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Abstract: In this paper, we introduce a practical strategy to select an adaptive time step size suitable for the
parareal algorithm designed to parallelize a numerical scheme for solving sti� initial value problems. For
the adaptive time step size, a technique to detect sti�ness of a given system is �rst considered since the step
size will be chosen according to the extent of sti�ness. Finally, the sti�ness detection technique is applied
to an initial prediction step of the parareal algorithm, and select an adaptive step size to each time interval
according to the sti�ness. Several numerical experiments demonstrate the e�ciency of the proposedmethod.
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1 Introduction
We consider numerical techniques to solve sti� initial value problems (IVPs) given by

dy
dt

= f(t, y(t)), t ∈ [t0, tf ], y(t0) = y0, (1)

where f has continuously bounded partial derivatives up to required order for the developed numerical
method. The sti� systems are broadly classi�ed into two categories - one is to have sti� components in just
a given system and the other is to have the components in both the system and its solution. In the �rst case,
solutions of the system behaves smoothly as time is increasing so it can be easily solved by any implicit
scheme with an appropriate step size. On the other hand, the solutions of the given system in the second
case have sti� components expressed as irregularities or sharp fronts in some or whole time intervals. In
the intervals, we carefully handle a numerical scheme since the solutions are very rapidly changed. Most
interesting research topics, induced from the real applications such as �uid dynamics, molecular dynamics,
plasma or other physics, are related with the second case.

There are lots of numerical strategies to �nd e�cient and accurate solutions of the sti� systems. In
this paper, we focus on the parallelization scheme to �nd the e�cient solutions of the sti� IVPs. Time
parallelization scheme has received a lot of attention over the past few years and several parallelization
schemes have been proposed [1–3]. Especially in 2001, a new algorithmwhichwas named parareal algorithm
for the solution of time dependent di�erential equations in parallel was introduced [4]. It can be de�ned by

ykn+1 = G(tn+1, tn , ykn) + F(tn+1, tn , yk−1n ) − G(tn+1, tn , yk−1n ) (2)
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where the subscript n refers to the time subdomain number, the superscript k refers to the iteration number. F
represents a �ne propagator, that is, a more accurate solution on a �ne grid in time interval [tn , tn+1]with an
initial value yk−1n . G represents a coarse propagator, a less accurate approximation in a coarser grid. Note that
the F-propagator determines the overall accuracy of the parareal method, whereas the convergence order of
the method is decided by the order of the G-propagator and the number of iterations used when it is coupled
with a su�ciently accurate F-propagator [5, 6]. Unfortunately, the traditional parareal scheme has the low
parallel e�ciency which is bounded by 1/K, where K is the parareal iterations needed to converge to the
desired accuracy. In most case, 2 or more iterations are needed, so the e�ciency of the traditional parareal
scheme is less than 50 percents and even worst in practice. To hurdle this drawback, several advanced
parareal techniques based on the deferred correction (DC) methods have been recently introduced [2, 5, 6],
in which DC strategies are utilized within the parareal iteration for the F-propagator by using one or few DC
iterations during each parareal iteration.

In the parareal algorithm, there is an important assumption that there are an in�nite number of pro-
cessors to use, so each processor is assigned to each di�erent time interval with a uniform time step size.
However, only a few �nite number of processors can be provided in practice. Even if an in�nite number of
processors are provided, it is not e�cient to assign the uniform step size on each processor without any
consideration on the property of the problem, especially for sti� systems or partial di�erential equations
(PDEs) having sharp front. That is, it is more e�cient that a larger time step size is assigned for smooth or
non-sti� regions in solutions, while a smaller time step size is needed for shock or sti� regions. Therefore, the
usage of adaptive step sizes is very important issue to improve the e�ciency of the parareal algorithm. Related
to this issue, many researchers have attempted to �nd a suitable way to automatically detect sti�ness [7].

The aimsof this paper are to introduce a criterion to detect sti�ness and to develop a scheme for �nding an
adaptive time step size according to the extent of sti�ness in each interval. First of all, for the given system,we
need to split the sti� and non-sti� parts in a given time domain. There are various ways to detect sti�ness. For
simplicity’s sake, we examine a gradient ratio of a given system to split the sti� and non-sti� parts. Once the
sti� regions is detected, the corresponding step size should be automatically controlled. So, the time intervals
in sti� regions should be gradually shrank depending on the extent of the sti�ness, while those in non-sti�
regions are comparatively stretched. Based on these processes, an appropriate time step size for the parareal
algorithm is chosen in the sequential step depending on the sti�ness at each time interval. Note that in the
traditional parareal algorithm, a G-propagator approximates initial values for all time intervals sequentially,
with having a uniform step size at the initialization step.

