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1 Introduction
The optimal control problems on the Lie groups were studied very often in deep connection with mechanical
systems. We can �nd a large list of such examples, like the dynamics of an underwater vehicle, with
SE(3,R) = SO(3) × R3 as space con�guration (see [1]), the ball-plate problem, with R2 × SO(3) as space
con�guration [2], the rolling-penny dynamics having the Lie group SE(2,R) × SO(2) as space con�guration
[3], the control tower problem from air tra�c, modeled on the Special Euclidean Group SE(3), the spacecraft
dynamics modeled on the special orthogonal group SO(3), [4], the buoyancy’s dynamics on the Lie group
SO(3) × R3 × R3, (see [5] for details), and the list may go on.

Similar methods were used in [6-10].
Taking into consideration that in many cases the dynamics can be viewed as a left-invariant, drift-free

control system on the considered Lie group, we became interested in the study of such systems. The problem
of �nding the optimal controls that minimize a quadratic cost function for the general left-invariant drift-free
control system

.
X = X (A1u1 + A2u2 + A3u3 + A5u5 + A7u7) , (1)

on the Lie group G = SO(3) × R3 × R3, where Ai , i = 1, 9 is the standard basis of the Lie algebra g ∶

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the span of the set of Lie brackets generated by A1, A2, A3, A5, A7 coincides with g, the system (1) is
controllable [11].

Considering now the cost function given by:

J(u1, u2, u3, u5, u7) =
1
2

tf

∫
0

[c1u2
1 (t) + c2u2

2 (t) + c3u2
3 (t) + c5u2

5 (t) + c7u2
7 (t)] dt

c1 > 0, c2 > 0, c3 > 0, c5 > 0, c7 > 0,

the controls that minimize J and steer the system (1) from X = X0 at t = 0 to X = Xf at t = tf are given by:

u1 =
1
c1
x1, u2 =

1
c2
x2, u3 =

1
c3
x3, u5 =

1
c5
x5, u7 =

1
c7
x7,

where xi’s are solutions of the following nonlinear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −x5x6

ẋ2 = x7x9

ẋ3 = x4x5 − x7x8

ẋ4 = −x2x6 + x3x5

ẋ5 = x1x6 − x3x4

ẋ6 = −x1x5 + x2x4

ẋ7 = −x2x9 + x3x8

ẋ8 = x1x9 − x3x7

ẋ9 = −x1x8 + x2x7

. (2)

The main goal of our paper is to establish some stability results of the equilibrium points

eMNP
6 = (M, 0, 0, N, 0, 0, P, 0, 0),M, N, P ∈ R,

of the above system. Some stability results regarding the equilibrium states

eMNPQ
1 = (0, 0, 0,M, 0, N, 0, P, Q), M, N, P, Q ∈ R,
eMNP

2 = (0, 0,M, 0, 0, N, 0, 0, P), M, N, P ∈ R,
eMPQ

3 = (0, 0, 0, 0,M, 0, 0, P, Q), M, P, Q ∈ R,
eMNP

4 = (0,M, 0, 0, N, 0, 0, P, 0), M, N, P ∈ R,
eMNP

5 = (M, N, P, 0, 0, 0, 0, 0, 0), M, N, P ∈ R,

were already obtained in [11], but the stability problem for the other equilibrium states remains unsolved.
The paper is organized as follows: in the second paragraph we �nd an appropriate control function

in order to stabilize the equilibrium states eMNP
6 . The third section brie�y presents the Optimal Homotopy

Asymptotic Method, developed in [12-14] and used in the last part in order to obtain the approximate analytic
solutions of the controlled system.

2 Stabilization of eMNP
6 by one linear control

Let us employ the control u ∈ C∞(R9,R),

u(x̄) = (0,−Mx3 − 2Px9,Mx2 + 2Px8, 0,−Mx6,Mx5, 0,−Mx9,Mx8), (3)
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for the system (2). The controlled system (2)−(3), explicitly given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −x5x6

ẋ2 = x7x9 −Mx3 − 2Px9

ẋ3 = x4x5 − x7x8 +Mx2 + 2Px8

ẋ4 = −x2x6 + x3x5

ẋ5 = x1x6 − x3x4 −Mx6

ẋ6 = −x1x5 + x2x4 +Mx5

ẋ7 = −x2x9 + x3x8

ẋ8 = x1x9 − x3x7 −Mx9

ẋ9 = −x1x8 + x2x7 +Mx8

, (4)

has eMNP
6 as an equilibrium state.

