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1 Introduction
In this article we study the following nonlinear evolution equation

xtt + A ○ F (x) = g (x, A−
1
2 xt) , t ∈ (0, T) , 0 < T < ∞

1
(1)

under the initial conditions
x (0) = x0, xt (0) = x1, (2)

where A is a linear operator in a real Hilbert spaceH, F ∶ X Ð→ X∗ and g ∶ D (g) ⊆ H×H Ð→ H are a nonlinear
operators, X is a real Banach space. For example, operator A denotes −∆with Dirichlet boundary conditions
and F (u) = ∣u∣ρ u (see, Example in Section 2), that in the one space dimension case, we can formulate in the
form

utt − (f (u) ux)x = g (u) , (t, x) ∈ R+ × (0, l) , l > 0, (3)

u (0, x) = u0 (x) , ut (0, x) = u1 (x) , u (t, 0) = u (t, l) = 0, (4)

where u0 (x), u1 (x) are known functions, f (⋅) , g (⋅) ∶ R Ð→ R are continouos functions and l > 0 is a
number. The equation of type (3) describes a mathematical model of the problem from the theory of the
�ow in networks as is a�rmed in articles [1 - 4] (e. g. Aw-Rascle equations, Antman–Cosserat model, etc.).
As it is noted in the survey [2], such a study can �nd application in accelerating missiles and space crafts,
components of high-speedmachinery,manipulator arm,microelectronicmechanical structures, components
of bridges and other structural elements. Balance laws are hyperbolic partial di�erential equations that are
commonly used to express the fundamental dynamics of open conservative systems (e.g. [3]). As the survey
[2] presents su�ciently exact explanations of the signi�cance of equations of such type, we not discuss this
theme.
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We would like to note only the following physical interpretation (see, [5]): "Let V be the smooth elastic
body and F be the force acting on V through ∂V with the mass density is unit. Newton’s law asserts the mass
times the acceleration equal the net force

∫
V

uttdx = −∫
∂V

F ⋅ νdS Ô⇒ utt = −div F

where u is the displacement in some direction of the point x at time t ≥ 0 and F is a function of the
displacement gradient∇u; whence

utt + div F (∇u) = 0.”

As it is well-known, F is a nonlinear function but for the study of this equation one usually uses a local linear
approximation of F. Unlike the abovementioned works, one can study some variant of this equation with the
nonlinear function F by use of the general result of this article.

In this article we use di�erent approach to study proposed problem that allows us to investigate the
case when the main part of the problem actually contains the nonlinear operator. As is shown in the above
mentioned examples, one can investigate the nonlinear hyperbolic equations with the use of the results
of this article, which haven’t been studied earlier. We will note that in this approach we used the Galerkin
approximation method.

This article is organized as follows. In Section 2, we study the solvability of the nonlinear equation of
second order in the Banach spaces, for which we found the su�cient conditions and proved the existence
theorem. In Section 3, we investigate the global behavior of solutions of the posed problem.

2 Solvability of problem (1)–(2)
Let A be a symmetric linear operator densely de�ned in a real Hilbert space H and positive, A has a self-
adjoint extension. Moreover, there is linear operator B de�ned in H such that A ≡ B∗ ○ B, here f ∶ R Ð→ R
is continuous as function, X is a real re�exive Banach space and X ⊂ H, g ∶ D (g) ⊆ H × H Ð→ H, where
g ∶ R2 Ð→ R is a continuous as function and x ∶ [0, T) Ð→ X is an unknown function. Let F (r) as a function

be de�ned as F (r) =
r
∫
0
f (s) ds. Let the inequation ∥x∥H ≤ ∥Bx∥H be valid for any x ∈ D (B). We denote by V,

W and by Y the spaces de�ned as V ≡ {y ∈ H ∣ By ∈ H }, W = {x ∈ H ∣ Ax ∈ H } and as Y ≡ {x ∈ X ∣ Ax ∈ X },
respectively, for which inclusions W ⊂ V ⊂ H are compact and Y ⊂ W.

