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1 Introduction and Preliminaries

Let F (called feasible sets) be a set system on E (i.e. a non-empty family F c 2F where 2F is the set of all

subsets of a finite set E). We can suppose UF = E in this paper, since E \ UF # @ will bring x € E \ UF to own
nothing in F which is not interesting for studying. Actually, such supposition is also done in [1].
Letw : E — R* be a weighting on E. Abbreviating w(X) = Z w(x), especially w(&) = 0, we want to find

an A ¢ F satisfying w(4) = max{w(X) | X ¢ F}. We call thlS problem (F,w). An element of F is optimal
if it has the maximal weight. The greedy algorithm for (E, F) attempts to solve the above problem. In fact,
Helman et al. [2] point that obtaining an exact characterization of the class of problems for which the greedy
algorithm returns an optimal solution has been an open problem. The process of greedy algorithm (cf.[3,p.14])
is as follows.

(1) SetX = @.

(2)SetT={xecE~X|XuxeF},

If T = &, stop;

If T + @, choose x € T such that w(x) > w(y) forally € T.

(3) Set X = X u x and go to (2).

Bjorner et al. indicate [1] that greedoids were invented around 1980 by Korte and Lovasz. The relative
definitions to greedoids are reviewed as follows.

Definition 1.1 ([1,3]). Let F be a set system on E.

(1) A greedoid is a pair (E, F), where F satisfies the following conditions:

(G1) For every non-empty X € F, there is an x € X such that X \ {x} € F. (accessible)

(G2) For X, Y € F such that |X| > |Y|, thereis an x € X \ Y such that Y u {x} € F. (exchangeable)

(2) A greedoid (E, F) has the interval property (or to be an interval greedoid) if A < B < C,A,B,C € F and
xeE~NC,thenAu{x} e Fand Cu{x} e Fimply Bu{x} € F.

(3) A maximal element in (F, <) is called a basis.

(4) Aloop in (E, F) is an element x € E that is contained in no basis.

(5) A language L over E is a non-empty set L ¢ E* (the free monoid of all words over the alphabet E) of words
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over the alphabet E; it is called simple if every word in L is simple (i.e. it does not contain any letter more than
once).

A greedoid language over E is a pair (E, L), where L is a simple language L c E; (the set of simple words
in E*) satisfying the following conditions:
(IDIfa=Byandae L,thenBe L.  (hereditary)
(L2) If a, 8 € L and |a| > |B], then « contains a letter x such that Sx € L. (exchange).

Bjorner et al. indicate [1] that greedoids were originally developed to give a unified approach to the optimality
of various greedy algorithms known in combinatorial optimization. Such algorithms can be loosely character-
ized as having locally optimal strategy and no backtracking. Nowadays, researchers provide different greedy
algorithms to characterize the different kinds of greedoids (cf. [1,2,3,4]). Helman et al. [2] characterize greedy
structures. [2, Theorem 1] is the best and main result in [2]. That is, let (E, F) be an accessible set system.
Then (E, F) has an optimal greedy basis for every positive weighted linear function if and only if (E, F)
is a matroid embedding (cf. [2, Definition 2], i.e. A matroid embedding is an accessible set system which is
extensible, closure-congruent, and the hereditary closure of which is a matroid). Below [2, Definition 2],
Helman et al. say that (S, C1) in [2, Example 1] is a matroid embedding, yet not a greedoid. Combining [2,
Example 2] and the definition of a matroid embedding, (S, C;) in [2, Example 2] is a greedoid, yet not a
matroid embedding. In other words, [2, Theorem 1] does not characterize a greedoid structure with greedy
algorithm. Korte et al. say [4, p.358, Theorem 14.7]: Let (E, F) be a greedoid. The greedy algorithm finds
a set F ¢ F of maximum weight for each modular weight function if and only if (E, ) has the so-called
strong exchange axiom (see [2], [3, p.160], [4, p.358], or say: For all A € F, Bis a maximal in 7 and A ¢ B. If
x € Ex Bwith Au {x} ¢ F, then there existsay ¢ B\ Asuchthat Au {y} ¢ Fand (B~ {y}) u {x} € F).
Actually, Korte et al. [3,p.160,Theorem 2.2] is the same result as [4, p.358, Theorem 14.7]. However, from [3],
it is easily seen that a greedoid can not be ensured to satisfy the strong exchange axiom. Hence, we may be
asserted that [3, p.160, Theorem 2.2] or [4, p.358, Theorem 14.7] is not a characterization for all of greedoids
with greedy algorithm, but only a characterization for a part of class of greedoids. In addition, among the
known characterizations relative to greedoids with greedy algorithm, we think [1, Theorem 8.5.2] (the same
as [3, p.157, Theorem 1.4]) to be better, that is: suppose (E, £) is a simple hereditary language, then (E, £) is
a greedoid if and only if greedy algorithm gives an optimal solution for every compatible objective function
on L. In the characterizations using Definition 1.1 and the greedy algorithms for a greedoid (E, F) proved in
(1, Theorem 8.5.2] and [3, p.157, Theorem 1.4], 7 must be hereditary (i.e. Xc Y, Y ¢ F = X ¢ F).