Proposition 2.1. The controlled system (4) has the Hamilton-Poisson realization

(G,Π ,H),

where G = SO(3) × R3 × R3,

Π =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −x3 x2 0 −x6 x5 0 −x9 x8

x3 0 −x1 x6 0 −x4 x9 0 −x7

−x2 x1 0 −x5 x4 0 −x8 x7 0
0 −x6 x5 0 0 0 0 0 0
x6 0 −x4 0 0 0 0 0 0
−x5 x4 0 0 0 0 0 0 0

0 −x9 x8 0 0 0 0 0 0
x9 0 −x7 0 0 0 0 0 0
−x8 x7 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

is the minus Lie-Poisson structure on the dual of the corresponding Lie algebra g∗ and the Hamiltonian function
given by

H(x̄) = 1
2
(x2

1 + x2
2 + x2

3 + x2
5 + x2

7) −Mx1 − 2Px7.

Proof. Indeed, one obtains immediately that

Π ⋅ ∇H = [ẋ1 ẋ2 ẋ3 ẋ4 ẋ5 ẋ6 ẋ7 ẋ8 ẋ9]t ,

andΠ is a minus Lie-Poisson structure, see for details [11].

Remark 2.2 ([11]). The functions C1, C2, C3 ∶ R9 → R given by

C1(x̄) =
1
2
(x2

4 + x2
5 + x2

6),

C2(x̄) =
1
2
(x2

7 + x2
8 + x2

9)

and
C3(x̄) = x4x7 + x5x8 + x6x9

are the Casimirs of our Poisson con�guration.

The goal of this paragraph is to study the spectral and nonlinear stability of the equilibrium state eMNP
6 of the

controlled system (4).
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Let A be the matrix of linear part of our controlled system (4), that is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −x6 −x5 0 0 0
0 0 −M 0 0 0 x9 0 x7 − 2P
0 M 0 x5 x4 0 −x8 −x7 + 2P 0
0 −x6 x5 0 x3 −x2 0 0 0
x6 0 −x4 −x3 0 x1 −M 0 0 0
−x5 x4 0 x2 −x1 +M 0 0 0 0

0 −x9 x8 0 0 0 0 x3 −x2

x9 0 −x7 0 0 0 −x3 0 x1 −M
−x8 x7 0 0 0 0 x2 −x1 +M 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

At the equilibrium of interest its characteristic polynomial has the following expression:

pA(eMNP
2 )

(λ) = −λ5[λ4 + (M2 + N2 + 2P2)λ2 + P2(N2 + P2)].

Hence we have �ve zero eigenvalues and four purely imaginary eigenvalues. So we can conclude:

Proposition 2.3. The controlled system (4) may be spectral stabilized about the equilibrium states eMNP
6 for

all M, N, P ∈ R∗.

Moreover we can prove:

Proposition 2.4. The controlled system (4)may be nonlinear stabilized about the equilibrium states eMNP
6 for

all M, N, P ∈ R∗.

Proof. For the proof we shall use Arnold’s technique. Let us consider the following function

Fλ,µ,ν = C1 + λH + µC2 + νC3 =

= 1
2
(x2

4 + x2
5 + x2

6) +
λ

2
(x2

1 + x2
2 + x2

3 + x2
5 + x2

7 − 2Mx1 − 4Px7)+

+µ
2
(x2

7 + x2
8 + x2

9) + ν(x4x7 + x5x8 + x6x9).

The following conditions hold:
(i) ∇Fλ,µ,ν(eMNP

6 ) = 0 i� µ = λ + N2

P2 , ν = − N
P ;

(ii) Considering now

W = ker[dH(eMNP
6 )] ∩ ker[dC2(eMNP

6 )] ∩ ker[dC3(eMNP
6 )] =

= Span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

then, for all v ∈ W, i.e. v = (a, b, c, 0, d, e, 0, f , g), a, b, c, d, e, f , g ∈ R we have

v ⋅ ∇2F
λ,λ+ N2

P2 ,− N
P
(eMNP

6 ) ⋅ vt =

λa2 + λb2 + λc2 + (1 + λ)d2 + e2 + (λ + N2

P2 ) f 2 + (λ + N2

P2 ) g2 − 2N
P
fd − 2N

P
eg
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which is positive de�nite under the restriction λ > 0, and so

∇2F
λ,λ+ N2

P2 ,− N
P
(eMNP

6 )∣W×W

is positive de�nite.
Therefore, via Arnold’s technique, the equilibrium states eMNP

6 , M, N, P ∈ R∗ are nonlinear stable, as
required.

3 Basic ideas of the Optimal Homotopy Asymptotic Method
In order to compute analytical approximate solutions for the nonlinear di�erential system given by the
equations (4) with the boundary conditions

xi(0) = Ai , i = 1, 9, (6)

we will use the Optimal Homotopy Asymptotic Method (OHAM) [12-14].
Let us start with a very short description of this method. The analytical approximate solutions can be

obtained for equations of the general form:

L(x(t)) + N(x(t)) = 0, (7)

subject to the initial conditions of the type:

x(0) = A, A ∈ R - given real number, (8)

where L is a linear operator (which is not unique), N is a nonlinear one and x(t) is the unknown smooth
function of the Eq. (7).

