Open Math. 2018; 16: 268-275 DE GRUYTER a

Open Mathematics

Research Article

Kamal N. Soltanov*

On nonlinear evolution equation
of second order in Banach spaces

https://doi.org/10.1515/math-2018-0023
Received June 6, 2017; accepted February 9, 2018.

Abstract: Here we study the existence of a solution and also the behavior of the existing solution of the
abstract nonlinear differential equation of second order that, in particular, is the nonlinear hyperbolic
equation with nonlinear main parts, and in the special case, is the equation of the type of equation of traffic
flow.
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1 Introduction

In this article we study the following nonlinear evolution equation
xu+AoF(x)=g(x,47x)), te(0,T), 0<T<oo 1)

under the initial conditions
x (0) = xo, x¢(0) = x1, @)

where A is a linear operator in a real Hilbert space H, F : X — X" and g : D (g) < HxH — H are anonlinear
operators, X is a real Banach space. For example, operator A denotes — A with Dirichlet boundary conditions
and F (u) = |u|” u (see, Example in Section 2), that in the one space dimension case, we can formulate in the
form

ure — (f (W) ux), =g(u), (t,x)eRyx(0,1),1>0, (3)

u(0,x) =uo (x), ur (0,x) =u1 (x), u(t,0)=u(t1)=0, (4)

where uo (x), ui (x) are known functions, f(-),g(-) : R — R are continouos functions and I > O is a
number. The equation of type (3) describes a mathematical model of the problem from the theory of the
flow in networks as is affirmed in articles [1 - 4] (e. g. Aw-Rascle equations, Antman—Cosserat model, etc.).
As it is noted in the survey [2], such a study can find application in accelerating missiles and space crafts,
components of high-speed machinery, manipulator arm, microelectronic mechanical structures, components
of bridges and other structural elements. Balance laws are hyperbolic partial differential equations that are
commonly used to express the fundamental dynamics of open conservative systems (e.g. [3]). As the survey
[2] presents sufficiently exact explanations of the significance of equations of such type, we not discuss this
theme.
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We would like to note only the following physical interpretation (see, [5]): "Let V be the smooth elastic
body and F be the force acting on V through 0V with the mass density is unit. Newton’s law asserts the mass
times the acceleration equal the net force

futth:fmedS :>tht=7diVF
14 oV

where u is the displacement in some direction of the point x at time ¢ > 0 and F is a function of the
displacement gradient Vu; whence
ug +divF (Vu) =0.”

As it is well-known, F is a nonlinear function but for the study of this equation one usually uses a local linear
approximation of F. Unlike the above mentioned works, one can study some variant of this equation with the
nonlinear function F by use of the general result of this article.

In this article we use different approach to study proposed problem that allows us to investigate the
case when the main part of the problem actually contains the nonlinear operator. As is shown in the above
mentioned examples, one can investigate the nonlinear hyperbolic equations with the use of the results
of this article, which haven’t been studied earlier. We will note that in this approach we used the Galerkin
approximation method.

This article is organized as follows. In Section 2, we study the solvability of the nonlinear equation of
second order in the Banach spaces, for which we found the sufficient conditions and proved the existence
theorem. In Section 3, we investigate the global behavior of solutions of the posed problem.

2 Solvability of problem (1)-(2)

Let A be a symmetric linear operator densely defined in a real Hilbert space H and positive, A has a self-
adjoint extension. Moreover, there is linear operator B defined in H such that A = B* o B, heref : R — R
is continuous as function, X is a real reflexive Banach space and X c H, g : D(g) € H x H — H, where
g: R> — Ris a continuous as function and x : [0, T) — X is an unknown function. Let F (r) as a function

r
be defined as F (r) = [f (s) ds. Let the inequation | x|, < | Bx| be valid for any x € D (B). We denote by V/,
0

W and by Y the spaces definedas V = {ye H|ByeH}, W ={xecH|AxceH}andasY = {x e X|Ax e X},
respectively, for which inclusions W ¢ V ¢ H are compactand Y ¢ W.