Let H be the real separable Hilbert space, X be the re�exive Banach space and X ⊂ H ⊂ X∗; V is the
previously de�ned space. It is clear that W ⊂ V ⊂ H ⊂ V∗ ⊂ W∗ are framed spaces by H, these inclusions are
compact and X ⊂ V∗. Then one can de�ne the framed spaces Y ⊂ V ⊂ H ⊂ V∗ ⊂ Y∗; then X ⊂ V∗ ⊂ Y∗ are
compact, with use the property of the operator A. Assume that operator A ∶ VB Ð→ V∗B and A ∶ X∗ Ð→ Y∗.
Consequently, we get A ○ F ∶ X Ð→ Y∗ and A ○ F ○ A ∶ Y Ð→ Y∗. Moreover, we assume that [X∗, Y] 1

2
⊆ V.

Since operator A is invertible, here one can set the function y (t) = A−1x (t) for any t ∈ (0, T), in other
words one can assume the denotation x (t) = Ay (t).

We will interpret the solution of the problem (1) - (2) in the following manner.

De�nition 2.1. A function x ∶ (0, T) Ð→ X, x ∈ C0 (0, T;X) ∩ C1 (0, T;V∗) ∩ C2 (0, T; Y∗), x = Ay, is called a
weak solution of problem (1) - (2) if x a. e. t ∈ (0, T) satis�es the following equation

d2

dt2 ⟨x, z⟩ + ⟨A ○ F (x) , z⟩ = ⟨g (x, Byt) , z⟩ (5)

for any z ∈ Y and the initial conditions (2) (here and further the expression ⟨⋅, ⋅⟩ denotes the dual form for the
pair: the Banach space and its dual).

Consider the following conditions
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(i) Let A ∶ W ⊂ H Ð→ H be the selfadjoint and positive operator, moreover, A ∶ V Ð→ V∗, A ∶ X∗ Ð→ Y∗,
there exists a linear operator B ∶ V Ð→ H that satis�es the equation Ax ≡ (B∗ ○ B) x for any x ∈ D (A) and
∥x∥H ≤ ∥Bx∥H = ∥x∥V .

(ii) Let F ∶ X Ð→ X∗ be the continuously di�erentiable and monotone operator with the potential Φ that
is the functional de�ned on X (its Frechet derivative is the operator F). Moreover, for any x ∈ X the following
inequalities hold

∥F (x)∥X∗ ≤ a0 ∥x∥p−1
X + a1 ∥x∥H ; ⟨F (x) , x⟩ ≥ b0 ∥x∥pX + b1 ∥x∥2

H ,

where a0, b0 > 0, a1, b1 ≥ 0, p > 2 are numbers.
(iii) Assume g ∶ H × V Ð→ H is a continuous operator that satis�es the condition

∣⟨g (x, y) − g (x1, y1) , z⟩∣ ≤ g1 ∣⟨x − x1, z⟩∣ + g2 ∣⟨y − y1, z⟩∣ ,

for any (x, y) , (x1, y1) ∈ H × H, z ∈ H and consequently for any (x, y) ∈ H × H the inequation

∥g (x, y)∥H ≤ g1 ∥x∥H + g2 ∥y∥H + g0, g0 ≥ ∥g (0, 0)∥H

holds, where g0 is a number.

Theorem 2.2. Let spaces H, V ,W , X, Y that are de�ned above satisfy all above mentioned conditions and
conditions (i)-(iii) are ful�lled, then problem (1) - (2) is solvable in the space C0 (0, T;X) ∩ C1 (0, T;V) ∩
C2 (0, T; Y∗) for any x0 ∈ V ∩ [X∗, Y] 1

2
and x1 ∈ H in the sense of De�nition 2.1.

At the beginning for the investigation of the posed problemwe set the following expression in order to obtain
of the a priori estimations

⟨xtt , yt⟩ + ⟨A ○ F (x) , yt⟩ = ⟨g (x, Byt) , yt⟩ ,

where element y is de�ned as the solution of the equation Ay (t) = x (t), i.e. y (t) = A−1x (t) for any t ∈ (0, T)
as was already mentioned above.

Hence follow
⟨Bytt , Byt⟩ + ⟨F (x) , xt⟩ = ⟨g (x, Byt) , yt⟩ ,

or
1
2
d
dt

∥Byt∥2
H +

d
dt

Φ (x) = ⟨g (x, Byt) , yt⟩ , (6)

where Φ (x) is the functional de�ned as Φ (x) =
1
∫
0
⟨F (sx) , x⟩ ds (see, [6]).