Following [12-14], we construct the homotopy given by:

H[L(X(t, p)), H(t, Ci), N(X(t, p))] ≡ L(x0(t)) +

+p[L(x1(t, Ci)) − H(t, Ci)N(x0(t))] = 0, (9)

where p ∈ [0, 1] is the embedding parameter, H(t, Ci), (H ≠ 0) is an auxiliary convergence-control function,
depending on the variable t and on the parameters C1, C2, ..., Cs and the function X(t, p) has the expression:

X(t, p) = x0(t) + px1(t, Ci). (10)

The following properties hold:

H[L(X(t, 0)), H(t, Ci), N(X(t, 0))] = L(x0(t)) (11)

and

H[L(X(t, 1)), H(t, Ci), N(X(t, 1))] = L(x1(t, Ci)) − H(t, Ci)N(x0(t)). (12)

The governing equations of x0(t) and x1(t, Ci) can be obtained by equating the coe�cients of p0 and p1,
respectively:

L(x0(t)) = 0, x(0) = A, (13)

L(x1(t, Ci)) = H(t, Ci)N(x0(t)),
x1(0, Ci) = 0, i = 1, s.

(14)
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The expression of x0(t) can be found by solving the linear equation (13). Also, to compute x1(t, Ci)we solve
the equation (14), by taking into consideration that the nonlinear operator N presents the general form:

N (x0(t)) = ∑m
i=1 hi(t)gi(t), (15)

where m is a positive integer and hi(t) and gi(t) are known functions depending both on x0(t) and N.
Although the equation (14) is a nonhomogeneous linear one, in the most cases its solution can not be

found.
In order to compute the function x1(t, Ci) we will use the third modi�ed version of OHAM (see [14] for

details), consisting in the following steps:
First we consider one of the following expressions for x1(t, Ci):

x1(t, Ci) = ∑m
i=1 Hi(t, hj(t), Cj)gi(t), j = 1, s, (16)

or
x1(t, Ci) = ∑m

i=1 Hi(y, gj(t), Cj)hi(t), j = 1, s,
x1(0, Ci) = 0.

(17)

These expressions of Hi(t, hj(t), Cj) contain both linear combinations of the functions hj and the parameters
Cj , j = 1, s. The summation limit m is an arbitrary positive integer number.

Next, by taking into account the equation (10), for p = 1, the �rst-order analytical approximate solution
of the equations (7) - (8) is:

x(t, Ci) = X(t, 1) = x0(t) + x1(t, Ci). (18)

Finally, the convergence-control parameters C1, C2, ..., Cs, which determine the �rst-order approximate
solution (18), can be optimally computed by means of various methods, such as: the least square method,
the Galerkin method, the collocation method, the Kantorowich method or the weighted residual method.

De�nition 3.1. [15] We call an ε-approximate solution of the problem (7) on the domain (0, ∞) a smooth
function x(t, Ci) of the form (18) which satis�es the following condition:

∣R(t, x(t, Ci))∣ < ε,

together with the initial condition from Eq. (8), where the residual function R(t, x(t, Ci)) is obtained by
substituting the Eq. (18) into Eq. (7), i.e.

R(t, x(t, Ci)) = L(x(t, Ci)) + N(x(t, Ci)).

De�nition 3.2 ([15]). We call a week ε-approximate solution of the problem (7) on the domain (0, ∞) a
smooth function x(t, Ci) of the form (18) which satis�es the following condition:

∞

∫
0

R2(t, x(t, Ci)) dη < ε,

together with the initial condition from Eq. (8).
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4 Application of Optimal Homotopy Asymptotic Method for solving
the nonlinear di�erential system (4)

In order to solve the nonlinear di�erential system given by the equations (4), each equation of the system (4)
can be written in the form Eq. (7), where we can choose the linear operators as:

L [x1(t)] = ẋ1(t) + K1x1(t),
L [x2(t)] = ẋ2(t) + K1x2(t) +Mx3(t),
L [x3(t)] = ẋ3(t) + K1x3(t) −Mx2(t),
L [x4(t)] = ẋ4(t) + K1x4(t) + Kx7(t),
L [x5(t)] = ẋ5(t) + K1x5(t) +Mx6(t),
L [x6(t)] = ẋ6(t) + K1x6(t) −Mx5(t),
L [x7(t)] = ẋ7(t) + K1x7(t) − Kx4(t),
L [x8(t)] = ẋ8(t) + K1x8(t) +Mx9(t),
L [x9(t)] = ẋ9(t) + K1x9(t) −Mx8(t),