Let H be the real separable Hilbert space, X be the reflexive Banach space and X ¢ H c X*; V is the
previously defined space. It is clear that W ¢ V c H ¢ V* ¢ W* are framed spaces by H, these inclusions are
compact and X ¢ V*. Then one can define the framed spaces Y c Vc Hc V¥ c Y*;then X c V* c Y* are
compact, with use the property of the operator A. Assume that operator A : Vg — Vzand A : X* — Y™,
Consequently, weget Ao F: X — Y and Ao Fo A:Y — Y*. Moreover, we assume that [X *, Y]l cV.

2

Since operator A is invertible, here one can set the function y (t) = A™'x (t) for any t ¢ (0, T), in other
words one can assume the denotation x (t) = Ay (t).

We will interpret the solution of the problem (1) - (2) in the following manner.

Definition 2.1. A functionx : (0, T) — X, x € C°(0, T;X)nC" (0, T; V*)n C* (0, T; Y*), x = Ay, is called a
weak solution of problem (1) - 2) if x a. e. t € (0, T) satisfies the following equation
2

A2 (A F(0),2) = (g (x, By), 2 ®

for any z € Y and the initial conditions (2) (here and further the expression (-, -} denotes the dual form for the
pair: the Banach space and its dual).

Consider the following conditions
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(i) Let A : W ¢ H — H be the selfadjoint and positive operator, moreover, A : V — V*, A: X* — Y™,
there exists a linear operator B : V — H that satisfies the equation Ax = (B* ° B) x forany x € D (A) and
Ix[5 < [Bx] 1 = x]y-

(i) Let F : X — X* be the continuously differentiable and monotone operator with the potential  that
is the functional defined on X (its Frechet derivative is the operator F). Moreover, for any x € X the following
inequalities hold

-1 2
IF () g < ao x|z +arxlys  (F(x),x)2bo x|z + b1 x|y,

where ag, by > 0, a1, b1 >0, p > 2 are numbers.
(iii) Assume g : H x V — H is a continuous operator that satisfies the condition

(g (x,y) -8 (x1,¥1),2)| < g1l{x = x1,2)| + 82 [{y — ¥1, Z)|,

forany (x,y), (x1,y1) € H x H, z € H and consequently for any (x, y) € H x H the inequation

I8 CCY)e <81 lxly+821yly+ 80, 802[g(0,0)ly

holds, where g is a number.

Theorem 2.2. Let spaces H, V, W, X, Y that are defined above satisfy all above mentioned conditions and
conditions (i)-(iii) are fulfilled, then problem (1) - (2) is solvable in the space C° (0, T;X) n c* (o, T; V) n
C>(0,T; Y*) forany xo € V.n [X*, Y], and x; € H in the sense of Definition 2.1.

2

At the beginning for the investigation of the posed problem we set the following expression in order to obtain
of the a priori estimations
(Xtt,ye) + (Ao F(x),yt) = (g (X, Byt),yt)
where element y is defined as the solution of the equation Ay (t) = x (t),i.e.y (t) = A~ x (t) forany t € (0, T)
as was already mentioned above.
Hence follow

(Byit, Byt) + (F (x), x¢) = (8 (X, Byt) , yt) »

or
1d

d
2 P
S dt HBytHH-rE@(x)—(g(x,Byt),yt), (6)
1
where & (x) is the functional defined as @ (x) = [ (F (sx), x) ds (see, [6]).
0
Then using condition (iii) on g (x, By;) in (6) one can obtain

1d 2 d 2 2
3 1Byl + 5.0 00 <18 (xa By + Lyel <
~ 1
2 (81 el + 8 1Byt + ) + Lyl < € (11 + 5 1Byely +.3)

where one can use the estimation HXHIZ, <T(®@(x)+1) (if by > 0 then HfoL, <CP (x)) as 2 < p by virtue of the
condition (ii). Consequently, we get to the Cauchy problem for the inequation

2 (5 1Byl O+ (x(0)) < Co 3 1Byl (0 + 2 (x(6)) + € @)

with the initial conditions
X(t)| =0 =x05 Ve (t)|e=0 =A " X¢| =0 = A™'xa, (8)

where C; > 0 are constants independent of x (t). From here follows

! C
5 1Byl (0 + @ (x () < € [|Bys [+ 20 (xo)] + £ (€0~ 1).
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This gives the following estimations for every T € (0, o)
|Byelg () < C(x0,x1) €™, @ (x (1)) < C(xo0,x1) €7, ©

fora.e.te (0, T),i.e.y = A 'xis contained in the bounded subset of the spacey € C* (0, T; V)nC° (0, T; Y),
consequently, we obtain that if the weak solution x (t) exists then it belongs to a bounded subset of the space
c°(0,T;X)nC (0, T; V*).