Additionally, a theoretical analysis of the parareal algorithm shows that the stability of the method
depends on the choice of G-propagator [5, 8]. Especially, for solving highly sti� problem, G-propagator should
be satis�ed an L-stability. Also, each time interval is determined in the initialization stepwith a G-propagator,
the computational cost for G-propagator should be small enough. Overall, Backward Euler (BE) method
will be a good candidate for the G-propagator, since BE is unconditionally stable, its computational costs
is relatively small and it has L-stability [9], where it can unconditionally ful�ll the stability condition of the
parareal methods with less computational costs.

This paper is organized as follows. In Sec. 2, we brie�y describe the original parareal technique and
the improved parareal algorithms based on the original one. In Sec. 3, we introduce several parameters
for detecting degree of sti�ness in each interval and discuss a strategy to select adaptive time step size
using sti�ness detection to improve the overall e�ciency of the parareal algorithm. In Sec. 4, preliminary
numerical results are presented to show the e�ciency of the proposed scheme. Finally in Sec. 5, future
research directions are provided.

2 Parareal method
In this section, we brie�y review the original parareal algorithm and the improved parareal algorithms based
on the traditional algorithm.
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2.1 Parareal algorithm

As in general parareal algorithm, we assume the time interval [0, T] is divided into Np intervals with each
interval being assigned to a di�erent processor denoted processors P1 through PNp . On each interval, the
parareal method iteratively computes a succession of approximation ykn+1 ≈ y(tn+1), where k denotes the
iteration number. It is de�ned using two propagation operators G(tn+1, tn , yn) and F(tn+1, tn , yn), for which
the propagators search a solution from tn to tn+1 using an initial value yn. The G(tn+1, tn , yn) operator
(denoted G) provides a rough approximation of y(tn+1), the solutions of Eq. (1) with given initial conditions,
whereas the F(tn+1, tn , yn) operator (denoted F) typically gives a highly accurate approximation of y(tn+1)
on the �ne discretization of time interval [tn , tn+1]. Note that typically the G propagator is computationally
less expensive than the F propagator, that is, the G propagator is usually a lower order method or computed
on a much coarser discretization, while the F propagator is a higher-order method on a �ner discretization.
So, the parareal method is convergent to a solution of the F propagator applied in serial.

The parareal method begins by sequentially computing y0n for n = 1, . . . , Np, using G propagator,

y0n+1 = G(tn+1, tn , y0n). (3)

Once each processor has a value y0n, the processors can in parallel compute the approximation F(tn+1, tn , y0n).
The parareal algorithm then computes the serial correction step for n = 1, . . . , Np,

yk+1n+1 = G(tn+1, tn , yk+1n ) + F(tn+1, tn , ykn) − G(tn+1, tn , ykn). (4)

Themethodproceeds iteratively alternating between the parallel computation of F(tn+1, tn , ykn) and the serial
computation of Eq. (4).

2.2 Improved parareal methods

In this subsection, we brie�y introduce improved versions of parareal methods to develop for overcoming
limitations of the original parareal algorithm.

Although the original parareal algorithmenables us to parallelize numerical algorithms for solving initial
value problems, its e�ciency is controversial since the lowparallel e�ciencywhich is bounded by 1/K, where
K is the parareal iterations needed to converge to the desired accuracy. Note that K must be at least 2, the
e�ciency of the original parareal scheme is less than 50 percents and even worse in practice. To improve
the low parallel e�ciency for the parareal algorithm, several improved algorithms are developed [2, 5, 11],
in which various deferred correction (DC) techniques are embedded into the parareal framework. In [2, 11],
a hybrid parareal spectral deferred correction method was introduced in which spectral deferred correction
(SDC) strategies are utilizedwithin the parareal iteration, as a F-propagator. Also, in [5], two di�erent deferred
correction schemes, modi�ed DC technique combinedwith Backward Euler (BE)method and Krylov deferred
correction (KDC) [10], are used for G and F propagators in the parareal framework, similar to the hybrid
parareal spectral deferred correctionmethod. Commonly in [2, 5, 11], instead of directly using the SDC scheme
or KDC scheme requiring several iterations (SDC sweeps in SDC or Newton-Krylov iterations in KDC) in serial,
the F-propagator in each parareal iteration performs one or a few SDC sweeps or Newton-Krylov iterations
on the solution from the previous parareal iteration. As the parareal iterations converge, the F solution still
converges to the high-accuracy SDC or KDC solution.

