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Abstract: From the notion of Jacobi type vector �elds for a real hypersurface in complex quadric Qm we prove
that if the structure vector �eld is of Jacobi type it is Killing when the real hypersurface is either Hopf or
compact. In such cases we classify real hypersurfaces whose structure vector �eld is of Jacobi type.
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1 Introduction
The complex quadric Qm = SOm+2/SOmSO2 is a compact Hermitian symmetric space of rank 2. It is also a
complex hypersurface in complex projective spaceCPm+1, [1]. Qm is equippedwith two geometric structures:
a complex conjugation A and a Kähler structure J.

Real hypersurfaces M in Qm are immersed submanifolds of real codimension 1. The Kähler structure J
of Qm induces on M an almost contact metric structure (φ, ξ, η, g), where φ is the structure tensor �eld, ξ is
the structure (or Reeb) vector �eld, η is a 1-form and g is the the induced Riemannian metric on M.

Real hypersurfacesM in Qm whose Reeb �ow is isometric are classi�ed in [2]. They obtain tubes around
the totally geodesic CPk in Qm when m = 2k. The condition of isometric Reeb �ow is equivalent to the
commuting condition of the shape operator S with the structure tensor �eld φ of M.

It is known that a Killing vector �eld X on a Riemannian manifold (M̄, ḡ) satis�es LX ḡ = 0, where L

denotes the Lie derivative. Killing vector �elds are a powerful tool in studying the geometry of a Riemannian
manifold. A Killing vector �eld is a Jacobi vector �eld along any geodesic. However the converse is not true:
the position vector on the euclidean space Rn is a Jacobi �eld along any geodesic of Rn but it is not Killing.
Studying when the structure vector �eld of a complex projective space is Killing, Deshmukh, [3], introduced
the notion of Jacobi type vector �elds on a Riemannian manifold. A vector �eld Y on M̄ is of Jacobi type if it
satis�es

∇̄X∇̄XY + R̄(Y , X)X = 0 (1)

for any vector �eld X tangent to M̄, where ∇̄ denotes the Levi-Civita connection on M̄ and R̄ its Riemannian
curvature tensor. Naturally any Jacobi type vector �eld on M̄ is a Jacobi vector �eld along any geodesic of M̄.

As on a real hypersurface M in Qm we have a special vector �eld, the structure one ξ, it is interesting to
see if it is Killing when it is of Jacobi type. In this sense we will prove the following
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Theorem 1.1. Let M be a real hypersurface in Qm, m ≥ 3. If M is either compact or Hopf and the structure
vector �eld is of Jacobi type, it is a Killing vector �eld.

By this Theorem and the classi�cation of real hypersurfaces with geodesic Reeb �ow we obtain

Corollary 1.2. Let M be a compact or Hopf real hypersurface in Qm, m ≥ 3. Then the structure vector �eld is of
Jacobi type if and only if m is even, say m = 2k, and M is locally congruent to a tube around a totally geodesic
CPk in Qm.

Similar results for real hypersurfaces of complex two-plane Grassmannians were obtained in [4].

2 The space Qm

For the study of Riemannian geometry of Qm see [1]. All the notations we will use since now are the ones
in [2].

The complex projective space CPm+1 is considered as the Hermitian symmetric space of the special
unitary group SUm+2, namely CPm+1 = SUm+2/S(Um+1U1). The symbol o=[0,...,0,1] in CPm+1 is the �xed
point of the action of the stabilizer S(Um+1U1). The action of the special orthogonal group SOm+2 ⊂ SUm+2

onCPm+1 is of cohomogeneity one. A totally geodesic projective spaceRPm+1 ⊂ CPm+1 is an orbit containing
o. The second singular orbit of this action is the complex quadric Qm = SOm+2/SOmSO2. It is a homogeneous
model wich interprets geometrically the complex quadric Qm as the Grassmann manifold G+2 (Rm+2) of
oriented 2-planes in Rm+2. For m = 1 the complex quadric is isometric to a sphere S2 of constant curvature.
For m = 2 the complex quadric Q2 is isometric to the Riemannian product of two 2-spheres with constant
curvature. Therefore we assume the dimension of the complex quadric Qm to be greater than or equal to 3.