Hence one can see, that the following inclusion

yeC(0,T;X nH)nC (0, ;X nV)nC®(0, T;Y)

holds by virtue of (5) in the assumption that x = Ay is a solution of the posed problem in the sense of Definition
2.1.

Proof of Theorem 2.2. In order to prove of the solvability theorem we will use the Faedo-Galerkin approach.
Let the system {yk };: Y be total in Y such that it is complete in the spaces Y, V, and also in the spaces
X, H. We will seek out of the approximative solutions ym (t), and consequently xn, (t), in the form

m
Xm (t) = Aym () = > ci (t) Ay or xm (t) € span {yl, v y’”}
k=1

as the solutions of the considered problem, where c; (t) are the unknown functions that will be defined as
solutions of the following Cauchy problem for system of ODE

%(Xm’yi>+<F(Xm)’ij>:<g(Xm,B)/mt),yj>, j=1,2,..,m
Xm (O) = Xom, Xtm (O) = X1m,»

where xon,, and x1,, are contained in span {yl, ceey y’"}, m=1,2,..., moreover,

Xom — Xo in [X,Y].: SV, xim—x1 in X, m 7 oco.

Thus we obtain the following problem
2

%(Xm’yj>+<F(Xm)’ij>:<g(xm,BYmt),yi>, j=1,2,..,m 10)

<Xm (l’) ,yl) | t=0 = (XOm, _V]) ) a <Xm (t) ,y’) | t=0 = (le,y])
that is solvable by virtue of estimates (9) on (0, T) foranym =1, 2,...,j =1, 2, ... and T > 0. Hence we set
dZ
75 (xm2)+ (F (xn) , Az) = (g (xm, Bym) . 2) (an

foranyzeYandm=1,2,....

Consequently, with use of the known procedure ([7 - 9]) we obtain, ym¢ € C° (0, T; V), ym € C° (0, T; Y)
and x,m € C° (0, T;X), Xmt € c® (0, T; V*), moreover, they are contained in the bounded subset of these
spaces forany m = 1, 2, .... Hence from (9) we get

Xmee € C°(0, T;Y*) or xmeC?(0,T;Y*), (V* c Y¥).

Thus we obtain, that the sequence {x,,},,_, of the approximated solutions of the problem is contained in a
bounded subset of the space

c°(0,T;X)nC' (0, T;V*)nC*(0,T; Y¥)

or {Xm},,_, such that for a. e. t € (0, T) the following inclusions take place {ym (t)},,., ¢ Y ¢ X c H,
{Yme ()} oy € Vo {Vmee ()}, € X*. So we have

{Ym (O} < C°(0, T;Y) N C (0, T; V) n C* (0, T; X*).
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Therefore, {ym (t)}rr_, possess a precompact subsequence in C' (0, T; [X*, Y]l) and in C' (0, T; V), as
2
[X * Y] , € V by virtue of conditions on X and A (by virtue of well known results, see, e. g. [10, 11] etc.). From
2
here follows y, (t) — y (t) in C* (0, T; V) for m ~ oo (Here and hereafter in order to abate the number of
index we don’t change the indexes of subsequences). Then the sequence {F (Aym (t))},._; ¢ X* and bounded

fora.e. t € (0, T); the sequence

{g (xom () Xme ()} = {8 (Aym (), Byme (8)) } g < H

and bounded for a. e. t € (0, T) also, by virtue of the condition (iii). Indeed, for any m the estimation

|g (Aym, Bymt) | (€) < [Aym () [ + [ Byme ()| + |8 (0, 0) [

holds and, therefore, {g (Aym (t) , Bymt (t))} .., is contained in a bounded subset of H for a. e. t € (0, T).
Consequently, {F (Aym)},.., and {g (Aym (t) , Bym: (t))}.-, have weakly converging subsequences to n (t)
and 0 (t) in X* and H, respectively, for a. e. t € (0, T). Hence one can pass to the limit in (11) with respect to
m ~ oo. Then we obtain the following equation

2

ap 2+ {An(t),2) = (0 (1), 2). (12)

It remained to show the following: if the sequence {xm (t)},,.; = {Aym (t)} .-, is weakly converging to x (t) =
Ay (t) thenn(t) = F(x(t)) and 0 (t) = g(x (t), Byt (t)). In order to show these equations are fulfilled we
will use the monotonicity of F and the condition (iii).