Then using condition (iii) on g (x, Byt) in (6) one can obtain

1
2
d
dt

∥Byt∥2
H +

d
dt

Φ (x) ≤ ∥g (x, Byt)∥2
H + ∥yt∥2

H ≤

2 (g2
1 ∥x∥2

H + g2
2 ∥Byt∥2

H + g2
0) + ∥yt∥2

H ≤ C̃ (∥x∥2
H +

1
2 ∥Byt∥2

H + g2
0) ,

where one can use the estimation ∥x∥2
H ≤ c̃ (Φ (x) + 1) (if b1 > 0 then ∥x∥2

H ≤ c̃Φ (x)) as 2 < p by virtue of the
condition (ii). Consequently, we get to the Cauchy problem for the inequation

d
dt

(1
2 ∥Byt∥2

H (t) + Φ (x (t))) ≤ C0 (1
2 ∥Byt∥2

H (t) + Φ (x (t))) + C1 (7)

with the initial conditions

x (t) ∣ t=0 = x0; yt (t) ∣ t=0 = A−1xt ∣ t=0 = A−1x1, (8)

where Cj ≥ 0 are constants independent of x (t). From here follows

1
2 ∥Byt∥2

H (t) + Φ (x (t)) ≤ etC0 [∥By1∥2
2 + 2Φ (x0)] +

C1

C0
(etC0 − 1) .
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This gives the following estimations for every T ∈ (0,∞)

∥Byt∥2
H (t) ≤ C (x0, x1) eC0T , Φ (x (t)) ≤ C (x0, x1) eC0T , (9)

for a. e. t ∈ (0, T), i.e. y = A−1x is contained in the bounded subset of the space y ∈ C1 (0, T;V)∩C0 (0, T; Y),
consequently, we obtain that if the weak solution x (t) exists then it belongs to a bounded subset of the space
C0 (0, T;X) ∩ C1 (0, T;V∗).

Hence one can see, that the following inclusion

y ∈ C2 (0, T;X∗ ∩ H) ∩ C1 (0, T;X∗ ∩ V) ∩ C0 (0, T; Y)

holds by virtue of (5) in the assumption that x = Ay is a solution of the posedproblem in the sense ofDe�nition
2.1.

Proof of Theorem 2.2. In order to prove of the solvability theorem we will use the Faedo-Galerkin approach.
Let the system {yk}∞k=1 ⊂ Y be total in Y such that it is complete in the spaces Y , V, and also in the spaces
X,H. We will seek out of the approximative solutions ym (t), and consequently xm (t), in the form

xm (t) ≡ Aym (t) =
m
∑
k=1

ci (t)Ayk or xm (t) ∈ span {y1, ..., ym}

as the solutions of the considered problem, where ci (t) are the unknown functions that will be de�ned as
solutions of the following Cauchy problem for system of ODE

d2

dt2 ⟨xm , yj⟩ + ⟨F (xm) , Ayj⟩ = ⟨g (xm , Bymt) , yj⟩ , j = 1, 2, ...,m

xm (0) = x0m , xtm (0) = x1m ,

where x0m and x1m are contained in span {y1, ..., ym}, m = 1, 2, ..., moreover,

x0m Ð→ x0 in [X, Y] 1
2
⊆ V; x1m Ð→ x1 in X, m ↗∞.

Thus we obtain the following problem

d2

dt2 ⟨xm , yj⟩ + ⟨F (xm) , Ayj⟩ = ⟨g (xm , Bymt) , yj⟩ , j = 1, 2, ...,m (10)

⟨xm (t) , yj⟩ ∣ t=0 = ⟨x0m , yj⟩ ,
d
dt

⟨xm (t) , yj⟩ ∣ t=0 = ⟨x1m , yj⟩

that is solvable by virtue of estimates (9) on (0, T) for any m = 1, 2, ..., j = 1, 2, ... and T > 0. Hence we set

d2

dt2 ⟨xm , z⟩ + ⟨F (xm) , Az⟩ = ⟨g (xm , Bymt) , z⟩ (11)

for any z ∈ Y and m = 1, 2, ....
Consequently, with use of the known procedure ([7 - 9]) we obtain, ymt ∈ C0 (0, T;V), ym ∈ C0 (0, T; Y)

and xm ∈ C0 (0, T;X), xmt ∈ C0 (0, T;V∗), moreover, they are contained in the bounded subset of these
spaces for any m = 1, 2, .... Hence from (9) we get

xmtt ∈ C0 (0, T; Y∗) or xm ∈ C2 (0, T; Y∗) , (V∗ ⊂ Y∗).