(19)

with K > 0, K1 > 0 the unknown parameters at this moment.
The corresponding linear equations for initial approximations xi0 , i = 1, 9 can be obtained by means of

the Eqs. (13), (19) and (6):
L [xi0(t)] = 0, xi0(0) = Ai , i = 1, 9, (20)

whose solutions are
x10(t) = A1 ⋅ e−K1 t ,
x20(t) = (A2 cos(Mt) − A3 sin(Mt)) ⋅ e−K1 t ,
x30(t) = (A3 cos(Mt) + A2 sin(Mt)) ⋅ e−K1 t ,
x40(t) = (A4 cos(Kt) − A7 sin(Kt)) ⋅ e−K1 t ,
x50(t) = (A5 cos(Mt) − A6 sin(Mt)) ⋅ e−K1 t ,
x60(t) = (A6 cos(Mt) + A5 sin(Mt)) ⋅ e−K1 t ,
x70(t) = (A7 cos(Kt) + A4 sin(Kt)) ⋅ e−K1 t ,
x80(t) = (A8 cos(Mt) − A9 sin(Mt)) ⋅ e−K1 t ,
x90(t) = (A9 cos(Mt) + A8 sin(Mt)) ⋅ e−K1 t ,

(21)

The corresponding nonlinear operators N [xi(t)], i = 1, 9 are obtained from the equations (4):

N [x1(t)] = −K1x1(t) + x5(t)x6(t),
N [x2(t)] = −K1x2(t) − x7(t)x9(t) + 2Px9(t),
N [x3(t)] = −K1x3(t) − x4(t)x5(t) + x7(t)x8(t) − 2Px8(t),
N [x4(t)] = −K1x4(t) − Kx7(t) + x2(t)x6(t) − x3(t)x5(t),
N [x5(t)] = −K1x5(t) − x1(t)x6(t) + x3(t)x4(t),
N [x6(t)] = −K1x6(t) + x1(t)x5(t) − x2(t)x4(t),
N [x7(t)] = −K1x7(t) + x2(t)x9(t) − x3(t)x8(t),
N [x8(t)] = −K1x8(t) − x1(t)x9(t) + x3(t)x7(t),
N [x9(t)] = −K1x9(t) + x1(t)x8(t) − x2(t)x7(t),

(22)

such that

L [x1(t)] + N [x1(t)] = ẋ1(t) + x5(t)x6(t), L [x2(t)] + N [x2(t)] = ẋ2(t) − x7(t)x9(t) +Mx3(t) + 2Px9(t),

L [x3(t)] + N [x3(t)] = ẋ3(t) − x4(t)x5(t) + x7(t)x8(t) −Mx2(t) − 2Px8(t),

L [x4(t)] + N [x4(t)] = ẋ4(t) + x2(t)x6(t) − x3(t)x5(t)

L [x5(t)] + N [x5(t)] = ẋ5(t) − x1(t)x6(t) + x3(t)x4(t) +Mx6(t),

L [x6(t)] + N [x6(t)] = ẋ6(t) + x1(t)x5(t) − x2(t)x4(t) −Mx5(t),
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L [x7(t)] + N [x7(t)] = ẋ7(t) + x2(t)x9(t) − x3(t)x8(t),

L [x8(t)] + N [x8(t)] = ẋ8(t) − x1(t)x9(t) + x3(t)x7(t) +Mx9(t)

L [x9(t)] + N [x9(t)] = ẋ9(t) + x1(t)x8(t) − x2(t)x7(t) −Mx8(t),

and therefore, substituting Eqs. (21) into Eqs. (22), we obtain

N [x10(t)] = −K1x10(t) + x50(t)x60(t),
N [x20(t)] = −K1x20(t) − x70(t)x90(t) + 2Px90(t),
N [x30(t)] = −K1x30(t) − x40(t)x50(t) + x70(t)x80(t) − 2Px80(t),
N [x40(t)] = −K1x40(t) − Kx70(t) + x20(t)x60(t) − x30(t)x50(t),
N [x50(t)] = −K1x50(t) − x10(t)x60(t) + x30(t)x40(t),
N [x60(t)] = −K1x60(t) + x10(t)x50(t) − x20(t)x40(t),
N [x70(t)] = −K1x70(t) + x20(t)x90(t) − x30(t)x80(t),
N [x80(t)] = −K1x80(t) − x10(t)x90(t) + x30(t)x70(t),
N [x90(t)] = −K1x90(t) + x10(t)x80(t) − x20(t)x70(t).

(23)

Remark 4.1. Now, we observe that the nonlinear operators N [xi0(t)], i = 1, 9 are the linear combinations
between the elementary functions e−K1 t ⋅ cos(Mt), e−K1 t ⋅ sin(Mt), e−2K1 t ⋅ cos2(Mt), e−2K1 t ⋅ sin2(Mt), e−2K1 t ⋅
cos(Mt) sin(Mt), e−K1 t ⋅ cos(Kt), e−K1 t ⋅ sin(Kt), e−2K1 t ⋅ cos(Kt) cos(Mt), e−2K1 t ⋅ sin(Kt) sin(Mt), e−2K1 t ⋅
cos(Kt) sin(Mt), e−2K1 t ⋅ sin(Kt) cos(Mt).