Moreover, the complex quadric Qm is the complex hypersurface in CPm+1 de�ned by the equation z2
1 +

... + z2
m+2 = 0, where zi, i = 1, ...,m + 2, are homogeneous coordinates on CPm+1. The Kähler structure of

complex projective space induces canonically a Kähler structure (J, g) on Qm, where g is the Riemannian
metric induced by the Fubini-Study metric of CPm+1.

A point [z] in CPm+1 is the complex span of z, that is [z] = {λz/λ ∈ C}, where z is a nonzero vector of
Cm+2. For each [z] in CPm+1 the tangent space T[z]CPm+1 can be identi�ed canonically with the orthogonal
complement of [z] ⊕ [z̄] in Cm+2.

The shape operator A z̄ of Qm with respect to the unit normal vector z̄ is given by

A z̄w = w̄

for all w ∈ T[z] Qm. Then A z̄ is a complex conjugation restricted to T[z] Qm. Thus T[z] Qm is decomposed into

T[z] Q
m = V(A z̄) ⊕ JV(A z̄)

where V(A z̄) is the (+1)-eigenspace of A z̄ and JV(A z̄) is the (-1)-eigenspace of A z̄. Geometrically, it means that
A z̄ de�nes a real structure on the complex vector space T[z] Qm. The set of all shape operators Aλz̄ de�nes a
parallel rank 2 subbundleA of the endomorphismbundle End(T Qm)which consists of all the real structures
of the tangent space of Qm. For any A ∈ A, A2 = I and AJ = −JA.

The Gauss equation of Qm in CPm+1 yields that the Riemannian curvature tensor R̄ of Qm is given by

R̄(X, Y)Z = g(Y , Z)X − g(X, Z)Y + g(JY , Z)JX − g(JX, Z)JY − 2g(JX, Y)JZ
+g(AY , Z)AX − g(AX, Z)AY + g(JAY , Z)JAX − g(JAX, Z)JAY (2)

where J is the complex structure and A is a real structure in A.
For every vector �eld W tangent to Qm there is a complex conjugation A ∈ A and orthonormal vectors

X, Y ∈ V(A) such that
W = cos(t)X + sin(t)JY

for some t ∈ [0, π
4 ].
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3 Real hypersurfaces in Qm

Let M be a real hypersurface in Qm, that is, a submanifold of Qm with real codimension one. The induced
Riemannian metric onM will also be denoted by g, and∇ denotes the Riemannian connection of (M, g). Let
N be a unit normal vector �eld of M and S the shape operator of M with respect to N. For any X tangent to M
we write

JX = φX + η(X)N

where φX denotes the tangential component of JX and η(X)N its normal component. The structure vector
�eld (or Reeb vector �eld) ξ is de�ned by ξ = −JN. The 1-form η is given by η(X) = g(X, ξ) for any vector �eld
X tangent to M. Therefore, on M we have an almost contact metric structure (φ, ξ, η, g). Thus,

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY) = g(X, Y) − η(X)η(Y), φξ = 0 (3)

for all tangent vector �elds X, Y on M. Moreover, the parallelism of J yields

(∇Xφ)Y = η(Y)SX − g(SX, Y)ξ (4)

and
∇Xξ = φSX (5)

for any X, Y tangent to M.
At each point [z] ∈ M we choose a real structure A ∈ A[z] such that

N[z] = cos(t)Z1 + sin(t)JZ2

AN[z] = cos(t)Z1 − sin(t)JZ2

ξ[z] = −cos(t)JZ1 + sin(t)Z2

Aξ[z] = cos(t)JZ1 + sin(t)Z2

(6)

where Z1, Z2 are orthonormal vectors in V(A) and 0 ≤ t ≤ π
4 . Therefore g(AN, ξ) = 0.