Thus we obtain, that the sequence {xm}∞m=1 of the approximated solutions of the problem is contained in a
bounded subset of the space

C0 (0, T;X) ∩ C1 (0, T;V∗) ∩ C2 (0, T; Y∗)

or {xm}∞m=1 such that for a. e. t ∈ (0, T) the following inclusions take place {ym (t)}∞m=1 ⊂ Y ⊂ X ⊂ H,
{ymt (t)}∞m=1 ⊂ V, {ymtt (t)}∞m=1 ⊂ X∗. So we have

{ym (t)}∞m=1 ⊂ C0 (0, T; Y) ∩ C1 (0, T;V) ∩ C2 (0, T;X∗) .
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Therefore, {ym (t)}∞m=1 possess a precompact subsequence in C1 (0, T; [X∗, Y] 1
2
) and in C1 (0, T;V), as

[X∗, Y] 1
2
⊆ V by virtue of conditions on X and A (by virtue of well known results, see, e. g. [10, 11] etc.). From

here follows ym (t) Ð→ y (t) in C1 (0, T;V) for m ↗ ∞ (Here and hereafter in order to abate the number of
indexwe don’t change the indexes of subsequences). Then the sequence {F (Aym (t))}∞m=1 ⊂ X∗ and bounded
for a. e. t ∈ (0, T); the sequence

{g (xm (t) , xmt (t))}∞m=1 ≡ {g (Aym (t) , Bymt (t))}∞m=1 ⊂ H

and bounded for a. e. t ∈ (0, T) also, by virtue of the condition (iii). Indeed, for any m the estimation

∥g (Aym , Bymt)∥H (t) ≤ ∥Aym (t)∥H + ∥Bymt (t)∥H + ∥g (0, 0)∥H

holds and, therefore, {g (Aym (t) , Bymt (t))}∞m=1 is contained in a bounded subset of H for a. e. t ∈ (0, T).
Consequently, {F (Aym)}∞m=1 and {g (Aym (t) , Bymt (t))}∞m=1 have weakly converging subsequences to η (t)
and θ (t) in X∗ and H, respectively, for a. e. t ∈ (0, T). Hence one can pass to the limit in (11) with respect to
m ↗∞. Then we obtain the following equation

d2

dt2 ⟨x, z⟩ + ⟨Aη (t) , z⟩ = ⟨θ (t) , z⟩ . (12)

It remained to show the following: if the sequence {xm (t)}∞m=1 ≡ {Aym (t)}∞m=1 is weakly converging to x (t) =
Ay (t) then η (t) = F (x (t)) and θ (t) = g (x (t) , Byt (t)). In order to show these equations are ful�lled we
will use the monotonicity of F and the condition (iii).

We start by showing θ (t) = g ((t) , Byt (t)) as x ∈ X ⊂ H and yt ∈ V, Byt ∈ H therefore g (x, Byt) is
de�ned for a. e. t ∈ (0, T). Consequently, one can consider of the expression

⟨g (Aym (t) , Bymt (t)) − g (Ay (t) , Byt (t)) , ŷ⟩

for any ŷ ∈ C0 (0, T; Y) ∩ C1 (0, T;V). So we set this expression and investigate this for any ŷ ∈ C0 (0, T; Y) ∩
C1 (0, T;V); then we have

∣⟨g (Aym (t) , Bymt (t)) − g (Ay (t) , Byt (t)) , ŷ⟩∣ ≤

g1 ∣⟨Aym (t) − Ay (t) , ŷ (t)⟩∣ + g2 ∣⟨Bymt (t) − Byt (t) , ŷ (t)⟩∣ (13)

that takes place by virtue of the condition (iii). Using here the weak convergences of Aym (t) ⇀ Ay (t) and
Bymt (t) Ð→ Byt (t) and by passing to the limit in the inequation (13) with respect to m ∶ m ↗∞ we get

