, there is S3 = {a1, a2}.
When j = 3, there is j ≥ n. So, we obtain S = S3.
Actually, ω2({a1, a2, a3}) = 12 > 9 = ω2({a1, a2}) indicates that S is not optimal.

Remark 2.4. In Example 2.3, B1 = {a1, a2, a3} and B2 = {a1, a3, a4} are two bases ofF2 such that B1∖{a3} =
{a1, a2}, B2∖{a3} = {a1, a4} ∈ F2. Butω2(a1) > ω2(a2) > ω2(a3) > ω2(a4) andF(2) = {{a1, a2}, {a1, a4}}
imply that (E2,F2) does not satisfy the following condition:
(G3) Let X, Y be bases inF and S = Y ∖{y0} ∈ F for some y0 ∈ Y. Then there is x0 ∈ X∖S such that S∪{x0} ∈ F
and ω(x0) = max

x∈X
ω(x).

Hence, we should ask if F with ω satisfy (G3) if we hope Algorithm 1 to work for (F ,ω) though (E,F) is an
interval greedoid.

Lemma 2.5. Let F ⊆ 2E with ∅ ∈ F and ω ∶ E → R+ be a positive weight function.
(1) If F satis�es (G2), then there is F(k) ≠ ∅ for any k = 0, 1, . . . , n.
(2) An optimal set in (F ,ω) is a basis.

Proof. (1) Using Lemma 1.3 and De�nition 1.1 (3), all of bases inF have the cardinality n. Let B ∈ F be a basis.
From Björner et al. [1, 8.2.A], we know that ∅ ∈ F and (G2) together de�ne greedoids as well as (G1) and (G2).
Considering (G1) on B, we may easily obtain F(k) ≠ ∅, (k = 0, 1, . . . , n).

(2) Since an optimal set S satis�es ω(S) ≥ ω(B) for any basis B ofF . If S is not a basis, then S ⊂ BS holds
for somebasis BS according toDe�nition 1.1(3). Thus, there isω(S) < ω(BS) sinceω is positive, a contradiction
with ω(S) ≥ ω(B). Hence S is a basis.

Theorem 2.6. LetF ⊆ 2E satisfy∅ ∈ F and {x} ∈ F for any x ∈ E. Let ω ∶ E → R+ be a positive weight function.
If (E,F) is an interval greedoid satisfying the condition (G3), then Algorithm 1 works for (F ,ω).
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Proof. Step 1. Let Fk = {X ∣ X ∈ F , ∣X∣ ≤ k} (k ≥ 1). We prove the following statements.
(st1) ∅ ∈ Fk , {x} ∈ Fk for any x ∈ E.
(st2) (E,Fk} is an interval greedoid.
{x} ∈ F and ∣{x}∣ = 1 ≤ k for any x ∈ E imply {x} ∈ Fk for any x ∈ E. ∅ ∈ F and ∣∅∣ = 0 ≤ k together means
∅ ∈ Fk. Hence, we can say that Fk is a set system with no loops. According to Fk ⊆ F and F satisfying both
of (G1) and (G2), we easily obtain that Fk satis�es both of (G1) and (G2).

Let A ⊆ B ⊆ C, A, B, C ∈ Fk and a ∈ Ek ∖ C satisfy A ∪ {a} ∈ Fk and C ∪ {a} ∈ Fk. Using Fk ⊆ F
and the interval property of F , we obtain B ∪ {a} ∈ F . C ∪ {a} ∈ Fk follows ∣C ∪ {a}∣ ≤ k. Combining with
B ∪ {a} ⊆ C ∪ {a}, we decide ∣B ∪ {a}∣ ≤ k. Hence, there is B ∪ {a} ∈ Fk.

Therefore, (E,Fk) is an interval greedoid.
Step 2. We will prove that Algorithm 1 works for (F ,ω) by induction on n.
If n = 0. This means F = {∅}. Hence, the needed result follows.
If n = 1. By Lemma 2.5 (1) and De�nition 1.1 (2), there are F(0) ≠ ∅ and F(1) ≠ ∅.
Then, in the process of Algorithm 1,when j = 0 = 1−1 = n−1, according to S0 = ∅, there isG0 = {e ∈ E∖∅ ∣

∅∪ {e} ∈ F} = E since {x} ∈ F for any x ∈ E. Hence, G0 ≠ ∅ holds. Choose ω(e0+1) = ω(e1) = max
e∈G0

ω(e), and

put S1 = ∅ ∪ {e1} = {e1} and j ∶= 0 + 1 = 1. When j = 1, then j ≥ 1 = n follows the process of Algorithm 1 to
stop. Therefore, the solution of Algorithm 1 is optimal. That is to say, Algorithm 1 works for (F ,ω).