We start by showing 6 (¢) = g((t),By:(t)) asx € X ¢ Hand y: € V, By: € H therefore g (x, By;) is
defined for a. e. t € (0, T). Consequently, one can consider of the expression

(8 (Aym (t) , Byme (t)) — g (Ay (1), Byt (1)) ,¥)

foranyy e C° (0, T; Y) n C! (0, T; V). So we set this expression and investigate this for anyy € C° (0, T; Y) n
C* (0, T; V); then we have

(g (Aym (1), Byme (1)) — 8 (Ay (1), Byt (1)), ¥)| <

g1 [{Aym (t) - Ay (£), ¥ ()| + 82 [(Byme (t) — Byt (1) , ¥ (1)) (13)

that takes place by virtue of the condition (iii). Using here the weak convergences of Ayn (t) — Ay (t) and
Bym:t (t) — By (t) and by passing to the limit in the inequation (13) with respect to m : m ~ oo we get

(0 (t) — g (Ay (), By (t)),y)| <0

foranyy e C° (0, T; H). Consequently, the equation 6 (t) = g ((t) , By (t)) holds, then the following equation
is valid
dZ
de
foranyze Y, as {yk};: , is complete in Y that display fulfilling of equation

{x,2) + (An (1), z) = (g (x (t) , Byt (1)) , 2)

d*x

an (14)

An(t) =g (x(t) , Bye (t)) -
in the sense of Y*.
In order to show the equation n(¢) = F(x(t)) one can use the monotonicity of F. So the following
inequation holds
(Ao F(Az)-AoF(Ay),z-y) = (F(Az) - F(Ay), Az - Ay) =

(F(X)-F(x),X-x)>0
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forany y,z € Y, Ay = x and Az = X by condition (i). Then one can write
0<(F(xm)-F(X),xm-X)=(F(Aym) - F(Az),Aym - Az) =

take account here the equation (9)
2

(F (Aym) , Aym) - (jtzxm —g(xm,Bymt),z> —(F(Az),Aym - Az) =

2
(F(Xm) » Xm) — (;tzxm - 8 (Xm, Bymt) ,z) —(F(X),xm-X). (15)

Here one can use the well-known inequation

limsup (F (Xm) , Xm) < (1, X) = (n, Ay) = (An,y).

Then passing to the limit in (15) with respect to m : m » oo we obtain

2
0<(An,y) - (jtzx g (x, Byt), z) (F(X),x-X) =

(An,y) - (An,z) - (F (X) , Ay - Az) = (An - Ao F(X),y - z)
by virtue of (14).
Consequently, we obtain that the equation An (¢) = A o F (x) holds since z is arbitrary element of Y.
Now it remains to show that the obtained function x(t) = Ay(t) satisfies the initial conditions. Consider
the following equation

t t
dZ
()/mt,A)/m)(t):[<CLS2AYm,Ym>dS+f< Bym, B)’m)d5+<y1m;Ay0m):
0 0

Z(dzy'"’Ay’“>ds+fHd Bym

form =1, 2,..., here x (t) = Aym(t). Hence we get: the left side is bounded as far as all added items in the
right side are bounded by virtue of the obtained estimations. Therefore, one can pass to limit with respect
to m as here yn; is continous with respect to t for any m; then ym: strongly converges to y: and Ay, weakly
converges to Ay in H. It must be noted the equation

t t
. d 2 d
mhﬁw[ Hd*SBVW H"’“’S‘[ HE

holds by virtue of the above reasonings that {ym (t)},.., is a precompact subsetin C 1 (0, T; V). Consequently,
the left side converges to the expression of such type, i.e. to (y:, Ay) (t). The obtained results show that the
following convergences are just: xm (t) = Aym (t) = Ay (t) = x (t) in X, Xm¢ (t) = Ayme —~ Ayr = x¢ (t) in V*.
From here follows, that the initial conditions are fulfilled in the sense of X and V*, respectively.