Let X ∈ T[z]M. Then AX is decomposed into

AX = BX + ρ(X)N (7)

where BX is the tangential component of AX and ρ(X)N is its normal component, with ρ(X) = g(AX, N). As
seen above ρ(ξ) = 0.

From (2) the curvature tensor R of M is given by

R(X, Y)Z = g(Y , Z)X − g(X, Z)Y + g(φY , Z)φX − g(φX, Z)φY
−2g(φX, Y)φZ + g(AY , Z)(AX)T − g(AX, Z)(AY)T + g(JAY , Z)(JAX)T − g(JAX, Z)

(JAY)T + g(SY , Z)SX − g(SX, Z)SY
(8)

for any X, Y , Z tangent toM, where (.)T denotes the tangential component of the correspondent vector �eld.
From (8) the Ricci tensor of M is given (see [5]) by

Ric(X) = (2m − 1)X − 3η(X)ξ + η(Bξ)BX + −ρ(X)φBξ + η(BX)Bξ + (traceS)SX − S2X (9)

for any X tangent to M. Moreover, the Codazzi equation is given by

g((∇XS)Y − (∇YS)X, Z) = η(X)g(φY , Z) − η(Y)g(φX, Z)
−2g(φX, Y)η(Z) + g(X, AN)g(AY , Z) − g(Y , AN)g(AX, Z)

+g(X, Aξ)g(JAY , Z) − g(Y , Aξ)g(JAX, Z)
(10)

for any X, Y , Z tangent to M.
The real hypersurface M is called Hopf if the Reeb vector �eld is an eigenvector of the shape operator S,

that is
Sξ = αξ

where α = g(Sξ, ξ) is the Reeb function.
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4 Proof of Theorem 1.1
Let us suppose that ξ is of Jacobi type. Then∇X∇Xξ + R(ξ, X)X = 0 for any X tangent to M.

Take an orthonormal basis {e1, ..., e2m−1} of vector �elds tangent to M. As ξ is of Jacobi type,
∑2m−1

i=1 ∇ei∇eiξ + Ric(ξ) = 0. That is,

∑2m−1
i=1 ∇eiφSei + Ric(ξ) = 0 (11)

From (9) Ric(ξ) = 2(m − 2)ξ + η(Bξ)Bξ − ρ(ξ)φBξ + η(Bξ)Bξ + (traceS)Sξ − S2ξ. As ρ(ξ) = 0 and η(Bξ) =
g(Aξ, ξ) we obtain

Ric(ξ) = 2(m − 2)ξ + 2g(Aξ, ξ)Bξ + (traceS)Sξ − S2ξ. (12)

From (11) and (12) we get∑2m−1
i=1 ∇eiφSei + 2(m − 2)ξ + 2g(Aξ, ξ)Bξ + (traceS)Sξ − S2ξ = 0. Taking its scalar

product with ξ and bearing in mind that g(Bξ, ξ) = g(Aξ, ξ) we obtain

Lemma 4.1. Let M be a real hypersurface in Qm, m ≥ 3, such that ξ is of Jacobi type. Then

−traceS2 + 2(m − 2) + 2g(Aξ, ξ)2 + (traceS)η(Sξ) = 0

Now we compute

∥φS − Sφ∥2 = ∑2m−1
i=1 g((φS − Sφ)ei , (φS − Sφ)ei)

= ∑2m−1
i,j=1 g((φS − Sφ)ei , ej)g((φS − Sφ)ei , ej)

= 2∑2m−1
i,j=1 g(φSej , ei)g(φSej , ei) + 2∑2m−1

i,j=1 g(φSej , ei)g(φSei , ej)
= −2∑2m−1

j=1 g(φSej , Sφej) + 2∑2m−1
j=1 g(φSej , φSej)