On the other hand, the Eq. (14) becomes:

L(xi1(t, Cj)) = H(t, Cj)N(xi0(t)),
xi1(0, Cj) = 0, i = 1, 9, j = 1, s,

(24)

where the linear operators L are given by Eq. (19) and the expressions N(xi0(t)), i = 1, 9 are given by Eq. (23).
The auxiliary convergence-control functions Hi are chosen such that the product between Hi ⋅ N [xi0(t)]

has the same form of the N [xi0(t)]. Then, the �rst approximation becomes:

xi1 =
7
∑
n=1

[Bn cos(2n + 1)ωt + Cn sin(2n + 1)ωt] ⋅ e−K1 t , i = 1, 9. (25)

Using now the third-alternative of OHAM and the equations (18), the �rst-order approximate solution can be
put in the form

x̄i(t, Ci) = xi0(t) + xi1(t, Ci), i = 1, 9 (26)

where xi0(t) and xi1(t, Ci) are given by (21) and (25), respectively.

5 Numerical examples and discussions
In this section, the accuracy and validity of the OHAM technique is proved using a comparison of our
approximate solutions with numerical results obtained via the fourth-order Runge-Kutta method in the
following case: we consider the initial value problem given by (4) with initial conditions (6) Ai = 0.0001,
i = 1, 9, M = 15 and P = 20.

One can show that these approximate solutions are week ε-approximate solutions by computing the

numerical value of the integral of square residual function (to see the Table 4), i.e.
1

∫
0

R2
i (t) dt, i = 1, ..., 9,
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where
R1(t) = ˙̄x1(t) + x̄5(t)x̄6(t),
R2(t) = ˙̄x2(t) − x̄7(t)x̄9(t) +Mx̄3(t) + 2Px̄9(t),
R3(t) = ˙̄x3(t) − x̄4(t)x̄5(t) + x̄7(t)x̄8(t) −Mx̄2(t) − 2Px̄8(t),
R4(t) = ˙̄x4(t) + x̄2(t)x̄6(t) − x̄3(t)x̄5(t),
R5(t) = ˙̄x5(t) − x̄1(t)x̄6(t) + x̄3(t)x̄4(t) +Mx̄6(t),
R6(t) = ˙̄x6(t) + x̄1(t)x̄5(t) − x̄2(t)x̄4(t) −Mx̄5(t),
R7(t) = ˙̄x7(t) + x̄2(t)x̄9(t) − x̄3(t)x̄8(t),
R8(t) = ˙̄x8(t) − x̄1(t)x̄9(t) + x̄3(t)x̄7(t) +Mx̄9(t),
R9(t) = ˙̄x9(t) + x̄1(t)x̄8(t) − x̄2(t)x̄7(t) −Mx̄8(t),

(27)

with x̄i(t), i = 1, ..., 9 given by Eq. (26).
The convergence-control parameters K, K1, ω, Bi, Ci, i = 1, 9 are optimally determined by means of the

least-square method.
– for x̄1 : The convergence-control parameters are respectively :

B1 = 0.00243871503187, B2 = −0.00359273871118, B3 = 0.00052965854847,

B4 = 0.00114795966364, B5 = −0.00056092131600, B6 = 6.47335130 ⋅ 10−6,

B7 = 0.00003434745346, B8 = −3.49402157 ⋅ 10−6, C1 = −0.00350555321652,

C2 = −0.00076136918414, C3 = 0.00251066466427, C4 = −0.00087065292393,

C5 = −0.00027493879386, C6 = 0.00019640146954, C7 = −0.00002061370631,

C8 = −1.94094963 ⋅ 10−6, K = 2.57114627223466,

K1 = 0.58656793719790, ω = 1.01132823106464.

The �rst-order approximate solutions given by the Eq. (26) are respectively :

x̄1(t) = e−0.58656793719790t(0.0001 + 0.00243871503187 cos(ωt)−
−0.00359273871118 cos(3ωt) + 0.00052965854847 cos(5ωt)+
+0.00114795966364 cos(7ωt) − 0.00056092131600 cos(9ωt)+
+6.47335130511943 ⋅ 10−6 cos(11ωt) + 0.00003434745346 cos(13ωt)−
−3.49402157853902 ⋅ 10−6 cos(15ωt)) + ( − 0.00350555321652 sin(ωt)−
−0.00076136918414 sin(3ωt) + 0.00251066466427 sin(5ωt)−
−0.00087065292393 sin(7ωt) − 0.00027493879386 sin(9ωt)+
+0.00019640146954 sin(11ωt) − 0.00002061370631 sin(13ωt)−
−1.94094963 ⋅ 10−6 sin(15ωt))e−0.58656793719790 t .