Thus the existence theorem is fully proved. O

ds +{(¥1im> AYom)

ds
H

Remark 2.3. This theorem shows that there exists a flow S (t) defined in V x X and the solution of the problem
(1) - (2) can be represented as x (t) = S (t) o (X0, X1).

Example 2.4. Let 2 ¢ R"(n > 3) be a bounded domain with sufficiently smooth boundary 952. Consider on
Q = (0, T) x {2 of the following problem

Ut — V (|u|p2Vu) a(u)+b/ t(ty)dy,p>2

u(0,x) =uo (x), ur(0,x) =u1 (x), uls0x,r =0,

where a (1) satisfies the Lipschitz condition, b € R.



274 —— K.N. Soltanov DE GRUYTER

It is clear that all conditions of Theorem 2.2 are fulfilled for this problem under above conditions of this
example.
We would like to note the equation with main part of such type hasn’t been studied earlier.

3 Behavior of solutions of problem (1)-(2)

Here we consider a problem under the following complementary conditions:

(iv) Let g (x, Byr) = 0 and | x| (¢) < co® (x (t)) for some co > O.

We set a function E(t) = |Bw]| % (t) and consider this function on the solution of problem (1) - (2), then
for E(t) = |By|%(t) we have

E(t) = 2 (Byt, By) < | Byl (t) + |By|3 (t), (16)
where y = A~ !x. Here we will use equation (9). For this we need the following equation
1
5 IBys I () +®(x(s)]o =0
as g (x, Byt) = 0." Hence

S IBYSIE (6 + @ (x(6) = 3 [Byal (6) + @ (x0)

and
IByelz; (£) = =29 (x (£)) + | By1| ; + 28 (xo0) -

Granting this by (16) we get
E(t) <E(t) - E" () + |By1 ] + 20 (x0)

by virtue of the condition & (x) > co ||x[% and of the continuity of embedding X c H, r = p/2.
So denoted by z (t) = E (t) we have the Cauchy problem for differential inequality

Z(t) <z(t)-cz' (t) +C(x0,x1), z(0)= ||By0H12{ , a7
that we will investigate. Inequation (17) can be rewritten in the form
(z (t) + kC (x0,x1)) <z (t) + kC (x0, x1) = 6 [z (t) + kC (x0,x1)]",

where k > 1 is a number and 6 = § (c, C, k, r) > 0 is sufficiently small number. Then solving this problem we
get
1
z(t) + kC (x0,x1) < [e(l_’)t (20 + kC (x0,x1))" " +6 (1 - e(l_r)t)] 1"
or

1
1-r

E(6) < [0 (IByally + k€ (xo,x)) +5(1-e)] 7 - ke (0, 30)

e' (IByol + kC (x0, x1))

[1 +4 (HByoHiI +kC (xo,xl))r*l (etr-Dt - 1)] =

|By||a(t) < - kC (X0, x1) . (18)

= ‘

< k-1

Here the right side is greater than zero, because § < ;7

Thus the result is proved.

and 2r=p > 2.

Theorem 3.1. Under conditions (i), (ii), (iv) the function y(t), defined by the solution of problem (5)-(6), for
any t > 0 is contained in ball Bi"" (0) c X n V depending on the initial values (xo,x1) € (X n V) x H, here
l=1(x0,x1,p)>0.

2 We would like to note that this equation shows the stability of the energy of the considered system in this case.
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4 Conclusion

In this article, the existence of a very weak solution for differential-operator equations of second order with
nonlinear operator in the main part is proved. We would like to note that, in particular, if A is the differential
operator this equation becomes a hyperbolic equation. Consequently, one can investigate previously not
studied nonlinear hyperbolic equations with the use of results and the approach presented in this article.
The following work will be focused on nonlinear hyperbolic equations with the nonlinearity of the same type
as studied here.

Moreover, here the long-time behavior of the very weak solution of the problem is proved, and also the
dependence of the behavior of the solution from initial datums is shown. In other words, here we show the
behavior of the weak semi-flow (in some sense), defined by the considered problem, with respect to t when

t - +oo.
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