∣⟨θ (t) − g (Ay (t) , Byt (t)) , ŷ⟩∣ ≤ 0

for any ŷ ∈ C0 (0, T;H). Consequently, the equation θ (t) = g ((t) , Byt (t))holds, then the following equation
is valid

d2

dt2 ⟨x, z⟩ + ⟨Aη (t) , z⟩ = ⟨g (x (t) , Byt (t)) , z⟩

for any z ∈ Y, as {yk}∞k=1 is complete in Y that display ful�lling of equation

Aη (t) = g (x (t) , Byt (t)) −
d2x
dt2 (14)

in the sense of Y∗.
In order to show the equation η (t) = F (x (t)) one can use the monotonicity of F. So the following

inequation holds
⟨A ○ F (Az) − A ○ F (Ay) , z − y⟩ = ⟨F (Az) − F (Ay) , Az − Ay⟩ =

⟨F (x̃) − F (x) , x̃ − x⟩ ≥ 0
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for any y, z ∈ Y, Ay = x and Az = x̃ by condition (i). Then one can write

0 ≤ ⟨F (xm) − F (x̃) , xm − x̃⟩ = ⟨F (Aym) − F (Az) , Aym − Az⟩ =

take account here the equation (9)

⟨F (Aym) , Aym⟩ − ⟨ d2

dt2 xm − g (xm , Bymt) , z⟩ − ⟨F (Az) , Aym − Az⟩ =

⟨F (xm) , xm⟩ − ⟨ d2

dt2 xm − g (xm , Bymt) , z⟩ − ⟨F (x̃) , xm − x̃⟩ . (15)

Here one can use the well-known inequation

lim sup ⟨F (xm) , xm⟩ ≤ ⟨η, x⟩ = ⟨η, Ay⟩ = ⟨Aη, y⟩ .

Then passing to the limit in (15) with respect to m ∶ m ↗∞ we obtain

0 ≤ ⟨Aη, y⟩ − ⟨ d2

dt2 x − g (x, Byt) , z⟩ − ⟨F (x̃) , x − x̃⟩ =

⟨Aη, y⟩ − ⟨Aη, z⟩ − ⟨F (x̃) , Ay − Az⟩ = ⟨Aη − A ○ F (x̃) , y − z⟩
by virtue of (14).

Consequently, we obtain that the equation Aη (t) = A ○ F (x) holds since z is arbitrary element of Y.
Now it remains to show that the obtained function x(t) = Ay(t) satis�es the initial conditions. Consider

the following equation

⟨ymt , Aym⟩ (t) =
t

∫
0

⟨ d2

ds2 Aym , ym⟩ ds +
t

∫
0

⟨ d
ds

Bym ,
d
ds

Bym⟩ ds + ⟨y1m , Ay0m⟩ =

t

∫
0

⟨ d2

ds2 ym , Aym⟩ ds +
t

∫
0

∥ d
ds

Bym∥
2

H
ds + ⟨y1m , Ay0m⟩

for m = 1, 2, ..., here xm(t) = Aym(t). Hence we get: the left side is bounded as far as all added items in the
right side are bounded by virtue of the obtained estimations. Therefore, one can pass to limit with respect
to m as here ymt is continous with respect to t for any m; then ymt strongly converges to yt and Aym weakly
converges to Ay in H. It must be noted the equation

lim
mÐ→∞

t

∫
0

∥ d
ds

Bym∥
2

H
dxds =

t

∫
0

∥ d
ds

By∥
2

H
ds

holds by virtue of the above reasonings that {ym (t)}∞m=1 is a precompact subset in C1 (0, T;V). Consequently,
the left side converges to the expression of such type, i.e. to ⟨yt , Ay⟩ (t). The obtained results show that the
following convergences are just: xm (t) = Aym (t) ⇀ Ay (t) = x (t) in X, xmt (t) = Aymt ⇀ Ayt = xt (t) in V∗.
From here follows, that the initial conditions are ful�lled in the sense of X and V∗, respectively.

Thus the existence theorem is fully proved.

Remark 2.3. This theorem shows that there exists a �ow S (t) de�ned in V × X and the solution of the problem
(1) - (2) can be represented as x (t) = S (t) ○ (x0, x1).