Now returning to our question: under what conditions on a greedoid, can every linear function be
optimized by the greedy algorithm? Up to now, we do not find an answer for all of greedoids. Though we
do not find out the solution to the open problem for all of greedoids, using the research methods in [1,2,3,4]
for reference, we can pay our attention to some special class of greedoids to look for the answer. By [1,3],
an interval greedoid (E, Fo) does not ask Fy to be hereditary or satisfy strong exchange axiom. The authors
describe [1] that the ‘interval property’ characterizes a very large class of greedoids and interval greedoids
behave better than general greedoids in many respects. In some types of study, the interval property has to
be assumed to obtain meaningful results [1,3,5,6]. Hence, this paper will focus on interval greedoids in hope
to find the answer for the open problem.

We may find from Definition 1.1 that for a greedoid (E, F), if F is hereditary, then (E, F) is interval. In
addition, it is necessary to generalize the results in [1, Theorem 8.5.2] and [3, p.157, Theorem 1.4] for interval
greedoids. This is done in this paper.

Lemma 1.2. Let F c 2% and x € E be a loop. Then F is a set system on E \ {x}.

Proof. Suppose that aloop x is contained in a X € F. Then, there is a basis By satisfying X < Bx according to
Definition 1.1(3). This follows x € By, a contrary to the loop of x. Therefore, we demonstrate that F is defined
onE \ {x}. O

By Lemma 1.2, this paper only considers the set systems with no loops.
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Lemma 1.3 ([3, p.47]). For a given set system F on E, the property (G2) holds if and only if for any A c E, all
bases of A have the same cardinality.

According to Lemma 1.3, we can state that in a set system such that (G2), then X c E is a basis of A c E if and
only if X € F, X c A satisfies |X| = Jmax |Y].
eF,Yc

2 Main results

We give some notions for a set system (E, F):
W F® = (XeF|X|=k);
QFla={X|XcA,XeF}forany A ¢ F;
(3) n = max |X[;
XeF
(4) Letw : E — R" be a positive weight function (i.e. w(x) > 0 for any x € E). For X c E, definewy : X - R" as
wx(x) = w(x) for any x € X.

We know that, generally, the solution of the greedy algorithm in Section 1 is not optimal. The already
existing greedy algorithms for greedoids (see [1, 3, 4]) are satisfied (or say, characterized) by some different
classes of greedoids. In order to search out a characterization of a type of greedy algorithms for some class
of interval greedoids, we provide a type of greedy algorithm (i.e. Algorithm 1) as follows. After that, we will
demonstrate under what conditions for a set system, Algorithm 1 has an optimal solution. We also find under
what conditions Algorithm 1 characterizes an interval greedoid.