(28)

For all unknown functions x̄i, i = 1, 9, we have K1 = 0.58656793719790 and ω = 1.01132823106464.
– for x̄2 :

x̄2(t) = e−0.58656793719790 t(−0.46417071707583 cos(ωt)+
+0.55436638784881 cos(3ωt) + 0.23179980739892 cos(5ωt)−
−0.52457790349642 cos(7ωt) + 0.20239755363119 cos(9ωt)+
+0.03102295410884 cos(11ωt) − 0.04104869574268 cos(13ωt)+
+0.01021061332716 cos(15ωt)) + e−0.58656793719790 t(0.0001 cos(15t)−
−0.0001 sin(15t)) + e−0.586567937197 t(0.42041532210572 sin(ωt)+
+0.47464526230797 sin(3ωt) − 0.66980627335479 sin(5ωt)+
+0.08449154306675 sin(7ωt) + 0.23139718247432 sin(9ωt)−
−0.13429737097902 sin(11ωt) + 0.02641377996654 sin(13ωt)−
−0.00262253548558 sin(15ωt)).

(29)
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– for x̄3 :

x̄3(t) = e−0.58656793719790 t(1.62690195527876 cos(ωt)−
−2.91905245722799 cos(3ωt) + 1.41052417394739 cos(5ωt)+
+0.18894557284618 cos(7ωt) − 0.45976960570592 cos(9ωt)+
+0.17490980799902 cos(11ωt) − 0.02436756038517 cos(13ωt)+
+0.00190811324772 cos(15ωt)) + e−0.58656793719790 t(0.0001 cos(15t)+
+0.0001 sin(15t)) + e−0.58656793719790 t(−3.16149837021824 sin(ωt)+
+0.42959981904576 sin(3ωt) + 1.45120190775009 sin(5ωt)−
−1.12246042334992 sin(7ωt) + 0.24077988316763 sin(9ωt)+
+0.07360271218550 sin(11ωt) − 0.05047592981365 sin(13ωt)+
+0.01049752842422 sin(15ωt)).

(30)

– for x̄4 :

x̄4(t) = e−0.58656793719790 t(1.94037601 ⋅ 10−6 cos(ωt)+
+0.00001098412604 cos(3ωt) − 0.00001943075801 cos(5ωt)+
+7.22410959926685 ⋅ 10−6 cos(7ωt) − 4.23016798075448 ⋅ 10−7 cos(9ωt)−
−3.67489997706953 ⋅ 10−7 cos(11ωt) + 7.48336663534119 ⋅ 10−8 cos(13ωt)−
−2.18052201200004 ⋅ 10−9 cos(15ωt)) + e−0.58656793719790 t(0.0001 cos(0.80363574138731t)−
−0.0001 sin(0.80363574138731t)) + e−0.58656793719790 t(0.00024662613164 sin(ωt)−
−0.00005660016305 sin(3ωt) + 0.00001080462985 sin(5ωt)+
+3.31362820627460 ⋅ 10−6 sin(7ωt) − 2.30237733420243 ⋅ 10−6 sin(9ωt)+
+3.66350337276902 ⋅ 10−7 sin(11ωt) + 1.43826553061835 ⋅ 10−8 sin(13ωt)−
−5.09710156758535 ⋅ 10−9 sin(15ωt)).

(31)

– for x̄5 :

x̄5(t) = e−0.58656793719790 t(0.01369917160029 cos(ωt)−
−0.02516198187512 cos(3ωt) + 0.01340403032961 cos(5ωt)+
+0.00013038596714 cos(7ωt) − 0.00335904322615 cos(9ωt)+
+0.00158445050516 cos(11ωt) − 0.00035976290254 cos(13ωt)+
+0.00006274960160 cos(15ωt)) + e−0.58656793719790 t(0.0001 cos(15t)−
−0.0001Sin(15t)) + e−0.58656793719790 t(−0.02795989598259 sin(ωt)+
+0.00526407948570 sin(3ωt) + 0.01119295776584 sin(5ωt)−
−0.00969533499261 sin(7ωt) + 0.00279014392623 sin(9ωt)+
+0.00019457655388 sin(11ωt) − 0.00035980785989 sin(13ωt)+
+0.00010360505021 sin(15ωt)).

(32)

– for x̄6 :

x̄6(t) = e−0.58656793719790 t(0.01331723000622 cos(ωt)−
−0.02136690535515 cos(3ωt) + 0.00599018344061 cos(5ωt)+
+0.00533244090418 cos(7ωt) − 0.00400304532847 cos(9ωt)+
+0.00056272420145 cos(11ωt) + 0.00027367239189 cos(13ωt)−
−0.00010630026076 cos(15ωt)) + e−0.58656793719790 t(0.0001 cos(15t)+
+0.0001 sin(15t)) + e−0.58656793719790 t(−0.02188514843412 sin(ωt)−
−0.00146001826477 sin(3ωt) + 0.01365871149717 sin(5ωt)−
−0.00673797188735 sin(7ωt) − 0.00067903495719 sin(9ωt)+
+0.00146666027085 sin(11ωt) − 0.00045540606550 sin(13ωt)+
+0.00007291228376 sin(15ωt)).