Example 2.4. Let Ω ⊂ Rn(n ≥ 3) be a bounded domain with su�ciently smooth boundary ∂Ω. Consider on
Q = (0, T) ×Ω of the following problem

utt −∇ ⋅ (∣u∣p−2 ∇u) = a (u) + b∫
Ω

ut (t, y)
∣x − y∣n−1 dy, p > 2,

u (0, x) = u0 (x) , ut (0, x) = u1 (x) , u ∣ ∂Ω×(0,T) = 0,

where a (τ) satis�es the Lipschitz condition, b ∈ R.
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It is clear that all conditions of Theorem 2.2 are ful�lled for this problem under above conditions of this
example.

We would like to note the equation with main part of such type hasn’t been studied earlier.

3 Behavior of solutions of problem (1)–(2)
Here we consider a problem under the following complementary conditions:

(iv) Let g (x, Byt) = 0 and ∥x∥pH (t) ≤ c0Φ (x (t)) for some c0 > 0.
We set a function E(t) = ∥Bw∥2

H(t) and consider this function on the solution of problem (1) - (2), then
for E(t) = ∥By∥2

H(t) we have

É (t) = 2 ⟨Byt , By⟩ ≤ ∥Byt∥2
2 (t) + ∥By∥2

2 (t) , (16)

where y = A−1x. Here we will use equation (9). For this we need the following equation

1
2 ∥Bys∥2

H (s) + Φ (x (s)) ∣t0 = 0

as g (x, Byt) = 0.
2
Hence

1
2 ∥Bys∥2

H (t) + Φ (x (t)) = 1
2 ∥By1∥2

H (t) + Φ (x0)

and
∥Byt∥2

H (t) = −2Φ (x (t)) + ∥By1∥2
H + 2Φ (x0) .

Granting this by (16) we get
É (t) ≤ E (t) − Er (t) + ∥By1∥2

H + 2Φ (x0)

by virtue of the condition Φ (x) ≥ c0 ∥x∥pX and of the continuity of embedding X ⊂ H, r = p/2.
So denoted by z (t) = E (t) we have the Cauchy problem for di�erential inequality

ź (t) ≤ z (t) − czr (t) + C (x0, x1) , z (0) = ∥By0∥2
H , (17)

that we will investigate. Inequation (17) can be rewritten in the form

(z (t) + kC (x0, x1))´≤ z (t) + kC (x0, x1) − δ [z (t) + kC (x0, x1)]r ,

where k > 1 is a number and δ = δ (c, C, k, r) > 0 is su�ciently small number. Then solving this problem we
get

z (t) + kC (x0, x1) ≤ [e(1−r)t (z0 + kC (x0, x1))1−r + δ (1 − e(1−r)t)]
1

1−r

or
E (t) ≤ [e(1−r)t (∥By0∥2

H + kC (x0, x1))
1−r

+ δ (1 − e(1−r)t)]
1

1−r
− kC (x0, x1)

∥By∥2
H(t) ≤

et (∥By0∥2
H + kC (x0, x1))

[1 + δ (∥By0∥2
H + kC (x0, x1))

r−1 (e(r−1)t − 1)]
1
r−1

− kC (x0, x1) . (18)

Here the right side is greater than zero, because δ ≤ k−1
krCr and 2r = p > 2.

Thus the result is proved.

Theorem 3.1. Under conditions (i), (ii), (iv) the function y(t), de�ned by the solution of problem (5)-(6), for
any t > 0 is contained in ball BX∩V

l (0) ⊂ X ∩ V depending on the initial values (x0, x1) ∈ (X ∩ V) × H, here
l = l (x0, x1, p) > 0.

2 We would like to note that this equation shows the stability of the energy of the considered system in this case.
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4 Conclusion
In this article, the existence of a very weak solution for di�erential-operator equations of second order with
nonlinear operator in the main part is proved. We would like to note that, in particular, if A is the di�erential
operator this equation becomes a hyperbolic equation. Consequently, one can investigate previously not
studied nonlinear hyperbolic equations with the use of results and the approach presented in this article.
The following work will be focused on nonlinear hyperbolic equations with the nonlinearity of the same type
as studied here.

Moreover, here the long-time behavior of the very weak solution of the problem is proved, and also the
dependence of the behavior of the solution from initial datums is shown. In other words, here we show the
behavior of the weak semi-�ow (in some sense), de�ned by the considered problem, with respect to t when
t → +∞.
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