Suppose that if n ≤ m − 1, then the needed result is correct. Now, let n = m.
Since (E,F) is an interval greedoid, F satis�es (G1) and (G2). Combining Lemma 1.3, there is m = ∣B∣ for

any basis B of F . Utilizing Lemma 2.5 (1), we obtain F(k) ≠ ∅ where k = 0, 1, . . . ,m.
Let S be the solutionofAlgorithm1 for (F ,ω). During theprocess ofAlgorithm1,when j < m−1, according

to the interval property, ∅ ∪ {e0} ∈ F for any e0 ∈ E, ∅ ⊆ Sj ⊆ Sj+1, Sj+1 ∪ {e} ∈ F for any e ∈ Dj+1, and the
de�nitions of Dj+1 and Gj, there is Sj ∪ {e} ∈ F for any e ∈ Dj+1, and so Dj+1 ∩ Gj ≠ ∅. Considering Lemma
2.5 (1), we arrive at F(m) ≠ ∅. So, there is Gm−1 = {e ∈ E ∖ Sm−1 ∣ Sm−1 ∪ {e} ∈ F} ≠ ∅. Therefore, we can
demonstrate that S is a basis. Hence, ∣S∣ = m holds.

Since S is accessible according to the process of Algorithm 1 for the interval greedoid (E,F) and ω, there
is S = Sm. Using Step 1 and the inductive supposition, Algorithm 1 works for (E,Fm−1). That is to say, the
solution Sm−1 of Algorithm 1 for (E,Fm−1) satis�es ω(Sm−1) ≥ ω(X) for any X ∈ Fm−1. Combining the process
of Algorithm 1, we con�rm Sm−1 = Sm−1.

Considering Gm−1 = {e ∈ E ∖ Sm−1 ∣ Sm−1 ∪ {e} ∈ F} and F(m) ≠ ∅, we obtain Sm = Sm−1 ∪ {em} where
ω(em) = max

e∈Gm−1
ω(e). Moreover, Sm is the solution of Algorithm 1 for (F ,ω).

Let B be a basis of F . We easily �nd ∣B∣ = ∣Sm−1∣ + 1. Thus, Sm−1 ∪ {b} ∈ F holds for some b ∈ B ∖ Sm−1
according to (G2) satis�ed by F . Thus, Sm−1 ∪ {b} is a basis of F . Using (G3), there is Sm−1 ∪ {b0} ∈ F where
ω(b0) = max

x∈B∖Sm−1
ω(x).

On the other hand, for any x ∈ B, if B ∖ {x} ∈ F , then ω(B ∖ {x}) ≤ ω(Sm−1) = ω(Sm−1) in view of
the inductive supposition. Since (B ∖ {x}) ∪ {x} is a basis, there is ω((B ∖ {x}) ∪ {x}) ≤ ω(Sm−1 ∪ {b0}) ≤
ω(Sm−1 ∪ {em}) = ω(Sm) in virtue of (G3) and the process of searching Sm.

Therefore, ω(Sm) ≥ ω(B) holds for any basis B inF . Furthermore, ω(Sm) ≥ ω(X) is correct for any X ∈ F
since X must be contained in a basis and ω is positive. Thus, Sm is optimal.

Summing up, Algorithm 1 works for (F ,ω).

Remark 2.7. Example 2.1 shows that (E1,F1) is not an interval greedoid. In addition, for {a1} ⊂ {a1, a2}
and a3 ∈ E1 ∖ {a1, a2}, there are {a1, a2} ∪ {a3} = {a1, a2, a3} ∈ F1 and {a1} ∪ {a3} = {a1, a3} /∈
F1. That is to say, F does not satisfy the

::::::::::::::::::
semi-interval property

:::::
(that

::
is,

::
if
::::::::::::::::::::::
Y ⊆ Z, Y , Z ∈ F , a ∈ E ∖ Z,

::::
then

:::::::::::::::::::::::
Z ∪ {a} ∈ F ⇒ Y ∪ {a} ∈ F).