Algorithm 1 (Interval Greedy Algorithm). Input: F, a set system on E; w : E — R, a positive weight function;
n, max |X].
€

Output: S, the greedy solution.

1SetS=g,j=0.

2Ifj<n-1,thengo to 3.

Ifj=n-1,thengoto 4.

Ifj > n, then S := S, stop.

3 Set Dj;1 = {e | there exist Sj;1 € FUD and S ¢ Sj+1 such that e € E \ Sj;1 and Sj.1 U {e} ¢ F}, and
Gi={ecE~S|Su{e}eF}.

3.1 If Dj;1 N Gj # @, then choose ej.1 € Dj.1 N Gj such that w(ej.1) = gnaxG w(e),andsetS := Su {ejs1},
eeDj,1NG;

ji=j+1,80to?2.

3.2IfDj;1 nGj =@, thenS:=S,andj :=j+ 1, go to 2.

4SetGj={ecE~S|Su{e}erF}.

4.1 If Gj # @, then choose ej,; € Gj such that w(ej,1) = rgleanw(e), andsetS:=Su{ej.1},j:=j+1,80t02

4.21fGj =@, thenS:=Sandj:=j+1,goto2.

We say the greedy algorithm works if w(S) > w(A) for VA ¢ F. In the process of Algorithm 1, we can use S;;1
to stand for the solution when the cyclic variablejist <n-1.

Example2.1. Let E1 = {ai1,a2,a3,as} and F1 = {@,{a1},{as},{as,ax},{ai,a;},{a1,az,as},
{ai,as,as},{a1, a2, as, as}}. We can easily check that F satisfies (G1) and (G2) in Definition 1.1 (1).

LetA=@,B={ai,a,}and C = {a1,a»,as}. Weeasily find A c Bc C.Fora, € E1 ~ C, weobtain A u {as} =
{as} € F1,Cu{as} ={ai,az,as,a,} € Frand Bu{a,} = {a1, az, a,} ¢ F1.Using Definition 1.1 (2), (E1, F1)
is not an interval greedoid.
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Define wy : E1 - RY aswi(a1) = 5,w1(az) = 4, w1(as) = 3,wi(as) = 2. Then, we can demonstrate that
{ai, ay, as, a,} is an optimal set. Applying Algorithm 1 on (Fi, w1 ), we look for the solution S of Algorithm
1 as follows: Thereis n = 4.

When j = 0, there are So = @, D1 = {a1, az, a4}, Go = {a1, as}, and so Sy = {ai}.

When j = 1, there are D, = {as}, G1 = {a2, a4}, and so D> n G1 = @. Thus, we attain S, = S; = {a1}.

When j = 2, there are D3 = {az,a,}, G, = {az, a,},and so S3 = {ai, a,}.

When j = 3, thereis j = n — 1. We find G3 = {a3}. Hence, thereis S, = {ai, az, as}.

When j = 4, there is j > n. So, we obtain S = Sj.

Actually, w1 ({a1, a2, a3}) =12 < 14 = w1 ({a1, az, as, a, }) indicates that S is not optimal.

Remark 2.2. After analyzing Example 2.1, we attain some properties as follows.

(1) If we hope Algorithm 1 to work for (E, F), then (E, F) should be an interval greedoid.

(2) There are {ai1},{as} € F1 and {a>}, {as} ¢ F1 holds. Hence, we can ask {x} € F for any x ¢ E if we hope
Algorithm 1 to work for a set system F with any positive weight function w.

Example2.3. Let E; = {ai,az,as,as} and F, = {@,{a1},{as},{ai,a:},{ai,as},{ai,az,as},
{a1, as, as}}. We easily check up F, to satisfy (G1) and (G2) and the interval property. Hence, (E,, F») is an
interval greedoid.