(33)

– for x̄7 :
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x̄7(t) = e−0.58656793719790 t(0.00014174642928 cos(ωt)−
−0.00012283316033 cos(3ωt) − 0.00002041841606 cos(5ωt)+
+9.42449906 ⋅ 10−7 cos(7ωt) + 8.49879531 ⋅ 10−7 cos(9ωt)−
−3.23563916 ⋅ 10−7 cos(11ωt) + 3.63337271 ⋅ 10−8 cos(13ωt)+
+4.78659301 ⋅ 10−11 cos(15ωt)) + (0.0001 cos(3.72653706867179t)+
+0.0001 sin(3.72653706867179t))e−0.58656793719790 t+
+(0.00013001568894 sin(ωt) − 0.00011137613515 sin(3ωt)−
−0.00002806958703 sin(5ωt) + 6.45157686 ⋅ 10−6 sin(7ωt)−
1.35713708 ⋅ 10−6 sin(9ωt) + 6.39039531 ⋅ 10−8 sin(11ωt)+
2.93113481 ⋅ 10−8 sin(13ωt) − 3.32424397 ⋅ 10−9 sin(15ωt))e−0.58656793719790 t .

(34)

– for x̄8 :

x̄8(t) = e−0.58656793719790 t(0.01369917160029 cos(ωt)−
−0.02516198187512 cos(3ωt) + 0.01340403032961 cos(5ωt)+
+0.00013038596714 cos(7ωt) − 0.00335904322615 cos(9ωt)+
+0.00158445050516 cos(11ωt) − 0.00035976290254 cos(13ωt)+
+0.00006274960160 cos(15ωt)) + e−0.58656793719790 t(0.0001 cos(15t)−
−0.0001 sin(15t)) + e−0.58656793719790 t(−0.02795989598259 sin(ωt)+
+0.00526407948570 sin(3ωt) + 0.01119295776584 sin(5ωt)−
−0.00969533499261 sin(7ωt) + 0.00279014392623 sin(9ωt)+
+0.00019457655388 sin(11ωt]) − 0.00035980785989 sin(13ωt)+
+0.00010360505021 sin(15ωt).

(35)

– for x̄9 :

x̄9(t) = e−0.58656793719790 t(0.01331723000622 cos[ωt)−
−0.02136690535515 cos(3ωt) + 0.00599018344061 cos(5ωt)+
+0.00533244090418 cos(7ωt) − 0.00400304532847 cos(9ωt)+
+0.00056272420145 cos(11ωt) + 0.00027367239189 cos(13ωt)−
−0.00010630026076 cos(15ωt)) + e−0.58656793719790 t(0.0001 cos(15t)+
+0.0001 sin(15t)) + e−0.58656793719790 t (−0.02188514843412 sin(ωt)−
−0.00146001826477 sin(3ωt) + 0.01365871149717 sin(5ωt)−
−0.00673797188735 sin(7ωt) − 0.00067903495719 sin(9ωt)+
+0.00146666027085 sin(11ωt) − 0.00045540606550 sin(13ωt)+
+0.00007291228376 sin(15ωt)).

(36)

Finally, Tables 1, 2 and 3 emphasizes the accuracy of the OHAM technique by comparing the approximate
analytic solutions x̄3, x̄5 and x̄8 respectively presented above with the corresponding numerical integration
values.
The Figs. 1-9 depicted a comparison between the obtained approximate solutions given by Eqs. (28)-(36) with
corresponding numerical integration.

Fig. 1. Comparison between the approximate solutions x̄1 given by Eq. (28) and the corresponding numerical solutions
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Table 1. The comparison between the approximate solutions x̄3 given by Eq. (30) and the corresponding numerical solutions for
M = 15 and P = 20 (relative errors: εx3 = ∣x3numerical − x̄3OHAM ∣)

t x3numerical x̄3OHAM given by Eq. (30) εx3

0 0.0001 0.0001 0
1/10 -0.00026388686019 -0.00026388920732 2.34712908 ⋅10−9

1/5 -0.00098972163690 -0.00098972743135 5.79444527 ⋅10−9

3/10 0.00080121591193 0.00080121516755 7.44372891 ⋅10−10

2/5 0.00205113177145 0.00205113953903 7.76758435 ⋅10−9

1/2 -0.00105407568168 -0.00105407578483 1.03151043 ⋅10−10

3/5 -0.00322482848832 -0.00322483170127 3.21294763 ⋅10−9

7/10 0.00099573781977 0.00099573897878 1.15901067 ⋅10−9

4/5 0.00444604275839 0.00444604908979 6.33140294 ⋅10−9

9/10 -0.00061159885752 -0.00061159746243 1.39509107 ⋅10−9

1 -0.00564686848672 -0.00564687685941 8.37269479 ⋅10−9

Table 2. The comparison between the approximate solutions x̄5 given by Eq. (32) and the corresponding numerical solutions for
M = 15 and P = 20 (relative errors: εx5 = ∣x5numerical − x̄5OHAM ∣)