It is more interesting that the converse of Theorem 2.6 is also true under some pre-conditions.
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Theorem 2.8. Let F be a set system on E with ∅ ∈ F . If for any positive weight function ω ∶ E → R+, there are
the following statements:
(s1) Algorithm 1 works for (F∣A ,ωA) for any A ∈ F .
(s2) F has semi-interval property.
(s3) F satis�es (G2).
Then, (E,F) is an interval greedoid.

Proof. Step 1. To prove: F is accessible.
Let A ∈ F . Since A is the basis of F∣A and ω is positive, there is ω(A) = max

X∈F∣A
ω(X). Let SA be the solution

of Algorithm 1 for (F∣A ,ωA). Consider the process of Algorithm 1 and A ∈ F , we can decide SA ⊆ A. Hence, we
obtain ωA(SA) ≤ ωA(A) since ωA is positive. Furthermore, since ωA is positive, we �nd SA ⊂ A ⇔ ωA(SA) <
ωA(A). By (s1), we con�rm ωA(SA) = max

X∈F∣A
ωA(X). Summing up the above results, we may follow SA = A.

From ∅ ∈ F and the process of Algorithm 1 for (F∣A ,ωA), we may assert that SA is accessible. We will
prove this assertion as follows.

Let m = ∣SA ∣, that is, m = ∣A∣ since SA = A.
If m = 0. Then SA = ∅. So, SA is accessible.
If m = 1. Then A = {a} and S0 = ∅.
When j = 0 = m−1 = 1−1. There is Gj = G0 = {a}. Hence, Gj ≠ ∅ and ω(e0+1) = ω(a) and S1 = ∅∪{a} =

{a}.
When j = 0 + 1 = 1 = m, then stop, and SA = {a}. We easily obtain SA ∖ {a} = ∅ ∈ F . Hence, SA is

accessible.
Suppose that if m ≤ k − 1, then SA is accessible. Now, let m = k > 1.
If for every j < k−1, there is Dj+1 ∩Gj ≠ ∅ in the process of Algorithm 1, then according to the de�nitions

of Dj+1 and Gj, there are S0 = ∅ ⊂ S1 ⊂ S2 ⊂ . . . ⊂ Sj+1 and Si+1 = Si ∪ {ei+1} for some ei+1 ∈ A ∖ Si , (i =
0, . . . , j + 1), we can state that Sj is accessible (j = 0, . . . , k − 1).

If for some j0 < k − 1, there is Dj0+1 ∩ Gj0 = ∅ in the process of Algorithm 1, then Sj0+1 = Sj0 . This follows
∣Sj0+1∣ < j0 + 1. Furthermore, we obtain ∣Sk ∣ < k according to the process of Algorithm 1. Thus, we attain SA
(that is Sk) satisfying ∣SA ∣ < k = ∣A∣ = ∣SA ∣, a contradiction. Hence, for every j < k − 1, there is Dj+1 ∩ Gj ≠ ∅.

So, Sj is accessible (j = 0, 1, . . . , k − 1).
Let j = k − 1. If Gk−1 ≠ ∅, then we obtain Sk = Sk−1 ∪ {ek}. Thus, we may easily �nd Sk to be accessible

since Sk ∖ ek−1 = Sk−1 ∈ F and the above discussion.
If Gk−1 = ∅, then Sk = Sk−1. Thus, there is ∣Sk ∣ = ∣Sk−1∣ = k − 1. On the other hand, Sk = Sm = SA = A hints

∣Sk ∣ = ∣A∣ = m = k. This is a contradiction to ∣Sk ∣ = k − 1. Therefore, we con�rm Gk ≠ ∅.
Adding up the above discussion with the induction, we can state that SA, that is A, is accessible.
According to the arbitrariness of A, we attain that F is accessible.
Step 2. To prove: F satis�es the interval property.
Let X, Y , Z ∈ F satisfy X ⊆ Y ⊆ Z. Let a ∈ E ∖ Z satisfy X ∪ {a}, Z ∪ {a} ∈ F . Using the statement (s2),

there is Y ∪ {a} ∈ F . Therefore, F satis�es the interval property.
Step 3. F is exchangeable according to the statement (s3).
Step 4. Combining Steps 1, 2 and 3 with De�nition 1.1, (E,F) is an interval greedoid.