Define wy : E; — RY aswa(a1) = 5,w2(az2) = 4,wa(as) = 3,wa(as) = 2. Then, we can demonstrate that
{ai1, az, as} is an optimal set. Applying Algorithm 1 on (%>, w; ), we look for the solution S of Algorithm 1 as
follows: Thereis n = 3.

When j = 0, there are So = @, D1 = {a1, az, as}, Go = {a1, as}, and so Si= {ai}.

When j = 1, there are D, = {as3}, G1 = {a2, a4}, and so D, n G1 = @. Thus, we attain S, = S; = {a1}.

When j = 2, thereis j = n — 1. We find G, = {a>, a,}. Hence, there is S3 = {ai, a»}.

When j = 3, there is j > n. So, we obtain S = Ss.

Actually, wy({a1,az,a3}) =12 >9 =wy({a1, a,}) indicates that S is not optimal.

Remark 2.4. InExample2.3, B1 = {a1, az, as} and B, = {a1, as, a,} are two bases of F, such that Bi\{as} =
{al, (12}, Bz AN {(13} = {al, 614} € ]—'Z.Buth(al) > wz(az) > wZ(ag) > wz(a4) and}"(z) = {{(11, az}, {(11, a4}}
imply that (E,, F») does not satisfy the following condition:

(G3)Let X, Y bebasesin F and S = Y~ {yo} € F forsomey, € Y. Then thereis xo € X~ Ssuchthat Su{xo} ¢ F
and w(xo) = I{(leaXXw(X).

Hence, we should ask if F with w satisfy (G3) if we hope Algorithm 1 to work for (F, w) though (E, F) is an
interval greedoid.

Lemma 2.5. Let F ¢ 2F with 3 €« F and w : E - R* be a positive weight function.
(1) If F satisfies (G2), then there is F® = @ forany k=0,1,...,n.
(2) An optimal set in (F, w) is a basis.

Proof. (1) Using Lemma 1.3 and Definition 1.1 (3), all of bases in F have the cardinality n. Let B € F be a basis.
From Bj6rner et al. [1, 8.2.A], we know that @ € F and (G2) together define greedoids as well as (G1) and (G2).
Considering (G1) on B, we may easily obtain FO & (k=0,1,...,n).

(2) Since an optimal set S satisfies w(S) > w(B) for any basis B of F. If S is not a basis, then S c Bs holds
for some basis Bg according to Definition 1.1(3). Thus, there isw(S) < w(Bs) since w is positive, a contradiction
with w(S) > w(B). Hence S is a basis. O

Theorem 2.6. Let F c 2 satisfy @ € F and {x} ¢ F forany x € E. Letw : E —~ R" be a positive weight function.
If (E, F) is an interval greedoid satisfying the condition (G3), then Algorithm 1 works for (F, w).
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Proof. Step1.Let i = {X | X ¢ F,|X| < k} (k > 1). We prove the following statements.

(stl) @ € Fy, {x} € Fy forany x € E.

(st2) (E, Fy} is an interval greedoid.

{x} e Fand |[{x}| = 1 < kfor any x € E imply {x} ¢ Fy forany x € E. @ € F and || = 0 < k together means
@ € Fr. Hence, we can say that Fy is a set system with no loops. According to F; ¢ F and F satisfying both
of (G1) and (G2), we easily obtain that JF; satisfies both of (G1) and (G2).

Let Ac BcC,AB,Cec Frand a € Ex ~ Csatisfy Au {a} € Fyand Cu {a} € Fy. Using F ¢ F
and the interval property of F, we obtain Bu {a} ¢ F. Cu {a} € Fj follows |C u {a}| < k. Combining with
Bu{a} c Cu{a}, wedecide |Bu {a}| < k. Hence, thereis Bu {a} € Fy.

Therefore, (E, F}) is an interval greedoid.

Step 2. We will prove that Algorithm 1 works for (/F, w) by induction on n.

If n = 0. This means F = {@}. Hence, the needed result follows.

