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Abstract: From the notion of Jacobi type vector fields for a real hypersurface in complex quadric Q™ we prove
that if the structure vector field is of Jacobi type it is Killing when the real hypersurface is either Hopf or
compact. In such cases we classify real hypersurfaces whose structure vector field is of Jacobi type.
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1 Introduction

The complex quadric Q™ = SOy+2/SOmSO7 is a compact Hermitian symmetric space of rank 2. It is also a
complex hypersurface in complex projective space CP™ ", [1]. Q™ is equipped with two geometric structures:
a complex conjugation A and a Kahler structure J.

Real hypersurfaces M in Q™ are immersed submanifolds of real codimension 1. The Kdhler structure J
of Q™ induces on M an almost contact metric structure (¢, &, 7, g), where ¢ is the structure tensor field, ¢ is
the structure (or Reeb) vector field, n is a 1-form and g is the the induced Riemannian metric on M.

Real hypersurfaces M in Q™ whose Reeb flow is isometric are classified in [2]. They obtain tubes around
the totally geodesic CP*in Q™ when m = 2k. The condition of isometric Reeb flow is equivalent to the
commuting condition of the shape operator S with the structure tensor field ¢ of M.

It is known that a Killing vector field X on a Riemannian manifold (M, g) satisfies £xg = 0, where £
denotes the Lie derivative. Killing vector fields are a powerful tool in studying the geometry of a Riemannian
manifold. A Killing vector field is a Jacobi vector field along any geodesic. However the converse is not true:
the position vector on the euclidean space R" is a Jacobi field along any geodesic of R" but it is not Killing.
Studying when the structure vector field of a complex projective space is Killing, Deshmukh, [3], introduced
the notion of Jacobi type vector fields on a Riemannian manifold. A vector field Y on M is of Jacobi type if it
satisfies

VxVxY+R(Y,X)X=0 6))

for any vector field X tangent to M, where ¥ denotes the Levi-Civita connection on M and R its Riemannian
curvature tensor. Naturally any Jacobi type vector field on M is a Jacobi vector field along any geodesic of M.

As on a real hypersurface M in Q™ we have a special vector field, the structure one &, it is interesting to
see if it is Killing when it is of Jacobi type. In this sense we will prove the following
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Theorem 1.1. Let M be a real hypersurface in Q™, m > 3. If M is either compact or Hopf and the structure
vector field is of Jacobi type, it is a Killing vector field.

By this Theorem and the classification of real hypersurfaces with geodesic Reeb flow we obtain

Corollary 1.2. Let M be a compact or Hopf real hypersurface in Q™, m > 3. Then the structure vector field is of
Jacobi type if and only if m is even, say m = 2k, and M is locally congruent to a tube around a totally geodesic
CPkin Q™.

Similar results for real hypersurfaces of complex two-plane Grassmannians were obtained in [4].

2 The space Q™

For the study of Riemannian geometry of Q™ see [1]. All the notations we will use since now are the ones
in [2].

The complex projective space C is considered as the Hermitian symmetric space of the special
unitary group SUms2, namely CP™! = SUp12/S(Ums1Us). The symbol 0=[0,...,0,1] in CP™*! is the fixed
point of the action of the stabilizer S(Um+1U1). The action of the special orthogonal group SOm+2 c SUn+2
on CP™*! is of cohomogeneity one. A totally geodesic projective space RP™*! ¢ CP™*! is an orbit containing
0. The second singular orbit of this action is the complex quadric Q™ = SOm+2/S0nS0,. It is a homogeneous
model wich interprets geometrically the complex quadric Q™ as the Grassmann manifold G3(R™*"?) of
oriented 2-planes in R™*2. For m = 1 the complex quadric is isometric to a sphere S? of constant curvature.
For m = 2 the complex quadric Q? is isometric to the Riemannian product of two 2-spheres with constant
curvature. Therefore we assume the dimension of the complex quadric Q™ to be greater than or equal to 3.