The advantage of these schemes is that the F-propagator becomes much cheaper by combining the
parareal iterations and DC iterations, compared to a full accurate solver. Because the DC iterations (SDC
sweeps in SDC or Newton-Krylov iterations in KDC) are overlapped with the parareal iteration, so the hybrid
parareal schemes can unite the two di�erent iterations (DC and parareal iterations) [2, p. 281]. Typically,
the original e�ciency is bounded by 1/K, where K is the number of iterations for the parallel iterations to
converge. However, the parallel e�ciency of the hybrid parareal SDC or KDC is about Ks/K, where Ks is the
number of iterations required of the serial SDC or KDCmethod to converge to a given tolerance. Note that the
hybrid parareal SDC method is a reasonably good choice for non-sti� systems and parareal KDC method is
suitable for sti� systems since KDC was developed to overcome the limitation of SDC for sti�ness.
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3 Algorithm
In the parareal algorithm, all processors are typically initialized by using the coarse propagator in a serial
way to yield a low accuracy initial condition on each interval which is assigned to each processor. So, all
processors except the �rst one are idle until passed an initial condition from the previous processor and the
idle time is inevasible.

3.1 Sti�ness detection

We now describe a parameter which dictates whether there exists a sti�ness of a given system in a given time
interval. Since sti�ness implies that the given systemhas two di�erent time scales. That is, a rate ofmaximum
andminimum value of derivatives for the system in some interval is quite big, then we prescribe that it is sti�
in the interval. In this respect, this can be easily done by introducing the following measure related to the
gradient for the given problem :

κ(t) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

max ∣∣y′(t)∣∣
min ∣∣y′(t)∣∣

, n > 1

∣∣y′(t)∣∣, n = 1
(5)

where n is the dimension of the given system.
Note that we restrict the sti�ness to the case when sti�ness is on the problem and solution. That is, we

need to check the change rate ofκ(t) since it sayswhether any big change exists between the previous interval
and the current one. This allows us to approximate a conditioning parameter γ(h) in each interval as follows:

γ(h) = min(κ(tm), κ(tm+1))
max(κ(tm), κ(tm+1))

, (6)

where h = tm+1 − tm. We can easily check that γ(h) goes to 0 when there is a big di�erence between κ(tm)
and κ(tm+1) due to big change in the interval [tm , tm+1]. Also, κ(tm) and κ(tm+1) have quite similar values,
γ(h) goes to 1. That is, the parameter γ(h) can be used to detect the sti�ness in the interval [tm , tm+1], so
we say it “sti�ness ratio". Therefore, the sti�ness ratio γ(h) is used to determine a time step size h according
to the degree of the sti�ness, since the ratio γ(h) is relatively small when solutions in a given time interval
are rapidly changed and γ(h) is large when a change rate of solutions is increasingly small. Note that “the
change rate of solutions is small" means that the solutions are smooth in that interval, so the time step size
is allowed to be large. Hence the time step size can be selected adaptively small and increasingly large when
the sti�ness ratio γ(h) is small and relatively large, respectively.

3.2 Adaptive step size selection

For a code implementation, sti�ness criteria to choose time step sizes are needed to be set up. When the ratio
γ(h) is close to 1, the step size is expanded and when the ratio goes to 0, the step size should be shortened.
For the sake of simplicity, we amplify the step size twicewhen the sti�ness ration is 1, whichmeans that there
is no di�erence of κ(t) in an interval. In addition, the step size is reduced by half when the sti�ness ratio is
halved. Using these conditions, we simply set up the following criterion to choose a new time step size hnew
as follows:

hnew = min(hmax , max(hmin , 2h ⋅ γ(h)2)), (7)

where hmax and hmin are constant factors to avoid too fast increase and decrease of the time step, respectively.
Based on the parameters and the discussion above, we get the following algorithm to select new step size

as follows:
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Algorithm for step size selection

1. Remark: The algorithm is designed to adaptively choose time step size for G-propagator in the parereal
scheme. [t0, t�nal] is the required integration interval, and y0 is a given initial value.