If n = 1. By Lemma 2.5 (1) and Definition 1.1 (2), there are F © 2 zand 7V £ @.

Then, in the process of Algorithm 1, whenj = 0 = 1-1 = n—1, according to So = @, there is Go = {ec ExT |
@u{e} e F} = Esince {x} € F for any x € E. Hence, Go + @ holds. Choose w(eo+1) = w(e1) = ‘31%"”(‘3)’ and

putS; =g u {e1} ={e1}andj:=0+1=1.Whenj =1, thenj > 1 = n follows the process of Algorithm 1 to
stop. Therefore, the solution of Algorithm 1 is optimal. That is to say, Algorithm 1 works for (F, w).

Suppose that if n < m — 1, then the needed result is correct. Now, let n = m.

Since (E, F) is an interval greedoid, F satisfies (G1) and (G2). Combining Lemma 1.3, there is m = |B| for
any basis B of F. Utilizing Lemma 2.5 (1), we obtain F ) + wherek=0,1,...,m.

Let S be the solution of Algorithm 1 for (F, w). During the process of Algorithm 1, when j < m-1, according
to the interval property, @ u {eo} € F forany ey € E, & € §j € Sj+1, Sj1 U {e} € Fforany e € Dj,1, and the
definitions of D;,; and Gj, there is S; u {e} € F for any e € Dj,1, and so Dj,; n G; # @. Considering Lemma
2.5(1), we arrive at F™ % . So, there is Gp_1 = {e € ExSpm-1| Sm-1U {e} € F} + @. Therefore, we can
demonstrate that S is a basis. Hence, |S| = m holds.

Since S is accessible according to the process of Algorithm 1 for the interval greedoid (E, F) and w, there
is S = Sp. Using Step 1 and the inductive supposition, Algorithm 1 works for (E, Fn_1). That is to say, the
solution S™-1 of Algorithm 1 for (E, F_1) satisfies w(Sm=1) > w(X) for any X € Fy,_1. Combining the process
of Algorithm 1, we confirm S™-1 = S,,_.

Considering Gp_1 = {e € Ex Sp_1 | Sm_1 U {e} € F} and F™ = &, we obtain Sy, = Sp,_1 U {en} where
w(em) = max w(e). Moreover, Sy, is the solution of Algorithm 1 for (F, w).

€bm-1

Let B be a basis of F. We easily find |B| = |Sp-1| + 1. Thus, Sp—1 U {b} € F holds for some b € B\ Sp_1
according to (G2) satisfied by . Thus, S,—1 U {b} is a basis of . Using (G3), there is S;,_1 U {bo} € F where

w(bo) = IBn%x w(x).

On the other hand, for any x ¢ B, if B\ {x} ¢ F, then w(B \ {x}) < w(S™ 1) = w(Sp_1) in view of
the inductive supposition. Since (B \ {x}) u {x} is a basis, there is w((B ~ {x}) U {x}) < w(Sm-1 U {bo}) <
w(Sm-1U{em}) = w(Sm) in virtue of (G3) and the process of searching Sm.

Therefore, w(Sm) > w(B) holds for any basis B in . Furthermore, w(Sm) > w(X) is correct for any X € F
since X must be contained in a basis and w is positive. Thus, Sm is optimal.

Summing up, Algorithm 1 works for (F, w). O

Remark 2.7. Example 2.1 shows that (E1, F1) is not an interval greedoid. In addition, for {a1} c {ai, a>}
and as € E1 \ {ai,a,}, there are {a1,a,} v {as} = {ai,ax,a3} € Fr and {a1} v {as} = {ai,as3} ¢
Fi. That is to say, F does not satisfy the semi-interval property (that is, if YC Z,Y,Z e F,ac E\ Z, then

Zu{ate F=YuialeF).