Moreover, the complex quadric Q™ is the complex hypersurface in CP™*! defined by the equation z2 +
e + zﬁHz = 0, where z;,i = 1, ..., m + 2, are homogeneous coordinates on CP™*. The Kihler structure of
complex projective space induces canonically a Kihler structure (J, g) on Q™, where g is the Riemannian
metric induced by the Fubini-Study metric of CP™*?,

A point [z] in CP™*! is the complex span of z, that is [z] = {\z/) € C}, where z is a nonzero vector of
C™*2, For each [z] in CP™"! the tangent space T [Z](CP’"+1 can be identified canonically with the orthogonal
complement of [z] & [z] in C™*2,

The shape operator Az of Q™ with respect to the unit normal vector Z is given by

Pm+1

AgW =W
for all w e T;; Q™. Then A; is a complex conjugation restricted to T,; Q™. Thus T(,; Q™ is decomposed into
T[z] Qm = V(Az) @]V(Az)

where V(Az) is the (+1)-eigenspace of Az and JV (A3 ) is the (-1)-eigenspace of Az. Geometrically, it means that
A; defines a real structure on the complex vector space T}, Q™. The set of all shape operators A defines a
parallel rank 2 subbundle 2( of the endomorphism bundle End(T Q™) which consists of all the real structures
of the tangent space of Q™. Forany A ¢ 4, A% =Tand AJ = -JA.

The Gauss equation of Q™ in CP™*! yields that the Riemannian curvature tensor R of Q™ is given by

R(X,Y)Z=g(Y,2)X - g(X,2)Y + g(JY, Z)JX - g UX, Z)]Y - 28 JX, Y)JZ

+g(AY, Z)AX - g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)JAY @

where ] is the complex structure and A is a real structure in L.
For every vector field W tangent to Q™ there is a complex conjugation A € 2( and orthonormal vectors
X,Y € V(A) such that
W = cos(t)X + sin(t)]Y

forsome t € [0, 7 ].
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3 Real hypersurfaces in Q™

Let M be a real hypersurface in Q™, that is, a submanifold of Q™ with real codimension one. The induced
Riemannian metric on M will also be denoted by g, and v denotes the Riemannian connection of (M, g). Let
N be a unit normal vector field of M and S the shape operator of M with respect to N. For any X tangent to M
we write
JX = ¢X +n(X)N

where ¢X denotes the tangential component of JX and n(X)N its normal component. The structure vector
field (or Reeb vector field) ¢ is defined by ¢ = —JN. The 1-form 7 is given by n(X) = g(X, &) for any vector field
X tangent to M. Therefore, on M we have an almost contact metric structure (¢, £, n, g). Thus,

*X = X +n(X)&n(€) = 1,8(8X, 6Y) = g(X, ¥) - n(X)n(Y), ¢ = 0 3
for all tangent vector fields X, Y on M. Moreover, the parallelism of J yields
(Vx¢)Y =n(Y)SX - g(SX, Y)¢ (4)

and
Vx€ = pSX (5)

for any X, Y tangent to M.
At each point [z] € M we choose a real structure A € 2, such that

Nz = cos(t)Zy + sin(t)]Z,
AN[;) = cos(t)Zy - sin(t)]Z

6
&1z = —cos(t)]Zy + sin(t)Z> (6)
Ag[;) = cos(t)JZy +sin(t)Z,
where Z,, Z; are orthonormal vectors in V(A) and O < t < 7. Therefore g(AN, ¢) = 0.
Let X € T;;M. Then AX is decomposed into
AX = BX + p(X)N 7)

where BX is the tangential component of AX and p(X)N is its normal component, with p(X) = g(AX, N). As
seen above p(&) = 0.
From (2) the curvature tensor R of M is given by

R(X,Y)Z=g(Y,Z)X - g(X,2)Y + g(¢Y, Z)¢X - g(¢X, Z)pY

-28(¢X, Y)$Z + g(AY, Z)(AX)" - g(AX, Z)(AY)" + gJAY, Z)JAX)" - g(JAX, Z) ®)
(JAY)T + g(SY,Z)SX - g(SX, Z)SY

for any X, Y, Z tangent to M, where (.)” denotes the tangential component of the correspondent vector field.
From (8) the Ricci tensor of M is given (see [5]) by

Ric(X) = (2m - 1)X - 3n(X)¢ + n(B&)BX + —p(X)¢B¢ + n(BX)B¢ + (traceS)SX — S*X 9)
for any X tangent to M. Moreover, the Codazzi equation is given by
g((VxS)Y - (VyS)X, Z) = n(X)g(¢Y, Z) - n(Y)g(¢X, Z)

-28(¢X, Y)n(Z) + g(X,AN)g(AY, Z) - g(Y, AN)g(AX, Z) (10)
forany X, Y, Z tangent to M.
The real hypersurface M is called Hopf if the Reeb vector field is an eigenvector of the shape operator S,
that is
S¢=at
where o = g(S¢, €) is the Reeb function.
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4 Proof of Theorem 1.1

Let us suppose that ¢ is of Jacobi type. Then VxVx& + R(&, X)X = O for any X tangent to M.
Take an orthonormal basis {ei,...,e,m-1} of vector fields tangent to M. As ¢ is of Jacobi type,
YL Y, Ve, + Ric(¢) = 0. That is,