= 2traceS2 − 2g(S2ξ, ξ) − 2∑2m−1
j=1 g(∇ejξ, Sφej)

(13)

where we have used (4).
Take now U = ∇ξξ = φSξ. Then we have

div(U) = ∑2m−1
i=1 g(∇eiU, ei) = ∑2m−1

i=1 g(∇eiφSξ, ei)
= ∑2m−1

i=1 g((∇eiφ)Sξ, ei) +∑2m−1
i=1 g(φ∇eiSξ, ei)

= ∑2m−1
i=1 g(η(Sξ)Sei − g(Sei , Sξ)ξ, ei) −∑2m−1

i=1 g(∇eiSξ, φei),
(14)

that is

Lemma 4.2. Let M be a real hypersurface in Qm, m ≥ 3, and U = φSξ. Then

div(U) = (traceS)η(Sξ) − η(S2ξ) −∑2m−1
i=1 g(∇eiSξ, φei).

From (13) and Lemma 4.2 we obtain

div(U) − 1
2∥φS − Sφ∥2 = −traceS2 + η(Sξ)(traceS) −∑2m−1

i=1 g((∇eiS)ξ, φei). (15)

Then
∑2m−1

i=1 (g((∇ξS)ei , φei) = −∑2m−1
i=1 g(φ(∇ξS)ei , ei)

= −trace(φ(∇ξS)) = −trace((∇ξS)φ) = −∑2m−1
i=1 g((∇ξS)φei , ei)

= −∑2m−1
i=1 g((∇ξS)ei , φei).

(16)

Thus we conclude
∑2m−1

i=1 g((∇ξS)ei , φei) = 0. (17)

Bearing in mind (17) Codazzi equation yields

∑2m−1
i=1 g((∇eiS)ξ, φei) = −∑2m−1

i=1 g(φei , φei)
+∑2m−1

i=1 g(ei , AN)g(Aξ, φei) +∑2m−1
i=1 g(ei , Aξ)g(JAξ, φei)

−∑2m−1
i=1 g(ξ, Aξ)g(JAei , φei)

= 2(m − 2) − g(AN, N)2 + g(ξ, Aξ)g(AN, N) − g(ξ, Aξ)(traceA).

(18)
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From (6) g(AN, N) = cos(2t) = −g(Aξ, ξ). Moreover, as {e1, ...e2m−1, N} is an orthonormal basis of
vectors tangent to Qm at any point of M, {Je1, ..., Je2m−1, JN} is also an orthonormal basis. Then traceA =
∑2m−1

i=1 g(AJei , Jei) + g(AJN, JN) = −∑2m−1
i=1 g(JAei , Jei) − g(JAN, AN) = −∑2m−1

i=1 g(Aei , ei) − g(AN, N) =
−traceA. Thus traceA = 0 and (18) becomes

∑2m−1
i=1 g((∇eiS)ξ, φei) = −2(m − 2) − 2g(Aξ, ξ)2. (19)

From this, Lemma 4.1, Lemma 4.2 and (17) we get

div(U) = 1
2∥φS − Sφ∥2. (20)

Now if M is Hopf, U = 0 and then φS − Sφ = 0.
If M is compact, 1

2 ∫M ∥φS − Sφ∥2dV = 0. Thus again φS − Sφ = 0.
In both cases as (Lξg)(X, Y) = g((φS−Sφ)X, Y), for any X, Y ∈ TM, we concludeLξg = 0 and ξ is Killing,

obtaining our Theorem.
As φS = Sφwe have, [2], thatm = 2k andMmust be locally congruent to a tube around a totally geodesic

CPk in Qm.
Bearing in mind the expression of the shape operator S of such a real hypersurface, [2], it is immediate

to see that its structure vector �eld is of Jacobi type and we conclude the proof of our Corollary.
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