It is more interesting that the converse of Theorem 2.6 is also true under some pre-conditions.
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Theorem 2.8. Let F be a set system on E with @ € F. If for any positive weight function w : E — R*, there are
the following statements:

(s1) Algorithm 1 works for (F|a,wa) forany A € F.

(s2) F has semi-interval property.

(s3) F satisfies (G2).

Then, (E, F) is an interval greedoid.

Proof. Step 1. To prove: F is accessible.
Let A ¢ F. Since A is the basis of F|4 and w is positive, there is w(4) = }r{ngfc w(X). Let S be the solution
€7 a

of Algorithm 1 for (|4, wa). Consider the process of Algorithm 1and A € F, we can decide Sa € A. Hence, we
obtain ws(Sa) < wa(A) since wy is positive. Furthermore, since w, is positive, we find Sy ¢ A < wa(Sa) <
wa(A). By (s1), we confirm w (Sy) = )I(Ielfi-)\i wa(X). Summing up the above results, we may follow S4 = A.

From @ € F and the process of Algorithm 1 for (|4, wa), we may assert that S4 is accessible. We will
prove this assertion as follows.

Let m = |S,|, that is, m = |A| since Sy = A.

If m = 0. Then S4 = @. So, S, is accessible.

Ifm=1.ThenA = {a} and S, = .

Whenj=0=m-1=1-1.Thereis Gj = Go = {a}. Hence, G; # @ and w(eo+1) =w(a)and S; = gu{a} =
{a}. B B

Whenj = 0+1 =1 = m, then stop, and S, = {a}. We easily obtain Sy \ {a} = @ ¢ F. Hence, S, is
accessible.

Suppose that if m < k — 1, then S, is accessible. Now, let m = k > 1.

If for every j < k-1, there is Dj,1 n Gj #+ @ in the process of Algorithm 1, then according to the definitions
of Dj;1 and Gj, thereare So = @ ¢ S; ¢ S; c ... ¢ Sjy1 and Siyq = S; U {ejy1} for some e;1 € AN Sy, (i =
0,...,j+1), we can state that §,~ isaccessible (j=0,...,k-1).

If for some jo < k — 1, there is Dj .1 N Gj, = @ in the process of Algorithm 1, then Sj ;1 = S;,. This follows
Sj+1] < jo + 1. Furthermore, we obtain |Sy| < k according to the process of Algorithm 1. Thus, we attain Sy
(that is Sy) satisfying [Sa| < k = |A| = [Sa|, a contradiction. Hence, for every j < k — 1, there is Dj,1 N G; # @.

So, S; is accessible (j =0, 1, ...,k - 1).

Letj = k- 1. If G;_, + @, then we obtain S; = S;_; U {e,}. Thus, we may easily find S; to be accessible
since Sy \ ex_; = Sx_; € F and the above discussion.

If Gx_1 = @, then Sy = S;_;. Thus, there is |Sy| = [Sy_1| = k — 1. On the other hand, Sy = Sy = S4 = A hints
|S| = |A| = m = k. This is a contradiction to |Sy| = k — 1. Therefore, we confirm Gy # @.

Adding up the above discussion with the induction, we can state that S4, that is A, is accessible.

According to the arbitrariness of A, we attain that F is accessible.

Step 2. To prove: F satisfies the interval property.

LetX,Y,Z e FsatisfyX c Y c Z Leta ¢ E~ Zsatisfy Xu {a},Zu {a} € F. Using the statement (s2),
thereis Y u {a} ¢ F. Therefore, F satisfies the interval property.

Step 3. F is exchangeable according to the statement (s3).

Step 4. Combining Steps 1, 2 and 3 with Definition 1.1, (E, F) is an interval greedoid. O

Example 2.9. Let E5 = {a1,az,a3,as} and F3 = {@,{a1},{as},{ai, a2}, {as, as}}. Thereis |{as, as}| =
2 = |{a1}| + 1, but no element a € {as, a;} ~ {a1} satisfies {a1} u {a} € F5. Define ws : E3 - R as w3 (a1) =
5,w3(az) = 1,ws(as) = ws(as) = 4. The solution of Algorithm 1 for (F3,ws) is {ai1}. But, ws({ai1}) = 5 <
w3({as, as}) = 8 implies Algorithm 1 not to work for (F3, w3).