S Ve pSe; + Ric(€) =0 (1)

From (9) Ric(€) = 2(m - 2)¢ + n(B&)BE - p(§)$BE + n(BE)BE + (traceS)S¢ — S7¢. As p(&) = 0 and n(B¢) =
g(A¢g, €) we obtain

Ric(¢) = 2(m - 2)¢ + 2g(A¢, €)B¢ + (traceS)S¢ - S%¢. (12)
From (11) and (12) we get 2! V.. ¢Se; + 2(m - 2)¢ + 2g (A€, €)B¢ + (traceS)S¢ — S*¢ = 0. Taking its scalar
product with ¢ and bearing in mind that g(B¢, ¢) = g(A¢, &) we obtain

Lemma 4.1. Let M be a real hypersurfacein Q™, m > 3, such that ¢ is of Jacobi type. Then

—traceS? +2(m - 2) + 2g(A¢, €)* + (traceS)n(S¢) = 0

Now we compute

|¢S - So||> = 247 g((4S - So)ei, (¢S — S¢)e;)
=2 g((6S - So)ei, €))g((¢S - So)ei, ef)
=257 g(¢Se;, e)g(¢Sej, e;) + 2 1T g(4Se;, ei)g(¢Sei, ) (13)
= -2 g(¢Sej, Spej) + 2 371 g(¢Sej, ¢Sej)
= 2traceS® - 2g(S°¢,€) - 2 X771 8(Ve &, Soej)

where we have used (4).
Take now U = V£ = ¢S¢. Then we have

div(U) = X7 8(Ve U, &) = 707 8(Ve,6SE, €;)
=Y 8((Ve,d)SEs €1) + X7  8(6Ve, SE, €1) (14)
=3 g(n(S€)Se; — g(Sei, SE)E, i) — LI 8(Ve, SE, dei),

that is

Lemma 4.2. Let M be a real hypersurfacein Q™, m > 3, and U = ¢S¢. Then
div(U) = (traceS)n(S¢) - n(S%¢) - XM g(Ve,SE, pe;).
From (13) and Lemma 4.2 we obtain

div(U) - 1|¢S - S¢|* = —traceS” + n(S¢)(traceS) - L' g((Ve,S)E, dey). (15)

Then
SN E(VeS)ei vei) = - T 8(6(VeS)e, ;)
= —trace(¢(V¢S)) = ~trace((VeS)d) = - i g((VeS)dei, ei) (16)
= -2 8((VeS)ei, der).
Thus we conclude
ST 8((VeS)ei, gei) = 0. (17)

Bearing in mind (17) Codazzi equation yields

T 8(VeS)E, dei) = - LI g( e, ve;)
+ ¥ g(ei, AN)G(AE, pe;) + L1 g(ei, A)gJAE, dey)
- Y g€, A)g(JAey, de)
=2(m-2)-g(AN,N)* + g(¢, A¢)g(AN, N) - g(¢, A¢)(traceA).

(18)



DE GRUYTER On the structure vector field of a real hypersurface in complex quadric = 189

From (6) g(AN,N) = cos(2t) = -g(A¢,¢). Moreover, as {e1,...am-1, N} is an orthonormal basis of

vectors tangent to Q™ at any point of M, {Je1, ..., Jeam—1,JN} is also an orthonormal basis. Then traceA =

mtg(Alei, Jei) + 8(AJN,JN) = - Y7  g(JAe;, Jei) — gJAN,AN) = - 371" g(Ae;, e;) - 8(AN,N) =
—traceA. Thus traceA = 0 and (18) becomes

D g((VeS)E, dei) = —2(m - 2) - 28(A, €)°. (19)
From this, Lemma 4.1, Lemma 4.2 and (17) we get
div(U) = [ ¢S - S¢|>. (20)

Now if M is Hopf, U = 0 and then ¢S — S¢ = 0.

If M is compact, % 1 6S - S¢|*dV = 0. Thus again ¢S — S¢ = 0.

Inboth casesas (£:8)(X,Y) = g((¢S-S¢)X, Y), forany X, Y € TM, we conclude £,g = 0 and ¢ is Killing,
obtaining our Theorem.

As ¢S = S¢ we have, [2], that m = 2k and M must be locally congruent to a tube around a totally geodesic
CP*in Q™.

Bearing in mind the expression of the shape operator S of such a real hypersurface, [2], it is immediate
to see that its structure vector field is of Jacobi type and we conclude the proof of our Corollary.
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