Example 2.9. Let E3 = {a1, a2, a3, a4} and F3 = {∅, {a1}, {a4}, {a1, a2}, {a3, a4}}. There is ∣{a3, a4}∣ =
2 = ∣{a1}∣ + 1, but no element a ∈ {a3, a4} ∖ {a1} satis�es {a1} ∪ {a} ∈ F3. De�ne ω3 ∶ E3 → R+ as ω3(a1) =
5,ω3(a2) = 1,ω3(a3) = ω3(a4) = 4. The solution of Algorithm 1 for (F3,ω3) is {a1}. But, ω3({a1}) = 5 <
ω3({a3, a4}) = 8 implies Algorithm 1 not to work for (F3,ω3).

Example 2.9 shows that if we want Algorithm 1 to work for (F ,ω), then F should satisfy (G2). Combining
Theorems 2.6 and 2.8, we give the following characterization for interval greedoids.
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Theorem 2.10. Let F be an exchangable set system on E with ∅ ∈ F and {x} ∈ F for any x ∈ E. FA satis�es
(G3) for any A ∈ F . Then F is the set of feasible sets of an interval greedoid on E if and only if for all positive
weight functions ω ∶ E → R+, F satis�es the statements (s1) and (s2).

Proof. (⇒) We easily prove (A,F∣A) to be an interval greedoid for any A ∈ F . Combining Theorem 2.1 and
F∣A satisfying (G3), we obtain the correctness of (s1). ∅, {x} ∈ F and the interval of F follow the correctness
of (s2).

(⇐) Using Theorem 2.8, all of needed results are straightforward.

Next, we will compare our results with some known results for greedoids.

(I) To compare our results with [1, Theorem 8.5.2] (or say [3, p.157, Theorem 1.4]).
(1) In [1, Theorem 8.5.2] and [3, p.157, Theorem 1.4], the authors give a kind of greedy algorithm to

characterize a greedoid (E,F13), whereF13 is asked to behereditary. In otherwords, if a greedoid (E,F)does
not satisfy the hereditary property for F , then the characterizations with greedy algorithms in [1, Theorem
8.5.2] and [3, p.157, Theorem 1.4] will not be successful.

(2) Let F be a set system on E satisfying the hereditary. Then, we easily �nd that F has the following
properties:
● ∅, {x} ∈ F holds for any x ∈ E; F satis�es the condition (G3).
●Let Y ⊆ Z, Y , Z ∈ F and a ∈ E∖Z. If Z∪{a} ∈ F is correct, then Y∪{a} ∈ F holds according to Y∪{a} ⊆ Z∪{a}
and the hereditary property of F . This implies that every hereditary sets system satis�es the semi-interval
property.

(3) Considered items (1) and (2), we know that the characterization for greedoids with the greedy
algorithmprovided in [1, Theorem8.5.2] and [3, p.157, Theorem 1.4] are really e�ective only for some of interval
greedoids and not for the other kinds of greedoids.

(4) Evidently, the given conditions in Theorems 2.6, 2.8 and 2.10 do not askF to be hereditary. Combining
the above three items,we can say that for a hereditary set systemF , Theorem 2.6 andTheorem 2.8 are satis�ed
by much more greedoids than that in [1, Theorem 8.5.2] (or say, [3, p.157, Theorem 1.4]) respectively.

Moreover, the characterization (i.e. Theorem 2.3) proposed in this paper for interval greedoids generalize
the results in [1, Theorem 8.5.2] and [3, p.157, Theorem 1.4] respectively.

Therefore, Algorithm 1 generalizes the greedy algorithm for [1, Theorem 8.5.2] and [3, p.157, Theorem 1.4].

(II) To compare our results with [4, p.358, Theorem 14.7].
It is well known that a greedoid is perhaps not satisfying the strong exchange axiom. In other words,

not every greedoid has strong exchange axiom, though any greedoid is exchangeable. We also know that an
interval greedoid can not be ensured to satisfy strong exchange axiom. Thus, we can state that Theorem 2.10
is a characterization of a greedy algorithm for some class of interval greedoids. [4, p.358, Theorem 14.7] can
not substitute for the results in this paper. Therefore, Algorithm 1 is a new algorithm and not covered by the
algorithm for [4, p.358, Theorem 14.7].

More generalized characterization for greedoids with greedy algorithms will be studied in the future. We
also hope to give more answers to the open problem stated in Section 1.
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