Example 2.9 shows that if we want Algorithm 1 to work for (F, w), then F should satisfy (G2). Combining
Theorems 2.6 and 2.8, we give the following characterization for interval greedoids.
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Theorem 2.10. Let F be an exchangable set system on E with @ € F and {x} € F for any x € E. F, satisfies
(G3) for any A € F. Then F is the set of feasible sets of an interval greedoid on E if and only if for all positive
weight functions w : E — R*, F satisfies the statements (s1) and (s2).

Proof. (=) We easily prove (A, F|a) to be an interval greedoid for any A ¢ F. Combining Theorem 2.1 and
F|a satisfying (G3), we obtain the correctness of (s1). @, {x} € F and the interval of F follow the correctness
of (s2).

(«=) Using Theorem 2.8, all of needed results are straightforward. O

Next, we will compare our results with some known results for greedoids.

(I) To compare our results with [1, Theorem 8.5.2] (or say [3, p.157, Theorem 1.4]).

(1) In [1, Theorem 8.5.2] and [3, p.157, Theorem 1.4], the authors give a kind of greedy algorithm to
characterize a greedoid (E, F13), where F;3 is asked to be hereditary. In other words, if a greedoid (E, F) does
not satisfy the hereditary property for F, then the characterizations with greedy algorithms in [1, Theorem
8.5.2] and [3, p.157, Theorem 1.4] will not be successful.

(2) Let F be a set system on E satisfying the hereditary. Then, we easily find that F has the following
properties:

e @, {x} € F holds for any x ¢ E; F satisfies the condition (G3).

eletYcZ,Y,Zec Fanda ¢ ENZ.IfZu{a} € Fiscorrect, then Yu{a} ¢ Fholdsaccordingto Yu{a} c Zu{a}
and the hereditary property of F. This implies that every hereditary sets system satisfies the semi-interval
property.

(3) Considered items (1) and (2), we know that the characterization for greedoids with the greedy
algorithm provided in [1, Theorem 8.5.2] and [3, p.157, Theorem 1.4] are really effective only for some of interval
greedoids and not for the other kinds of greedoids.

(4) Evidently, the given conditions in Theorems 2.6, 2.8 and 2.10 do not ask JF to be hereditary. Combining
the above three items, we can say that for a hereditary set system F, Theorem 2.6 and Theorem 2.8 are satisfied
by much more greedoids than that in [1, Theorem 8.5.2] (or say, [3, p.157, Theorem 1.4]) respectively.

Moreover, the characterization (i.e. Theorem 2.3) proposed in this paper for interval greedoids generalize
the results in [1, Theorem 8.5.2] and [3, p.157, Theorem 1.4] respectively.

Therefore, Algorithm 1 generalizes the greedy algorithm for [1, Theorem 8.5.2] and [3, p.157, Theorem 1.4].

(I1) To compare our results with [4, p.358, Theorem 14.7].

It is well known that a greedoid is perhaps not satisfying the strong exchange axiom. In other words,
not every greedoid has strong exchange axiom, though any greedoid is exchangeable. We also know that an
interval greedoid can not be ensured to satisfy strong exchange axiom. Thus, we can state that Theorem 2.10
is a characterization of a greedy algorithm for some class of interval greedoids. [4, p.358, Theorem 14.7] can
not substitute for the results in this paper. Therefore, Algorithm 1 is a new algorithm and not covered by the
algorithm for [4, p.358, Theorem 14.7].

More generalized characterization for greedoids with greedy algorithms will be studied in the future. We
also hope to give more answers to the open problem stated in Section 1.
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