t x5numerical x̄5OHAM given by Eq. (32) εx5

0 0.0001 0.0001 0
1/10 -0.00009267394569 -0.00009267384041 1.05273724 ⋅10−10

1/5 -0.00011309924594 -0.00011309966129 4.15348823 ⋅10−10

3/10 0.00007665834993 0.00007665851028 1.60350492 ⋅10−10

2/5 0.00012391598733 0.00012391636093 3.73592167 ⋅10−10

1/2 -0.00005910519311 -0.00005910537099 1.77875786 ⋅10−10

3/5 -0.00013222655382 -0.00013222667316 1.19336773 ⋅10−10

7/10 0.00004037430382 0.00004037416907 1.34745601 ⋅10−10

4/5 0.00013786222359 0.00013786239690 1.73302447 ⋅10−10

9/10 -0.00002084981273 -0.00002084984022 2.74919318 ⋅10−11

1 -0.00014071144636 -0.00014071122544 2.20921854 ⋅10−10

Fig. 2. Comparison between the approximate solutions x̄2 given by Eq. (29) and the corresponding numerical solutions
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Table 3. The comparison between the approximate solutions x̄8 given by Eq. (35) and the corresponding numerical solutions for
M = 15 and P = 20 (relative errors: εx8 = ∣x8numerical − x̄8OHAM ∣)

t x8numerical x̄8OHAM given by Eq. (35) εx8

0 0.0001 0.0001 0
1/10 -0.00009267394569 -0.00009267384041 1.05273724 ⋅10−10

1/5 -0.00011309924594 -0.00011309966129 4.15348823 ⋅10−10

3/10 0.00007665834993 0.00007665851028 1.60350492 ⋅10−10

2/5 0.00012391598733 0.00012391636093 3.73592167 ⋅10−10

1/2 -0.00005910519311 -0.00005910537099 1.77875786 ⋅10−10

3/5 -0.00013222655382 -0.00013222667316 1.19336773 ⋅10−10

7/10 0.00004037430382 0.00004037416907 1.34745601 ⋅10−10

4/5 0.00013786222359 0.00013786239690 1.73302447 ⋅10−10

9/10 -0.00002084981273 -0.00002084984022 2.74919318 ⋅10−11

1 -0.00014071144636 -0.00014071122544 2.20921854 ⋅10−10

Table 4. The numerical values of the integral of square residual function given by Eq. (27) corresponding to the approximate
solutions given by Eqs. (28)-(36) for M = 15 and P = 20

i
1

∫
0

R2
i (t) dt

1 7.464737808519274 ⋅10−17

2 8.459118984995915 ⋅10−13

3 1.0225368942228159 ⋅10−13

4 2.6769875640036004 ⋅10−23

5 9.659432242298964 ⋅10−17

6 8.086505295586057 ⋅10−17

7 1.4525406989853368 ⋅10−23

8 9.659432355712418 ⋅10−17

9 8.086505295410683 ⋅10−17

Fig. 3. Comparison between the approximate solutions x̄3 given by Eq. (30) and the corresponding numerical solutions
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Fig. 4. Comparison between the approximate solutions x̄4 given by Eq. (31) and the corresponding numerical solutions

Fig. 5. Comparison between the approximate solutions x̄5 given by Eq. (32) and the corresponding numerical solutions

Fig. 6. Comparison between the approximate solutions x̄6 given by Eq. (33) and the corresponding numerical solutions

Fig. 7. Comparison between the approximate solutions x̄7 given by Eq. (34) and the corresponding numerical solutions
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Fig. 8. Comparison between the approximate solutions x̄8 given by Eq. (35) and the corresponding numerical solutions

Fig. 9. Comparison between the approximate solutions x̄9 given by Eq. (36) and the corresponding numerical solutions

6 Conclusion
The paper presents the stabilization of a dynamical system using a linear control function. The Hamilton-
Poisson formulation of the obtained system allows to use energy-methods in order to obtain stability results.
In the last section the approximate analytic solutions of the considered controlled system (4) are established
using the optimal homotopy asymptotic method (OHAM). Numerical simulations via Mathematica 9.0 soft-
ware and the approximations deviations are presented. The accuracy of our results is pointed out by means
of the approximate residual of the solutions.

The next step we intend to do is a comparison between the Lie-Trotter integrator (which is a Poisson one,
see [11]) and OHAM, regarding the numerical results.
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