2. Initialize h0, told ∶= t0.
3. Set tnew ∶= told + h. If tnew > t�nal, then exit.
4. Perform the Backward Euler method with having h and yold and approximate ynew.
5. Calculate Jacobian matrix and its eigenvalue of the matrix and get κ(t) and γ(h) de�ned in (5) and (6),

respectively.
6. hnew = min(hmax , max(hmin , 2h ⋅ γ(h)2))
7. Setting h = hnew, told ∶= tnew and yold ∶= ynew, go to step 3.

3.3 Parareal algorithm with the proposed adaptive step size controller

Based on the new step size controller with the sti�ness detection discussed in the previous subsections, we
present the enhanced parareal methods with adaptive step size. First of all, we assume the time interval of
interest [0, T] is divided into N uniform intervals, and each interval [ti , ti+1] is assigned to a corresponding
processor Pi. Note that yki denotes the approximation after the k-th parareal iteration at the i-th node ti.
Predictor Step Decide initial values and step sizes in a serial way

Starting with the initial value y0 and h0,
– Get the initial value y0i and hi from the previous interval [ti−1, ti]
– Using G-propagator, calculate the initial approximation y0i+1 for t = ti+1 on Processor Pi in serial.

G(ti+1, ti , y0i ) = y0i+1. (8)

– Using the step size selection technique discussed above, calculate a new step size hnew based on κ

and γ.
– Send the y0i+1 and hnew to the next interval.

Corrector Step Parallel Iteration (k + 1 step) for k = 0, . . . , N − 1
– Using a higher order method, compute F(tn+1, tn , ykn) on the �ne grid in parallel.
– After the approximation value yk+1i at ti on each processor Pi−1 is calculated, it is sending to the

following processor Pi as a new initial value for ti+1.
– Using G-propagator with a new initial value yk+1i , calculate the initial approximation yk+1i+1 for t = ti+1

on Processor Pi.
– Update

yk+1n+1 = G(tn+1, tn , yk+1n ) + F(tn+1, tn , ykn) − G(tn+1, tn , ykn), (9)

where G(tn+1, tn , ykn) is the approximation from G-propagator.

4 Numerical results
In this section, preliminary numerical results are presented to examine the convergence behavior and e�-
ciency of the enhanced parareal scheme, compared to the standard implementation of the original parareal
scheme.
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4.1 Robertson example

As the �rst example, we solve a classical problem due to Robertson which describes the kinetics of an
autocatalytic reaction given by Robertson. Its system consists of a sti� system of 3 nonlinear ODEs given by

y′1 = −0.04y1 + 104y2y3,

y′2 = 0.04y1 + 104y2y3 − 3 ⋅ 107y22,

y′3 = 3 ⋅ 107y22.

(10)

The initial vector y0 is given by [1, 0, 0]T . In this experiment, we march from t = 0 to tf = 1 with initial
step size h0 = 1e − 4. To investigate the e�ectiveness of the proposed scheme, we simply experiment with
the adaptive mesh selection using Backward Euler (BE) method and compare the accuracy of the proposed
scheme that of the existing method (built-in Matlab function -ode15s).

Note that in this experiment, BE is used as a test method since BE is employed for G-propagator of the
parareal algorithm in this paper. Fig. 1(a) shows that the proposed step size controller can solve the problem
and its result is quite close to that from the existing method ode15s.

Fig. 1. Comparison of (a) solution and (b) corresponding time step size for proposed scheme and existing method (ode15s)

(a) (b)

Note thatwe just plot the second component of the solution set since the sti�ness is on the second component.
Also the sti�ness is near t = 0, so we expect the step size is chosen relatively small in this region. For this, we
plot the time step size by the proposed scheme over the time domain and compare it with that obtained by
the existing method.

Fig. 1(b) shows that only 21 time steps are needed to reach the �nal timewith the proposed scheme, while
104 time steps are required with uniform grid used in the original parareal scheme and 30 time steps with the
existing scheme using adaptive time step size. Also, as seen in the �gure, larger time step sizes are allowed
by the proposed technique in non-sti� parts as desired.

Nowwe apply the adaptive mesh selection strategy to the parareal algorithmwith KDC as a F-propagator
andBEas aG-propagator. Also, for the experiment, theKDCmethodswith 4Radau II nodes are employed, and
each parareal iteration performs the 2 outer Newton iterations for desired e�ciency and the other conditions
such as the tolerance for the Newton-Krylov methods or nonlinear solvers are �xed for all simulations. We
use a reference solution obtained from KDC scheme with 8 Radau II node and full outer Newton iterations.

To examine the convergence behavior of sti� parts, only 10 processors are used and corresponding �nal
time point is 0.00125. In Fig. 2, we plot the error at the �nal time (t = 0.00125) versus the parareal iterations
with an initial step size 104. It can be seen that after a certain number of parareal iterations, the error levels
reach a certain tolerance level even for sti� parts. It also shows that to reach the �nal time 0.00125 using
uniform grid with a step size h = 104, it requires 10 processors which is the same number of processors
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needed for the adaptive mesh parareal scheme. Hence, it must be noted that even using adaptive step sizes,
the step sizes in sti� parts should become small enough.

Fig. 2. Convergence behavior of parareal iterations for each component of the given system

4.2 Van der Pol problem

This problem, thatmodels the behavior in an electronic circuit, can be described as a system of two equations
given by

y′(t) = f(t, y(t)), t ∈ (0, 3000]; y(0) = y0, (11)

where y(t) = [y1(t), y2(t)]T ∈ R2 and f is de�ned by

f(t, y(t)) = [
y2(t),

((1 − y21(t))y2(t) − y1(t))/ε
] . (12)

with initial condition y0 = [2, 0]T . From the second component of f , it can be seen that the smaller ε is, the
stronger sti�ness of problem is. For the test, we take ε = 1/1000 and initial time step size h0 = 10−4.

To examine the e�ectiveness of the proposed scheme, we plot the solution y1 over the time domain and
its corresponding step size h in Fig. 5. The �gure shows that the step size is adaptively chosen to be small in
sti� parts and increasingly large in non-sti� parts. The �gure also shows that only 591 time steps are needed to
reach the �nal time with the proposed scheme. Note that regardless of sti�ness, the original parareal scheme
have to use the uniform step size using appropriate step size suitable for sti� components. For example, if the
initial step size h = 10−4, then 3× 107 time steps are required. It is directly related to the computational time
and the number of processes needed in parareal scheme.

Nowwe apply the adaptive mesh selection strategy to the parareal algorithmwith KDC as a F-propagator
and BE as a G-propagator. Also, for the experiment, the KDC methods with several Radau II nodes are
employed, and each parareal iteration performs the 2 outer Newton iterations for desired e�ciency and the
other conditions such as the tolerance for the Newton-Krylov methods or nonlinear solvers are �xed for all
simulations.

Since only a few processors (less than 100) can be available in current status, we test parareal algorithm
with adaptive step sizes only for non-sti� parts.

Using 72 processors, we march t = 0 to tf = 569.6 with adaptive time step size and plot the adaptive step
sizes over the time domain in Fig. 5. The adaptive step size is almost same as seen in Fig. 5.

With the adaptive step size, we generate numerical results from the parareal algorithm with 3, 4 and
6 Radau II nodes for F-propagator (KDC) to examine the convergence behavior. Note that we calculate a
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Fig. 3. Approximated solution (y1) behavior (above), approximated solution (y2) behavior (middle) and corresponding time step
size (below)

Fig. 4. Comparison of corresponding time step size for proposed scheme and existing method (ode15s)

numerical solution at time tf = 569.6 for the KDC method with 8 Radau II node and full outer Newton
iterations for a reference solution, since analytic solutions of this problem are unknown.

For the experiment, we plot the error based on the reference solutions for the parareal iteration in Fig. 5.
It can be seen that the accuracy of the algorithm after convergence depends on the number of Radau IIa
collocation nodes in the KDC methods. Note that the KDC methods using p Radau IIa nodes is converging
with an approximate order of 2p − 1 [5, 12, 13].

Fig. 5. Convergence behavior of parareal algorithm with 3, 4 and 6 Radau IIa nodes
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5 Discussion
In this paper, a numerical technique to select an adaptive step size is introduced to improve the e�ciency of
the parareal algorithm for sti� systems. Unlike the traditional parareal scheme, the proposed scheme allows
us to use much larger time step size in non-sti� parts so that it can reduce the number of processors assigned
to the corresponding interval and lead to less computational costs without any damage on accuracy.

Currently, we are working on the generalization of adaptive step size selection for any G-propagator.
In particular, the proposed technique is just applicable for explicit type ODE systems, but not Di�erential
Algebraic Equations (DAEs). In relation to this, we are constructing other parameters to measure sti�ness
of the given systems. At the same time, we are applying the proposed scheme to time dependent PDEs.
Preliminary results are quite promising. Results along these directions will be reported soon.
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